WorldWideScience

Sample records for coherent light sources

  1. Status of the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  2. Coherent Lensless imaging with Ultra-Broadband Light Sources

    Directory of Open Access Journals (Sweden)

    Eikema K. S. E.

    2013-03-01

    Full Text Available We demonstrate a method for efficient lensless imaging using ultra-broadband light sources. By using a pair of time-delayed, coherent pulses in a Fourier-transform scheme, spectrally resolved diffraction patterns are obtained throughout the entire spectrum of the incident light source. We perform a proof-of-principle experiment using an octave-spanning visible light source, and obtain images of a holographic test sample with near-diffraction limited resolution. Our approach provides a promising route towards efficient high-resolution imaging using table-top high-harmonic soft-X-ray sources.

  3. Data systems for the Linac coherent light source.

    Science.gov (United States)

    Thayer, J; Damiani, D; Ford, C; Dubrovin, M; Gaponenko, I; O'Grady, C P; Kroeger, W; Pines, J; Lane, T J; Salnikov, A; Schneider, D; Tookey, T; Weaver, M; Yoon, C H; Perazzo, A

    2017-01-01

    The data systems for X-ray free-electron laser (FEL) experiments at the Linac coherent light source (LCLS) are described. These systems are designed to acquire and to reliably transport shot-by-shot data at a peak throughput of 5 GB/s to the offline data storage where experimental data and the relevant metadata are archived and made available for user analysis. The analysis and monitoring implementation (AMI) and Photon Science ANAlysis (psana) software packages are described. Psana is open source and freely available.

  4. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  5. X-ray detectors at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella, E-mail: carini@slac.stanford.edu; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  6. Suppression of microbunching instability in the linac coherent light source

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2004-07-01

    Full Text Available A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation, and linac wakefields is studied for the linac coherent light source (LCLS accelerator system. Since the uncorrelated (local energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify rf-gun generated modulations or even shot-noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the free-electron laser performance. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impact of the instability on the quality of the electron beam.

  7. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  8. Ultrashort Optical Pulses in the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, V.

    2005-01-31

    The Linac Coherent Light Source (LCLS) project at the Stanford Linear Accelerator Center (SLAC) will produce intense, coherent 0.15 nm x-rays, with an expected peak brightness many orders of magnitude greater than existing x-ray sources and energy density as high as 4 x 10{sup 25} watts/cm{sup 2}. These x-rays are produced by a single pass of a 15 GeV electron beam through a long undulator. The 15 GeV electron beam is generated using the last one third of the existing SLAC linac. This paper describes how to extend the present design of the LCLS to generate even shorter x-ray pulses than the nominal 255 femtoseconds FWHM. The goal of this study is to obtain pulse lengths as short as 50 femtoseconds. The scientific need for the shorter bunches is outlined, and electron and x-ray pulse compression options are reviewed. The analysis concludes that there are paths, albeit difficult, to obtaining shorter bunches and that the present LCLS design has the flexibility and range to test these paths.

  9. Linac Coherent Light Source (LCLS) Conceptual Design Report

    CERN Document Server

    Nuhn, H D

    2002-01-01

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) RandD facility operating in the wavelength range 1.5-15 (angstrom). This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiatio...

  10. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  11. Workshop on scientific applications of short wavelength coherent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses ; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  12. Workshop on scientific applications of short wavelength coherent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS` Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  13. Linac Coherent Light Source Undulator RF BPM System

    Energy Technology Data Exchange (ETDEWEB)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; /Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; /SLAC

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  14. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  15. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    Science.gov (United States)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  16. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  17. RF Design for the Linac Coherent Light Source (LCLS) Injector

    CERN Document Server

    Dowell, D H; Boyce, Richard F; Hodgson, J A; Li, Zenghai; Limborg-Deprey, C; Xiao, Liling; Yu, Nancy

    2004-01-01

    The Linac Coherent Light Source (LCLS) will be the world’s first free electron laser, and the successful operation of this very short-wavelength FEL will require excellent beam quality from its electron source. Therefore a critical component is the RF photocathode injector. This paper describes the design issues of the LCLS RF gun and accelerator structures. The injector consists of a 1.6 cell s-band gun followed by two 3-meter SLAC sections. The gun and the first RF section will have dual RF feeds both to eliminate transverse RF kicks and to reduce the pulsed heating of the coupling ports. In addition, the input coupler cavity of the first accelerator section will be specially shaped to greatly reduce the RF quadrupole fields. The design for the accelerator section is now complete, and the RF design of the gun’s dual coupler and the full cell shape is in progress. These and other aspects of the gun and structure designs will be discussed.

  18. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    CERN Document Server

    Limborg-Deprey, Cecile

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

  19. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  20. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lee, Sooheyong [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hasylab at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric, E-mail: aymeric@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-14

    A description of the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source is presented. Recent highlights illustrate the coherence properties of the source as well as some recent dynamics measurements and future directions. The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

  1. Swept source optical coherence microscopy using a 1310 nm VCSEL light source.

    Science.gov (United States)

    Ahsen, Osman O; Tao, Yuankai K; Potsaid, Benjamin M; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F; Connolly, James L; Hornegger, Joachim; Cable, Alex; Fujimoto, James G

    2013-07-29

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens.

  2. Laser pumped light emitting diodes as broad area sources of coherent radiation

    Science.gov (United States)

    Rahman, Faiz; Sorel, Marc

    2006-08-01

    This paper describes the use of large area light emitting diodes, pumped with various laser sources, as extended area emitters of coherent radiation. The photon recycling takes place through the intermediary of electron hole pair formation and subsequent stimulated recombination. It is possible to generate both spontaneous and stimulated emission together and the two channels are then independent of each other. This allows the generation of a mixture of coherent and non-coherent radiation in any desired proportion. The technique described is a broad-band resonant process with diffusive feedback and can be used for generating non-collimated laser radiation for a variety of applications.

  3. Characterization of edge effects in precision low-coherence interferometry using broadband light sources

    Science.gov (United States)

    Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.

    2017-06-01

    Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.

  4. Classical Light Sources with Tunable Temporal Coherence and Tailored Photon Number Distributions

    OpenAIRE

    Pandey, Deepak; Satapathy, Nandan; Suryabrahmam, Buti; Ivan, J. Solomon; Ramachandran, Hema

    2012-01-01

    We demonstrate the generation of classical incoherent light with electronic control over its temporal characteristics and photon number distribution. The tunability of the temporal coherence is shown, under both classical and quantum detection, through second order correlation ($G^2(\\tau)$) measurements. The tailoring of desired classical photon number distributions is illustrated by creating two representative light sources - one thermal and the other a specific classical, non-Gaussian state...

  5. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source.

    Science.gov (United States)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S; Defever, Jim; Feng, Yiping; Flath, Daniel L; Glownia, James M; Lee, Sooheyong; Lemke, Henrik T; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-05-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4-25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

  6. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli­seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  7. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    Science.gov (United States)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  8. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High...... the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance. © 2014 AIP Publishing LLC....

  9. Short-Pulse Limits in Optical Instrumentation Design for the SLAC Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.

    2005-01-31

    The source properties of linac-driven X-Ray Free-Electron Lasers (XRFELs) operating in the Self-Amplified Spontaneous Emission (SASE) regime differ markedly from those of ordinary insertion devices on synchrotron storage rings. In the case of the 1.5 {angstrom} SLAC Linac Coherent Light Source (LCLS), the longitudinal output profile typically consists of a randomly-distributed train of fully-transversely-coherent micropulses of randomly varying intensity and an average length (corresponding to the source coherence length) two to three orders of magnitude smaller than the transverse diameter of the beam. Total pulse lengths are typically of the same order of size as the beam diameter. Both of these properties can be shown to significantly impact the performance of otherwise conventional synchrotron radiation optics; viz., mirrors, lenses, zone plates, crystals, multilayers, etc. In this paper we outline an analysis of short-pulse effects on selected optical components for the SLAC LCLS and discuss the implications for critical applications such as microfocusing and monochromatization.

  10. Coherent X-ray scattering beamline at port 9C of Pohang Light Source II.

    Science.gov (United States)

    Yu, Chung-Jong; Lee, Hae Cheol; Kim, Chan; Cha, Wonsuk; Carnis, Jerome; Kim, Yoonhee; Noh, Do Young; Kim, Hyunjung

    2014-01-01

    The coherent X-ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X-rays of 5-20 keV, and targets coherent X-ray experiments such as coherent diffraction imaging and X-ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.

  11. Second and third harmonic measurements at the linac coherent light source

    Directory of Open Access Journals (Sweden)

    D. Ratner

    2011-06-01

    Full Text Available The linac coherent light source (LCLS is a self-amplified spontaneous emission (SASE free-electron laser (FEL operating at fundamental photon energies from 0.5 to 10 keV. Characterization of the higher harmonics present in the FEL beam is important to users, for whom harder x rays can either extend the useful operating wavelength range or increase experimental backgrounds. We present measurements of the power in both the second and third harmonics, and compare the results to expectations from simulations. We also present studies of the transport of harmonics to the users, and the harmonic power as a function of electron beam quality.

  12. The Soft X-ray Research instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L., E-mail: dakovski@slac.stanford.edu; Heimann, Philip; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Krupin, Oleg [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); European XFEL, Notkestrasse 85, 22607 Hamburg (Germany); Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-02

    A description of the Soft X-ray Research instrument (SXR) at the Linac Coherent Light Source is given. Recent scientific highlights illustrate the wide variety of experiments and detectors that can be accommodated at SXR. The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  13. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2016-10-01

    Full Text Available A new operating mode has been developed for the Linac Coherent Light Source (LCLS in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. We present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  14. Commissioning of the Electron Line of the Linac Coherent Light Source. Dose Rate Measurements and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, M; Bauer, J.M.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, H.; /SLAC; Sanami, T.; /SLAC /KEK, Tsukuba; Vollaire, J.; /SLAC

    2009-05-20

    The Linac Coherent Light Source at the SLAC National Accelerator Laboratory (operated by Stanford University for the US Department of Energy) is the world's first hard X-ray Free Electron Laser machine. It uses high energy electrons delivered by a linac to create ultrafast and brilliant X-ray pulses that can be used as a 'high-speed' camera to obtain images of atoms and molecules. LCLS is a pioneer machine and, as such, its design has encountered unprecedented challenges, the solutions to which will benefit future facilities of its kind across the globe. This article describes the radiation protection aspects of LCLS electron beamlines. Special emphasis is put on the successful commissioning of the LCLS electron line, where, for all examined loss sources, the measured prompt and residual dose rates are in agreement with or below the values predicted through detailed Monte Carlo simulations, used earlier to design the shielding.

  15. Matter in Extreme Conditions (MEC) Instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Lee, Hae

    2013-06-01

    The behavior and physical properties of matter under extreme conditions are of fundamental scientific interest. Extreme conditions created by intense light source generates dense state with densities of up to several times of solid density, temperatures of 0.1 eV to 100s eV, and pressures of 10s kbar to 10s Mbar. Model calculations in this regime predict electronic and structural phase transitions with new atomic and electronic band structure, anomalous transport, and changes of scattering properties and opacity. A new technique using the Linac Coherent Light Source (LCLS), an x-ray free electron laser source, was developed at Matter in Extreme Conditions (MEC) endstation to study wide range of extreme conditions in phase space. The LCLS has >=3 mJ per 60 fs pulse enabling an intensity x-ray beam between 4 keV -9.5 keV to be focused onto a small spot ~1 micron at MEC. The research areas that MEC instrument will address include equation of state, behavior of materials under high-pressure, and phenomena of solid materials under extreme conditions. We operate MEC instrument for users' experiments studying warm dense matter, hot dense matter, and high pressure physics. Here, we present the details of the MEC instrument, capabilities and progress. The MEC Instrument is funded by fusion energy science of the U.S. Department of Energy. The author would like to thank the LCLS MECi project team.

  16. A Wire Scanner Design for Electron Beam Profile Measurement in the Linac Coherent Light Source Undulator

    CERN Document Server

    Bailey, James L; Yang Bing Xin

    2005-01-01

    The Linac Coherent Light Source (LCLS), currently under design, requires beam diagnostic instruments between the magnets in the beam undulator section. Ten wire scanners are planned as one of the primary instruments to characterize electron beam properties. The development of these wire scanners presents several design challenges due to the need for high accuracy and resolution of the wire motion (3 microns tolerance, typical) and the high intensity of the beam (3400 A over an area of 30 micron rms radius). In this paper, we present the technical specification and design criteria for the scanners. We will also present the mechanical design of the UHV-compatible drive and its engineering analysis. Lastly, we present the wire card design and discuss associated thermal and mechanical issues originating from the highly intense x-ray and electron beams.

  17. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Bob, E-mail: bnagler@slac.stanford.edu; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    A description of the Matter in Extreme Conditions instrument at the Linac Coherent Light Source is given. Recent scientific highlights illustrate phase-contrast imaging of shock waves, X-ray Thomson scattering and X-ray diffraction of shocked materials. The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  18. Design of a Precision Positioning System for the Undulators of the Linac Coherent Light Source

    CERN Document Server

    Trakhtenberg, Emil; Den Hartog, Patric; White, Marion

    2005-01-01

    A precision positioning system has been designed for the Linac Coherent Light Source (LCLS) and a prototype system is being fabricated. The LCLS will use a beam based alignment technique to precisely align all of the segments of the 130-m long undulator line. The requirement for overlap between the electron beam and the x-ray beam, in order to develop and maintain lasing, demands that each of the quadrupoles be aligned within a tolerance of ± 2 μm and that the undulator axis be positioned within ± 10 μm vertically and horizontally. Five cam movers, each with an eccentricity of 1.5 mm, will allow adjustment of a cradle supporting the undulator, its vacuum chamber, a quadrupole, and a beam position monitor. An additional motion transverse to the beam axis allows removal of individual undulators from the beam path. Positioning feedback will be provided by a wire position monitor system and a hydrostatic leveling system.

  19. An Optimized Low-Charge Configuration of the LINAC Coherent Light Source

    CERN Document Server

    Emma, Paul; Huang, Zhirong; Limborg-Deprey, Cecile; Reiche, Sven; Wu, Juhao; Zolotorev, Max S

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The nominal parameter set is founded on a 1-nC bunch charge and normalized emittance of about 1 micron. The most challenging issues, such as emittance generation, wakefields, and coherent synchrotron radiation (CSR), are associated with the high bunch charge. In the LCLS in particular, with its strong linac wakefields, the bunch compression process produces sharp temporal horns at the head and tail of the bunch with degraded local emittance, effectively wasting much of the charge. The sharp horns intensify CSR in the bends and further drive a strong resistive-wall wakefield in the long FEL undulator. Although these issues are not insurmountable, they suggest a lower bunch charge may be more suitable. This study uses a 0.2-nC bunch charge and 0.85-micron emittance with only 30 A of peak current in the injector, producing the same FEL saturation length. The resulting performance is more stable, has negl...

  20. Hair removal with a non-coherent filtered flashlamp intense pulsed light source.

    Science.gov (United States)

    Weiss, R A; Weiss, M A; Marwaha, S; Harrington, A C

    1999-01-01

    To evaluate the effects on disruption of hair growth of the non-coherent filtered flashlamp intense pulsed light (IPL) source. Twenty-eight sites on 23 patients with Fitzpatrick type I-III were enrolled using a single treatment IPL followed for three months post-treatment. Another 56 on 48 patients with Fitzpatrick skin types I-V randomly enrolled for two treatments one month apart and followed for six months. Prior to beginning treatment and at each follow-up visit hair counts were obtained by averaging three 1-cm2 areas on a clear acetate template placed over the skin. Repeat hair counts and photographs were obtained at 2, 4, 8, and 12 weeks for the single treatment protocol and at additional 4, 5, and 6 months for the double treatment protocol. Parameters utilized were a 2.8-3.2 millisecond pulse duration typically for three pulses with thermal relaxation intervals of 20-30 milliseconds with a total fluence of 40-42 J/cm2. For the double treatment protocol hair clearance of 64% was achieved immediately following the second treatment. By week 8 reduction of hair counts was 42%. At 6 months, hair counts were reduced by 33%. Non-coherent IPL is an effective modality for long-term hair removal. IPL is safe with minimal side effects of epidermal injury or pigmentation change.

  1. Design of a prototype precision positioning system for the undulators of the Linac Coherent Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Trakhtenberg, E.; Collins, J.; Den Hartog, P.; White, M.

    2005-01-01

    A precision positioning system has been designed for the Linac Coherent Light Source (LCLS) and a prototype system is being fabricated. The LCLS will use a beam-based alignment technique to precisely align all of the segments of the 131.52-m-long undulator line. The requirement for overlap between the electron beam and the x-ray beam, in order to develop and maintain lasing, demands that each quadrupole must be aligned within a tolerance of {+-} 7 {micro}m and that undulator axes must be positioned within 5 {micro}m vertically and 10 {micro}m horizontally. Five cam movers, each with an eccentricity of 1.2 mm, will allow adjustment of a cradle supporting the undulator, its vacuum chamber, a quadrupole, and a beam position monitor. An additional motion transverse to the beam axis allows removal of individual undulators from the beam path. Positioning feedback will be provided by a wire position monitor system and a hydrostatic leveling system.

  2. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  3. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  4. Research and development for X-ray optics and diagnostics on the linac coherent light source (LCLS)

    CERN Document Server

    Wootton, A; Barbee, T W; Bionta, R; Jankowski, A; London, R; Ryutov, D; Shepherd, R; Shlyaptsev, V; Tatchyn, R; Toor, A

    2002-01-01

    The Linac Coherent Light Source is a 1.5-15 A-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center. The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high-resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-Z Fresnel lens design, fabrication and testing. Finally, some novel concepts for optical components are presented.

  5. Novel coherent supercontinuum light sources based on all-normal dispersion fibers

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, Alexander

    2011-07-05

    submicron waist diameter. It is shown that coherent SC spectra with considerable spectral power densities in the usually hard to reach wavelength region below 300 nm can be generated using these freestanding photonic nanowires. Although technological difficulties currently prevent the fabrication of adequate nanofibers, the concept could be experimentally verified by coherent visible octave-spanning SC generation in tapered suspended core fibers with ANDi profile. The work contained in this thesis therefore makes important contributions to the availability and applicability of fiber-based broadband coherent SC sources with numerous high-impact applications in fundamental science and modern technology. (orig.)

  6. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected...... by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth...... for better depth resolution in combination with high tuning speed. We investigate the performance of novel semiconductor laser gain media in fiber-based high-speed swept source prototypes. We demonstrate high output power using a tapered amplifier, and we achieve improved depth resolution with a broadband...

  7. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source.

    Science.gov (United States)

    Turner, Joshua J; Dakovski, Georgi L; Hoffmann, Matthias C; Hwang, Harold Y; Zarem, Alex; Schlotter, William F; Moeller, Stefan; Minitti, Michael P; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G Ivan; Holmes, Michael

    2015-05-01

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm(-1) electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  8. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  9. Recent Developments in UV Optics for Ultra-Short, Ultra-Intense Coherent Light Sources

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2015-01-01

    Full Text Available With the advent of Free Electron Lasers and general UV ultra-short, ultra-intense sources, optics needed to transport such radiation have evolved significantly to standard UV optics. Problems like surface damage, wavefront preservation, beam splitting, beam shaping, beam elongation (temporal stretching pose new challenges for the design of beam transport systems. These problems lead to a new way to specify optics, a new way to use diffraction gratings, a search for new optical coatings, to tighter and tighter polishing requirements for mirrors, and to an increased use of adaptive optics. All these topics will be described in this review article, to show how optics could really be the limiting factor for future development of these new light sources.

  10. X-ray optics design studies for the SLAC 1.5-15 A Linac Coherent Light Source (LCLS)

    CERN Document Server

    Tatchyn, R; Boyce, R; Fassò, A; Montgomery, J; Vylet, V; Walz, D; Yotam, R; Freund, A K; Howells, M

    1999-01-01

    In recent years, a number of systematic studies have been carried out on the design and R and D aspects of X-ray free-electron laser (XRFEL) schemes based on driving highly compressed electron bunches from a multi-GeV linac through long (30 m - 100+ m) undulators. These sources, when operated in the self-amplified spontaneous emission (SASE) mode, feature singularly high peak output power densities and frequently unprecedented combinations of phase-space and output-parameter values. This has led to correspondingly pivotal design challenges and opportunities for the optical materials, systems, components, and experimental configurations for transporting and utilizing this radiation. In this paper we summarize the design and R and D status of the X-ray optics section of the SLAC Linac Coherent Light Source (LCLS), a 1.5 Angstrom SASE FEL driven by the last kilometer of the SLAC 3-kilometer S-band linac.

  11. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  12. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  13. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Joshua J., E-mail: joshuat@slac.stanford.edu; Dakovski, Georgi L.; Hoffmann, Matthias C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hwang, Harold Y. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Staub, Urs [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Johnson, Steven [ETH Zurich, Institute for Quantum Electronics, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-11

    This paper describes new instrumentation developments at the LCLS for materials studies using THz laser excitation and resonant soft X-ray scattering. This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm{sup −1} electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  14. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  15. A calibrator based on the use of low-coherent light source straightness interferometer and compensation method.

    Science.gov (United States)

    Lin, Shyh-Tsong; Yeh, Sheng-Lih; Chiu, Chi-Shang; Huang, Mou-Shan

    2011-10-24

    A calibrator utilizing a low-coherent light source straightness interferometer and a compensation method is introduced for straightness measurements in this paper. Where the interference pattern, which is modulated by an envelope function, generated by the interferometer undergoes a shifting as the Wolaston prism of the interferometer experiences a lateral displacement, and the compensation method senses the displacement by driving the prism back to the position to restore the pattern. A setup, which is with a measurement sensitivity of 36.6°/μm, constructed for realizing the calibrator is demonstrated. The experimental results from the uses of the setup reveal that the setup is with a measurement resolution and stability of 0.019 and 0.08 μm, respectively, validate the calibrator, and confirm the calibrator's applicability of straightness measurements and advantage of extensible working distance. © 2011 Optical Society of America

  16. General approach to high power, coherent visible and ultraviolet light sources

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer

    -doped GdCOB crystals. The crystals are optimized for noncritical phasematching in the blue-UV spectral region through co-doping with Lu and Sc, a nonlinear coefficient for these crystals of 0.78, 0.81 and 0.89 pm/V are measured, which is comparable to LBO. The ability to adjust the noncritical......The main goal of this project is to develop a generic approach to synthesise any wavelength in the visible and UV spectral region based on sum frequency generation. The approach is based on a hybrid system combining solid state and semiconductor technology. The generation of light in the UV...... phasematching by co-doping of these crystals makes them promising candidates for generation of light in the blue-UV region. A novel method for cavity dumping based on nonlinear frequency conversion is investigated. A high finesse laser is constructed with an intracavity nonlinear material inserted in a beam...

  17. Fourier transform holography with extended references using a coherent ultra-broadband light source

    NARCIS (Netherlands)

    Tenner, V.T.; Eikema, K.S.E.; Witte, S.M.

    2014-01-01

    We demonstrate a technique that enables lensless holographic imaging with extended reference structures, using ultra-broadband radiation sources for illumination. We show that this 'two-pulse imaging' approach works with one- and two-dimensional HERALDO reference structures, and demonstrate that the

  18. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that

  19. Numerical simulations of the hard X-ray pulse intensity distribution at the Linac Coherent Light Source.

    Science.gov (United States)

    Pardini, Tom; Aquila, Andrew; Boutet, Sébastien; Cocco, Daniele; Hau-Riege, Stefan P

    2017-07-01

    Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus are particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. We suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.

  20. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  1. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source

    Science.gov (United States)

    Zemella, Johann; Bane, Karl; Fisher, Alan; Guetg, Marc; Huang, Zhirong; Iverson, Richard; Krejcik, Patrick; Lutman, Alberto; Maxwell, Timothy; Novokhatski, Alexander; Stupakov, Gennady; Zhang, Zhen; Harrison, Mark; Ruelas, Marcos

    2017-10-01

    The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Here we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. This report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.

  2. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.; Arthur, J.; Baltay, M. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  3. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... illustrate the different noise measurements and their impact on a state of the art UHR-OCT system producing images of skin. The sensitivity of the system was higher than 95 dB, with an axial resolution below 4μm....

  4. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  5. Two-color surface-emitting lasers by a GaAs-based coupled multilayer cavity structure for coherent terahertz light sources

    Science.gov (United States)

    Lu, Xiangmeng; Ota, Hiroto; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro; Isu, Toshiro

    2017-11-01

    Two-color surface-emitting lasers were fabricated using a GaAs-based coupled multilayer cavity structure grown by molecular beam epitaxy. InGaAs/GaAs multiple quantum wells were introduced only in the upper cavity for two-mode emission in the near-infrared region. Two-color lasing of the device was successfully demonstrated under pulsed current operations at room temperature. We also observed good temporal coherence of the two-color laser light using a Michelson interferometer. A coherent terahertz source is expected when a wafer-bonded coupled cavity consisting of (0 0 1) and non-(0 0 1) epitaxial films is used for the two-color laser device, in which the difference-frequency generation can be enabled by the second-order nonlinear response in the lower cavity.

  6. Coherent source radius in ppbar collisions

    OpenAIRE

    Zhang, Q. H.; Li, X. Q.

    1997-01-01

    We use a recently derived result to extract from two-pion interferometry data from $p\\bar{p}$ collisions the radius of the coherent component in the source. We find a coherent source radius of about $2 fm$.

  7. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    Science.gov (United States)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  8. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; /SLAC; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  9. Dispersion-flattened supercontinuum light source design at 1.0 μm center wavelength for high resolution optical coherence tomography in ophthalmology

    Science.gov (United States)

    Hossain, M. A.; Namihira, Y.

    2013-06-01

    Optimal wavelength light sources are designed for medical imaging to overcome the effects of the dispersion of the sampling medium of biological tissues which contain about 60% water in normal tissues and 90% water in anatomic structures such as in the eye. Based on highly nonlinear photonic crystal fiber (HNL-PCF), two light sources are designed at 1.0 μm center wavelength as the influences of the dispersion of the main component of biological tissues on the resolution of optical coherence tomography (OCT) can be eliminated. Using finite element method with a circular perfectly matched boundary layer, it is shown through simulations that the proposed HNL-PCFs offer efficient SC generation for such applications at 1.0 μm. By propagating sech2 picoseconds optical pulses having 1.0 ps pulse width at a full width at half maximum through the proposed HNL-PCFs, output optical pulses are analyzed by the split-step Fourier method to obtain the spectral properties. Simulation results show that 270 m of the proposed HNL-PCF can produce highest 95 nm spectrum (10 dB bandwidth) or 62 nm spectrum (3 dB bandwidth). Therefore, the highest longitudinal resolutions in the depth direction for medical OCT imaging is found about 3.3 μm (using 10 dB bandwidth) or 5.1 μm (using 3 dB bandwidth), respectively, for biological tissues.

  10. The Phase Coherence of Light from Extragalactic Sources: Direct Evidence against First-Order Planck-Scale Fluctuations in Time and Space

    Science.gov (United States)

    Lieu, Richard; Hillman, Lloyd W.

    2003-03-01

    We present a method of directly testing whether time continues to have its usual meaning on scales of c5)1/2~5.4×10-44 s, the Planck time. According to quantum gravity, the time t of an event cannot be determined more accurately than a standard deviation of the form σt/t=a0(tP/t)α, where a0 and α are positive constants ~1 likewise, distances are subject to an ultimate uncertainty cσt, where c is the speed of light. As a consequence, the period and wavelength of light cannot be specified precisely; rather, they are independently subject to the same intrinsic limitations in our knowledge of time and space, so that even the most monochromatic plane wave must in reality be a superposition of waves with varying ω and k, each having a different phase velocity ω/k. For the entire accessible range of the electromagnetic spectrum this effect is extremely small, but it can cumulatively lead to a complete loss of phase information if the emitted radiation propagated a sufficiently large distance. Since, at optical frequencies, the phase coherence of light from a distant point source is a necessary condition for the presence of diffraction patterns when the source is viewed through a telescope, such observations offer by far the most sensitive and uncontroversial test. We show that the Hubble Space Telescope detection of Airy rings from the active galaxy PKS 1413+135, located at a distance of 1.2 Gpc, excludes all first-order (α=1) quantum gravity fluctuations with an amplitude a0>0.003. The same result may be used to deduce that the speed of light in vacuo is exact to a few parts in 1032.

  11. Simulation of partially coherent light propagation using parallel computing devices

    Science.gov (United States)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  12. Noise Characterization of Supercontinuum Sources for Low Coherence Interferometry Applications

    Science.gov (United States)

    Brown, William J.; Kim, Sanghoon; Wax, Adam

    2015-01-01

    We examine the noise properties of supercontinuum light sources when used in low coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system where high power and long image acquisition times are required to image deep into tissue. For this system we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high resolution optical coherence tomography system where broadband light is needed for high axial resolution. For this system we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLDs) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared to the Fianium SC-450-4 but neither meets the performance of the SLDs. PMID:25606759

  13. Coherent Generation of Broadband Pulsed Light in the SWIR and Mwir Using AN all Polarization-Maintaining Fiber Frequency Comb Source

    Science.gov (United States)

    Hoogland, H.; Engelbrecht, M.; McRaven, C.; Holzwarth, R.; Thai, A.; Sánchez, D.; Cousin, S. L.; Hemmer, M.; Baudisch, M.; Zawilski, K.; Schunemann, P. G.; Biegert, J.

    2014-06-01

    We report on an all polarization-maintaining, modelocked, fiber laser system which generates coherent broadband pulses centered at 2.03 μm with a spectral FWHM bandwidth of 60 nm and 360 mW. Using this frequency comb source, we generate phase-coherent, ultra-broadband pulses centered at 6.5 μm and spanning 5.5 μm to 8 μm with DFG in CdSiP_2.

  14. Experimental study on partial coherence source

    CERN Document Server

    Zhao Xue Qing; Yuan Xiao; LiuJingRu; Wang Long Hua; Tang Ying; Huang, Kerson

    2002-01-01

    Partial coherence source is a key part in the laser system using echelon-free introduced spatial incoherence beam smoothing technique. Different kinds of partial coherence sources have been studied experimentally for improving the uniformity of laser intensity distribution. It is found that the source produced by excimer laser scattering on the surface of a teflon plate is ideal. The properties of this kind of source are studied. As a result, the uniformity of source beam intensity distribution, the beam spatial coherence and energy transfer efficiency of the source are obtained

  15. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  16. All fiber based supercontinuum light source utilized for IR microscopy

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements.......An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements....

  17. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  18. Coherent Population Oscillation-Based Light Storage

    Science.gov (United States)

    Neveu, P.; Maynard, M.-A.; Bouchez, R.; Lugani, J.; Ghosh, R.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2017-02-01

    We theoretically study the propagation and storage of a classical field in a Λ -type atomic medium using coherent population oscillations (CPOs). We show that the propagation eigenmodes strongly relate to the different CPO modes of the system. Light storage in such modes is discussed by introducing a "populariton" quantity, a mixture of populations and field, by analogy to the dark state polariton used in the context of electromagnetically induced transparency light storage protocol. As experimentally shown, this memory relies on populations and is then—by contrast with usual Raman coherence optical storage protocols—robust to dephasing effects.

  19. Advanced Light Source (ALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Light Source (ALS), a world leader in soft x-ray science, generates light in the wavelengths needed for examining the atomic and electronic structure of...

  20. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  1. Spatial coherence and entanglement of light

    NARCIS (Netherlands)

    Di Lorenzo Pires, Henrique

    2011-01-01

    In this thesis we investigate diverse aspects of spatial coherence of light. Non-classical fields containing two photons can be generated by a nonlinear optical process known as spontaneous parametric down conversion (SPDC). Among the questions we consider are: What is so special about spatial

  2. Light Sources and Lighting Circuits

    Science.gov (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  3. Superluminal light propagation assisted by Zeeman coherence.

    Science.gov (United States)

    He, Huijuan; Hu, Zhengfeng; Wang, Yuzhu; Wang, Ligang; Zhu, Shiyao

    2006-08-15

    We have observed a dispersionlike absorption (or gain) spectrum at the D1 transition in a Rb vapor cell filled with a buffer gas, due to Zeeman coherence of the ground states in a double Lambda configuration. Meanwhile, we have also observed superluminal pulse propagation. It is experimentally demonstrated that the front speed of a light pulse still equals the light speed c in vacuum, although the group velocity of the light pulse is(-2.2+/-0.6) x 10(4) m/s.

  4. Segregating complex sound sources through temporal coherence.

    Directory of Open Access Journals (Sweden)

    Lakshmi Krishnan

    2014-12-01

    Full Text Available A new approach for the segregation of monaural sound mixtures is presented based on the principle of temporal coherence and using auditory cortical representations. Temporal coherence is the notion that perceived sources emit coherently modulated features that evoke highly-coincident neural response patterns. By clustering the feature channels with coincident responses and reconstructing their input, one may segregate the underlying source from the simultaneously interfering signals that are uncorrelated with it. The proposed algorithm requires no prior information or training on the sources. It can, however, gracefully incorporate cognitive functions and influences such as memories of a target source or attention to a specific set of its attributes so as to segregate it from its background. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of this ubiquitous and remarkable perceptual ability, and of its psychophysical manifestations in navigating complex sensory environments.

  5. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    Science.gov (United States)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  6. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  7. Quantum communication with coherent states of light.

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-08-06

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  8. Nature of quantum states created by one photon absorption: pulsed coherent vs pulsed incoherent light.

    Science.gov (United States)

    Han, Alex C; Shapiro, Moshe; Brumer, Paul

    2013-08-29

    We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatiotemporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be dramatically different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed from ultrashort coherent excitation does not reflect what happens in processes induced by solar-like radiation, and conclusions drawn from one do not, in general, apply to the other. These results provide further support to the view that the dynamics observed in studies using ultrashort coherent pulses can be significantly different than those that would result from excitation with natural incoherent light.

  9. Supercontinuum light sources for food analysis

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2014-01-01

    . One track of Light & Food will target the mid-infrared spectral region. To date, the limitations of mid-infraredlight sources, such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad......In Light & Food, a 30M DKK project funded by Innovationsfonden where DTU Fotonik has joined forces with University of Copenhagen, Aarhus University, FOSS and NKT, the vision is to develop a platform of analytical solutions to optimization of sustainable food production, both in the field...... and in the factory. These solutions will combine bright and broadband infrared light sources, so-called supercontinuum light sources,with spectroscopy, chemometrics and processing expertise and thereby contribute to increased food quality through faster and more precise analysis of grains, soils and dairy products...

  10. Swiss Light Source SLS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The Paul Scherrer Institute has begun work on the implementation of the Swiss Synchrotron Light Source (SLS). The construction of this facility, which will have international scope, is intended to provide a national focus for co-operation between various disciplines and for research in material sciences. Although basic research in physics and chemistry, biology, medicine and environmental sciences would seem to be in the foreground, industrial users also have an interest in the SLS. At present, this mainly centres on investigations into the structure of biological and chemical molecules, the use of high-performance methods of analysis, and the manufacture and investigation of microstructures. SLS is planned to be taken into service with an initial experimental installation by the middle of 2001. In this brochure an overview is presented on the main characteristics of the SLS facility and on its significance as a tool for interdisciplinary research.

  11. Experimental stations at I13 beamline at Diamond Light Source

    Science.gov (United States)

    Pešić, Z. D.; De Fanis, A.; Wagner, U.; Rau, C.

    2013-03-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  12. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  13. Passive Decoy-State Quantum Key Distribution with Coherent Light

    Directory of Open Access Journals (Sweden)

    Marcos Curty

    2015-06-01

    Full Text Available Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett–Brassard 1984 (BB84 polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.

  14. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control

    Science.gov (United States)

    Yan, Zhihui; Jia, Xiaojun

    2017-06-01

    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  15. Transforming squeezed light into large-amplitude coherent-state superposition

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2007-01-01

    A quantum superposition of two coherent states of light with small amplitude can be obtained by subtracting a photon from a squeezed vacuum state. In experiments this preparation can be made conditioned on the detection of a photon in the field from a squeezed light source. We propose and analyze...

  16. Seeding Coherent Radiation Sources with Sawtooth Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel; Chao, Alex; /SLAC

    2012-03-28

    Seed radiation sources have the ability to increase longitudinal coherence, decrease saturation lengths, and improve performance of tapering, polarization control and other FEL features. Typically, seeding schemes start with a simple sinusoidal modulation, which is manipulated to provide bunching at a high harmonic of the original wavelength. In this paper, we consider seeding from sawtooth modulations. The sawtooth creates a clean phase space structure, providing a maximal bunching factor without the need for an FEL interaction. While a pure sawtooth modulation is a theoretical construct, it is possible to approach the waveform by combining two or more of the composite wavelengths. We give examples of sawtooth seeding for HGHG, EEHG and other schemes, and note that the sawtooth modulation may aid in suppression of the microbunching instability.

  17. Homometry in the light of coherent beams

    OpenAIRE

    Ravy, Sylvain

    2013-01-01

    Two systems are homometric if they are indistinguishable by diffraction. We first make a distinction between Bragg and diffuse scattering homometry, and show that in the last case, coherent diffraction can allow the diffraction diagrams to be differentiated. The study of the Rudin-Shapiro sequence, homometric to random sequences, allows one to manipulate independently two-point and four-point correlation functions, and to show their effect on the statistics of speckle patterns. Consequences f...

  18. Contributions to the Theories of Coherence and Polarization of Light

    Science.gov (United States)

    Lahiri, Mayukh

    In this thesis, coherence and polarization properties of stochastic optical fields are investigated. The so-called cross-spectral density matrices of polarized and natural light beams are studied. It is shown how coherence and polarization properties of stochastic beams change on superposition. The relationship between the so-called space-time and space-frequency descriptions of completely polarized fields and of completely coherent fields are investigated. An inverse scattering problem involving a random medium is discussed. In this context, the condition which ensures that a beam retains its beam-like form on scattering, is also presented. Basic polarization properties of light beams are discussed based on quantum mechanical theory of fields. A quantum theory of optical coherence in the space-frequency domain is also presented.

  19. Intermediate-energy light sources

    CERN Document Server

    Corbett, W

    2003-01-01

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light sourc...

  20. Homometry in the light of coherent beams.

    Science.gov (United States)

    Ravy, Sylvain

    2013-11-01

    Two systems are homometric if they are indistinguishable by diffraction. A distinction is first made between Bragg and diffuse scattering homometry, and it is shown that in the last case coherent diffraction can allow the diffraction diagrams to be differentiated. The study of the Rudin-Shapiro sequence, homometric to random sequences, allows one to manipulate independently two-point and four-point correlation functions, and to show their effect on the statistics of speckle patterns. This study provides evidence that long-range order in high-order correlation functions has a measurable effect on the speckle statistics.

  1. X-Ray Optics Research for the Linac Coherent Light Source: Interaction of Ultra-Short X-Ray Laser Pulses with Optical Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuba, J; Wootton, A; Bionta, R M; Shepherd, R; Dunn, J; Smith, R F; London, R A; Shlyaptsev, V N; Bajt, S; Feit, M D; Levesque, R; Conant, R H; Fill, E E; Ditmire, T

    2002-07-24

    Free electron lasers operating in the 0.1 to 1.5 nm wavelength have been proposed for the Stanford Linear Accelerator Center and DESY (Germany). The unprecedented brightness and associated fluence predicted for pulses <300 fs pose new challenges for optical components. A criterion for optical component design is required, implying an understanding of x-ray-matter interactions at these extreme conditions. In our experimental effort, the extreme conditions are simulated by currently available sources ranging from optical lasers, through x-ray lasers (at 14.7 nm) down to K-alpha sources ({approx}0.15 nm). In this paper we present an overview of our research program, including (a) Results from the experimental campaign at a short pulse (100 fs-5 ps) power laser at 800 nm, (b) K-a experiments, and (c) Computer modeling and experimental project using a tabletop high brightness ps x-ray laser at the Lawrence Livermore National Laboratory.

  2. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  3. Cell response to quasi-monochromatic light with different coherence

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)

  4. EFFECTS OF LIGHT WAVELENGTHS AND COHERENCE ON BASIDIOSPORES GERMINATION

    Directory of Open Access Journals (Sweden)

    Natalia Poyedinok

    2015-02-01

    Full Text Available The effects of light wavelengths and coherence on basidiospore germination of Agaricus bisporus, Flammulina velutipes, Ganoderma applanatum, Ganoderma lucidum, Hericium erinaceus, Lentinus edodes and Pleurotus ostreatus have been studied. Short-term low-intensity irradiation by coherent (laser light wavelength 488.0 nm and 632.8 nm at doses 45 and 230 mJ/cm2 has significantly increased the number of germinated basidiospores. It has established that there are differences in the photosensitivity not only between species but also between strains. Spores irradiation by 514.5 nm light has been either neutral or inhibitory. A comparative analysis of basidiospores sensitivity to laser and LED light has also been conducted. To stimulate germination of basidiospores and growth of monokaryons the most suitable solution was to use red coherent and incoherent light of 632.8 nm and 660,0 nm for A. bisporus, G. applanatum and P. ostreatus, red and blue coherent light of 632.8 nm and 488,0 nm for F. velutipes, and both red and blue laser and LED light G. lucidum and H. erinaceus and for L. edodes. No essential difference of a continuous wave mode and intermittent mode light effect at the same doses and wavelength on spore germination were revealed. Light influence has reduced germination time and formation of aerial mycelium on agar medium as compared to the original value and increased the growth rate of monosporous isolates. Characterization of basidiospores photosensitivity and development of environmentally friendly stimulating methods of their germination is important for creating highly effective technologies of mushrooms selection and cultivation.

  5. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    NARCIS (Netherlands)

    de Boer, JF; Milner, TE; Nelson, JS

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid

  6. A coherent line source in a turbulent atmosphere

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    The sound field of a coherent line source in a nonrefracting, turbulent atmosphere is studied. An expression for the sound pressure level in the frequency domain is developed, based on a discretization of the line source into a set of point sources. Atmospheric turbulence is taken into account by

  7. The Brazilian Synchrotron Light Source

    CERN Document Server

    Tavares, P F

    2005-01-01

    The Brazilian Synchrotron Radiation Laboratory has been operating the only light source in the southern hemisphere since July 1997. Over this 7 year period, approximately 22000 hours of beam time were delivered to users from all over Brazil as well as from 10 other countries. In this article, we report on the present configuration of the 1.37 GeV electron storage ring and associated instrumentation, describe recent improvements to the light source and analyze future prespectives including the installation of insertion devices and additional beamlines.

  8. The Compact Light Source A Miniature Synchrotron Light Source

    CERN Document Server

    Ruth, Ronald D

    2005-01-01

    During the past 30 years, synchrotron light sources have become the x-ray probe of choice for physicists, chemists, biologists and research physicians. With their high-quality, intense x-ray beams, these national research facilities have spawned a broad array of applications. Past research at Stanford Linear Accelerator Center has led to a new x-ray source concept that can substantially reduce the size of the required synchrotron.* This research has spawned a new corporation, Lyncean Technologies, Inc. which is now developing the Compact Light Source (CLS). The CLS is a tunable, homelab x-ray source with up to three beamlines that can be used like the x-ray beamlines at the synchrotrons-but it is about 200 times smaller than a synchrotron light source. The compact size is achieved using a laser undulator and a miniature electron-beam storage ring. The photon flux on a sample will be comparable to the flux of highly productive synchrotron beamlines. At Lyncean Technologies, Inc. we have constructed a prototype...

  9. Repeatability and comparability of corneal power and corneal astigmatism obtained from a point-source color light-emitting diode topographer, a Placido-based corneal topographer, and a low-coherence reflectometer.

    Science.gov (United States)

    Ventura, Bruna V; Al-Mohtaseb, Zaina; Wang, Li; Koch, Douglas D; Weikert, Mitchell P

    2015-10-01

    To assess the repeatability and agreement of corneal power and astigmatism obtained from the Cassini point-source color light-emitting diode (LED) topographer, Humphrey Atlas 9000 Placido-based corneal topographer, and Lenstar LS-900 low-coherence reflectometer in normal eyes. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Evaluation of diagnostic test or technology. Consecutively enrolled patients with normal corneas were enrolled. Three sets of measurements were obtained using the color-LED topographer, the Placido topographer, and the reflectometer. Vector analysis was used in the astigmatism analysis. The repeatability was evaluated using the within-subject standard deviation, coefficient of variation (CoV), and intraclass correlation coefficient (ICC). Agreement was verified using Bland-Altman plots. The paired Student t test was used to assess statistical significance. Thirty-two eyes (32 patients) were evaluated. All devices provided highly repeatable corneal power and astigmatism measurements (ICC > 0.9) except for the Placido topographer with regard to J45 (ICC = 0.721). The color-LED topographer and the reflectometer obtained similar mean values of corneal power, astigmatism magnitude, J0, and J45 (P > .05), which was also true when comparing the color-LED topographer and the Placido topographer, except for the mean corneal power (P = .0007). The Bland-Altman plots showed a wide data spread for all analyzed variables. The color-LED topographer provided highly repeatable corneal power and astigmatism measurements. Even though it obtained values similar to those of the reflectometer and the Placido topographer, the wide data spread discourages their interchangeable use to assess corneal power and astigmatism. Drs. Wang, Koch, and Weikert are consultants to Ziemer USA, Inc. Dr. Koch is a consultant to Abbott Medical Optics, Inc., Alcon Surgical, Inc., and i-Optics, Corp. Drs. Ventura and Al-Mohtaseb have no financial or proprietary

  10. Coherent multiple light scattering in Faraday active materials

    Science.gov (United States)

    Schertel, L.; Aubry, G. J.; Aegerter, C. M.; Maret, G.

    2017-05-01

    Wave propagation in multiple scattering media shows various kinds of coherent phenomena such as coherent backscattering [1, 2] or Anderson localization [3], both of which are intimately connected to the concept of reciprocity. Manipulating reciprocity in such media is a powerful tool to study these phenomena in experiments [4]. Here we discuss the manipulation of reciprocity in reflection and transmission geometry for the case of light propagation in magneto-optical media. We show new experiments on coherent backscattering and speckle correlations in strongly scattering samples containing Faraday active materials (CeF3) with transport mean free path in the μm range, at low temperatures (T < 10 K) and high fields (B = 18 T). Under such conditions we observe the effect of a Faraday rotation saturation in multiple scattering measurements.

  11. Coherent imaging with pseudo-thermal incoherent light

    DEFF Research Database (Denmark)

    Gatti, A.; Bache, Morten; Magatti, D.

    2006-01-01

    We investigate experimentally fundamental properties of coherent ghost imaging using spatially incoherent beams generated from a pseudo-thermal source. A complementarity between the coher- ence of the beams and the correlation between them is demonstrated by showing a complementarity between ghost...... diffraction and ordinary diffraction patterns. In order for the ghost imaging scheme to work it is therefore crucial to have incoherent beams. The visibility of the information is shown for the ghost image to become better as the object size relative to the speckle size is decreased, and therefore...

  12. Comparison Between Standard and Pulsed Coherent Light Polymerization

    OpenAIRE

    Šutalo, Zrinka; Meniga, Andrej; Šutalo, Jozo; Azinović, Davorka; Pichler, Goran

    1993-01-01

    An ever growing amount of photo-curable materials is being used in different fields of dentistry. Standard photopolymerization devices produce about 60% o f monomer conversion in composite resin fillings. In order to improve the quality of polymerization, a series of experiments was made using pulsed laser, because continuous coherent light leads to a higher polymerization shrinkage caused by a temperature rise in the material. Three different experiments were carried out with different shade...

  13. Directly Phase-Modulated Light Source

    Science.gov (United States)

    Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.

    2016-07-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  14. Directly Phase-Modulated Light Source

    Directory of Open Access Journals (Sweden)

    Z. L. Yuan

    2016-09-01

    Full Text Available The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  15. The Linac Cooherent Light Source (LCLS) Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  16. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  17. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  18. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  19. Iranian Light Source Facility, A third generation light source laboratory

    Directory of Open Access Journals (Sweden)

    J Rahighi

    2015-09-01

    Full Text Available The Iranian Light Source Facility (ILSF project is the first large scale accelerator facility which is currently under planning in Iran. On the basis of the present design, circumference of the 3 GeV storage ring is 528 m. Beam current and natural beam emittance are 400 mA and 0.477 nm.rad, respectively. Some prototype accelerator components such as high power solid state radio frequency amplifiers, low level RF system, thermionic RF gun, H-type dipole and quadruple magnets, magnetic measurement laboratory and highly stable magnet power supplies have been constructed at ILSF R&D laboratory

  20. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    CERN Document Server

    Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advance...

  1. Noise characterization of supercontinuum sources for low-coherence interferometry applications.

    Science.gov (United States)

    Brown, William J; Kim, Sanghoon; Wax, Adam

    2014-12-01

    We examine the noise properties of supercontinuum light sources when used in low-coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system, where high power and long image acquisition times are required to image deep into tissue. For this system, we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long-term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high-resolution optical coherence tomography system, where broadband light is needed for high axial resolution. For this system, we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLD) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared with the Fianium SC-450-4, but neither meets the performance of the SLD.

  2. Coherent population oscillations and superluminal light in a protein complex.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Laoui, Samir; Philip, Reji; Rao, D V G L N

    2008-03-17

    We observed superluminal light in aqueous solution of the protein complex bacteriorhodopsin (bR) at 647.1 nm wavelength where it exhibits reverse saturable behavior, exploiting the technique of coherent population oscillations (CPO). With a modulation frequency of 10 Hz, the signal pulse through a 1 cm path cell is ahead by 3 msec relative to the reference pulse, corresponding to a group velocity of -3.3 m/sec. Following our early work on slow light in the same sample at the saturable wavelength 568.2 nm, we now explicitly observed the narrow spectral hole in the absorption band of the stable B state and further, demonstrated a close correlation between the profile of the hole and the corresponding pulse delay for various modulation frequencies. A similar behavior is observed for superluminal light versus antihole blown in the absorption band.

  3. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography

    OpenAIRE

    Wijesundara, Kushal; Zdanski, Carlton; Kimbell, Julia; Price, Hillel; Iftimia, Nicusor; Oldenburg, Amy L.

    2014-01-01

    Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light sourc...

  4. Phase-insensitive optical coherence angiography of the choroid by 1-micrometer band swept-source optical coherence tomography

    Science.gov (United States)

    Yasuno, Yoshiaki; Hong, Youngjoo; Makita, Shuichi; Miura, Masahiro; Yatagai, Toyohiko

    2007-02-01

    Phase-insensitive optical coherence angiography also denoted as scattering optical coherence angiography (S-OCA), which uses optical coherence tomography (OCT) as an imaging engine and a software segmentation algorithm as a contrast engine, is a non-invasive alternative to indocyanine green angiography (ICGA). Three-dimensional in vivo vasculature of the human retina and choroid is visualized by S-OCA. A three-dimensional swept-source OCT with 1.05 um probe is built as the imaging engine of the S-OCT. The side lobes in the point spread function due to ripple peaks in the light source spectrum are eliminated by a software adaptive spectral shaping. Because of the deeper penetration of the 1.05 um probe to a scattering tissue, the in vivo human choroid and the scleral ring (scleral canal wall) are clearly visualized. The chromatic dispersion of the eye is automatically canceled in the manner of minimization of the information entropy of an OCT image. An intensity based levelset segmentation algorithm was developed for the enhanced visualization of the three-dimensional structure of the retinal and choroidal vascular network. This algorithm successfully visualizes the vascular networks of the in vivo human macula and optic nerve head.

  5. Wideband perfect coherent absorber based on white-light cavity

    Science.gov (United States)

    Kotlicki, Omer; Scheuer, Jacob

    2015-03-01

    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  6. Driver circuit for solid state light sources

    Science.gov (United States)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  7. Experience with low-alpha lattices at the Diamond Light Source

    National Research Council Canada - National Science Library

    Martin, I. P. S; Rehm, G; Thomas, C; Bartolini, R

    2011-01-01

    In this paper we present the experience at Diamond Light Source in the design, implementation, and operation of low momentum compaction factor lattices for the generation of short x-ray pulses and coherent THz radiation...

  8. Continuous manipulation of tunable mixed classical light from coherent light to pseudothermal light.

    Science.gov (United States)

    Lee, Hee Jung; Bae, In-Ho; Moon, Han Seb

    2011-04-01

    We demonstrated tunable mixed classical light (TMCL) using a mixture of a laser and a pseudothermal light. The TMCL was generated by adjusting the photon number ratio of a laser and a pseudothermal light. The photon number statistics of the TMCL continuously changed from the Poisson distribution to the Bose-Einstein distribution. The g((2)) (0) value of the TMCL was measured using the Hanbury Brown-Twiss method, and we could arbitrarily control the g((2)) (0) value between 1.0 and 1.7. The experimental g((2)) (0) value of the TMCL as a function of the photon number ratio of the two light sources was in close agreement with the calculated result. © 2011 Optical Society of America

  9. Light Sources and Ballast Circuits

    Science.gov (United States)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  10. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  11. Diamond Light Source: status and perspectives.

    Science.gov (United States)

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Optics, Diagnostics and Applications for Fourth-Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A; Barbee, T; Bionta, R; Chapman, H; Ditmire, T; Dyer, G; Kuba, J; Jankowski, A; London, R; Ryutov, R; Shepherd, R; Shlyaptsev, V; Toor, A

    2003-02-05

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), proposed for the Stanford Linear Accelerator Centre (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: (1) radiation field modeling, (2) experimental and theoretical material damage studies, (3) high resolution, high fluence-tolerant optical design, fabrication, and testing, (including material manufacturing), and (4) diagnostic design and testing.

  13. Imitating Broadband Diurnal Light Variations Using Solid State Light Sources

    Science.gov (United States)

    Ferguson, Ian; Melton, Andrew; Li, Nola; Nicol, David; Park, Eun Hyun; Tosini, Gianluca

    Many studies have documented the success of light therapy in treating disorders of the human internal clock (circadian rhythm). Recent biological research has shown the importance of developing light sources that are tunable in the blue region of the spectrum for treatment to be safe and effective. A novel tunable broadband solid-state light source is presented here that mimics the diurnal variation in sunlight by modulating the intensity of blue light emission.

  14. Controlling light with light using coherent meta-devices: all-optical transistor, summator and invertor

    CERN Document Server

    Fang, Xu; Zheludev, Nikolay I

    2014-01-01

    Vast amounts of information are conveyed by photons in optical fibres, but most data processing is performed electronically, creating the infamous 'information bottleneck' and consuming energy at an increasingly unsustainable rate. The potential for photonic devices to manipulate light themselves remains unfulfilled, largely due to the absence of materials with strong, fast optical nonlinearities. Here we show that small-signal amplifier, summator and invertor functions for optical signals may all be realized with a 4-port device exploiting the coherent interaction of beams on a planar plasmonic metamaterial, assuming no intrinsic nonlinearity. We show that coherently controlled redistribution of energy among ports can deliver various forms of optical switching. Such devices can operate even at the single photon level, with THz bandwidth, and without introducing signal distortion, presenting powerful opportunities for novel optical data processing architectures, complexity oracles and the locally coherent net...

  15. Measuring of luminous efficacy of light sources

    OpenAIRE

    Pungert, David

    2016-01-01

    In the theoretical part of my thesis, I present light spectra, luminous efficacy, as well as light sources and sensors used in my experimental work. In the experimental part of the thesis, I compare three sensors: a spectrometer measuring the light spectrum, a luxmeter measuring the light intensity, as perceived by the human eye, and a light meter measuring the light intensity in watts per square meter. To compare the sensors, I find the relation between the quantities they measure. With cali...

  16. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    Science.gov (United States)

    Grandjean, N.

    2010-09-01

    comprehensive review of the different localization mechanisms and their implication for internal quantum efficiency (IQE) is proposed by Oliver and co-workers from Cambridge University. When discussing IQE in InGaN-based LEDs, the efficiency droop at high-current injection always emerges, which is a major concern for the future of SSL technology. Here, a collaborative work between Samsung and the Gwangju Institute of Science and Technology (Korea) proves that a specific design of the active region can limit this detrimental effect. Once the issue of the IQE is solved, one still has to let the photons out of the chip. Matioli and Weisbuch from the University of California at Santa Barbara introduce the use of photonic crystals (PhCs) to improve light extraction efficiency. They describe different approaches to overcoming the main limitation of LEDs when implementing surface PhCs. The technology of SSL, and in particular of colour rendering, is tackled by Zukauskas et al who studied in detail different white light sources. They show that extreme colour-fidelity indices need to cover the entire spectrum, with a broad-band at 530-610 nm and a component beyond 610 nm. Then, the reliability of GaN-based LEDs is discussed in the paper of Meneghesso and co-workers. The authors consider the most important physical mechanisms that are (i) the degradation of the active layer of LEDs, (ii) the degradation of the package/phosphor system, (iii) the failure of GaN-based LEDs against electrostatic discharge. Finally, GaN LEDs on silicon developed in the group of Egawa at the Nagoya Institute of Technology are presented. This technology could allow a significant decrease in the fabrication cost of white LEDs.

  17. Commissioning of SAGA Light Source

    CERN Document Server

    Tomimasu, Takio; Koda, Shigeru; Ohgaki, Hideaki; Takabayashi, Yuichi; Toyokawa, Hiroyuki; Yasumoto, Masato; Yoshida, Katuhide

    2005-01-01

    The SAGA Light Source (SAGA-LS) consists of a 250-MeV electron linac injector and an eight-hold symmetry 1.4-GeV storage ring with eight double-bend (DB) cell and eight 2.93-m long straight sections. The DB cell structure with a distributed dispersion system was chosen to produce a compact ring of 75.6-m long circumference. The machine construction begun September 29, 2003. The ring magnets of steel laminated structure, vacuum chambers made of aluminum alloy, pumping systems and four temperature controlled cooling water systems for the linac accelerating wave guides etc. were installed in March, 2004. The injector, a 500-MHz ring rf damped cavity, rf klystrons, beam transport systems for injection and their controlled systems were installed in July, 2004. The commissioning begun August 25, 2004. A 250-MeV beam was accelerated on September 29. The beam size is 1-mm in diameter and the energy spread is 0.8 % (FWHM). The first revolution of 250-MeV beam around the ring took place October 22. Beam was stored on N...

  18. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  19. Development of a circadian light source

    Science.gov (United States)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  20. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  1. Double-heterodyne-interferometry with delay-lines larger than coherence length of the laser light used

    Science.gov (United States)

    Hofbauer, Ulrich; Dalhoff, Ernst; Tiziani, Hans

    1999-04-01

    A double-heterodyne-interferometer (DHI) was realized with a laser diode as light source and a 500-MHz acoustooptical modulator (AOM). We show that measurements of the phase between the two heterodyne signals at optical path differences (OPD) up to 3.25 km, which is more than 350 times the coherence length of the laser light used, are possible. By measurements with this delay line, a distance resolution of 0.14 mm was obtained.

  2. The LLE, pattern formation and a novel coherent source

    Science.gov (United States)

    Castelli, Fabrizio; Brambilla, Massimo; Gatti, Alessandra; Prati, Franco; Lugiato, Luigi A.

    2017-04-01

    The LLE was introduced in order to provide a paradigmatic model for spontaneous spatial pattern formation in the field of nonlinear optics. In the first part of this paper we describe in details its historical evolution. We underline, first of all, that the multimode instability of optical bistability represents an important precursor of the LLE. Next, we illustrate how the original LLE was conceived in order to describe pattern formation in the planes transverse with respect to the longitudinal direction of propagation of light in the nonlinear medium contained in the optical cavity. We emphasize, in particular, the crucial role of the low transmission limit (also called mean field limit or uniform field limit in the literature) in determining the simplicity of the equation. In discussing transverse pattern formation in the LLE, we underline incidentally the presence of very important quantum aspects related to squeezing of quantum fluctuations and to quantum imaging. We consider not only the case of global patterns but also localized structures (cavity solitons and their control). Then we turn to the temporal/longitudinal version of the LLE, formulated by Haelterman et al. [H. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)], and to its equivalence with the transverse LLE in 1D, discussing especially the phenomenon of temporal cavity solitons, their experimental observation and their control. Finally for the first part we turn to the very recent topic of broadband frequency combs, observed in a versatile multiwavelength coherent source (driven Kerr microcavity), which is raising a lot of interest and of research activities because of its very favourable physical characteristics, which support quite promising applicative perspectives. Kerr microcavities realize in an ideal manner the basic assumptions of the LLE, and the spontaneous formation of travelling patterns along the microcavity is the crucial mechanism which creates the combs and governs

  3. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber

    Science.gov (United States)

    Shimizu, Kaoru; Horiguchi, Tsuneo; Koyamada, Yahei; Kurashima, Toshio

    1993-02-01

    Time-domain reflectometry of spontaneous Brillouin scattering in a single-mode optical fiber is performed with a coherent self-heterodyne detection system containing a recently proposed external frequency translator and a single light-wave source. The light wave is divided into probe and reference light waves. The frequency of the probe light wave is upconverted by the translator by an amount approximately equal to the Brillouin frequency shift. The frequency-converted probe is launched into the fiber and spontaneously Brillouin scattered. As the frequency of the scattered probe is downconverted to near that of the reference light wave, coherent self-heterodyne detection of spontaneous Brillouin scattering becomes possible without having to use a fast-speed detector.

  4. Light Sources Technologies and Applications

    CERN Document Server

    Kitsinelis, Spyridon

    2010-01-01

    From the dialogues of the ancient Greek philosophers right up through the physical laws of Newton, the experiments of Thomas Young and the quantum physics pioneers, the study of light was all about observing its characteristics and defining its behavior. At the end of the 19th century, wicks, wax, and oil gave way to electricity, filaments, and gases, and scientific minds began to focus on the technological creation of light, as well as its control and diverse uses. Yet, despite more than a century of profound research and development, until now, the most complete resources on lighting technol

  5. Spin-Light Coherence for Single-Spin Measurement and Control in Diamond

    Science.gov (United States)

    Buckley, B. B.; Fuchs, G. D.; Bassett, L. C.; Awschalom, D. D.

    2010-11-01

    The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.

  6. Optimal secure quantum teleportation of coherent states of light

    Science.gov (United States)

    Liuzzo-Scorpo, Pietro; Adesso, Gerardo

    2017-08-01

    We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein-Podolsky-Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein-Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.

  7. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  8. Blue enhanced light sources: opportunities and risks

    Science.gov (United States)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  9. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography.

    Science.gov (United States)

    Wijesundara, Kushal; Zdanski, Carlton; Kimbell, Julia; Price, Hillel; Iftimia, Nicusor; Oldenburg, Amy L

    2014-03-01

    Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light source, the system exhibited an SNR roll-off of endoscopy afforded by this system can aid in diagnosis, medical and surgical decision making, and predictive modeling of upper airway obstructive disorders.

  10. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  11. Flicker Vision of Selected Light Sources

    Science.gov (United States)

    Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz

    2017-10-01

    The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.

  12. Flicker Vision of Selected Light Sources

    Directory of Open Access Journals (Sweden)

    Otomański Przemysław

    2017-10-01

    Full Text Available The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.

  13. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    Science.gov (United States)

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz).

  14. Plasma lasers (a strong source of coherent radiation in astrophysics)

    Science.gov (United States)

    Papadopoulos, K.

    1981-01-01

    The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.

  15. Comparative Study of Light Sources for Household

    Science.gov (United States)

    Pawlak, Andrzej; Zalesińska, Małgorzata

    2017-03-01

    The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.

  16. COMPARATIVE STUDY OF LIGHT SOURCES FOR HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Andrzej PAWLAK

    2017-01-01

    Full Text Available The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.

  17. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  18. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  19. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  20. Metamaterial light sources driven by electron beams

    OpenAIRE

    ADAMO, G.; MacDonald, K. F.; De Angelis, F.; Di Fabrizio, E.; Zheludev, N. I.

    2011-01-01

    We demonstrate a new generation of free-space and fibre-coupled tuneable light sources based on nanostructured photonic metamaterials driven by free-electrons beams. Emission wavelengths are determined by metamaterial resonant modes and electron energies

  1. Photobiocatalytic alcohol oxidation using LED light sources

    NARCIS (Netherlands)

    Rauch, M.C.R.; Schmidt, S.; Arends, I.W.C.E.; oppelt, K.; Kara, S; Hollmann, F.

    2016-01-01

    The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported. This in situ NAD+ regeneration system can be used to promote biocatalytic, enantioselective oxidation reactions. Compared to the traditional use of white light bulbs this method enables

  2. Synchrotron Light Sources in Developing Countries

    Science.gov (United States)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  3. Polarization sensitive optical coherence tomography utilizing a buffered swept source laser

    Directory of Open Access Journals (Sweden)

    Golde Jonas

    2017-09-01

    Full Text Available We present an approach for polarization sensitive optical coherence tomography (PS-OCT that solely requires a modification of the light source, a buffered swept source laser. For this purpose a single-mode fiber-based Fourier domain mode locked laser is extended by fourfold buffering with manual fiber polarization controllers to emit alternating sweep polarizations, while the polarization contrast calibration is realized by a high-speed polarimeter. As the introduced setup utilizes standard scanning and detection units, the proposed method is a promising way to enhance various swept source OCT systems by polarization sensitive imaging. Preliminary measurements of a human finger nail with different polarization contrasts demonstrate the feasibility of the concept.

  4. Numerical analysis of primary rainbows from a homogeneous cylinder and an optical fiber for incident low-coherent light

    Science.gov (United States)

    Świrniak, Grzegorz; Mroczka, Janusz

    2017-07-01

    This work provides a numerical study of the scattering of low-coherent light by an infinite right circular cylinder and various types of optical fiber (with step- and graded-index profiles) in the vicinity of primary rainbows, caused by light that has been subjected to one internal reflection. The scattered intensity is analyzed in terms of the Fourier transform as well as in the time domain (by examining the impulse response of a fiber) with the aim to obtain a detailed information about the scattering process. The analysis reveals a wealth of information about the scattering process that is not obvious when a fiber is illuminated by a temporally coherent light source. The results also provide an idea for the characterization of the core size of step-index optical fibers.

  5. Coherence dynamics in light-harvesting complexes with two-colour spectroscopy

    Directory of Open Access Journals (Sweden)

    Quiney Harry M.

    2013-03-01

    Full Text Available We investigate coherent dynamics in the cryptophyte light-harvesting complex Phycocyanin-645 (PC-645. A two-colour four-wave mixing experiment allows us to isolate a coherence pathway and observe its evolution in the absence of other signals. We measured a decoherence time of 540fs for the coherence [1]. Additionally oscillations in the signal pathway give evidence for the coherent excitation of states outside the bandwidth of the laser pulse. This suggests strong coupling between the excited states and phonon modes [1].

  6. Vibronic origin of long-lived coherence in an artificial molecular light harvester.

    Science.gov (United States)

    Lim, James; Paleček, David; Caycedo-Soler, Felipe; Lincoln, Craig N; Prior, Javier; von Berlepsch, Hans; Huelga, Susana F; Plenio, Martin B; Zigmantas, Donatas; Hauer, Jürgen

    2015-07-09

    Natural and artificial light-harvesting processes have recently gained new interest. Signatures of long-lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate. In this macroscopically aligned tubular system, polarization-controlled 2D spectroscopy delivers an uncongested and specific optical response as an ideal foundation for an in-depth theoretical description. We derive analytical expressions that show under which general conditions vibronic coupling leads to prolonged excited-state coherence.

  7. Terahertz Light Source and User Area at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Li, S.Z.; Litos, M.; Fisher, A.D.; Hogan, M.J.; /SLAC

    2011-11-08

    FACET at SLAC provides high charge, high peak current, low emittance electron beam that is bunched at THz wavelength scale during its normal operation. A THz light source based coherent transition radiation (CTR) from this beam would potentially be the brightest short-pulse THz source ever constructed. Efforts have been put into building this photon source together with a user area, to provide a platform to utilize this unique THz radiation for novel nonlinear and ultrafast phenomena researches and experiments. Being a long-time underutilized portion of the electromagnetic spectrum, terahertz (100 GHz {approx} 10 THz) spectral range is experiencing a renaissance in recent years, with broad interests from chemical and biological imaging, material science, telecommunication, semiconductor and superconductor research, etc. Nevertheless, the paucity of THz sources especially strong THz radiation hinders both its commercial applications and nonlinear processes research. FACET - Facilities for Accelerator science and Experimental Test beams at SLAC - provides 23 GeV electron beam with peak currents of {approx} 20 kA that can be focused down to 100 {mu}m{sup 2} transversely. Such an intense electron beam, when compressed to sub-picosecond longitudinal bunch length, coherently radiates high intensity EM fields well within THz frequency range that are orders of magnitude stronger than those available from laboratory tabletop THz sources, which will enable a wide variety of THz related research opportunities. Together with a description of the FACET beamline and electron beam parameters, this paper will report FACET THz radiation generation via coherent transition radiation and calculated photon yield and power spectrum. A user table is being set up along the THz radiation extraction sites, and equipped with various signal diagnostics including THz power detector, Michelson interferometer, sample stages, and sets of motorized optical components. This setup will also be

  8. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  9. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  10. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...... leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data...

  11. Fast interaction of atoms with crystal surfaces: coherent lighting

    Science.gov (United States)

    Gravielle, M. S.

    2017-11-01

    Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.

  12. Pion transverse-momentum spectrum and elliptic anisotropy of partially coherent source

    Science.gov (United States)

    Ru, Peng; Bary, Ghulam; Zhang, Wei-Ning

    2018-02-01

    In this letter, we study the pion momentum distribution of a coherent source and investigate the influences of coherent emission on the pion transverse-momentum (pT) spectrum and elliptic anisotropy. With a partially coherent source, constructed by a conventional viscous hydrodynamics model (chaotic part) and a parameterized expanding coherent source model, we reproduce the pion pT spectrum and elliptic anisotropy coefficient v2 (pT) in the peripheral Pb-Pb collisions at √{sNN } = 2.76 TeV. It is found that the influences of coherent emission on the pion pT spectrum and v2 (pT) are related to the initial size and shape of the coherent source, largely due to the interference effect. However, the effect of source dynamical evolution on coherent emission is relatively small. The results of the partially coherent source with 33% coherent emission and 67% chaotic emission are consistent with the experimental measurements of the pion pT spectrum, v2 (pT), and especially four-pion Bose-Einstein correlations.

  13. Plant Growth Absorption Spectrum Mimicking Light Sources

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-08-01

    Full Text Available Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED, for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.

  14. Effect of spatial coherence of light on the photoregulation processes in cells

    Science.gov (United States)

    Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2016-07-01

    The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.

  15. Infrared light sources with semimetal electron injection

    Science.gov (United States)

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  16. Research on Modern Gas Discharge Light Sources

    Science.gov (United States)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  17. Asynchronously sampled blind source separation for coherent optical links

    Science.gov (United States)

    Detwiler, Thomas F.; Searcy, Steven M.; Stark, Andrew J.; Ralph, Stephen E.; Basch, Bert E.

    2011-01-01

    Polarization multiplexing is an integral technique for generating spectrally efficient 100 Gb/s and higher optical links. Post coherent detection DSP-based polarization demultiplexing of QPSK links is commonly performed after timing recovery. We propose and demonstrate a method of asynchronous blind source separation using the constant modulus algorithm (CMA) on the asynchronously sampled signal to initially separate energy from arbitrarily aligned polarization states. This method lends well to implementation as it allows for an open-loop sampling frequency for analog-to-digital conversion at less than twice the symbol rate. We show that the performance of subsequent receiver functions is enhanced by the initial pol demux operation. CMA singularity behavior is avoided through tap settling constraints. The method is applicable to QPSK transmissions and many other modulation formats as well, including general QAM signals, offset-QPSK, and CPM, or a combination thereof. We present the architecture and its performance under several different formats and link conditions. Comparisons of complexity and performance are drawn between the proposed architecture and conventional receivers.

  18. Behavior of Layers under Different Light Sources

    Directory of Open Access Journals (Sweden)

    BO Tavares

    2015-12-01

    Full Text Available ABSTRACT Light is an important factor in the management of laying poultry. The ideal lamp spectrum that provides the best welfare conditions still needs to be determined. Wavelength and light intensity influence poultry behavior and their welfare. This study evaluated the influence of four lamps types with different light spectra on the behavior of seventy 52-week laying hens. Incandescent, fluorescent, and sodium and mercury vapor lamps were set in a different poultry house each and supplied similar light intensities. Layer behavior was video-recorded three times weekly using video cameras installed on the ceiling. The effects of different wavelengths emitted by the light sources on layer behavior were evaluated by the Kruskal-Wallis median test. Results indicated that incandescent and sodium vapor lamps increased the occurrence of nesting, and of active behaviors, such as floor-scratching and pecking.

  19. Concept of coherence aperture and pathways toward white light high-resolution correlation imaging

    Science.gov (United States)

    Bouchal, P.; Bouchal, Z.

    2013-12-01

    Self-interference correlation imaging is a recently discovered method that takes advantage of holographic reconstruction when using a spatially incoherent light. Although the temporal coherence of light significantly influences the resolution of the method, it has not been studied either theoretically or experimentally. We present the first systematic study of the resolution in a broadband correlation imaging based on the concept of coherence-induced diffraction. We show that the physical limits of the resolution are reached in a non-dispersive experiment and their examination can be performed by the coherence aperture whose width depends on the coherence length of light and the optical path difference of interfering waves. As the main result, the optimal configuration of the non-dispersive experimental system is found in which the sub-diffraction image resolution previously demonstrated for monochromatic light can be retained even when the white light is used. Dispersion effects that prevent reaching the physical resolution limits are discussed and the dispersion sensitivity of the currently available experiments examined. The proposed concept of the coherence aperture is verified experimentally and its generalization to the concept of the dispersion-induced aperture suggested. As a challenge for future research, possible methods of dispersion elimination are outlined that allow the design of advanced optical systems enabling implementation of the high-resolution white light correlation imaging.

  20. Towards an integrated squeezed light source

    DEFF Research Database (Denmark)

    Gehring, Tobias; Hoff, Ulrich Busk; Iskhakov, Timur

    2017-01-01

    applications. The precision of optical sensors based on interferometric measurements is often limited by the fundamental shot noise. While shot noise can be reduced by increasing the employed light power, integrated sensors pose limitations on the maximum possible amount due to damaging effects of high...... intensity as well as power consumption. Bright quadrature squeezed light produced by the optical Kerr effect in a nonlinear medium offers an opportunity to overcome these limitations. Here, we present first steps towards a bright quadrature squeezed light source produced by the optical Kerr effect in race...

  1. Luminescent materials for modern light sources

    Science.gov (United States)

    Zak, P. P.; Lapina, V. A.; Pavich, T. A.; Trofimov, A. V.; Trofimova, N. N.; Tsaplev, Yu B.

    2017-09-01

    The studies dealing with luminescent materials for semiconductor lighting are surveyed. The luminescent materials are classified in terms of the class of chemical compounds they belong to and in terms of the way they are used in luminescent converters of light from the primary light source. The use of inorganic phosphors, organic luminescent materials and materials based on complex compounds, quantum dots and metal-organic frameworks are considered. Sequential and parallel luminescent converters are defined. The key problems are identified and the possible ways of addressing them are outlined. Particular attention is paid to the problem of photodegradation of luminescent converters. The bibliography includes 101 references.

  2. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    . The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy...

  3. Effect of spatial coherence of LED sources on image resolution in holographic displays

    NARCIS (Netherlands)

    Pourreza Ghoushchi, Vahid; Aas, Mehdi; Ulusoy, Erdem; Ürey, Hakan

    2017-01-01

    Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms (CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on interference and diffraction, thus they generally use laser light. However, laser

  4. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture.

    Science.gov (United States)

    Killoran, N; Huelga, S F; Plenio, M B

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  5. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    Energy Technology Data Exchange (ETDEWEB)

    Killoran, N.; Huelga, S. F.; Plenio, M. B. [Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.

  6. Current status and future perspectives of accelerator-based x-ray light sources

    Science.gov (United States)

    Tanaka, Takashi

    2017-09-01

    State-of-the-art x-ray light sources are nowadays based on large-scale electron accelerators, because the synchrotron radiation (SR) and x-ray free electron laser (XFEL) radiation generated by high-energy electron beams have many advantages over other alternatives in terms of the wavelength tunability, high brightness and flux, high coherence, flexible polarization states, and so on. This is the reason why SR and XFEL light sources have largely contributed to the evolution of x-ray science. This paper reviews the current status of such accelerator-based x-ray light source facilities and discusses their future perspectives.

  7. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  8. Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm.

    Science.gov (United States)

    Eigenwillig, Christoph M; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2011-08-01

    The wavelength swept amplified spontaneous emission (ASE) source presented in this paper is an alternative approach to realize a light source for high speed swept source optical coherence tomography (OCT). ASE alternately passes a cascade of different optical gain elements and tunable optical bandpass filters. In this work we show for the first time a wavelength swept ASE source in the 1060 nm wavelength range, enabling high speed retinal OCT imaging. We demonstrate ultra-rapid retinal OCT at a line rate of 170 kHz, a record sweep rate at 1060 nm of 340 kHz with 70 nm full sweep width, enabling an axial resolution of 11 μm. Two different implementations of the source are characterized and compared to each other. The last gain element is either a semiconductor optical amplifier or an Ytterbium-doped fibre amplifier enabling high average output power of >40 mW. Various biophotonic imaging examples provide a wide range of quality benchmarks achievable with such sources. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bioluminescence as a light source for photosynthesis.

    Science.gov (United States)

    Yuan, Huanxiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2013-11-25

    The luminol bioluminescence system containing luminol, hydrogen peroxide and HRP was used as a potential substitute light source of sunlight for the photosynthesis of plants, in which the electron flow of the photosynthesis process was proven using chloroplasts isolated from spinach leaves.

  10. Long-pulse Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  11. Integrated source of broadband quadrature squeezed light

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund

    2015-01-01

    An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...

  12. Metameric Light Sources: A Recent Paradigm for Functional Lighting

    Directory of Open Access Journals (Sweden)

    Petrulis Andrius

    2017-10-01

    Full Text Available Recent progress in tuneable solid-state light sources opens new opportunities in a niche and high added value lighting applications. The standard colorimetric technique of composing an identical colour coordinate metameric light spectra are facing the challenges due to the colour discrepancy noticed by the observers. A side-by-side colour matching experiment was performed with two tuneable tetrachromatic RAGB lamps (638 nm red, 598 nm pc amber, 518 nm green, 451 nm blue LEDs to compare the colour of the metameres in a 10-deg viewing angle. The metameric light matching was investigated using a 2-deg (CIE 1931 and 10-deg (CIE 1964 XYZ colour matching function. Both colour matching functions of standard colorimetric observers were shown to be inaccurate for aligning of metameric spectral power distributions without a noticeable difference in a perceived colour. On the other hand, a wide scatter of individual results revealed that the standard colour matching functions are inherently limited and in some cases, especially in professional lighting applications, the individually adjustable metameric lighting approach is to be considered.

  13. Coherent and dynamic beam splitting based on light storage in cold atoms

    OpenAIRE

    Kwang-Kyoon Park; Tian-Ming Zhao; Jong-Chan Lee; Young-Tak Chough; Yoon-Ho Kim

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the...

  14. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    Science.gov (United States)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  15. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  16. Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available We present broadband two-dimensional electronic spectra of a lightharvesting protein from photosynthetic algae. Analysis of the spectra show that the amplitude of the main cross peak oscillates as a function of the waiting time period. Both electronic coupling and intramolecular vibrational modes, and their mixture, can lead to such oscillations. Using predictions based on models of four-level systems, we describe ways to distinguish electronic from vibrational contributions to the coherence and find that both types of coupling contribute to the measured dynamics.

  17. A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve

    Science.gov (United States)

    Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.

    1975-01-01

    A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.

  18. Second-Order Temporal Interference with Thermal Light: Interference beyond the Coherence Time

    Science.gov (United States)

    Ihn, Yong Sup; Kim, Yosep; Tamma, Vincenzo; Kim, Yoon-Ho

    2017-12-01

    We report the observation of a counterintuitive phenomenon in multipath correlation interferometry with thermal light. The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers (UMZIs) with two classically correlated beams of thermal light at the input exhibits genuine second-order interference with the visibility of 1 /3 . Surprisingly, the second-order interference does not degrade at all no matter how much the path length difference in each UMZI is increased beyond the coherence length of the thermal light. Moreover, the second-order interference is dependent on the difference of the UMZI phases. These results differ substantially from those of the entangled-photon Franson interferometer, which exhibits two-photon interference dependent on the sum of the UMZI phases and the interference vanishes as the path length difference in each UMZI exceeds the coherence length of the pump laser. Our work offers deeper insight into the interplay between interference and coherence in multiphoton interferometry.

  19. Directly measuring the concurrence of two-atom state via detecting coherent lights

    Science.gov (United States)

    Chen, Li; Yang, Ming; Zhang, Li-Hua; Cao, Zhuo-Liang

    2017-11-01

    Concurrence is an important parameter for quantifying quantum entanglement, but usually the state tomography must be determined before quantification. In this paper we propose a scheme, based on cavity-assisted atom–light interaction, to measure the concurrence of two-atom pure states and the Collins–Gisin state directly, without tomography. The concurrence of atomic states is encoded in the output coherent optical beams after interacting with cavities and the atoms therein, so the results of detection applied to the output coherent optical beams provide the concurrence data of the atomic states. This scheme provides an alternative method for directly measuring atomic entanglement by detecting coherent light, rather than measuring the atomic systems, which thus greatly simplifies the realization complexity of the direct measurement of atomic entanglement. In addition, as the cavity-assisted atom–light interaction used here is robust and scalable in realistic applications, the current scheme may be realized in the near future.

  20. Tunable white light source for medical applications

    Science.gov (United States)

    Blaszczak, Urszula J.; Gryko, Lukasz; Zajac, Andrzej

    2017-08-01

    Development of light-emitting diodes has brought new possibilities in many applications, especially in terms of flexible adjustment of light spectra. This feature is very useful in construction of many devices, for example for medical diagnosis and treatment. It was proved, that in some cases LEDs can easily replace lasers during therapy of cancer without reduction of efficiency of this process. On the other hand during diagnosis process LED-based constructions can provide unique ability to adjust the color temperature of the output light while maintaining high color rendering. It allows for optimum surface contrast and enhanced tissue differentiation at the operator site. In the paper we describe the construction of the tunable LED-based source designed for application in endoscopy. It was optimized from the point of view of the color rendition for 5 different correlated color temperatures (illuminant A, D55, D65, 3500K and 4500K) with the restriction of very high (>90) values of general and specific color rendering indexes (according to Ra method). The source is composed of 13 light-emitting diodes from visible region mounted on the common radiator and controlled by dedicated system. Spectra of the components are mixed and the spectra of output light is analyzed. On the basis of obtained spectra colorimetric parameters are calculated and compared with the results of theoretical analysis.

  1. Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source

    OpenAIRE

    Scholberg, Kate

    2005-01-01

    Rates of coherent neutrino-nucleus elastic scattering at a high-intensity stopped-pion neutrino source in various detector materials (relevant for novel low-threshold detectors) are calculated. Sensitivity of a coherent neutrino-nucleus elastic scattering experiment to new physics is also explored.

  2. Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems.

    Science.gov (United States)

    Huo, Pengfei; Miller, Thomas F

    2015-12-14

    We apply real-time path-integral dynamics simulations to characterize the role of electronic coherence in inter-complex excitation energy transfer (EET) processes. The analysis is performed using a system-bath model that exhibits the essential features of light-harvesting networks, including strong intra-complex electronic coupling and weak inter-complex coupling. Strong intra-complex coupling is known to generate both static and dynamic electron coherences, which delocalize the exciton over multiple chromophores and potentially influence the inter-complex EET dynamics. With numerical results from partial linearized density matrix (PLDM) real-time path-integral calculations, it is found that both static and dynamic coherence are correlated with the rate of inter-complex EET. To distinguish the impact of these two types of intra-complex coherence on the rate of inter-complex EET, we use Multi-Chromophore Förster Resonance Energy Transfer (MC-FRET) theory to map the original parameterization of the system-bath model to an alternative parameterization for which the effects of static coherence are preserved while the effects of dynamic coherence are largely eliminated. It is then shown that both parameterizations of the model (i.e., the original that supports dynamic coherence and the alternative that eliminates it), exhibit nearly identical EET kinetics and population dynamics over a wide range of parameters. These observations are found to hold for cases in which either the EET donor or acceptor is a dimeric complex and for cases in which the dimeric complex is either symmetric or asymmetric. The results from this study suggest that dynamic coherence plays only a minor role in the actual kinetics of inter-complex EET, whereas static coherence largely governs the kinetics of incoherent inter-complex EET in light-harvesting networks.

  3. Partially coherent light propagation in stratified media containing an optically thick anisotropic layer

    Science.gov (United States)

    Nichols, Shane M.; Arteaga, Oriol; Martin, Alexander T.; Kahr, Bart

    2017-11-01

    Methods used to compute the reflection or transmission Mueller matrix of stratified media assume light is a monochromatic plane wave, but measurements with spectroscopic devices invariably involve a finite distribution of wavelengths and incidence angles. Consequently, there can be stark disagreement between calculation and experiment, especially when the specimen includes a thick non-opaque layer. To accurately model specimens with a thick layer, it is sometimes necessary to explicitly include the coherence of the light in models. For anisotropic and/or optically active media, we distinguish between five regimes of coherence. Algebraic expressions valid for all regimes are given. Experimental data spanning multiple regimes is modeled.

  4. Comparative analysis of different doses of coherent light (laser and non-coherent light (light-emitting diode on cellular necrosis and apoptosis: a study in vitro

    Directory of Open Access Journals (Sweden)

    Vanessa dos Santos Silva

    Full Text Available Introduction Threshold doses of electromagnetic radiation can initiate necrosis and apoptosis in cells. The purpose of this study was to evaluate cellular apoptosis and necrosis immediately (t0 and 24 hours (t24 after irradiation with different doses of coherent light (laser or non-coherent light (LED. Methods CHO-K1 lineage cells were irradiated with laser (810nm or LED (945±20nm, with 24mW, contact area of 1cm2 and doses of 10, 20, 30, 40 and 50J/cm2 for 300, 660, 960, 1230 and 1620s, respectively, at both wavelengths. Cells were evaluated by fluorescence microscopy, differentiating viable, apoptotic and necrotic cells immediately and 24 hours after irradiation. Results The number of necrotic cells at t0 was higher in the LED 40 and 50J/cm2 groups (86±14 and 84±16% respectively, p <0.05, than in the 10 and 20J/cm2 laser (5±2 and 5±3%, p<0.05 and LED (5±3 and 4±1%, p<0.05 conditions. At t24, the LED 40J/cm2 (80±20%, p<0.05 group also showed more necrosis than the control and lower dose groups (laser 10, 20, and 30J/cm2 percentage of 6±4, 10±3 and 7±3%, p<0.05; LED 10 and 20J/cm2 percentage of 3±1 and 17±10%, p<0.05. A decrease in apoptotic cells was observed in the laser group with doses of 10, 40, and 50J/cm2 (6±4, 3±1 and 1±1% respectively, not significant, as well as in the LED 40J/cm2 (2±2%, not significant group versus control. The cells had a higher percentage of apoptosis cells in the control group and with laser doses of 10 and 30J/cm2 (percentage of 20±1 and 20±4%, not significant, while only the LED 40J/cm2 (10±10%, not significant had a lower percentage compared the control group. Conclusion Laser or LED stimulation promoted an increase in cell necrosis in a high energy density condition as characterized in a dose-dependent inhibition therapy. Laser or LED infrared irradiation in low doses (up to 20J/cm2 reduced the percentage of apoptosis in CHO-K1 cells, while high doses (30J/cm2 elevated apoptosis.

  5. Spectrally tunable light source based on light-emitting diodes for custom lighting solutions

    OpenAIRE

    Burgos Fernández, Francisco Javier; Vilaseca Ricart, Meritxell; Perales Romero, Esther; Herrera Ramírez, Jorge Alexis; Martínez Verdú, Francisco Miguel; Pujol Ramo, Jaume

    2016-01-01

    This study describes a novel spectral LED-based tunable light source used for customized lighting solutions, especially for the reconstruction of CIE (Commission Internationale de l’Éclairage) standard illuminants. The light source comprises 31 spectral bands ranging from 400 to 700 nm, an integrating cube and a control board with a 16-bit resolution. A minimization algorithm to calculate the weighting values for each channel was applied to reproduce illuminants with precision. The difference...

  6. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser.

    Science.gov (United States)

    Stangner, Tim; Zhang, Hanqing; Dahlberg, Tobias; Wiklund, Krister; Andersson, Magnus

    2017-07-01

    Wide field-of-view imaging of fast processes in a microscope requires high light intensities motivating the use of lasers as light sources. However, due to their long spatial coherence length, lasers are inappropriate for such applications, as they produce coherent noise and parasitic reflections, such as speckle, degrading image quality. Therefore, we provide a step-by-step guide for constructing a speckle-free and high-contrast laser illumination setup using a rotating ground glass diffuser driven by a stepper motor. The setup is easy to build, cheap, and allows a significant light throughput of 48%, which is 40% higher in comparison to a single lens collector commonly used in reported setups. This is achieved by using only one objective to collect the scattered light from the ground glass diffuser. We validate our setup in terms of image quality, speckle contrast, motor-induced vibrations, and light throughput. To highlight the latter, we record Brownian motion of micro-particles using a 100× oil immersion objective and a high-speed camera operating at 2000 Hz with a laser output power of only 22 mW. Moreover, by reducing the objective magnification to 50×, sampling rates up to 10,000 Hz are realized. To help readers with basic or advanced optics knowledge realize this setup, we provide a full component list, 3D-printing CAD files, setup protocol, and the code for running the stepper motor.

  7. Advanced Light Source beam diagnostics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  8. Supercontinuum as a light source for miniaturized endoscopes.

    Science.gov (United States)

    Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J

    2016-09-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).

  9. Pioneering SESAME light source officially opened

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    Allan, Jordan, 16 May 2017. The SESAME light source was today officially opened by His Majesty King Abdullah II. An intergovernmental organization, SESAME is the first regional laboratory for the Middle East and neighbouring regions The laboratory’s official opening ushers in a new era of research covering fields ranging from medicine and biology, through materials science, physics and chemistry to healthcare, the environment, agriculture and archaeology.

  10. Backscatter absorption gas imaging systems and light sources therefore

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  11. Coherence Inherent in an Incoherent Synchrotron Radio Source ...

    Indian Academy of Sciences (India)

    Galaxies: active—quasars: general—radiation mechanisms: non-thermal—radio continuum: general. 1. Introduction. It is well known that synchrotron radiation mechanism does not allow MASER type coherent emission .... been sometimes called in the literature a 'cosmic conspiracy' (Cotton et al. 1980). Although one ...

  12. MULTIMODALITY IMAGING OF TORPEDO MACULOPATHY WITH SWEPT-SOURCE, EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Papastefanou, Vasilios P; Vázquez-Alfageme, Clara; Keane, Pearse A; Sagoo, Mandeep S

    2016-10-19

    Multimodality image analysis of two cases of torpedo maculopathy. Imaging with fundus photography, autofluorescence (AF), swept-source optical coherence tomography (OCT), en face OCT, and OCT angiography. The basal diameter of the torpedo lesions was 1 mm × 2 mm. One case had a satellite lesion. Autofluorescence indicated variable loss of signal. Swept-source OCT and en face OCT demonstrated fundus excavation, attenuation of nuclear layers and disruption of the outer plexiform layer, loss of photoreceptors and a subretinal cleft. In one case, Sattler layer appeared extended at the cleft. Optical coherence tomography angiography indicated loss of flow in deep retinal vessels and increased flow in choroidal vessels surrounding the cleft. Multimodal imaging findings of torpedo maculopathy include disruption of the deep retinal capillary network, expansion of Sattler layer, and increased signal around the subretinal cleft.

  13. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    CERN Document Server

    Akimov, D; Barbeau, P; Barton, P; Bolozdynya, A; Cabrera-Palmer, B; Cavanna, F; Cianciolo, V; Collar, J; Cooper, R J; Dean, D; Efremenko, Y; Etenko, A; Fields, N; Foxe, M; Figueroa-Feliciano, E; Fomin, N; Gallmeier, F; Garishvili, I; Gerling, M; Green, M; Greene, G; Hatzikoutelis, A; Henning, R; Hix, R; Hogan, D; Hornback, D; Jovanovic, I; Hossbach, T; Iverson, E; Klein, S R; Khromov, A; Link, J; Louis, W; Lu, W; Mauger, C; Marleau, P; Markoff, D; Martin, R D; Mueller, P; Newby, J; Orrell, J; O'Shaughnessy, C; Pentilla, S; Patton, K; Poon, A W; Radford, D; Reyna, D; Ray, H; Scholberg, K; Sosnovtsev, V; Tayloe, R; Vetter, K; Virtue, C; Wilkerson, J; Yoo, J; Yu, C H

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  14. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    Science.gov (United States)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  15. Line-field swept source optical coherence tomography system for evaluating microstructure of objects in near-infrared spectral range

    Science.gov (United States)

    Gurov, Igor; Margaryants, Nikita; Pimenov, Aleksei

    2017-06-01

    Peculiarities of optical design for optical coherence tomography (OCT) system with illumination by a swept-source in the spectral range 1.26-1.36 μm are considered. In the OCT system, an object is illuminated by light intensity distribution in the form of line providing high power efficiency of the light source when evaluating micro structure of objects. A linearray photo detector with the frame acquisition rate of a few tens of kilohertz is utilized that allows obtaining B-scans without mechanical lateral scanning. The illumination power density at each point of investigated object is much less with respect to conventional "flying spot" methods that is important when studying biological objects not resistant to intensive light. Results of experimental investigations utilizing the Linnik micro interferometer optical scheme are given. Experimental tomograms of different objects are presented.

  16. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  17. REVIEW ARTICLE: Slow and fast light based on coherent population oscillations in erbium-doped fibres

    Science.gov (United States)

    Arrieta-Yáñez, Francisco; Calderón, Oscar G.; Melle, Sonia

    2010-10-01

    In this paper we review the main results on slow and fast light induced by coherent population oscillations in optical fibres doped with erbium ions. We explain the physics behind this technique and we describe the experimental realization. Finally, we summarize some recent advances in this field and future goals.

  18. Coherent imaging of a pure phase object with classical incoherent light

    DEFF Research Database (Denmark)

    Bache, Morten; Magatti, D.; Gatti, A.

    2007-01-01

    A ghost imaging scheme is used to observe the diffraction pattern of a pure phase object . It is observed that when increasing the spatial coherence the diffraction pattern disappeared from the cross-correlation, while it appeared in the autocorrelation. The cross-correlation contains information...... about the phase object only when the light is spatially incoherent....

  19. Analogies between classical scalar wave fields in any state of spatial coherence and some quantum states of light.

    Science.gov (United States)

    Castañeda, Román; Cañas, Gustavo; Vinck-Posada, Herbert

    2012-04-01

    The border between the descriptions of the classical optical fields in any state of spatial coherence and the quantum coherence state of light is revisited in the framework of the phase-space representation. Although it is established that such descriptions are not completely equivalent, the exact calculation of the marginal power spectrum leads to new analogies that suggest that some features exclusively attributed to quantum states of light can be also shared by classical optical fields due to their spatial coherence state.

  20. Coherent light absorbing by concrete during its hardening

    Science.gov (United States)

    Gorsky, Mykhaylo P.; Maksimyak, Peter P.

    2018-01-01

    In this work changes of concrete reflection coefficient during its hydration were investigated theoretically and experimentally. Diffuse approximation method for concrete light-scattering description during hydration was used and its results were compared with received experimental data. Calculation of scattered and absorption sections for set of particles is described in details. Introduced optical diagnostics method allows performing earlier hydration stages diagnostics of concrete hardening process in comparison with other methods and predicting mechanical properties of produced concrete.

  1. Superbend upgrade of the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  2. Plasma-based EUV light source

    Science.gov (United States)

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  3. Attosecond light sources in the water window

    Science.gov (United States)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  4. How do light harvesting proteins support long lived quantum coherences

    Science.gov (United States)

    2017-01-31

    phase HPLC separation experiments on the open form PC577 phycobiliprotein as described above for the PE545 protein. Whether PC577 was titrated from...in the ~70° rotation between αβ monomers), we should be able to generate matched protein pairs that differ mainly in their structure. Experiment ...Under review.) Using pH titrations from pH 7 to pH 2, and then back to pH 7, we have shown the ability of the light-harvesting PE545

  5. Bearing detection in the presence of two sources of varying coherence using the complex cepstrum

    Science.gov (United States)

    Fuller, C. R.; Elliott, K. B.

    1987-01-01

    The effect of the presence of two acoustic sources (one, the primary, whose location is to be detected) of varying coherence on a cepstral bearing finding procedure is experimentally studied. The coherence between the acoustic sources was altered by adding random noise of various SNR (signal-to-noise ratio) to the input signal of the primary source; the same base signal being fed to both sources. The results demonstrate that, when block liftering is used, the primary source bearing is reliably estimated for coherences as low as gamma sup 2 greater than or approx equal to 0.5. The results also imply that background noise (unreflected) of SNR greater than or approx equal to 10 dB will not markedly affect the accuracy of the bearing estimation algorithm.

  6. Fundamentals of light sources and lasers

    CERN Document Server

    Csele, Mark

    2011-01-01

    A comprehensive introduction to the burgeoning field of photonicsThe field of photonics is finding increasing applications across a broad range of industries. While many other books provide an overview of the subject, Fundamentals of Light Sources and Lasers closes a clear gap in the current literature by concentrating on the principles of laser operation as well as providing coverage of important concepts necessary to fully understand the principles involved. The scope of the book includes everything a professional needs to get up to speed in the field, as well as all the material necessa

  7. Coded source imaging simulation with visible light

    Energy Technology Data Exchange (ETDEWEB)

    Wang Sheng [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China); Zou Yubin, E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China); Zhang Xueshuang; Lu Yuanrong; Guo Zhiyu [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China)

    2011-09-21

    A coded source could increase the neutron flux with high L/D ratio. It may benefit a neutron imaging system with low yield neutron source. Visible light CSI experiments were carried out to test the physical design and reconstruction algorithm. We used a non-mosaic Modified Uniformly Redundant Array (MURA) mask to project the shadow of black/white samples on a screen. A cooled-CCD camera was used to record the image on the screen. Different mask sizes and amplification factors were tested. The correlation, Wiener filter deconvolution and Richardson-Lucy maximum likelihood iteration algorithm were employed to reconstruct the object imaging from the original projection. The results show that CSI can benefit the low flux neutron imaging with high background noise.

  8. Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence

    Science.gov (United States)

    Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2017-02-01

    By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.

  9. Ultraviolet Light Source Using Electrodeless Microwave Discharge

    Science.gov (United States)

    Nishikawa, Taku; Toyoda, Hirotaka

    2015-09-01

    Surface treatment technologies using ultraviolet (UV) light, such as organic residue removal, surface modification or sterilization, are widely used. So far, UV lamps using DC discharge with electrodes inside the lamp tube is commonly used. However, sputtering of electrode materials sometimes causes deposition on the inner tube surface as well as degradation of the electrodes, resulting in short life time of the lamp tube. In this study, we propose an electrodeless UV mercury (Hg) lamp source using microwave power. 2.45 GHz Microwave power (<4 kW) from a power supply is divided into four power lines using branch waveguides. A mercury lamp tube (diameter: 9.6 mm, length: 42 cm, Hg: 13.5 mg, Ar: 1 Torr) is inserted into the branch waveguides and microwave power is coupled to the plasma. Emission from the lamp is monitored by a monochromator and an 254 nm UV monitor. Lamp temperature is also measured by a thermography camera and tube temperature up to 900 K with good uniformity along ~ 30 cm was observed. Uniformity of the 254 nm UV light intensity was +15 % along the lamp tube. The maximum UV light intensity of 64 mW/cm2 was observed at a microwave power of 4 kW.

  10. Advanced Light Source: Activity report 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  11. A novel amblyopia treatment system based on LED light source

    Science.gov (United States)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  12. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  13. EDITORIAL: Special Issue on Light Sources

    Science.gov (United States)

    Wharmby, D. O.

    2008-07-01

    The papers in this Special Issue of Journal of Physics D: Applied Physics originate from the 11th International Symposium on the Science and Technology of Light Sources (LS:11) held at Fudan University, Shanghai, China, during 20 24 May 2007. Abstracts of all papers were published in the conference book Light Sources 2007 (Sheffield: FAST-LS) edited by Muqing Liu and R Devonshire. Special issues were produced after LS:9 and LS:10 and have proved to be well-cited and important sources of information for this community. The Symposia occur at three-year intervals. In this one over 200 papers were presented—the majority as posters—with ample time provided for active discussion. As all submitted papers had to be refereed in the normal way for J. Phys. D: Appl. Phys., I was concerned that too many submissions would overwhelm the small number of referees available in this area. To ensure a broad spread of interests and opinions, I invited 10 senior colleagues to give me their recommendations about who should be asked to submit papers for this Special Issue. The criteria were that the work should be new, complete and within the scope of the journal. As a result of their suggestions 42 authors were asked to submit papers. Not all authors were able to submit a manuscript in time and some, at my request, combined their work into a single paper. The 28 papers published here are the result of that process. The issue starts with a comprehensive review by Benilov of the remarkable progress that has been made in the past 15 years in understanding the behaviour of cathode and anode terminations in arcs. It is fair to say that we now have a fundamental understanding of the formerly baffling behaviour of spot and diffuse terminations, at least in the quasi-steady state. A number of following papers cover applications of this theory, extensions to time dependence and examination of the effects of the different gaseous atmospheres in which lighting arcs operate. Mercury has very

  14. Disentangling electronic and vibrational coherence in the Phycocyanin-645 light-harvesting complex

    CERN Document Server

    Richards, Gethin H; Curmi, Paul M G; Davis, Jeffrey A

    2013-01-01

    Energy transfer between chromophores in photosynthesis proceeds with near unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilise a two-colour four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited state structure based on two strongly-coupled electronic states and two vibrational modes. Separation of the cohe...

  15. Extinction of light and coherent scattering by a single nitrogen-vacancy center in diamond

    Science.gov (United States)

    Tran, Thai Hien; Siyushev, Petr; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-05-01

    The efficient interaction of light and a single quantum system is required to implement a photon to spin interface. It is important to determine the amount of coherent and incoherent photons in such a scheme, since it is based on coherent scattering. In this paper an external laser field is efficiently coupled to a single nitrogen vacancy center in diamond. We detect the direct extinction signal and estimate the nitrogen vacancy's extinction cross section. The exact amount of coherent and incoherent photons is determined against the saturation parameter. This reveals the optimal point of interaction for further experiments. A theoretical model allows us to explain the deviation to an atom in free space. The introduced experimental techniques are used to determine the properties of the tight focusing in an interference experiment and allow for a direct determination of the Gouy phase in a strongly focused beam.

  16. Distinguishing Visual Information from Visible Background Light Sources

    OpenAIRE

    Theorell, Axel; Osika, Anton

    2013-01-01

    This thesis regards problems of the form: Two light sources are present. The two sources have dierent light spectra. One of the sources carries information and the other source can be regarded as background light. How can we maximize the contrast between the information and the background light using optical ltering techniques? A relevant question when working with this problem is the theoretical limit of how big dierence a lter can make. The dierence is calculated with regards to the optimal...

  17. Phosphor converted laser diode light source for endoscopic diagnostics

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    In order to provide light sources for endourology and on-site testing of the light source, we are developing a portable endoscope light source prototype based on a phosphor converted laser diode. A small emitting area from the phosphor material excited by a laser diode enables coupling...

  18. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.

    Science.gov (United States)

    Collini, Elisabetta; Wong, Cathy Y; Wilk, Krystyna E; Curmi, Paul M G; Brumer, Paul; Scholes, Gregory D

    2010-02-04

    Photosynthesis makes use of sunlight to convert carbon dioxide into useful biomass and is vital for life on Earth. Crucial components for the photosynthetic process are antenna proteins, which absorb light and transmit the resultant excitation energy between molecules to a reaction centre. The efficiency of these electronic energy transfers has inspired much work on antenna proteins isolated from photosynthetic organisms to uncover the basic mechanisms at play. Intriguingly, recent work has documented that light-absorbing molecules in some photosynthetic proteins capture and transfer energy according to quantum-mechanical probability laws instead of classical laws at temperatures up to 180 K. This contrasts with the long-held view that long-range quantum coherence between molecules cannot be sustained in complex biological systems, even at low temperatures. Here we present two-dimensional photon echo spectroscopy measurements on two evolutionarily related light-harvesting proteins isolated from marine cryptophyte algae, which reveal exceptionally long-lasting excitation oscillations with distinct correlations and anti-correlations even at ambient temperature. These observations provide compelling evidence for quantum-coherent sharing of electronic excitation across the 5-nm-wide proteins under biologically relevant conditions, suggesting that distant molecules within the photosynthetic proteins are 'wired' together by quantum coherence for more efficient light-harvesting in cryptophyte marine algae.

  19. Coherent dynamics of a telecom-wavelength entangled photon source.

    Science.gov (United States)

    Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2014-01-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  20. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    Directory of Open Access Journals (Sweden)

    Jung Ho Je

    2008-12-01

    Full Text Available The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis. By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  1. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.

    Science.gov (United States)

    Lu, Chen D; Kraus, Martin F; Potsaid, Benjamin; Liu, Jonathan J; Choi, Woojhon; Jayaraman, Vijaysekhar; Cable, Alex E; Hornegger, Joachim; Duker, Jay S; Fujimoto, James G

    2013-12-20

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

  2. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

    Science.gov (United States)

    Lu, Chen D.; Kraus, Martin F.; Potsaid, Benjamin; Liu, Jonathan J.; Choi, WooJhon; Jayaraman, Vijaysekhar; Cable, Alex E.; Hornegger, Joachim; Duker, Jay S.; Fujimoto, James G.

    2013-01-01

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm2 and wide field 10 x 10 mm2 volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine. PMID:24466495

  3. High-Resolution, Quantitative, and Three-Dimensional Coherent Diffractive Imaging with a Tabletop EUV Source

    Science.gov (United States)

    Shanblatt, Elisabeth Rose

    Imaging is a critical tool used across a broad range of applications in science, technology, medicine, and manufacturing. Microscopy, the type of imaging which allows us to access the elusive yet rich world of what is smaller than we can naturally see--makes it possible to observe and design the nano-world of biological, material, and nanofabricated systems. In this thesis, I describe the development of a new type of microscopy that combines two powerful tools: coherent extreme ultraviolet (EUV) light sources produced by high harmonic generation, and ptychographic coherent diffractive imaging. This microscope produces high-resolution, chemically-specific, phase- and amplitude-contrast images with large fields of view on the order of hundreds of microns, while preserving a high spatial resolution on the scale of tens of nanometers. Recently, we extended this new tabletop microscopy technique to image reflective samples, periodic samples, and to image dynamic nano-scale elastic and thermal processes. I will discuss these advances and in particular demonstrate two new capabilities: first, a new imaging technique with high compositionally- and morphologically-sensitive quantitative information, capable of imaging reactions and diffusion at a buried interface. This capability will open up a new, exquisitely sensitive layer-by-layer imaging that has many applications in nanoscience and nanotechnology, including surface and materials science and metrology. Secondly, I will demonstrate imaging of a thick sample in three dimensions. By accounting for diffraction within a thick sample, it is possible to obtain high-resolution three-dimensional images of biological and meta-material samples non-invasively, and without the use of staining or labeling.

  4. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...

  5. Spatial interference of light: transverse coherence and Alford and Gold effect

    CERN Document Server

    Jefferson, Flórez; Omar, Calderón-Losada; Luis-José, Salazar-Serrano; Alejandra, Valencia

    2015-01-01

    We study the interference between two parallel-propagating Gaussian beams, originated from the same source, as their transverse separation is tuned. The interference pattern as a function of such separation lead us to determine the spatial coherence of the original beam, in a similar way that a Michelson-Morley interferometer can be employed to measure the temporal coherence of a transform limited pulse. Moreover, performing a Fourier transform of the two-beam transverse plane, we observe an intensity modulation in the transverse momentum variable. This observation resembles the Alford and Gold Effect reported in time and frequency variables so far.

  6. Nonclassical light sources for silicon photonics

    Science.gov (United States)

    Bajoni, Daniele; Galli, Matteo

    2017-09-01

    Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.

  7. Beamlines for Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Gholampour Azhir

    2015-09-01

    Full Text Available This paper describes day-one beamlines of the Iranian Light Source Facility and design concept of powder diffraction and spectromicroscopy beamlines as the most priorities of each synchrotron that cover the research requirements in the fields of physics, chemistry, nano-science, etc. For powder diffraction beamline energy range is 6-30 keV, resolution: 10-4, flux: 1012(ph/s/0.1%B.W. and spot size at sample is 0.1×0.1-1×10 mm2. For spectromicroscopy beamline energy range is 90-2500 eV, flux: 3×1015(ph/s/0.1%B.W.@96eV, resolving power of 1820 at 1000 eV and spot size at sample is 4×2-27×74 µm2

  8. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  9. Spectral design of new dynamic LED light sources

    DEFF Research Database (Denmark)

    Thorseth, Anders

    source. Detailed knowledge of the spectral power distribution as a function of operating current and temperature is required for the modeling and optimization. Examples of new high color quality dynamic white light sources that can be tuned from warm white light at 2700 K to cold white light at 6500 K...... sources that can be varied in color temperature and achieving color rendering properties. New LED light sources are constructed as clusters of colored LEDs. Modeling and optimization of the control of the light from the individual LEDs is a necessity for the desired operation of the new dynamic light...

  10. Background Studies at the Spallation Neutron Source for the COHERENT Experiment

    Science.gov (United States)

    Heath, Matthew; Coherent Collaboration

    2016-09-01

    The COHERENT experiment is attempting a first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) at the Spallation Neutron Source (SNS) at Oak Ridge National Lab. CEvNS is a standard model process that is important in understanding supernova neutrinos, the structure of the weak interaction, and as a background for dark matter searches. COHERENT is placing a suite of four detector technologies in a basement location at the SNS: point contact germanium detectors, CsI[Na] crystals, NaI[Tl] crystals, and single phase liquid argon. Previous attempts to measure the CEvNS process have grappled with very high rates of backgrounds due to the low energy thresholds required. Accelerator-correlated neutrons are the most troublesome background for COHERENT because a simple accelerator on/off background subtraction procedure fails to remove them. To understand these backgrounds, COHERENT features measurements from the SciBath detector and the Sandia Neutron Scatter Camera (NSC). Important neutron measurements from both SciBath and the NSC, as well as gamma measurements from the SNS basement location where the four detector technologies for COHERENT will be placed will be discussed. COHERENT collaborators are supported by the U. S. Department of Energy Office of Science, the National Science Foundation, NASA, and the Sloan Foundation.

  11. Nanoscale Imaging Using Coherent and Incoherent Laboratory Based Soft X-Ray Sources

    Science.gov (United States)

    Stiel, H.; Dehlinger, A.; Janulewicz, K. A.; Jung, R.; Legall, H.; Pratsch, C.; Seim, C.; Tümmler, J.

    Nanoscale imaging of biological samples in the lab as well as mask inspection in extreme ultraviolet lithography near the production line with sub 30 nm resolution require high spectral brightness soft x-ray sources. Laser produced plasma (LPP) sources and plasma based X-ray lasers (XRL) emit soft X-ray radiation in the wavelength region of interest between 2 and 20 nm. Whereas LPP sources easily can be tuned to the so called water window (2.2-4.4 nm) the output of an XRL is restricted to relatively few fixed wavelengths in the extreme ultraviolet range. However due to the relatively high degree of coherence the XRL is well suited also for nanoscale imaging using coherent techniques like coherent diffraction imaging or Fourier transform holography.

  12. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  13. Simultaneous multimodal ophthalmic imaging using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2016-01-01

    Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411

  14. Measurement of the optical path length difference in an interferometer using a sinusoidally frequency-modulated light source.

    Science.gov (United States)

    Shimada, Shumpei; Shizuka, Makoto; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2016-04-10

    We develop a technique for measuring the optical path length difference (OPLD) in an interferometer using a frequency-modulated light source. Compared with conventional methods, this technique offers a high sampling rate, high precision, and cost efficiency, and is capable of determining which of the two optical paths is longer. In addition, we show that this technique works properly even when the OPLD is significantly longer than the coherence length of the light source.

  15. Monte Carlo Green's function formalism for the propagation of partially coherent light.

    Science.gov (United States)

    Prahl, Scott A; Fischer, David G; Duncan, Donald D

    2009-07-01

    We present a Monte Carlo-derived Green's function for the propagation of partially spatially coherent fields. This Green's function, which is derived by sampling Huygens-Fresnel wavelets, can be used to propagate fields through an optical system and to compute first- and second-order field statistics directly. The concept is illustrated for a cylindrical f/1 imaging system. A Gaussian copula is used to synthesize realizations of a Gaussian Schell-model field in the pupil plane. Physical optics and Monte Carlo predictions are made for the first- and second-order statistics of the field in the vicinity of the focal plane for a variety of source coherence conditions. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. This formalism can be generally employed to treat the interaction of partially coherent fields with diffracting structures.

  16. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  17. A fiber-coupled incoherent light source for ultra-precise optical trapping

    Science.gov (United States)

    Menke, Tim; Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  18. The 4th Generation Light Source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  19. The Sun: the Earth light source

    Science.gov (United States)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  20. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  1. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Science.gov (United States)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  2. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  3. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  4. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  5. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations

    Science.gov (United States)

    Sadr, Alireza; Shimada, Yasushi; Mayoral, Juan Ricardo; Hariri, Ilnaz; Bakhsh, Turki A.; Sumi, Yasunori; Tagami, Junji

    2011-03-01

    The aim of this work was to explore the utility of swept-source optical coherence tomography (SS-OCT) for quantitative evaluation of dental composite restorations. The system (Santec, Japan) with a center wavelength of around 1300 nm and axial resolution of 12 μm was used to record data during and after placement of light-cured composites. The Fresnel phenomenon at the interfacial defects resulted in brighter areas indicating gaps as small as a few micrometers. The gap extension at the interface was quantified and compared to the observation by confocal laser scanning microscope after trimming the specimen to the same cross-section. Also, video imaging of the composite during polymerization could provide information about real-time kinetics of contraction stress and resulting gaps, distinguishing them from those gaps resulting from poor adaptation of composite to the cavity prior to polymerization. Some samples were also subjected to a high resolution microfocus X-ray computed tomography (μCT) assessment; it was found that differentiation of smaller gaps from the radiolucent bonding layer was difficult with 3D μCT. Finally, a clinical imaging example using a newly developed dental SS-OCT system with an intra-oral scanning probe (Panasonic Healthcare, Japan) is presented. SS-OCT is a unique tool for clinical assessment and laboratory research on resin-based dental restorations. Supported by GCOE at TMDU and NCGG.

  6. LINE-FIELD SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY SYSTEM FOR NEAR INFRARED SPECTRAL REGION

    Directory of Open Access Journals (Sweden)

    I. P. Gurov

    2016-01-01

    Full Text Available The system for line-field swept-source optical coherence tomography (OCT for near infrared spectral range is considered. In this connection, for tomograms visualization, frequency of signal acquisition not less than 20 kHz is needed. It is inaccessible for 2D photo sensitive arrays. In order to solve this problem, it has been proposed to use the line array of photo detectors, which frame registration frequency reaches tens of kilohertz. Method. Peculiarity of the method consists in using illumination of an object under investigation by light intensity distribution in the form of line for providing maximum energy efficiency of optical system. In addition, it becomes possible to obtain B-scans without a need in lateral object scanning that increases the rate of formation and imaging of tomograms. Main Results. The OCT optical system using a high-speed array of photodetectors has been developed; aberration analysis has been carried out. Experimental investigations based on Linnik micro interferometer optical scheme has been carried out. Tomograms of different samples have been obtained. Practical Relevance. Тhe obtained results can be accepted as a basis for creation of compact high performance OCT system without lateral mechanical scanning.

  7. Contrast improvement for swept source optical coherence tomography image of sub-surface tissue

    Science.gov (United States)

    Li, Xinyu; Liang, Shanshan; Zhang, Jun

    2017-02-01

    Swept source optical coherence tomography (SSOCT) is an attractive biological imaging technology due to its advantages of simple setup and high imaging speed. As the light intensity attenuated rapidly in high scattering biological tissues, the contrast of OCT image will drop with depth. In this paper a new method was introduced to compensate the attenuation of imaging contrast in SSOCT. The interference signal was divided into two channels of analog to digital converter (ADC) with a splitting ratio of 1:5. The higher level signal in one channel was used to reconstruct deeper structure of tissue and the lower level signal in the other channel was used to reconstruct surface structure of tissue. Lowfrequency signals in one channel were filtered by a high pass filter and then combined with the signal in the other channel to obtain a high contrast image in both surface and deep area of tissue. Human finger and porcine airway imaging obtained with the system show that the contrast of SSOCT images can be improved in deeper region of tissue.

  8. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  9. High Pressure Microwave Powered UV Light Sources

    Science.gov (United States)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  10. Estimation of light source colours for light pollution assessment.

    Science.gov (United States)

    Ziou, D; Kerouh, F

    2018-02-18

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    Science.gov (United States)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  12. The Injection System of SAGA Light Source

    CERN Document Server

    Iwasaki, Yoshitaka; Ohgaki, Hideaki; Okajima, Toshihiro; Takabayashi, Yuichi; Tomimasu, Takio; Yoshida, Katuhide

    2005-01-01

    Saga light Source is a 1.4-GeV electron storage ring with a circumference of 75.6m. The injector is a 250-MeV linac producing 1 ms macro-pulse with a peak current of 12mA and repetition rate of 1Hz. The output beam from the linac is transported though a transport line, and injected into the ring though a septum magnet with a bending angle of 20-degree. The transport line consists of two bending magnets, two quadrupole doublelets, and a quadrupole singlet. The bump orbit is formed by four kicker magnets, two of which are installed at both sides of septum magnet, and other two are positioned apart by one magnet cell of the ring. They are excited by sinusoidal electric currents with a half width of 0.5 ms. The beam optics for the injection trajectory is computed and shown at control room, the parameters for which are provided directly from the power supply control server PC. The operator is able to see real-time result of the beam trajectory calculation. This tool is quite effective to optimize the magnets param...

  13. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  14. National Synchrotron Light Source 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of

  15. L 1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources

    Science.gov (United States)

    Suzuki, Takao

    2011-11-01

    To resolve coherent/incoherent, distributed/compact, and multipole aerodynamic-sound sources with phased-array pressure data, a new source-detection algorithm is developed based on L1 generalized inverse techniques. To extract each coherent signal, a cross spectral matrix is decomposed into eigenmodes. Subsequently, the complex source-amplitude distribution that recovers each eigenmode is solved using generalized inverse techniques with reference solutions which include multipoles as well as a monopole. Namely, the source distribution consisting of pre-defined source types is solved as an L1 norm problem using iteratively re-weighted least squares (IRLS). The capabilities of the proposed algorithm are demonstrated using various benchmark problems to compare the results with several existing beam-forming algorithms, and it is found that distributed sources as well as dipoles with arbitrary orientation can be identified regardless of coherency with another source. The resolution is comparable to existing deconvolution techniques, such as DAMAS or CLEAN, and the computational cost is only several times more than that of DAMAS2. The proposed algorithm is also examined using previous model-scale test data taken in an open-jet wind-tunnel for a study on jet-flap interaction, and some indication of dipole radiation is discerned near the flap edge.

  16. Low-coherence enhanced backscattering of light: characteristics and applications for colon cancer screening

    Science.gov (United States)

    Kim, Young L.; Pradhan, Prabhakar; Turzhitsky, Vladimir M.; Subramanian, Hariharan; Liu, Yang; Wali, Ramesh K.; Roy, Hemant K.; Backman, Vadim

    2007-02-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, is a spectacular manifestation of self-interference effects in elastic light scattering, which gives rise to an enhanced scattered intensity in the backward direction. Although EBS has been the object of intensive investigation in non-biological media over the last two decades, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements of biological tissue by taking advantage of lowcoherence (or partially coherent) illumination, which is referred to as low-coherence EBS (LEBS) of light. LEBS possess novel and intriguing properties such as speckle reduction, self-averaging effect, broadening of the EBS width, depth-selectivity, double scattering, and circular polarization memory effect. After we review the current state of research on LEBS, we discuss how these characteristics apply for early cancer detection, especially in colorectal cancer (CRC), which is the second leading cause of cancer mortality in the United States. Although colonoscopy remains the gold standard for CRC screening, resource constraints and potential complications make it impractical to perform colonoscopy on the entire population at risk (age > 50). Thus, identifying patients who are most likely to benefit from colonoscopy is of paramount importance. We demonstrate that LEBS measurements in easily accessible colonoscopically normal mucosa (e.g., in the rectum of the colon) can be used for predicting the risk of CRC, and thus LEBS has the potential to serve as accurate markers of the risk of neoplasia elsewhere in the colon.

  17. Coherent and dynamic beam splitting based on light storage in cold atoms.

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-09-28

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing.

  18. A high-power incoherent light source for ultra-precise optical trapping

    Science.gov (United States)

    Schittko, Robert; Mazurenko, Anton; Greiner, Markus

    2016-05-01

    The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that dramatically reduces the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip, whose optical output is coupled into a multi-mode fiber. The fiber is used to populate a large number of transverse modes, each of which experiences a different optical path length. This effect, combined with the small coherence length of the light, dramatically reduces the spatial coherence of the output. In addition to theoretical calculations showcasing the feasibility of this approach, we present various experimental measurements verifying the low degree of spatial coherence exhibited by the source, including a detailed analysis of the speckle contrast at the fiber end.

  19. Instantaneous coherence length measurement of a swept laser source using a Mach-Zehnder interferometer

    Science.gov (United States)

    von Niederhäusern, Tim; Meier, Christoph; Duelk, Marcus; Vorreau, Philipp

    2011-03-01

    We present a measurement method which is capable of measuring the instantaneous coherence length as a function of the wavelength while the source is working at its full sweep rate. The measurement principle is based on the dynamic decrease of fringe contrast as a function of the optical path difference. The measurement setup consists of a free-space Mach-Zehnder interferometer with a variable optical path difference. We present results for instantaneous coherence lengths in a range from 0 mm to 50 mm with a mean standard deviation of 0.42 mm at sweep rates of up to 120 kHz.

  20. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  1. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  2. Spectral-domain optical coherence phase and multiphoton microscopy

    NARCIS (Netherlands)

    Joo, C.; Kim, K.I.; de Boer, J.F.

    2007-01-01

    We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate

  3. Efficiency and Coherence of Quantum-Dot Single-Photon Sources

    DEFF Research Database (Denmark)

    Madsen, Marta Arcari

    in a Hong-Ou-Mandel experiment. Finally, we demonstrate that a coherent quantum dot coupled to a photonic crystal waveguide is not only a promising single-photon source, but also a highly nonlinear system sensitive at the single-photon level. By performing resonant transmission measurements through...... on this result, we improved the design of the photonic crystal waveguide, and we characterized in detail the efficiency of the device and the coherence of the emitted single photons. We investigate the decoherence mechanisms affecting the quantum dots by performing resonance fluorescence experiments on emitters...... of a single charge. A very high degree of coherence can be achieved by embedding quantum dots in electrically gated samples. We show that a single quantum dot behaves like a nearly-ideal two-level system in a sample with electrical gates, and single photons emitted up to 1 μs apart show indistinguishability...

  4. Design consideration for Tohoku light source storage ring equipped with UV free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. E-mail: hama@lns.tohoku.ac.jp; Hinode, F.; Shinto, K.; Miyamoto, A.; Tanaka, T

    2004-08-01

    An integrated photon source facility has been planed at Laboratory of Nuclear Science, Tohoku University. A 1.5 GeV main ring designed as a synchrotron light source of VUV and soft X-ray region contains straight sections with very low beta function to accept high field superconducting wigglers for X-ray. One of two 8-m long straight sections is allocated for storage ring free electron laser (SRFEL) in the UV region. The beam property in the ring is evaluated and then the beam quality for the SRFEL oscillation is also discussed including possibility of coherent higher harmonic generation by showing results of numerical simulation.

  5. Decoupled Estimation of 2D DOA for Coherently Distributed Sources Using 3D Matrix Pencil Method

    Directory of Open Access Journals (Sweden)

    Tang Bin

    2008-08-01

    Full Text Available A new 2D DOA estimation method for coherently distributed (CD source is proposed. CD sources model is constructed by using Taylor approximation to the generalized steering vector (GSV, whereas the angular and angular spread are separated from signal pattern. The angular information is in the phase part of the GSV, and the angular spread information is in the module part of the GSV, thus enabling to decouple the estimation of 2D DOA from that of the angular spread. The array received data is used to construct three-dimensional (3D enhanced data matrix. The 2D DOA for coherently distributed sources could be estimated from the enhanced matrix by using 3D matrix pencil method. Computer simulation validated the efficiency of the algorithm.

  6. LAT Monitored Source List Light Curves

    Data.gov (United States)

    National Aeronautics and Space Administration — The LAT team monitors flux values for a number of bright sources and transient sources that have shown flares during the mission. (See up-to-date weekly reports on...

  7. New Storage Ring Light Sources on the Horizon

    CERN Document Server

    Podobedov, Boris

    2005-01-01

    The world's appetite for light sources keeps growing as new ones are under construction or being proposed for every continent but Antarctica. While some viable alternatives are emerging, the great majority of new light sources are based on mature electron storage ring technology. We review the design and performance of the new machines worldwide and speculate on the future directions.

  8. Laser driven white light source for BRDF measurement

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    source (UV-VIS-NIR), spectroradiometer and sample holder stepper motor in a dark UV-protected environment. Here, we introduced a special kind of light source which has a bright, stable, broad spectral range and well collimated light output to give a very good angular resolution. The experimental results...

  9. Discrimination between Doppler-shifted and non-shifted light in coherence domain path length resolved measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    We show a novel technique to distinguish between Doppler shifted and unshifted light in multiple scattering experiments on mixed static and dynamic media. With a phase modulated low coherence Mach- Zehnder interferometer, optical path lengths of shifted and unshifted light and path length dependent

  10. Illumination Decomposition for Photograph With Multiple Light Sources.

    Science.gov (United States)

    Zhang, Ling; Yan, Qingan; Liu, Zheng; Zou, Hua; Xiao, Chunxia

    2017-09-01

    Illumination decomposition for a single photograph is an important and challenging problem in image editing operation. In this paper, we present a novel coarse-to-fine strategy to perform illumination decomposition for photograph with multiple light sources. We first reconstruct the lighting environment of the image using the estimated geometry structure of the scene. With the position of lights, we detect the shadow regions as well as the highlights in the projected image for each light. Then, using the illumination cues from shadows, we estimate the coarse illumination decomposed image emitted by each light source. Finally, we present a light-aware illumination optimization model, which efficiently produces the finer illumination decomposition results, as well as recover the texture detail under the shadow. We validate our approach on a number of examples, and our method effectively decomposes the input image into multiple components corresponding to different light sources.

  11. Improved light sources for induction of sister chromatid differentiation.

    Science.gov (United States)

    Chen, J F; Lin, Y J

    1985-01-01

    Various light sources, including ultraviolet light, mercury, germicidal, fluorescent, and incandescent lamps, were studied for their ability to induce sister chromatid differentiation (SCD) in rat bone marrow cells. The light sources were used along with Hoechst 33258 and Giemsa stains for SCD induction. When those lamps which emit significant amounts of heat were used, 60 degrees C incubation in 2X SSC was found to be unnecessary for SCD induction. A high wattage lamp, a high ambient temperature, a short distance between the lamp and the slides, or a light with 360 nm wavelength, minimized the required exposure time to the light. The pH value of the mounting buffer was also a significant factor. Fluorescent black light and incandescent lamps were found to be ideal light sources for SCD induction.

  12. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  13. ASSESSMENT OF IMPACT OF COHERENT LIGHT ON RESISTANCE OF PLANTS GROWING IN UNFAVOURABLE ENVIRONMENTAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Małgorzata Śliwka

    2014-04-01

    Full Text Available The results of experiments on the effect of the coherent light emitted by lasers on plant material show that properly selected laser stimulation parameters, such as: wavelength, power, time and type of exposure, allow to obtain a greater growth of plant biomass, changes in the content of elements in the biomass and increasing plant resistance to unfavorable environmental conditions. The aim of this study was to determine the effect of laser stimulation on selected plant species (Iris pseudoacorus L., Lemna minor L. to increase their resistance to low temperatures and the ability to adapt to an environment polluted by mining activities (Phelum pratense L.. Plants from experimental groups (Iris pseudoacorus L., Phelum pratense L., Lemna minor L. were stimulated with coherent light with specific characteristics. To irradiate plants from experimental groups different algorithms of stimulation parameters, differentiating the method and time of exposure were used. Plants group without the stimulation, were the reference group. The article discusses the results of preliminary experiments carried out on a laboratory scale and pot experiments.

  14. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography

    Science.gov (United States)

    Manapuram, Ravi Kiran; Aglyamov, Salavat R.; Monediado, Floredes M.; Mashiatulla, Maleeha; Li, Jiasong; Emelianov, Stanislav Y.; Larin, Kirill V.

    2012-10-01

    We report a highly sensitive method based on phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to measure elastic wave propagation in soft tissues in vivo. The waves were introduced using a mechanical stimulus and were assessed using the phase response of the swept source optical coherence tomography signal. The technique was utilized to measure age-related changes in elastic flexural wave velocity and attenuation in mice cornea in vivo. Results demonstrate that the wave velocity increases with animal age, supporting previous observations that stiffness of mice cornea gradually increases with age. Our studies suggest that the PhS-SSOCE technique could potentially be used to obtain biomechanical properties of ocular tissues in vivo.

  15. Next Generation Accelerator-Based Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn Williams

    2005-06-26

    We discuss the physics which is driving the evolution of new sources for microscopy and spectroscopy. A new generation of sources, called energy recovery linacs or ERL’s, will be described and reviewed with particular emphasis on the examples of imaging and spectroscopic applications enabled by them.

  16. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  17. CHANGES IN THE POSTERIOR VITREOUS AFTER CATARACT SURGERY ASSESSED BY SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Otsuka, Yuki; Ooto, Sotaro; Yoshimura, Nagahisa

    2017-03-08

    To assess changes in the posterior vitreous caused directly by phacoemulsification with implantation of an intraocular lens, using the enhanced vitreous swept-source optical coherence tomography system (Topcon, Tokyo, Japan). Consecutive patients with cataract without posterior vitreous detachment were enrolled. Swept-source optical coherence tomography examinations were performed 1 day before and several days after surgery, using enhanced vitreous visualization. We compared preoperative and postoperative posterior vitreous status and measured the distance between the internal limiting membrane and the posterior vitreous membrane at 26 locations at the posterior pole. Images of 33 eyes (21 patients) could be analyzed. The perifoveal posterior vitreous detachment was not extended in any eyes, and the internal limiting membrane to posterior vitreous membrane distance before and after surgery did not differ at any location measured (P = 0.071-1.000). The posterior precortical vitreous pocket was dilated in three eyes. Age, gender, axial length, preoperative visual activity, nuclear sclerosis, duration of surgery, and duration between surgery and swept-source optical coherence tomography did not differ between the dilated vitreous pocket group (n = 3) and the unchanged group (n = 30). The height of the posterior vitreous membrane remained unchanged after surgery, although the posterior precortical vitreous pocket was dilated in three patients. Cataract surgery procedures seem to have little influence on the posterior vitreous membrane.

  18. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    Science.gov (United States)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s‑1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV–vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  19. Uncovering new thermal and mechanical behavior at the nanoscale using coherent extreme ultraviolet light

    Science.gov (United States)

    Hoogeboom-Pot, Kathleen Marie

    Tremendous recent progress in nanofabrication capabilities has made high-quality single-atomic layers and nanostructures with dimensions well below 50 nm commonplace, enabling unprecedented access to materials at the nanoscale. However, tools and techniques capable of characterizing the properties and function of nanosystems are still quite limited, leaving much of the fundamental physics that dominates material behavior in the deep nano-regime still unknown. Further understanding gained by studying nanoscale materials is critical both to fundamental science and to continued technological development. This thesis applies coherent extreme ultraviolet (EUV) light from tabletop high harmonic generation to study nanoscale systems on their intrinsic length and time scales (nanometers and femtoseconds, and above), specifically following thermal transport and acoustic dynamics. These studies have shown where and how nanostructured material properties can be quite different from their bulk counterparts. This has in turn allowed us to develop new theoretical descriptions to guide further work. By observing heat dissipation from the smallest nanostructure heat sources measured to date (at 20 nm in lateral size), this work uncovers a previously unobserved and unpredicted nanoscale thermal transport regime where both size and spacing of heat sources play a role in determining the heat dissipation effciency. Surprisingly, this shows that nanoscale heat sources can cool more quickly when spaced close together than when far apart. This discovery is significant to the engineering of thermal management in nanoscale systems and devices while also revealing new insight into the fundamental nature of thermal transport. Furthermore, we harness this new regime to demonstrate the first experimental measurement of the differential contributions of phonons with different mean free paths to thermal conductivity, down to mean free paths as short as 14 nm for the first time. The same

  20. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  1. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-02-05

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths.

  2. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    Science.gov (United States)

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A numerical experiment on light pollution from distant sources

    Science.gov (United States)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  4. Iterative deblending of simultaneous-source data using a coherency-pass shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang

    2017-10-01

    Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.

  5. Holographic free-electron light source

    Science.gov (United States)

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-12-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing.

  6. VCSELs and silicon light sources exploiting SOI grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2012-01-01

    grating works as a highly-reflective mirror as well as routes light into a Si in-plane output waveguide connected to the grating. In the vertical-cavity surface-emitting laser (VCSEL) version, there is no in-plane output waveguide connected to the grating. Thus, light is vertically emitted through...... the Bragg reflector. Numerical simulations show that both the silicon light source and the VCSEL exploiting SOI grating mirrors have superior performances, compared to existing silicon light sources and long wavelength VCSELs. These devices are highly adequate for chip-level optical interconnects as well...

  7. Permanent magnet based dipole magnets for next generation light sources

    Directory of Open Access Journals (Sweden)

    Takahiro Watanabe

    2017-07-01

    Full Text Available We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  8. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  9. SPECTRAL DOMAIN VERSUS SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE RETINAL CAPILLARY PLEXUSES IN SICKLE CELL MACULOPATHY.

    Science.gov (United States)

    Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S

    2016-10-05

    To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.

  10. Comparative study of energy saving light sources

    Energy Technology Data Exchange (ETDEWEB)

    Khan, N.; Abas, N. [Department of Electrical Engineering, Comsats Institute of Information technology, Park Road, Islamabad (Pakistan)

    2011-01-15

    Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23 W CFL, 21 W EEFL, 18 W fluorescent tube or 15 W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100 W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of -20 C < T{sub CFL} < 60 C and -30 C < T{sub CFL} < 50 C but CFL frequently damage in wet and damp locations. Costs of low THD and high PF CFL, EEFL and LED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems. (author)

  11. New light Sources for Biomedical Applications

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini

    .9%) on mature biofilms was only achieved after a novel treatment was invented, namely “light assisted antibiotics”. Additionally, significant vitamin D enrichment of various food products was achieved. Especially the content of vitamin D in pig skin could reach 0.5 μg/cm2 after 7 sec. exposure versus the 0...... athletes to conserve their sleep quantity and quality, despite their shifted circadian rhythm. Easier vein identification-access was achieved by applying a special LED illuminant and a statistic evaluation of the human eye ability to identify veins was performed. Finally, lower risks for C-section (OR= 0...

  12. Experience with low-alpha lattices at the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    I. P. S. Martin

    2011-04-01

    Full Text Available In this paper we present the experience at Diamond Light Source in the design, implementation, and operation of low momentum compaction factor lattices for the generation of short x-ray pulses and coherent THz radiation. The effects of higher-order terms in the expansion of the momentum compaction factor on beam dynamics are reviewed from a theoretical point of view, and the details of both high- and low-emittance solutions at Diamond are discussed. Measurements taken to characterize the lattices under a variety of machine conditions are presented, along with the practical limitations that exist as the momentum compaction factor is made to approach zero.

  13. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    Science.gov (United States)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  14. Factors affecting intraocular light scattering from different color straylight sources

    Science.gov (United States)

    Ikaunieks, Gatis; Ozolinsh, Maris

    2008-09-01

    Important optical parameter of the eye is intraocular light scattering. Straylight can reduce visual acuity, contrast sensitivity. It is one of the main factors for glare, especially for drivers at night, when there is light source some distance away from the fixation point. There are many factors, which can affect amount of light scattering in the eye. To assess the effect of the color of the straylight source on retinal image quality at different light scattering levels, retinal straylight was measured with and without light scattering occluder. Red, green and blue colors were choosed for straylight source. Psychophysical and electrophysiological methods were used to evaluate light scattering effect on perception on different color stimuli. Results show that straylight values are the greatest for blue color with and without light scattering occluder. In measurements without light scattering occluder ratio of straylight values for red and green color are different between subjects. Using light scattering occluder straylight values for green color are greater than for red color. Optical and anatomical factors which can induce these spectral variations are discussed. Psychophysical and electrophysiological methods showed the similar changes in results with straylight values when light scattering were increased.

  15. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light.

    Science.gov (United States)

    Clarke, Patrick J; Collins, Robert J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.

  16. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  17. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  18. Status report on the Advanced Light Source control system

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  19. Different light sources in photodynamic therapy for use in photorejuvenation

    CSIR Research Space (South Africa)

    Van Kets, V

    2010-09-01

    Full Text Available Photodynamic therapy (PDT) has recently emerged as a treatment modality for photorejuvenation of the skin. This study is a preliminary investigation into the effect of different light sources to activate hypericin, a plant-derived photosensitizer...

  20. Nanoscale metamaterial light source driven by electron beam

    OpenAIRE

    ADAMO, G.; MacDonald, K. F.; De Angelis, F.; Di Fabrizio, E.; Zheludev, N. I.

    2011-01-01

    We demonstrate a new generation of free-space and fibre-coupled tuneable light sources based on nanostructured photonic metamaterials driven by free-electrons beams. Emission wavelengths are determined by metamaterial resonant modes and electron energies.

  1. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  2. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  3. Modification of light sources for appropriate biological action

    Energy Technology Data Exchange (ETDEWEB)

    Kozakov, R; Schoepp, H; Franke, St [Leibniz Institute of Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Stoll, C; Kunz, D, E-mail: kozakov@inp-greifswald.d [Charite-Universitymedicine Berlin, Sleep Research and Clinical Chronobiology, Gr. Hamburger Str. 5-11, D-10115 Berlin (Germany)

    2010-06-16

    The impact of the non-visual action of light on the design of novel light sources is discussed. Therefore possible modifications of lamps dealing with spectral tailoring and their action on melatonin suppression in usual life situations are investigated. The results of melatonin suppression by plasma lamps are presented. It is shown that even short-time exposure to usual light levels in working areas has an influence on the melatonin onset.

  4. Visible and ultraviolet light sources based nonlinear interaction of lasers

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Tidemand-Lichtenberg, Peter; Jain, Mayank

    Different light sources can be used for optically stimulated luminescence measurements and usually a halogen lamp in combination with filters or light emitting diodes (LED’s) are used to provide the desired stimulation wavelength. However lasers can provide a much more well-defined beam, very...... for synthesizing any wavelength in the visible and ultraviolet light based sum frequency generation between two lasers is presented....

  5. A new LED light source for display cases

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Petersen, Paul Michael

    Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97.......Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97....

  6. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Application of a long-range swept source optical coherence tomography-based scheme for dimensional characterization of multilayer transparent objects

    Science.gov (United States)

    Morel, Eneas N.; Russo, Nélida A.; Torga, Jorge R.; Duchowicz, Ricardo

    2017-08-01

    This work presents the use of a recently developed interferometric system based on the swept source optical coherence tomography (SS-OCT) technique, which allows the characterization of transparent and semitransparent multilayer systems employing a tunable fiber-optic laser with a coherence length suitable for achieving long-deep range imaging (>10 cm). The inclusion of fiber Bragg gratings in the system allows it to perform a self-calibration in each sweep of the light source. Measurements carried out on cuvettes, ampoules, small bottles, and glass containers used in the pharmaceutical industry are presented. The thicknesses of the walls and the distance between them were determined. Transparent and semitransparent objects of a multilayer type of different thicknesses were also measured. The configuration presented allows extension of the measurement range obtainable with the usual OCT systems, demonstrating the potentiality of the proposed scheme to carry out quality control in industrial applications.

  8. Application of full range swept source optical coherence tomography for imaging of the anterior eye segment in patients with type I Boston Keratoprosthesis

    Science.gov (United States)

    Poddar, Raju; Cortes, Dennis; Zawadzki, Robert J.; Mannis, Mark J.; Werner, John S.

    2013-03-01

    We present a high-speed complex conjugate resolved 1 μm swept source optical coherence tomography [SS-OCT] system using coherence revival of the light source for clinical imaging of the anterior segment of the eye. High-speed of 100,000 A-scans/sec and 1 μm imaging window of OCT permits dense 3D imaging of the anterior segment, minimizing the influence of motion artifacts and deep penetration of images for topographic analysis. The swept laser performance with internal clocking was adapted to achieve extended imaging depth requirements. The feasibility of our instrument for visualization of the anterior segment of patients with the Boston Keratoprosthesis (KPro) was discussed. The relations between of the KPro and the surrounding tissue were also demonstrated.

  9. Advanced light source, User`s Handbook, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  10. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Science.gov (United States)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  11. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  12. Coherent Polariton Laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  13. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2016-03-01

    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  14. Nanoscale SOI silicon light source design for improved efficiency

    Science.gov (United States)

    Venter, Petrus J.; du Plessis, Monuko; Bogalecki, Alfons W.; Janse van Rensburg, Christo

    2013-03-01

    Silicon-on-insulator (SOI) is becoming an important technology platform in nanometer scale CMOS integrated circuits. The platform offers a number of distinct advantages over bulk CMOS for materializing silicon light sources based on hot carrier luminescence. This work describes the design of nanoscale silicon structures for enhanced light emission with improved power efficiency, which allows the use of SOI light sources in short-haul optical communication links with extended possibilities for other applications. It has been shown experimentally that reducing the dimensions of the active material results in an improvement of electroluminescent power emitted from forward-biased pn-junctions. Previously published results show a similar trend for light sources based on hot carrier luminescence. Building on our previous work in SOI light sources, multiple fingerlike junctions are manufactured in an arrayed fashion for coupling into large diameter core optical fibers for CMOS optical communications up to a few hundred meters. The manufacturing methodology and associated challenges are discussed for the scaling down of device dimensions, and difficulties in realizing the structures are investigated. The optical power characteristics are discussed as well as the spectral nature of emission along with the advantages and disadvantages thereof. This work compares different architectures of light sources that were implemented where a comparison is drawn between previous SOI devices as well as bulk CMOS. We believe the improved SOI light sources are fully compatible with modern CMOS technologies based on SOI and may provide such technologies with a much needed light source as part of the circuit designer's toolkit.

  15. National Synchrotron Light Source annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  16. UV emissions from low energy artificial light sources.

    Science.gov (United States)

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Electrically driven and electrically tunable quantum light sources

    Science.gov (United States)

    Lee, J. P.; Murray, E.; Bennett, A. J.; Ellis, D. J. P.; Dangel, C.; Farrer, I.; Spencer, P.; Ritchie, D. A.; Shields, A. J.

    2017-02-01

    Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single chip can function as a tunable, all-electric quantum light source. Light emitted by an electrically excited driving LED is used to excite quantum dots in the neighbouring diode. The wavelength of the quantum dot emission from the neighbouring driven diode is tuned via the quantum confined Stark effect. We also show that we can electrically tune the fine structure splitting.

  18. Near diffraction limited coherent diffractive imaging with tabletop soft x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Richard L; Raymondson, Daisy A; La-O-Vorakiat, Chan; Paul, Ariel; Murnane, Margaret M; Kapteyn, Henry C [Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado (United States); Schlotter, William F [Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California (United States); Raines, Kevin; Miao Jianwei, E-mail: richard.sandberg@colorado.ed [Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California (United States)

    2009-09-01

    Tabletop coherent x-ray sources hold great promise for practical nanoscale imaging, in particular when coupled with diffractive imaging techniques. In initial work, we demonstrated lensless diffraction imaging using a tabletop high harmonic generation (HHG) source at 29 nm, achieving resolutions {approx} 200 nm. In recent work, we significantly enhanced our diffractive imaging resolution by implementing a new high numerical aperture (up to NA=0.6) scheme and field curvature correction where we achieved sub-100 nm resolution. Here we report the first demonstration of Fourier transform holography (FTH) with a tabletop SXR source, to acquire images with a resolution {approx} 90 nm. The resolution can be refined by applying phase retrieval. Additionally, we show initial results from FTH with 13.5 nm HHG radiation and demonstrate {approx} 180 nm resolution.

  19. Forces between a partially coherent fluctuating source and a magnetodielectric particle

    CERN Document Server

    Auñon, Juan Miguel

    2013-01-01

    We address the forces exerted by the electromagnetic ?eld emitted by a planar uctuating source on dielectric particles that have arose much interest because of their recently shown magnetodielectric behavior. In this context, we analyze as a particular case the modi?cation of the Casimir and Van der Waals forces. We study the e?ect of the source coherence length as well as the interplay between the force from the radiated ?eld and that from the electric and magnetic dipoles induced on the particle. This allows a control of these interactions as well as of the weight and interference e?ects between the ?elds from both kinds of induced dipoles, in particular when large changes in their di?erential scattering cross section occur due to Kerker minimum forward or zero backward conditions; thus opening new paths to nanoparticle ensembling and manipulation. The influence of surface waves of the source is also studied.

  20. A Stroboscopic Light Source for Experiments in Mechanics

    Science.gov (United States)

    Mayer, V. V.; Varaksina, E. I.

    2017-01-01

    We propose to attach a small stroboscopic light source to a moving object and connect the source to a pulse generator with the help of insulated thin flexible multi-cored wires. Students can assemble such a device independently in a school laboratory. The device can be used to obtain trajectories with time marks in students' research projects in…

  1. Colorectal neoplasm characterization based on swept-source optical coherence tomography

    Science.gov (United States)

    Lu, Chih-Wei; Chiu, Han-Mo; Sun, Chia-Wei

    2009-07-01

    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. In this paper, the various adenoma/carcinoma in-vitro samples are monitored by our swept-source optical coherence tomography (SS-OCT) system. The significant results indicate a great potential for early detection of colorectal adenomas based on the SS-OCT imaging.

  2. Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system.

    Science.gov (United States)

    Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Podoleanu, Adrian Gh

    2014-02-01

    A fast swept-source optical coherence tomography (SS-OCT) system is employed to acquire volumes of dental tissue, in order to monitor the temporal evolution of dental wear. An imaging method is developed to evaluate the volume of tissue lost in ex vivo artificially induced abfractions and attritions. The minimal volume (measured in air) that our system could measure is 2352 μm3. A volume of 25,000 A-scans is collected in 2.5 s. All these recommend the SS-OCT method as a valuable tool for dynamic evaluation of the abfraction and attrition with remarkable potential for clinical use.

  3. VCSEL-based swept source for low-cost optical coherence tomography

    OpenAIRE

    Moon, Sucbei; Choi, Eun Seo

    2017-01-01

    We present a novel wavelength-swept laser source for optical coherence tomography (OCT) which is based on the conventional laser diode technology of the vertical-cavity surface-emitting laser (VCSEL). In our self-heating sweep VCSEL (SS-VCSEL), a VCSEL device is simply driven by ramped pulses of currents in direct intensity modulation. The intrinsic property of VCSEL produces a frequency-swept output through the self-heating effect. By the injected current, the temperature of the active regio...

  4. Visual color matching system based on RGB LED light source

    Science.gov (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  5. Coherent light from E-field induced quantum coupling of exciton states in superlattice-like quantum wells

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...

  6. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography

    OpenAIRE

    Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2016-01-01

    Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (?10 ?m) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source O...

  7. Visible light spectral domain optical coherence microscopy system for ex vivo imaging

    Science.gov (United States)

    Lichtenegger, Antonia; Harper, Danielle J.; Augustin, Marco; Eugui, Pablo; Fialová, Stanislava; Woehrer, Adelheid; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-02-01

    A visible light spectral domain optical coherence microscopy system operating in the wavelength range of 450-680 nm was developed. The resulting large wavelength range of 230 nm enabled an ultrahigh axial resolution of 0.88μm in tissue. The setup consisted of a Michelson interferometer combined with a homemade spectrometer with a spectral resolution of 0.03 nm. Scanning of 1 x 1 mm2 and 0.5 x 0.5 mm2 areas was performed by an integrated microelectromechanical mirror. After scanning the light beam is focused onto the tissue by a commercial objective with a 10 x magnification, resulting in a transverse resolution of 2 μm . Specification measurements showed that a -89 dB sensitivity with a 24 dB/mm roll-off could be achieved with the system. First of all the capabilities of the system were tested by investigating millimeter paper, tape and the USAF (US Air Force) 1951 resolution test target. Finally cerebral tissues from non-pathological and Alzheimer's disease affected brains were investigated. The results showed that structures, such as white and gray matter, could be distinguished. Furthermore a first effort was made to differentiate Alzheimer's disease from healthy brain tissue.

  8. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    2012-07-01

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

  9. Light-emitting diodes: whether an efficient source of light for indoor plants?

    Science.gov (United States)

    Rehman, Muzammal; Ullah, Sana; Bao, Yaning; Wang, Bo; Peng, Dingxiang; Liu, Lijun

    2017-11-01

    Availability of sufficient light for growth optimization of plants in greenhouse environment during winter is a major challenge, as light during winter is significantly lower than that in the summer. The most commonly used artificial light sources (e.g., metal halide lamps, high pressure sodium lamps, and high fluorescent lamps) are of low quality and inefficient. Therefore, better options should be developed for sustaining agricultural food production during low levels of solar radiation. In recent advances, light-emitting diodes (LEDs) have remarkable potential as supplemental source of light for promoting plant growth. LEDs are novel and versatile source of light with cool emitting surface, wavelength specificity, and low electric power requirement. In the present study, we provided a contemporary synthesis of existing evidence along with our hypothetical concepts to clarify how LED approach could be an efficient and cost-effective source of light for plant growth and development especially in closed production system. In comparative analysis of common artificial vs. LED lighting, we revealed that spectral quality of LEDs can have vivid effects on plant morphogenesis and anatomy. We also discussed the influence of different colors of LEDs on growth performance of plants and provided the cost benefit analysis of using LEDs compared with other traditional sources. Overall, we hope that this article will be of great worth in future due to its practical implications as well as research directions.

  10. Broadband coherent light generation in Raman-active crystals driven by femtosecond laser fields

    Science.gov (United States)

    Zhi, Miaochan

    I studied a family of closely connected topics related to the production and application of ultrashort laser pulses. I achieved broadband cascade Raman generation in crystals, producing mutually coherent frequency sidebands which can possibly be used to synthesize optical pulses as short as a fraction of a femtosecond (fs). Unlike generation using gases, there is no need for a cumbersome vacuum system when working with room temperature crystals. Our method, therefore, shows promise for a compact system. One problem for sideband generation in solids is phase matching, because the dispersion is significant. I solved this problem by using non-collinear geometry. I observed what to our knowledge is a record-large number of spectral sidebands generated in a popular Raman crystal PbWO4 covering infrared, visible, and ultraviolet spectral regions, when I applied two 50 fs laser pulses tuned close to the Raman resonance. Similar generation in diamond was also observed, which shows that the method is universal. When a third probe pulse is applied, a very interesting 2-D color array is generated in both crystals. As many as 40 anti-Stokes and 5 Stokes sidebands are generated when a pair of time-delayed linear chirped pulses are applied to the PbWO4 crystal. This shows that pulses with picosecond duration, which is on the order of the coherence decay time, is more effective for sidebands generation than Fourier transform limited fs pulses. I also studied the technique of fs coherent Raman anti-Stokes scattering (CARS) which is used as a tool for detecting dipicolinic acid, the marker molecule for bacterial spores. I observed that there is a maximum when the concentration dependence of the near-resonant CARS signal is measured. I presented a model to describe this behavior, and found an analytical solution that agrees with our experimental data. Theoretically, I explored a possible application for single-cycle pulses: laser induced nuclear fusion. I performed both classical

  11. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  12. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  13. Light Source Matters--Students' Explanations about the Behavior of Light When Different Light Sources Are Used in Task Assignments of Optics

    Science.gov (United States)

    Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil

    2017-01-01

    In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…

  14. Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Kun-Feng Lin

    2013-07-01

    Full Text Available This review paper describes the applications of dental optical coherence tomography (OCT in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.

  15. Accuracy of LED and halogen radiometers using different light sources.

    Science.gov (United States)

    Roberts, Howard W; Vandewalle, Kraig S; Berzins, David W; Charlton, David G

    2006-01-01

    To determine the accuracy of commercially available, handheld light-emitting diode (LED) and halogen-based radiometers using LED and quartz-tungsten-halogen (QTH) curing lights with light guides of various diameters. The irradiance of an LED curing light (L.E. Demetron 1, SDS/Kerr, Orange, CA, USA) and a QTH curing light (Optilux 501, SDS/Kerr) were measured using multiple units of an LED (Demetron L.E.D. Radiometer, SDS/Kerr) and a halogen radiometer (Demetron 100, SDS/Kerr) and compared with each other and to a laboratory-grade power meter (control). Measurements were made using five light guides with distal light guide diameters of 4, 7, 8, 10, and 12.5 mm. For each light guide, five readings were made with each of three radiometers of each radiometer type. Data were analyzed with two-way analysis of variance/Tukey; alpha = 0.05. In general, both handheld radiometer types exhibited significantly different irradiance readings compared with the control meter. Additionally, readings between radiometer types were found to differ slightly, but were correlated. In general, the LED radiometer provided slightly lower irradiance readings than the halogen radiometer, irrespective of light source. With both types of handheld radiometers, the use of the larger-diameter light guides tended to overestimate the irradiance values as seen in the control, while smaller-diameter light guides tended to underestimate. The evaluated LED or halogen handheld radiometers may be used interchangeably to determine the irradiance of both LED and QTH visible-light-curing units. Measured differences between the two radiometer types were small and probably not clinically significant. However, the diameter of light guides may affect the accuracy of the radiometers, with larger-diameter light guides overestimating and smaller-diameter guides underestimating the irradiance value measured by the control instrument.

  16. Volumetric cutaneous microangiography of human skinin vivoby VCSEL swept-source optical coherence tomography.

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K

    Three-dimensional (3D) assessment of cutaneous microcirculation in human skin is essential in the identification of disease states in skin or other organs. Few 3D imaging techniques have revealed the skin micro-vasculatures non-invasively and with sufficient imaging depth. Here, we demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilizes a 1.3 µm high-speed swept-source optical coherence tomography (SS-OCT). The swept source is based on a MEMS tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth that enables the visualization of microstructures within a few mm from the skin surface. We show that skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic.

  17. Phototaxis of Grapholitha molesta (Lepidoptera: Olethreutidae) to Different Light Sources.

    Science.gov (United States)

    Sun, Y-X; Tian, A; Zhang, X-B; Zhao, Z-G; Zhang, Z-W; Ma, R-Y

    2014-10-01

    The Oriental Fruit Moth Grapholita molesta (Busck) causes substantial damage to stone and pome fruit crops worldwide. Light-based traps offer a potential means for pest monitoring and management. In this study, we tested the preference of G. molesta for the following light sources: monochromatic light produced from light-emitting diodes (LEDs) (red, orange, yellow, green, blue, violet, and white), specific wavelengths of light produced from filters (405, 450, 480, 512, 540, 576, and 610 nm), and polychromatic light produced by different numbers (0, 12, 24, and 36) of green, blue, and violet LEDs. The arrangement of polychromatic lights was based on an orthogonal design matrix of L16 (4(3)). Based on the results of former studies, we further determined the optimal number of green and violet LEDs. The results showed that: 1) G. molesta strongly preferred the green, violet, and blue LEDs; 2) G. molesta significantly preferred light at 405 nm, followed by 540 nm, and showed no phototaxis to 480 nm; 3) for the polychromatic light configuration, violet and green were the factors that determined the preference of G. molesta, and the lamp with 12 violet LEDs captured the most moths; and 4) for the lamps with different light intensities, 36 violet LEDs or 12 green LEDs attracted the most moths, with the former performing better. © 2014 Entomological Society of America.

  18. Suboptimal light conditions influence source-sink metabolism during flowering

    Directory of Open Access Journals (Sweden)

    Annelies eChristiaens

    2016-03-01

    Full Text Available Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids. Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS was monitored during flower forcing under suboptimal (natural and optimal (supplemental light light conditions, after a cold treatment (7°C + dark to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions.

  19. A television display using acoustic deflection and modulation of coherent light.

    Science.gov (United States)

    Korpel, A; Adler, R; Desmares, P; Watson, W

    1966-10-01

    Bragg reflection of laser light by ultrasonic waves in water produces the horizontal deflection in a television display. The ultrasonic waves are frequency-modulated with a sawtooth function. Deflection angles are small but there are 200 resolvable positions; the constant rate of angular change which characterizes a television scan permits the use of a wide optical aperture, leading to a small spot size. Conventional optical magnification follows the horizontal deflection, rendering a 3 MHz video signal visible on the screen. Bragg reflection requires the acoustic wave front to be symmetrical with respect to the incident and diffracted light rays. Thus, as the Bragg angle is altered, the acoustic wavefront should rotate. This is accomplished by a phased array of transducer strips whose combined wavefront rotates as the frequency changes, providing excellent correction over a wide band (19 to 35 MHz in this experiment, corresponding to a +/-30 percent change in Bragg angle). Broadband electrical and acoustical matching techniques make it possible to diffract all the incident light with about one watt of electrical input. A second acoustic diffraction cell intensity-modulates the light. In an early experiment, the laser beam was constricted to a very small diameter before entering the modulator cell; even so, the finite beam size caused a significant loss of high-frequency response. An improved version uses an old principle (Scophony, 1939): the laser beam traversing the cell is made wide enough to encompass several picture elements, all traveling across the beam at sound velocity; the horizontal deflection system nullifies the apparent motion of these elements making them stand still on the screen while a fan of light sweeps over them. With this modulation system, spatial coherence is needed only across the vertical dimension of the laser. The tolerance on the orientation of the acoustic wavefronts, the improvement brought about by the phased array, and the amount

  20. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  1. Electrodeless lighting RF power source development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-30

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  2. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    Science.gov (United States)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  3. A critical experimental test of synchrotron radiation theory with 3rd generation light source

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-05-15

    A recent ''beam splitting'' experiment at LCLS apparently demonstrated that after a microbunched electron beam is kicked on a large angle compared to the divergence of the FEL radiation, the microbunching wave front is readjusted along the new direction of motion of the kicked beam. Therefore, coherent radiation from an undulator placed after the kicker is emitted along the kicked direction without suppression. This strong emission of coherent undulator radiation in the kicked direction cannot be explained in the framework of conventional synchrotron radiation theory. In a previous paper we explained this puzzle. We demonstrated that, in accelerator physics, the coupling of fields and particles is based, on the one hand, on the use of results from particle dynamics treated according to the absolute time convention and, on the other hand, on the use of Maxwell equations treated according to the standard (Einstein) synchronization convention. Here lies the misconception which led to the strong qualitative disagreement between theory and experiment. After the ''beam splitting'' experiment at LCLS, it became clear that the conventional theory of synchrotron radiation cannot ensure the correct description of coherent and spontaneous emission from a kicked electron beam, nor the emission from a beam with finite angular divergence, in an undulator or a bending magnet. However, this result requires further experimental confirmation. In this publication we propose an uncomplicated and inexpensive experiment to test synchrotron radiation theory at 3rd generation light sources.

  4. Solid state light source driver establishing buck or boost operation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred

    2017-08-29

    A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boost converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.

  5. New lasers and light sources - old and new risks?

    DEFF Research Database (Denmark)

    Paasch, Uwe; Schwandt, Antje; Seeber, Nikolaus

    2017-01-01

    Recent developments (new wavelengths, treatment concepts, and combinations) in the field of lasers, intense pulsed light (IPL), LED, as well as new energy and light sources have opened up new therapeutic options that extend beyond mere aesthetic indications. Thus, while fractional lasers used...... users of these new technologies be properly trained in a manner that ensures those treated a maximum of safety and efficacy in accordance with the guiding principle "diagnosis certa - ullae therapiae fundamentum"....

  6. Ptychotomography at DLS Coherence Beamline I13

    Science.gov (United States)

    Kuppili, V. S. C.; Sala, S.; Chalkidis, S.; Wise, A. M.; Parsons, A. D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-06-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample.

  7. A New Method for the 2D DOA Estimation of Coherently Distributed Sources

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2014-03-01

    Full Text Available The purpose of this paper is to develop a new technique for estimating the two- dimensional (2D direction-of-arrivals (DOAs of coherently distributed (CD sources, which can estimate effectively the central azimuth and central elevation of CD sources at the cost of less computational cost. Using the special L-shape array, a new approach for parametric estimation of CD sources is proposed. The proposed method is based on two rotational invariance relations under small angular approximation, and estimates two rotational matrices which depict the relations, using propagator technique. And then the central DOA estimations are obtained by utilizing the primary diagonal elements of two rotational matrices. Simulation results indicate that the proposed method can exhibit a good performance under small angular spread and be applied to the multisource scenario where different sources may have different angular distribution shapes. Without any peak-finding search and the eigendecomposition of the high-dimensional sample covariance matrix, the proposed method has significantly reduced the computational cost compared with the existing methods, and thus is beneficial to real-time processing and engineering realization. In addition, our approach is also a robust estimator which does not depend on the angular distribution shape of CD sources.

  8. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  9. Laser Coherence Meter Based on Nanostructured Liquid Crystals

    Directory of Open Access Journals (Sweden)

    A. Anczykowska

    2013-01-01

    Full Text Available We present the method for coherence length measurement using coherence meter based on hybrid liquid crystal structures doped with gold nanoparticles. The results indicate that the method is able to determine the coherence length of coherent light sources with precision of 0.01 m at wavelength range from 200 to 800 nm for wide range of initial beam powers starting from 1 mW. Given the increasing use of laser technology in industry, military, or medicine, our research may open up a possible route for the development of improved techniques of coherent diagnostic light sources.

  10. SIMEX: Simulation of Experiments at Advanced Light Sources

    CERN Document Server

    Fortmann-Grote, C; Briggs, R; Bussmann, M; Buzmakov, A; Garten, M; Grund, A; Hübl, A; Hauff, S; Joy, A; Jurek, Z; Loh, N D; Rüter, T; Samoylova, L; Santra, R; Schneidmiller, E A; Sharma, A; Wing, M; Yakubov, S; Yoon, C H; Yurkov, M V; Ziaja, B; Mancuso, A P

    2016-01-01

    Realistic simulations of experiments at large scale photon facilities, such as optical laser laboratories, synchrotrons, and free electron lasers, are of vital importance for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of highly excited matter. Traditional photon science modelling takes into account only isolated aspects of an experiment, such as the beam propagation, the photon-matter interaction, or the scattering process, making idealized assumptions about the remaining parts, e.g.\\ the source spectrum, temporal structure and coherence properties of the photon beam, or the detector response. In SIMEX, we have implemented a platform for complete start-to-end simulations, following the radiation from the source, through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and its registration in...

  11. Characterization of germanium linear kinoform lenses at Diamond Light Source.

    Science.gov (United States)

    Alianelli, L; Sawhney, K J S; Tiwari, M K; Dolbnya, I P; Stevens, R; Jenkins, D W K; Loader, I M; Wilson, M C; Malik, A

    2009-05-01

    The unprecedented brilliance achieved by third-generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X-ray beamlines, and the first test results at Diamond are discussed in this paper.

  12. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  13. Applications of laser wakefield accelerator-based light sources

    Science.gov (United States)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  14. T-matrix based inverse light scattering analysis using angle resolved low coherence interferometry

    Science.gov (United States)

    Giacomelli, Michael; Chalut, Kevin; Ostrander, Julie; Wax, Adam

    2009-02-01

    Inverse light scattering methods have been applied by several groups as a means to probe cellular structure in both clinical and scientific applications with sub-wavelength accuracy. These methods determine the geometric properties of tissue scatterers based on far field scattering patterns. Generally, structure is determined by measuring scattering over some range of angles, wavelengths, or polarizations and then fitting the observed data to a database of simulated scattering selected from a range of probable geometries. We have developed new light scattering software based on the T-matrix method that creates databases of scattering from spheroidal objects, representing a substantial improvement over Mie theory, a method limited to simulating scattering from spheres. The computational cost of the T-matrix method is addressed through a simple but massively parallel program that concurrently simulates scattering across hundreds of PCs. We are exploring the use of these T-matrix databases in inverting interferometric measurements of angle-resolved scattering from spheroidal cell nuclei using a technique called angle-resolved low coherence interferometry (a/LCI). With a/LCI, we have previously distinguished between healthy and dysplastic tissue in both cell cultures and in ex vivo rat and hamster tissue using Mie theory to measure nuclear diameter. We now present nuclear volume and spheroidal aspect ratio measurements of unstained, living MCF7 cells using the improved T-matrix database to analyze a/LCI data. We achieve measurement accuracy equivalent to conventional image analysis of stained samples. We will further validate the approach by comparing experimental measurements of scattering from polystyrene microspheroids, and show that the T-matrix is a suitable replacement for Mie theory in ex vivo tissue samples.

  15. Coherent spin preparation, manipulation and read-out with light and microwaves in a quantum well and dot

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, H; Shigyou, H; Inagaki, T; Mitsumori, Y; Edamatsu, K [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Kutsuwa, T; Kuwahara, M [CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ono, K [Low Temperature Physics Laboratory, RIKEN, Saitama 351-0198 (Japan); Rikitake, Y [Department of Information Engineering, Sendai National College of Technology, Sendai 989-3128 (Japan); Yokoshi, N; Imamura, H, E-mail: kosaka@riec.tohoku.ac.j [Nanotechnology Research Institute, AIST, Tsukuba 305-8568 (Japan)

    2010-09-01

    Spin is a quantum property of electrons. For spin-based quantum information technology, preparation and read-out of the electron spin state should be spin coherent. We demonstrate that the polarization coherence of light can be transferred to the spin coherence of electrons in a semiconductor quantum nanostructure [1], and the prepared coherence of the electron spin can also be read out with light by the developed tomographic Kerr rotation method [2]. We also demonstrate that a single photon is efficiently converted ({approx}27%) into a single electron trapped in a gate-defined quantum dot, where the g-factor of electrons is tuned to zero, and the charge state is detected with an adjacent quantum point contact without destructing the spin state [3]. We further demonstrate that the spin coherence of a single electron trapped in one of double quantum dots is electrically manipulated with a microwave applied to the gate and read out via the Pauli spin blockade phenomenon [4]. These demonstrations were carried out in a condition where the up/down spin basis states of electrons remain ed degenerated under an in-plain magnetic field. As this condition ensures the energy conservation between photons and electrons, the entire Poincare sphere representing polarization states of photons can be mapped onto the Bloch sphere representing spin polarization states of electrons. We theoretically showed that relative spin coherence of two electrons can be also measured with the help of spin-flip tunneling of electrons between the dots [5]. Full Bell state measurement is also possible by the single -spin manipulation and Pauli spin blockade [6]. All of these functions are needed to build all semiconductor quantum repeaters and distributed quantum computers.

  16. High efficiency light source using solid-state emitter and down-conversion material

    Science.gov (United States)

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  17. Seeing "the Dress" in the Right Light: Perceived Colors and Inferred Light Sources.

    Science.gov (United States)

    Chetverikov, Andrey; Ivanchei, Ivan

    2016-08-01

    In the well-known "dress" photograph, people either see the dress as blue with black stripes or as white with golden stripes. We suggest that the perception of colors is guided by the scene interpretation and the inferred positions of light sources. We tested this hypothesis in two online studies using color matching to estimate the colors observers see, while controlling for individual differences in gray point bias and color discrimination. Study 1 demonstrates that the interpretation of the dress corresponds to differences in perceived colors. Moreover, people who perceive the dress as blue-and-black are two times more likely to consider the light source as frontal, than those who see the white-and-gold dress. The inferred light sources, in turn, depend on the circadian changes in ambient light. The interpretation of the scene background as a wall or a mirror is consistent with the perceived colors as well. Study 2 shows that matching provides reliable results on differing devices and replicates the findings on scene interpretation and light sources. Additionally, we show that participants' environmental lighting conditions are an important cue for perceiving the dress colors. The exact mechanisms of how environmental lighting and circadian changes influence the perceived colors of the dress deserve further investigation.

  18. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    Science.gov (United States)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  19. A stroboscopic light source for experiments in mechanics

    Science.gov (United States)

    Mayer, V. V.; Varaksina, E. I.

    2017-11-01

    We propose to attach a small stroboscopic light source to a moving object and connect the source to a pulse generator with the help of insulated thin flexible multi-cored wires. Students can assemble such a device independently in a school laboratory. The device can be used to obtain trajectories with time marks in students’ research projects in mechanics. In the paper we give an example of the application of stroboscopic photography in a demonstration experiment devoted to inertia.

  20. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  1. Coherent state amplification using frequency conversion and a single photon source

    Science.gov (United States)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  2. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    Science.gov (United States)

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology

  3. VCSEL-based swept source for low-cost optical coherence tomography.

    Science.gov (United States)

    Moon, Sucbei; Choi, Eun Seo

    2017-02-01

    We present a novel wavelength-swept laser source for optical coherence tomography (OCT) which is based on the conventional laser diode technology of the vertical-cavity surface-emitting laser (VCSEL). In our self-heating sweep VCSEL (SS-VCSEL), a VCSEL device is simply driven by ramped pulses of currents in direct intensity modulation. The intrinsic property of VCSEL produces a frequency-swept output through the self-heating effect. By the injected current, the temperature of the active region is gradually increased in this effect. Consequently, it changes the wavelength of the laser output by itself. In this study, various characteristics of our SS-VCSEL were experimentally investigated for low-cost instrumentation of a swept source OCT system. A low-cost SS-VCSEL-based OCT system was demonstrated in this research that provided an axial resolution of 135 μm in air, sensitivity of -91 dB and a maximum imaging range longer than 10 cm when our source was operated at a sweep repetition rate of 5 kHz with an output power of 0.41 mW. Based on the experimental observations, we believe that our SS-VCSEL swept source can be an economic alternative in some of low-cost or long-range applications of OCT.

  4. Compact X-ray Light Source Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  5. Superconducting RF Linac Technology for ERL Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, Chris

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity's Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  6. An all-fiber coupled multicolor microspherical light source

    NARCIS (Netherlands)

    O'Shea, Danny G.; Ward, Jonathan M.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We present results on the realization of an all-taper coupled, multicolor microspherical light source fabricated,from the erbium-doped fluoride glass ZBLALiP. Whispering gallery mode lasing at 1555 nm and fluorescent emissions from the ultraviolet to the infrared (IR) have been observed. A tapered

  7. Enabling instrumentation and technology for 21st century light sources

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.M.; Shea, T.J.; Denes, P.; Siddons, P.; Attwood, D.; Kaertner, F.; Moog, L.; Li, Y.; Sakdinawat, A.; Schlueter, R.

    2010-06-01

    We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices.

  8. Advanced Light Source Activity Report 1997/1998

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Annette (ed.)

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  9. Slow light with a swept-frequency source.

    Science.gov (United States)

    Zhang, Rui; Zhu, Yunhui; Wang, Jing; Gauthier, Daniel J

    2010-12-20

    ct: We introduce a new concept for stimulated-Brillouin-scattering-based slow light in optical fibers that is applicable for broadly-tunable frequency-swept sources. It allows slow light to be achieved, in principle, over the entire transparency window of the optical fiber. We demonstrate a slow light delay of 10 ns at 1.55 μm using a 10-m-long photonic crystal fiber with a source sweep rate of 400 MHz/μs and a pump power of 200 mW. We also show that there exists a maximal delay obtainable by this method, which is set by the SBS threshold, independent of sweep rate. For our fiber with optimum length, this maximum delay is ~38 ns, obtained for a pump power of 760 mW.

  10. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  11. Surface plasmons modulate the spatial coherence of light in Young's interference experiment

    NARCIS (Netherlands)

    Gan, C. H.; Gbur, G.J.; Visser, T.D.

    2007-01-01

    It is shown how surface plasmons that travel between the slits in Young’s interference experiment can change the state of spatial coherence of the field that is radiated by the two apertures. Surprisingly, the coherence can both be increased and decreased, depending on the slit separation

  12. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror

    Science.gov (United States)

    Wang, Donglin; Fu, Linlai; Wang, Xin; Gong, Zhongjian; Samuelson, Sean; Duan, Can; Jia, Hongzhi; Ma, Jun Shan; Xie, Huikai

    2013-08-01

    A microelectromechanical system (MEMS) mirror based endoscopic swept-source optical coherence tomography (SS-OCT) system that can perform three-dimensional (3-D) imaging at high speed is reported. The key component enabling 3-D endoscopic imaging is a two-axis MEMS scanning mirror which has a 0.8×0.8 mm2 mirror plate and a 1.6×1.4 mm2 device footprint. The diameter of the endoscopic probe is only 3.5 mm. The imaging rate of the SS-OCT system is 50 frames/s. OCT images of both human suspicious oral leukoplakia tissue and normal buccal mucosa were taken in vivo and compared. The OCT imaging result agrees well with the histopathological analysis.

  13. Active tremor cancellation by a "smart" handheld vitreoretinal microsurgical tool using swept source optical coherence tomography.

    Science.gov (United States)

    Song, Cheol; Gehlbach, Peter L; Kang, Jin U

    2012-10-08

    Microsurgeons require dexterity to make precise and stable maneuvers to achieve surgical objectives and to minimize surgical risks during freehand procedures. This work presents a novel, common path, swept source optical coherence tomography-based "smart" micromanipulation aided robotic-surgical tool (SMART) that actively suppresses surgeon hand tremor. The tool allows enhanced tool tip stabilization, more accurate targeting and the potential to lower surgical risk. Freehand performance is compared to smart tool-assisted performance and includes assessment of the one-dimensional motion tremor in an active microsurgeon's hand. Surgeon hand tremor-the ability to accurately locate a surgical target and maintain tool tip offset distances-were all improved by smart tool assistance.

  14. The Materials Science beamline upgrade at the Swiss Light Source.

    Science.gov (United States)

    Willmott, P R; Meister, D; Leake, S J; Lange, M; Bergamaschi, A; Böge, M; Calvi, M; Cancellieri, C; Casati, N; Cervellino, A; Chen, Q; David, C; Flechsig, U; Gozzo, F; Henrich, B; Jäggi-Spielmann, S; Jakob, B; Kalichava, I; Karvinen, P; Krempasky, J; Lüdeke, A; Lüscher, R; Maag, S; Quitmann, C; Reinle-Schmitt, M L; Schmidt, T; Schmitt, B; Streun, A; Vartiainen, I; Vitins, M; Wang, X; Wullschleger, R

    2013-09-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.

  15. Coherence comes full circle. Interview by Joerg Heber.

    Science.gov (United States)

    Materlik, Gerhard

    2010-05-01

    Coherent synchrotron radiation has revolutionized the study of molecules and materials. Talking to Nature Materials, Gerhard Materlik, CEO of the Diamond Light Source, discusses the many uses of synchrotron sources and free electron lasers.

  16. Design of a photonic integrated circuit (pic) in silicon on isolator (soi) technology for a novel chaotic integrated laser light source (chill)

    NARCIS (Netherlands)

    Westerveld, W.J.

    2009-01-01

    A light source with the brightness of a laser but the bandwidth of a LED is required for different fields of applications, such as inspection and metrology in the semiconductor industry, data encryption in telecommunications and LIDAR. Currently, this issue is addressed by so-called coherence

  17. Improving the Efficiency of Solid State Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Joanna McKittrick

    2003-03-31

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths ({lambda}=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range ({lambda}=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution.

  18. Light source design for spectral tuning in biomedical imaging.

    Science.gov (United States)

    Basu, Chandrajit; Schlangen, Sebastian; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2015-10-01

    We propose an architecture with a remote phosphor-based modular and compact light-emitting diode (LED) light source in a noncontact dermoscope prototype for skin cancer screening. The spectrum and color temperature of the output light can easily and significantly be changed depending on spectral absorption characteristics of the tissues being imaged. The new system has several advantages compared to state-of-the-art phosphor converted ultrabright white LEDs, used in a wide range of medical imaging devices, which have a fixed spectrum and color temperature at a given operating point. In particular, the system can more easily be adapted to the requirements originating from different tissues in the human body, which have wavelength-dependent absorption and reflectivity. This leads to improved contrast for different kinds of imaged tissue components. The concept of such a lighting architecture can be vastly utilized in many other medical imaging devices including endoscopic systems.

  19. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly...... modulated VCSEL transmitters at bit rates up to 10 Gbps in the C-band as well as in the O-band are presented. The broad linewidth and frequency chirp associated with directly modulated VCSELs are utilized in an envelope detection receiver scheme which is demonstrated digitally (off-line) as well as analog...... (real-time). Additionally, it is shown that in the optical front-end of a coherent receiver for access networks, the 90 ° hybrid can be replaced by a 3-dB coupler. The achieved results show that VCSELs are attractive light source candidates for transmitter as well as local oscillator for coherent...

  20. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  1. Imaging ischemic strokes in rodents using visible-light optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chen, Siyu; Liu, Qi; Shu, Xiao; Soetikno, Brian T.; Tong, Shanbao; Zhang, Hao F.

    2017-02-01

    Monitoring cortical hemodynamic response after ischemic stroke (IS) is essential for understanding the pathophysiological mechanisms behind IS-induced neuron loss. Functional optical coherence tomography (OCT) is an emerging technology that can fulfill the requirement, providing label-free, high-resolution 3D images of cerebral hemodynamics. Unfortunately, strong tissue scattering pose a significant challenge for existing OCT oximetry techniques, as they either ignore the effect or compensate it numerically. Here we developed a novel dual-depth sampling and normalization strategy using visible-light OCT (vis-OCT) angiograms that can provide robust and precise sO2 estimations within cerebral circulation. The related theoretical formulation were established, and its implication and limitations were discussed. We monitored mouse cortical hemodynamics using the newly-developed method. Focal ischemic stroke was induced through photothrombosis. The analysis on pre- and post-IS vis-OCT images revealed both vascular morphology and oxygenation altered substantially after the occlusion. First, the ischemic core could be clearly identified as angiographic intensity fell below the detection limit. In addition, vessel dilation presented universally in the penumbra region. Notably for pial arteriles, the percentage of increase demonstrated inverse relationship with their pre-occlusion, pre-dilation dimeter. Vis-OCT oxygenation maps on intact cortex revealed spatial sO2 variations within pial vessels. Specifically, sO2 in arterioles decreased as it bifurcated and plunged into deeper tissue. Similarly, venous sO2 was higher in the larger, more superficial pial brunches. However, such difference was no longer appreciable after photothrombosis. Averaged arteriole sO2 dropped to 64% - 67% in the penumbra region.

  2. Multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography at 400 kHz

    Science.gov (United States)

    El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.

  3. Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Shangqi [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan Rengang; Kou Jun; Jiang Yun; Gao Jinyue [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China)

    2009-12-15

    We theoretically investigate the influence of a coherent pump field on the propagation of a weak light pulse of a probe field in a four-level atomic system. Due to the modulation of the pump field, the light pulse can be manipulated from subluminal to superluminal with negligible distortion. This scheme can be realized in both the ultracold and Doppler-broadened atomic systems. We also demonstrate that the spectral linewidth with an anomalous dispersion is reduced by thermal averaging; therefore, one can obtain a larger negative group refractive index in room-temperature vapor than the largest value achieved in ultracold atomic gas.

  4. Cell structure imaging with bright and homogeneous nanometric light source.

    Science.gov (United States)

    Fukuta, Masahiro; Ono, Atsushi; Nawa, Yasunori; Inami, Wataru; Shen, Lin; Kawata, Yoshimasa; Terekawa, Susumu

    2017-04-01

    Label-free optical nano-imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label-free macrophage receptor with collagenous structure-expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal-to-noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish

    Science.gov (United States)

    Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael

    2013-01-01

    Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018

  6. Silicon-Based Light Sources for Silicon Integrated Circuits

    Directory of Open Access Journals (Sweden)

    L. Pavesi

    2008-01-01

    Full Text Available Silicon the material per excellence for electronics is not used for sourcing light due to the lack of efficient light emitters and lasers. In this review, after having introduced the basics on lasing, I will discuss the physical reasons why silicon is not a laser material and the approaches to make it lasing. I will start with bulk silicon, then I will discuss silicon nanocrystals and Er3+ coupled silicon nanocrystals where significant advances have been done in the past and can be expected in the near future. I will conclude with an optimistic note on silicon lasing.

  7. Developing electron beam bunching technology for improving light sources

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W. [and others

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  8. The advanced light source: America`s brightest light for science and industry

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Lawler, G.

    1994-03-01

    America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

  9. LIGHT SOURCE: Design of a new compact THz source based on Smith-Purcell radiation

    Science.gov (United States)

    Dai, Dong-Dong; Bei, Hua; Dai, Zhi-Min

    2009-06-01

    In recent years, people are dedicated to the research work of finding compact THz sources with high emission power. Smith-Purcell radiation is qualified for the possibility of coherent enhancement due to the effect of FEL mechanism. The compact experiment device is expected to produce hundreds mW level THz ray. The electron beam with good quality is provided under the optimized design of the electron gun. Besides, the grating is designed as an oscillator without any external feedbacks. While the beam passes through the grating surface, the beam bunching will be strong and the second harmonics enhancement will be evident, as is seen from the simulation results.

  10. Discrimination between Doppler-shifted and non-shifted light in coherence domain path length resolved measurements of multiply scattered light.

    Science.gov (United States)

    Varghese, B; Rajan, V; van Leeuwen, T G; Steenbergen, W

    2007-10-01

    We show a novel technique to distinguish between Doppler shifted and unshifted light in multiple scattering experiments on mixed static and dynamic media. With a phase modulated low coherence Mach- Zehnder interferometer, optical path lengths of shifted and unshifted light and path length dependent Doppler broadening are measured in a two-layer tissue phantom, with a superficial static layer of different thickness covering a semi-infinite dynamic medium having identical optical properties. No Doppler broadening is observed until a certain optical path length depending on the thickness of the superficial static layer. From the minimum optical path length corresponding to the Doppler-shifted light the thickness of the static layer that overlies the dynamic layer can be estimated. Validation of the experimentally determined thickness of the static layer is done with the Doppler Monte Carlo technique. This approach has potential applications in discriminating between statically and dynamically scattered light in the perfusion signal and in determining superficial burn depths.

  11. Direct Seeded Single Frequency mid-IR OPA all Passive Light Source

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    We present a two stage pulsed mid-infrared light source based on nonlinear downconversion of light. The light source is single frequency, tunable, all passive, single moded and build with standard optical components.......We present a two stage pulsed mid-infrared light source based on nonlinear downconversion of light. The light source is single frequency, tunable, all passive, single moded and build with standard optical components....

  12. Stimulated coherent transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  13. Evaluation of focal choroidal excavation in the macula using swept-source optical coherence tomography

    Science.gov (United States)

    Lim, F P M; Loh, B K; Cheung, C M G; Lim, L S; Chan, C M; Wong, D W K

    2014-01-01

    Purpose To evaluate imaging findings of patients with focal choroidal excavation (FCE) in the macula using swept-source optical coherence tomography (SS-OCT) and correlate it clinically. Methods Prospective observational case series. Eleven consecutive patients (12 eyes) with FCE were described. Data on demographics and clinical presentation were collected and imaging findings (including color photography, fundus autofluorescence imaging, fluorescein angiography, indocyanine green angiography, spectral-domain optical coherence tomography, and SS-OCT) were analyzed. Results The primary diagnosis was epiretinal membrane (two eyes), choroidal neovascularization (one eye), polypoidal choroidal vasculopathy (three eyes), central serous chorioretinopathy (one eye), and dry age-related macular degeneration (two eyes). Eleven out of 12 of the lesions were conforming. One presented with a non-conforming lesion that progressed to a conforming lesion. One eye had multiFCE and two had two overlapping choroidal excavations. Using the SS-OCT, we found the choroid to be thinned out at the area of FCE but sclera remained normal. The choroidal tissue beneath the FCE was abnormal, with high internal reflectivity and poor visualization of choroidal vessels. There was loss of contour of the outer choroidal boundary that appeared to be pulled inward by this abnormal choroidal tissue. A suprachoroidal space was noted beneath this choroidal tissue and the choroidal–scleral interface was smooth. Repeat SS-OCT 6 months after presentation showed the area of excavation to be stable in size. Conclusion FCE can be associated with epiretinal membrane, central serous chorioretinopathy, and age-related macular degeneration. The choroid was thinned out in the area of FCE. PMID:24946847

  14. Evaluation of focal choroidal excavation in the macula using swept-source optical coherence tomography.

    Science.gov (United States)

    Lim, F P M; Loh, B K; Cheung, C M G; Lim, L S; Chan, C M; Wong, D W K

    2014-09-01

    To evaluate imaging findings of patients with focal choroidal excavation (FCE) in the macula using swept-source optical coherence tomography (SS-OCT) and correlate it clinically. Prospective observational case series. Eleven consecutive patients (12 eyes) with FCE were described. Data on demographics and clinical presentation were collected and imaging findings (including color photography, fundus autofluorescence imaging, fluorescein angiography, indocyanine green angiography, spectral-domain optical coherence tomography, and SS-OCT) were analyzed. The primary diagnosis was epiretinal membrane (two eyes), choroidal neovascularization (one eye), polypoidal choroidal vasculopathy (three eyes), central serous chorioretinopathy (one eye), and dry age-related macular degeneration (two eyes). Eleven out of 12 of the lesions were conforming. One presented with a non-conforming lesion that progressed to a conforming lesion. One eye had multiFCE and two had two overlapping choroidal excavations. Using the SS-OCT, we found the choroid to be thinned out at the area of FCE but sclera remained normal. The choroidal tissue beneath the FCE was abnormal, with high internal reflectivity and poor visualization of choroidal vessels. There was loss of contour of the outer choroidal boundary that appeared to be pulled inward by this abnormal choroidal tissue. A suprachoroidal space was noted beneath this choroidal tissue and the choroidal-scleral interface was smooth. Repeat SS-OCT 6 months after presentation showed the area of excavation to be stable in size. FCE can be associated with epiretinal membrane, central serous chorioretinopathy, and age-related macular degeneration. The choroid was thinned out in the area of FCE.

  15. Light Source for Scanning Method of Size-of-Source Effect Measurement

    Science.gov (United States)

    Achmadi, Aditya; Juliastuti, Endang; Handojo, Andrianto; Zaid, Ghufron; Wiriadinata, Hidayat; Park, Seung-Nam

    2015-12-01

    A high-power light-emitting diode (HPLED) is proposed as a new light source for the measurement of the size-of-source effect (SSE) in radiation thermometers. The HPLED is a more compact, simple, and inexpensive light source and is suitable for SSE measurement by the scanning method. An experiment has been done using a 3 W HPLED with a hemispherical front lens and a peak emission wavelength of 660 nm. A linear pyrometer (Model LP4 manufactured by KE) was used for the measurements. The scanning process was carried out by using a computerized linear translation stage spanning 500 mm. To confirm the measurement result, the SSE of the LP4 was also measured by the conventional indirect method using an integrating sphere with a 65 mm diameter exit port. The same trends of the SSE value of the scanning and indirect method were found in all ranges of the indirect method measurement. The results show that the light source has enough brightness and a sufficiently wide angular distribution to provide a dynamic measurement range of up to 108 and allow the measurement of the SSE up to a radius of 500 mm. These results support the application of HPLED as an alternative light source for SSE measurements by the scanning method.

  16. Two-Dimensional DOA Estimation for Coherently Distributed Sources with Symmetric Properties in Crossed Arrays.

    Science.gov (United States)

    Dai, Zhengliang; Cui, Weijia; Ba, Bin; Wang, Daming; Sun, Youming

    2017-06-06

    In this paper, a novel algorithm is proposed for the two-dimensional (2D) central direction-of-arrival (DOA) estimation of coherently distributed (CD) sources. Specifically, we focus on a centro-symmetric crossed array consisting of two uniform linear arrays (ULAs). Unlike the conventional low-complexity methods using the one-order Taylor series approximation to obtain the approximate rotational invariance relation, we first prove the symmetric property of angular signal distributed weight vectors of the CD source for an arbitrary centrosymmetric array, and then use this property to establish two generalized rotational invariance relations inside the array manifolds in the two ULAs. Making use of such relations, the central elevation and azimuth DOAs are obtained by employing a polynomial-root-based search-free approach, respectively. Finally, simple parameter matching is accomplished by searching for the minimums of the cost function of the estimated 2D angular parameters. When compared with the existing low-complexity methods, the proposed algorithm can greatly improve estimation accuracy without significant increment in computation complexity. Moreover, it performs independently of the deterministic angular distributed function. Simulation results are presented to illustrate the performance of the proposed algorithm.

  17. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit

    Science.gov (United States)

    Lee, Kenneth K. C.; Mariampillai, Adrian; Yu, Joe X. Z.; Cadotte, David W.; Wilson, Brian C.; Standish, Beau A.; Yang, Victor X. D.

    2012-01-01

    Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second. PMID:22808428

  18. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    Science.gov (United States)

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  19. Current schemes for National Synchrotron Light Source UV beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2/sup 0/ and 15/sup 0/ are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines.

  20. Application of ICP in Developing Mercury-less Light Sources

    Science.gov (United States)

    Nazri, Ahmad; Inui, Shuji; Motomura, Hideki; Jinno, Masafumi; Aono, Masaharu

    Application of ICP in the development of mercury-less light sources have been investigated. Xenon has been used as a replacement for mercury as the environmental issues related to it necessitate the development of new type of light sources. RF energy at 13.56MHz was induced to the cylindrical tube with input power ranging from 1W up to 100W. By changing the xenon gas pressure, coil turns and phosphor coating conditions, differences in emission intensities (luminance), spectra and discharge states were observed. In order to obtain the ICP discharge, the lamp was operated first in capacitive mode and then in inductive mode. These modes are known as E-mode (capacitively or CCP) and H-mode (inductively or ICP) respectively. High luminance can only be obtained when operating the lamp in H-mode. The optical emission spectra of these two modes (E and H) were analysed carefully.

  1. New robust and highly customizable light source management system

    Science.gov (United States)

    Minegishi, Yuji; Takahisa, Kenji; Ochiai, Hideyuki; Ohta, Takeshi; Enami, Tatsuo

    2015-03-01

    In semiconductor lithography, light sources play a significant role in the wafer production process as well as impacting the manufacturing cost per wafer. Chip manufacturers going forward will be challenged to develop new ways to become more cost effective than their competitors, and the software tools necessary to compete in this environment must be capable of effectively adapting to the unique needs of each manufacturer. Gigaphoton has developed a new highly customizable software system for managing light sources. It not only offers a simple and intuitive user interface that can be operated using a standard web browser on PCs, tablets, and smartphones, but also a platform for users and third parties to develop unique extensions and optimizations.

  2. Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources

    Directory of Open Access Journals (Sweden)

    Miriam Brosi

    2016-11-01

    Full Text Available Dedicated optics with extremely short electron bunches enable synchrotron light sources to generate intense coherent THz radiation. The high degree of spatial compression in this so-called low-α_{c} optics entails a complex longitudinal dynamics of the electron bunches, which can be probed studying the fluctuations in the emitted terahertz radiation caused by the microbunching instability (“bursting”. This article presents a “quasi-instantaneous” method for measuring the bursting characteristics by simultaneously collecting and evaluating the information from all bunches in a multibunch fill, reducing the measurement time from hours to seconds. This speed-up allows systematic studies of the bursting characteristics for various accelerator settings within a single fill of the machine, enabling a comprehensive comparison of the measured bursting thresholds with theoretical predictions by the bunched-beam theory. This paper introduces the method and presents first results obtained at the ANKA synchrotron radiation facility.

  3. Lifetime increase using passive harmonic cavities in synchrotron light sources

    Directory of Open Access Journals (Sweden)

    J. M. Byrd

    2001-03-01

    Full Text Available Harmonic cavities have been used in storage rings to increase beam lifetime and Landau damping by lengthening the bunch. The need for lifetime increase is particularly great in the present generation of low to medium energy synchrotron light sources where the small transverse beam sizes lead to relatively short lifetimes from large-angle intrabeam (Touschek scattering. We review the beam dynamics of harmonic radio-frequency systems and discuss optimization of the beam lifetime using passive harmonic cavities.

  4. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  5. Visible light scatter as quantitative information source on milk constituents

    DEFF Research Database (Denmark)

    Melentieva, Anastasiya; Kucheryavskiy, Sergey; Bogomolov, Andrey

    2012-01-01

    VISIBLE LIGHT SCATTER AS A QUANTITATIVE INFORMATION SOURCE ON MILK CONSTITUENTS A. Melenteva 1, S. Kucheryavski 2, A. Bogomolov 1,31Samara State Technical University, Molodogvardeyskaya Street 244, 443100 Samara, Russia. 2Aalborg University, campus Esbjerg, Niels Bohrs vej 8, 6700 Esbjerg, Denmar...... research area are presented and discussed. References: [1] A. Bogomolov, S. Dietrich, B. Boldrini, R.W. Kessler, Food Chemistry (2012), doi:10.1016/j.foodchem.2012.02.077....

  6. Application research of tune measurement system in Hefei light source

    CERN Document Server

    Sun Bao Gen; Xu Hong Liang; Lu Ping; Wang Jun; Gao Yun Feng; Wang Li; LiuJinYing

    2002-01-01

    The author introduces the measurement and research of some beam parameters using tune measurement system for Hefei Light Source (HLS), which include the betatron tune, beta function, natural chromaticity, corrected chromaticity, and central frequency. Additionally, it also describes the measurement of the influence of DC clearing electrodes on the betatron tune shift and gives some measurement results. The measurement results are compared with the theoretical values and they are in good agreement

  7. Circular dichroism beamline B23 at the Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  8. Lasers or light sources for treating port-wine stains

    DEFF Research Database (Denmark)

    Faurschou, Annesofie; Olesen, Anne Braae; Leonardi-Bee, Jo

    2011-01-01

    Port-wine stains are birthmarks caused by malformations of blood vessels in the skin. Port-wine stains manifest themselves in infancy as a flat, red mark and do not regress spontaneously but may, if untreated, become darker and thicker in adult life. The profusion of various lasers and light...... sources makes it difficult to decide which equipment is the best for treating port-wine stains....

  9. Effect of source spectral width and its temporal coherence in the interference pattern of a Mach-Zehnder interferometer

    Science.gov (United States)

    Suchita; Vijaya, R.

    2017-11-01

    A fiber-based Mach-Zehnder interferometer is designed and tested for its phase characteristics by using a CW tunable laser source. The total phase introduced by the interferometer is modeled by including the linewidth of the input source and the fluctuations of its center wavelength, apart from the path difference in the interferometer. The spectral linewidth of the input laser contributing to the observed interference is found to depend on this path difference. This emphasizes the need for optimal path differences to overcome the coherence limitations of the source. We are thus able to extract the extent of phase correlation present in the input source, and hence its temporal coherence characteristics, from the interference pattern.

  10. Operation event logging system of the Swiss Light Source

    Science.gov (United States)

    Lüdeke, Andreas

    2009-02-01

    Modern 3rd generation synchrotron light sources aim for 100% availability. No single beam interruption is acceptable and every beam disturbance should be investigated: what caused the interruption? Can it be avoided in the future? If it cannot be avoided, how can the recovery be accelerated? An automated event recording system has been implemented at the Swiss Light Source (SLS) in order to simplify beam distortion investigations with respect to a well-defined metrics. The system identifies beam disturbances and records automatically the type and duration of the event. Relevant information of the event, like control system archive data or shift summaries, is linked to the event and presented in Web pages. Tools for the automated evaluation of alarm logs are provided that generate summaries of a beam distortion. On the basis of this information each event will be assigned to a failure cause. The means to filter the events are provided. We will describe the concept and the implementation of the system at the SLS and our experiences with it. Finally, the SLS operation event logging system will be compared with failure analysis at other light sources.

  11. High-performance next-generation EUV lithography light source

    Science.gov (United States)

    Choi, Peter; Zakharov, Sergey V.; Aliaga-Rossel, Raul; Benali, Otman; Duffy, Grainne; Sarroukh, Ouassima; Wyndham, Edmund; Zakharov, Vasily S.

    2009-03-01

    EUVL solution for HVM at the 22 nm node requires a high power long-term EUV source operation with hundreds of watts at the intermediate focus output. EUV mask blank and mask defects inspections require at-wavelength tools with high brightness. Theoretical analysis with a 2-D radiation MHD code Z* has been performed to address key issues in EUV plasma sources with radiation transfer. The study shows that self-absorption defines the limiting brightness of a single EUV source, which cannot meet the requirements of the HVM tool with high efficiency and is not sufficient for critical metrology applications, given the limiting etendue of the optics. It is shown that the required irradiance can be achieved by spatial multiplexing, using multiple small sources. We present here details of the study, as well as experimental results from a novel EUV light source with an intrinsic photon collector demonstrating high brightness, the i-SoCoMo concept, where an impulse micro discharge plasma source is integrated to a photon collector based on an active plasma structure. The small physical size and low etendue properties of the i-SoCoMo unit allows a large number of such sources to be put together in one physical package and be operated in a multiplexed fashion to meet necessary power requirements.

  12. Phase-sensitive swept source OCT imaging of the human retina with a VCSEL light source

    Science.gov (United States)

    Choi, WooJhon; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Baumann, Bernhard; Grulkowski, Ireneusz; Liu, Jonathan J.; Lu, Chen D.; Cable, Alex E.; Huang, David; Duker, Jay S.; Fujimoto, James G.

    2013-01-01

    Despite the challenges in achieving high phase stability, Doppler swept source / Fourier domain OCT has advantages of less fringe washout and faster imaging speeds compared to spectral / Fourier domain detection. This manuscript demonstrates swept source OCT with a VCSEL light source at 400kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept source imaging is also presented. PMID:23381430

  13. Sole-Source Lighting for Controlled-Environment Agriculture

    Science.gov (United States)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  14. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2008-02-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach-Zehnder interferometer, at a high phase modulation angle. For dynamic turbid media this results in Doppler broadened phase modulation interference peaks at the modulation frequency and its multiples. The signal to noise ratio is increased by almost one order or magnitude for large modulation angles and the shape of the spectral peaks resulting from the interference of Doppler shifted sample waves and reference light is not changed. The path length dependent Doppler broadening is compared with the theoretical predictions in the single scattered and diffusive regimes. The experimentally measured optical path lengths are validated with the Monte Carlo technique.

  15. Development of an ultrafast electron source based on a cold-field emission gun for ultrafast coherent TEM

    Science.gov (United States)

    Caruso, Giuseppe Mario; Houdellier, Florent; Abeilhou, Pierre; Arbouet, Arnaud

    2017-07-01

    We report on the design of a femtosecond laser-driven electron source for ultrafast coherent transmission electron microscopy. The proposed architecture allows introducing an ultrafast laser beam inside the cold field emission source of a commercial TEM, aligning and focusing the laser spot on the apex of the nanoemitter. The modifications of the gun assembly do not deteriorate the performances of the electron source in conventional DC mode and allow easy switching between the conventional and ultrafast laser-driven emission modes. We describe here this ultrafast electron source and discuss its properties.

  16. Effect of light source parameters on the polarization properties of the beam

    Science.gov (United States)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  17. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  18. Quantification of Doppler broadening in path length resolved diffusive light scattering using phase modulated low-coherence interferometry

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-02-01

    We describe path length resolved Doppler measurements of the multiply scattered light in turbid media using phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. A Doppler broadened phase modulation interference peak observed at the modulation frequency shows an increase in the average Doppler shift with optical path length. The path length dependent Doppler broadening of scattered light due to the detection of multiple scattered light is measured from the Lorentzian linewidth and the results are compared with the predictions of Diffusive Wave Spectroscopy. For particles with small scattering anisotropy, the diffusion approximation shows good agreement with our experimental results. For anisotropic scatterers, the experimental results show deviations from the Diffusion theory. The optical path lengths are determined experimentally from the Zero order moment of the phase modulation peak around the modulation frequency and the results are validated with the Monte Carlo technique.

  19. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.

    Science.gov (United States)

    Yang, Chunyong; Xu, Chuang; Ni, Wenjun; Gan, Yu; Hou, Jin; Chen, Shaoping

    2017-10-16

    A novel scheme is proposed to mitigate the atmospheric turbulence effect in free space optical (FSO) communication employing orbital angular momentum (OAM) multiplexing. In this scheme, the Gaussian beam is used as an auxiliary light with a common-path to obtain the distortion information caused by atmospheric turbulence. After turbulence, the heterodyne coherent detection technology is demonstrated to realize the turbulence mitigation. With the same turbulence distortion, the OAM beams and the Gaussian beam are respectively utilized as the signal light and the local oscillation light. Then the turbulence distortion is counteracted to a large extent. Meanwhile, a phase matching method is proposed to select the specific OAM mode. The discrimination between the neighboring OAM modes is obviously improved by detecting the output photocurrent. Moreover, two methods of beam size adjustment have been analyzed to achieve better performance for turbulence mitigation. Numerical results show that the system bit error rate (BER) can reach 10-5 under strong turbulence in simulation situation.

  20. Light source comprising a common substrate, a first led device and a second led device

    Science.gov (United States)

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  1. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  2. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  3. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  4. Detection of occlusal caries in primary teeth using swept source optical coherence tomography

    Science.gov (United States)

    Nakajima, Yukie; Shimada, Yasushi; Sadr, Alireza; Wada, Ikumi; Miyashin, Michiyo; Takagi, Yuzo; Tagami, Junji; Sumi, Yasunori

    2014-01-01

    This study aimed to investigate swept source optical coherence tomography (SS-OCT) as a detecting tool for occlusal caries in primary teeth. At the in vitro part of the study, 38 investigation sites of occlusal fissures (noncavitated and cavitated) were selected from 26 extracted primary teeth and inspected visually using conventional dental equipment by six examiners without any magnification. SS-OCT cross-sectional images at 1330-nm center wavelength were acquired on the same locations. The teeth were then sectioned at the investigation site and directly viewed under a confocal laser scanning microscope (CLSM) by two experienced examiners. The presence and extent of caries were scored in each observation. The results obtained from SS-OCT and conventional visual inspections were compared with those of CLSM. Consequently, SS-OCT could successfully detect both cavitated and noncavitated lesions. The magnitude of sensitivity for SS-OCT was higher than those for visual inspection (sensitivity of visual inspection and SS-OCT, 0.70 versus 0.93 for enamel demineralization, 0.49 versus 0.89 for enamel cavitated caries, and 0.36 versus 0.75 for dentin caries). Additionally, occlusal caries of a few clinical cases were observed using SS-OCT in vivo. The results indicate that SS-OCT has a great detecting potential for occlusal caries in primary teeth.

  5. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    Science.gov (United States)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  6. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    Science.gov (United States)

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  7. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  8. Swept Source Optical Coherence Tomography Angiography for Contact Lens-Related Corneal Vascularization

    Directory of Open Access Journals (Sweden)

    Marcus Ang

    2016-01-01

    Full Text Available Purpose. To describe a novel technique of adapting a swept-source optical coherence tomography angiography (OCTA to image corneal vascularization. Methods. In this pilot cross-sectional study, we obtained 3 × 3 mm scans, where 100,000 A-scans are acquired per second with optical axial resolution of 8 μm and lateral resolution of 20 μm. This was performed with manual “XYZ” focus without the anterior segment lens, until the focus of the corneoscleral surface was clearly seen and the vessels of interest were in focus on the corresponding red-free image. En face scans were evaluated based on image quality score and repeatability. Results. We analyzed scans from 10 eyes (10 patients with corneal vascularization secondary to contact lens use in 4 quadrants, with substantial repeatability of scans in all quadrants (mean image quality score 2.7 ± 0.7; κ=0.75. There was no significant difference in image quality scores comparing quadrants (superior temporal: 2.9 ± 0.6, superior nasal: 2.8 ± 0.4, inferior temporal: 2.5 ± 0.9, and inferior nasal: 2.4 ± 1.0; P=0.276 and able to differentiate deep and superficial corneal vascularization. Conclusion. This early clinical study suggests that the swept-source OCTA used may be useful for examining corneal vascularization, which may have potential for clinical applications such as detecting early limbal stem cell damage.

  9. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  10. Dynamic Imaging of Coherent Sources Reveals Different Network Connectivity Underlying the Generation and Perpetuation of Epileptic Seizures

    Science.gov (United States)

    Anwar, Abdul Rauf; Deuschl, Günther; Stephani, Ulrich; Raethjen, Jan; Siniatchkin, Michael

    2013-01-01

    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis. PMID:24194931

  11. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance....... The UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance......, with doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  12. White light source with laser-excited phosphor

    Science.gov (United States)

    Abdullaev, O. R.; Aluev, A. V.; Akhmerov, Yu. L.; Kourova, N. V.; Mezhennyi, M. V.; Chelny, A. A.

    2017-11-01

    The principles of operation of a white light source based on a remote phosphor, made of cerium-doped yttrium aluminium garnet (YAG : Ce3+), whose luminescence is excited by a blue laser diode, are considered. The colorimetric and photometric characteristics of phosphors of different types are analysed as functions of the phosphor film thickness. The following parameters are obtained at an output power of 1 W and a wavelength of 445±3 nm in the cw regime: luminous flux of 165 lm, correlated colour temperature of 5595 K, colour rendering index of 66, colour coordinates x = 0.3303 and y = 0.3427, luminous efficiency of 165 lm W‑1, and light efficacy of 30 lm W‑1. These characteristics are comparable with similar parameters of commercial white LEDs.

  13. Novel crystalline-waveguide broadband light sources for interferometry

    NARCIS (Netherlands)

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  14. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII.

    Science.gov (United States)

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-08-30

    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.

  15. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  16. Singapore Synchrotron Light Source - Status, first results, program

    CERN Document Server

    Moser, H O; Kempson, V C; Kong, J R; Li, Z W; Nyunt, T; Qian, H J; Rossmanith, R; Tor, P H; Wilhelmi, O; Yang, P; Zheng, H W; Underhay, I J

    2003-01-01

    The Singapore Synchrotron Light Source is a general-purpose synchrotron radiation facility serving research organisations and industry. Beamlines active or coming up within 2002 include lithography for micro/nanofabrication, phase contrast imaging, surface science, and X-ray diffraction and absorption. An infrared spectro/microscopy beamline is expected to become operational in 2003. Further beamlines are under discussion with user groups. The Microtron Undulator Radiation Facility (MURF) is under development to provide brilliant VUV radiation and to prepare for subsequent development of an EUV and X-ray FEL.

  17. The Digital Camera Application in the Taiwan Light Source

    CERN Document Server

    Kuo, C H; Hsu, K T; Hsu, S Y; Hu, K H; Lee, D; Wang, C J; Yang, Y T

    2005-01-01

    Digital camera has been adopted for the booster, storage ring and transport-line diagnostic recently at the Taiwan Light Source. The system provides low image distortion transmission over long distance. The system is integrated with control system. Each screen monitor equip with a digital camera. These screen monitors are used for beam profile measurement and help injection condition optimization. Wider dynamic range and highly flexibility of the digital gated camera provide various functional enhancements. System configuration and present status will be summary in this report.

  18. Laser chain alignment with low power local light sources

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, E.S.; Feldman, M.; Murray, J.E.; Vann, C.S.

    1995-07-07

    Timely and repeatable alignment of the 192 beam National Ignition Facility (NIF) laser will require an automatic system. Demanding accuracy requirements must be met with high reliability at low cost while minimizing the turnaround time between shots. We describe an approach for internally self-consistent alignment of the mirrors in the laser chains using a network of local light sources that serve as near field and far field alignment references. It incorporates a minimum number of alignment lasers, handles many beams in parallel, and utilizes simple control algorithms.

  19. Ultrabright Laser-based MeV-class Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F; Anderson, G; Anderson, S; Bayramian, A; Berry, B; Betts, S; Dawson, J; Ebbers, C; Gibson, D; Hagmann, C; Hall, J; Hartemann, F; Hartouni, E; Heebner, J; Hernandez, J; Johnson, M; Messerly, M; McNabb, D; Phan, H; Pruet, J; Semenov, V; Shverdin, M; Sridharan, A; Tremaine, A; Siders, C W; Barty, C J

    2008-04-02

    We report first light from a novel, new source of 10-ps 0.776-MeV gamma-ray pulses known as T-REX (Thomson-Radiated Extreme X-rays). The MeV-class radiation produced by TREX is unique in the world with respect to its brightness, spectral purity, tunability, pulse duration and laser-like beam character. With T-REX, one can use photons to efficiently probe and excite the isotope-dependent resonant structure of atomic nucleus. This ability will be enabling to an entirely new class of isotope-specific, high resolution imaging and detection capabilities.

  20. Risk of retina damage from high intensity light sources

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, V.A.; Romanchuk, K.G.

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excesive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A method of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  1. Semiconductor Nanomembranes for Quantum Photonics: Quantum Light Sources and Optomechanics

    DEFF Research Database (Denmark)

    Liu, Jin

    This thesis describes the fabrication and characterizations of semiconductor nanomembranes, i.e., gallium arsenide (GaAs) photonic crystal (PC) and optomechanical nanomemebranes. Processing techniques are developed and optimized in order to fabricate PC membranes for quantum light sources......-record mechanical Q-factor up to 1 million have been fabricated with two step selective wet etches. These optomechanical naonmembranes exhibit superb performances in cavity optomechanical cooling experiments in which a mechanical mode has been cooled from room temperature to 4 K. The interaction between single...... quantum dots (QDs) and PC cavities has been modeled in the framework of Jaynes-Cummings model (JCM) with the focus on single artificial atom lasers. In the experiments, a highly efficient single photon source with a collection efficiency up to 38% has been achieved and detailed measurements suggest...

  2. Performance of light vibroseis sources on polar firn

    Science.gov (United States)

    Eisen, O.; Diez, A.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.

    2012-04-01

    Small vibrator sources have been succesfully operated on cold Alpine firn in the last years. Here we present results from first operations on the Antarctic plateau, near Kohnen station, Dronning Maud Land with the electrodynamic vibrator system ELVIS. Because of its light weight, such vibrator sources are especially suitable for air transport, a considerable logistic advantage for operation in remote polar regions. As its peak force is lower than 1000 N, it has also been possible to excite shear waves at the surfaces. The complementation of shear waves with pressure waves allows for the deduction of elastic moduli within the firn and ice column. We provide an overall assessment of the results of recordings made with three-component geophones, including estimates of penetrating depth, capability to image shallow internal layering and comparison with stratigraphy detected with ground-penetrating radars.

  3. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  4. Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography

    Science.gov (United States)

    Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.; Zawadzki, Robert J.

    2013-08-01

    A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure.

  5. Inverse compton light source: a compact design proposal

    Energy Technology Data Exchange (ETDEWEB)

    Deitrick, Kirsten Elizabeth [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source was constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the

  6. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  7. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  8. Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, S.; Stabile, H.; Tortora, A.; Monot, P.; Reau, F.; Bougeard, M.; Merdji, H.; Carre, B.; Martin, Ph. [CEA, IRAMIS, Service des Photons Atomes et Molecules, F-91191 Gif- sur-Yvette (France); Joyeux, D.; Phalippou, D.; Delmotte, F.; Gautier, J.; Mercier, R. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS et Universite Paris Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France)

    2009-11-15

    We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10{sup 20} cm{sup -3} 1.1 ns after the creation of a plasma on aluminum target.

  9. Quantum phase fluctuations of coherent and thermal light coupled to a non-degenerate parametric oscillator beyond rotating wave approximation

    Science.gov (United States)

    Alam, Mohosin; Mandal, Swapan; Wahiddin, Mohamed Ridza

    2017-09-01

    The essence of the rotating wave approximation (RWA) is to eliminate the non-conserving energy terms from the interaction Hamiltonian. The cost of using RWA is heavy if the frequency of the input radiation field is low (e.g. below optical region). The well known Bloch-Siegert effect is the out come of the inclusion of the terms which are normally neglected under RWA. We investigate the fluctuations of the quantum phase of the coherent light and the thermal light coupled to a nondegenerate parametric oscillator (NDPO). The Hamiltonian and hence the equations of motion involving the signal and idler modes are framed by using the strong (classical) pump condition. These differential equations are nonlinear in nature and are found coupled to each other. Without using the RWA, we obtain the analytical solutions for the signal and idler fields. These solutions are obtained up to the second orders in dimensionless coupling constants. The analytical expressions for the quantum phase fluctuation parameters due to Carruther's and Nieto are obtained in terms of the coupling constants and the initial photon numbers of the input radiation field. Moreover, we keep ourselves confined to the Pegg-Barnett formalism for measured phase operators. With and without using the RWA, we compare the quantum phase fluctuations for coherent and thermal light coupled to the NDPO. In spite of the significant departures (quantitative), the qualitative features of the phase fluctuation parameters for the input thermal light are identical for NDPO with and without RWA. On the other hand, we report some interesting results of input coherent light coupled to the NDPO which are substantially different from their RWA counterpart. In spite of the various quantum optical phenomena in a NDPO, we claim that it is the first effort where the complete analytical approach towards the solutions and hence the quantum phase fluctuations of input radiation fields coupled to it are obtained beyond rotating wave

  10. A squeezed light source operated under high vacuum.

    Science.gov (United States)

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-12-14

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  11. Supercontinuum Light Sources for Hyperspectral Subsurface Laser Scattering

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann; Dahl, Anders Lindbjerg; Larsen, Rasmus

    2011-01-01

    A materials structural and chemical composition influences its optical scattering properties. In this paper we investigate the use of subsurface laser scattering (SLS) for inferring structural and chemical information of food products. We have constructed a computer vision system based on a super......A materials structural and chemical composition influences its optical scattering properties. In this paper we investigate the use of subsurface laser scattering (SLS) for inferring structural and chemical information of food products. We have constructed a computer vision system based...... on a supercontinuum laser light source and an Acousto- Optic Tunable Filter (AOTF) to provide a collimated light source, which can be tuned to any wavelength in the range from 480 to 900 nm. We present the newly developed hyperspectral vision system together with a proof-of-principle study of its ability...... to discriminate between dairy products with either similar chemical or structural composition. The combined vision system is a new way for industrial food inspection allowing non-intrusive online process inspection of parameters that is hard with existing technology....

  12. Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances

    Science.gov (United States)

    Peng, Pai; Liu, Yong-Chun; Xu, Da; Cao, Qi-Tao; Lu, Guowei; Gong, Qihuang; Xiao, Yun-Feng

    2017-12-01

    Quantum manipulation is challenging in localized-surface plasmon resonances (LSPRs) due to strong dissipations. To enhance quantum coherence, here we propose to engineer the electromagnetic environment of LSPRs by placing metallic nanoparticles (MNPs) in optical microcavities. An analytical quantum model is first built to describe the LSPR-microcavity interaction, revealing the significantly enhanced coherent radiation and the reduced incoherent dissipation. Furthermore, when a quantum emitter interacts with the LSPRs in the cavity-engineered environment, its quantum yield is enhanced over 40 times and the radiative power over one order of magnitude, compared to those in the vacuum environment. Importantly, the cavity-engineered MNP-emitter system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of quantum plasmonics, quantum information processing, precise sensing, and spectroscopy.

  13. Coherent frequency bridge between visible and telecommunications band for vortex light.

    Science.gov (United States)

    Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Shi, Shuai; Zhou, Zhi-Yuan; Shi, Bao-Sen

    2017-10-02

    In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

  14. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    CERN Document Server

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  15. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network

    OpenAIRE

    Pun, Chun Shing Jason; So, Chu Wing; Leung, Wai Yan; Wong, Chung Fai

    2014-01-01

    Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements ...

  16. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    Science.gov (United States)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    The papers in this special issue of Journal of Physics D: Applied Physics (JPhysD) originate from the 12th International Symposium on the Science and Technology of Light Sources and the 3rd International Conference on White LEDs and Solid State Lighting, held 11-16 July 2010 at Eindhoven University. Abstracts of all papers presented at this combined conference were published in the Conference Proceedings LS-WLED 2010 by FAST-LS, edited by M Haverlag, G M W Kroesen and T Taguchi. Special issues of the previous three LS conferences have been well-cited and have proven to be an important source of information for the lighting community. The 2010 LS-Symposium was a combined conference with the White LED Conference in order to enhance the scope of this conference series towards new light source technologies such as LEDs and OLEDs, and this co-operation will be continued in the future. Given the faster technology development in these areas it was also decided to shorten the interval between conferences from three to two years. Well over 200 invited presentations, landmark presentations and poster contributions were presented at the 2010 LS-Symposium. The organizing committee have selected from these a number of outstanding contributions with a high technological content and invited the authors to submit a full paper in JPhysD. The criteria were that the work should not be a repetition of the work already published in the Proceedings, but should be new, complete, within the scope of JPhysD, and meeting the normal quality standards of this journal. After peer review a combined set of 18 papers is published in this JPhysD special issue. In addition, a number of lighting-application-orientated papers will be published in a special issue of Journal of Light & Visual Environment later in 2011. The papers in this special issue of JPhysD show that research in the science and technology of light sources still covers a broad set of subject areas which includes both 'classical

  17. Coherent and squeezed states of light in linear media with time-dependent parameters by Lewis-Riesenfeld invariant operator method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ryeol [Department of Physics and Advanced Materials Sciences, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2006-02-14

    We investigated coherent and squeezed states of light in linear media whose parameters are explicitly dependent on time by making use of the Lewis-Riesenfeld invariant operator method. Not only the field strengths but also the fluctuations of the fields both in coherent and in squeezed states are decayed with time. The relative noise of the field strengths are calculated in coherent state. Quantum statistical properties of the chaotic field are investigated. We applied our theory to a phenomenological model of the biophoton system and compared the corresponding result of the uncertainty product with that obtained from a previous report.

  18. Real-time tunability of chip-based light source enabled by microfluidic mixing

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Rasmussen, Torben; Balslev, Søren

    2006-01-01

    We demonstrate real-time tunability of a chip-based liquid light source enabled by microfluidic mixing. The mixer and light source are fabricated in SU-8 which is suitable for integration in SU-8-based laboratory-on-a-chip microsystems. The tunability of the light source is achieved by changing...

  19. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  20. Optical Pumping Experiments on Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W

    2004-07-29

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  1. Far-infrared Beamline at the Canadian Light Source

    Science.gov (United States)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  2. Light-emitting diodes as a radiation source for plants

    Science.gov (United States)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  3. The Brightest Light in Canada: The Canadian Light Source

    Directory of Open Access Journals (Sweden)

    Jeffrey Cutler

    2017-03-01

    Full Text Available Over forty years in the making, and one of Canada’s largest scientific investments in those four decades, the Canadian Light Source (CLS, a third generation source of synchrotron light, was designed for high performance and flexibility and serves the diverse needs of the Canadian research community by providing brilliant light for applied and basic research programmes ranging from the far infrared to the hard X-ray regimes. Development of the scientific program at the CLS has been envisioned in four distinct phases. The first phase consists of the accelerator complex together with seven experimental facilities; the second phase adds six more experimental facilities and additional infrastructure to support them; the third phase adds seven more experimental facilities; and the fourth phase focuses on beamline and endstation upgrades, keeping the CLS as a state-of-the-art research centre. With the growth of a strong user community, the success of these experimental facilities will drive the future growth of the CLS.

  4. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    Science.gov (United States)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  5. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Science.gov (United States)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (work is needed for a full theoretical quantitative picture of the experimental results. In other work, I used coherent EUV nanometrology to simultaneously

  6. Impulsive Light Scattering by Coherent Phonons in LaAlO3: Disorder and Boundary Effects

    Science.gov (United States)

    Liu, Y.; Frenkel, A.; Garrett, G. A.; Whitaker, J. F.; Fahy, S.; Uher, C.; Merlin, R.

    1995-07-01

    Pump-probe measurements of coherent-phonon-induced changes of refractive index in LaAlO3 are dominated by normally weak boundary effects. Atomic displacements in the range 50-500 μÅ were generated and probed by femtosecond laser pulses through impulsive Raman scattering. The absence of a bulk contribution is ascribed to phase mismatch due to domain disorder. Selection rules are consistent with a Raman model considering reflection and transmission at interfaces. Intensities and phonon parameters as a function of temperature agree well with incoherent Raman data.

  7. Design of the Advanced Light Source timing system

    Energy Technology Data Exchange (ETDEWEB)

    Fahmie, M.

    1993-05-01

    The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ``on the fly`` programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid.

  8. Highlights from e-EPS: Coordinated Access to Light sources

    CERN Multimedia

    e-EPS News

    2014-01-01

    The CALIPSO project, which runs until May 2015, will contribute to the effective exploitation of European synchrotrons and free electron lasers. CALIPSO (Coordinated Access to Light sources to Promote Standards and Optimisation) includes 20 partners forming one of the largest Research Networks in the world.   e-EPS interviewed M. Bertolo, CALIPSO project manager and his assistant C. Blasetti. Which challenges are addressed by CALIPSO? CALIPSO’s goal is to optimize the exploitation of the European synchrotrons and Free Electron Lasers. With respect to previous projects funded by the European Commission, it foresees significant improvements in integration, innovation and user-friendliness in all three areas of networking, transnational access and instrumentation. The Transnational Access program potentially benefits a community of 25,000 estimated users offering free open access to 12 synchrotrons and 5 free electron lasers solely based on scientific merit. In ad...

  9. VCSELs as light source for time-of-flight sensors

    Science.gov (United States)

    Moench, Holger; Frey, Manuel; Grabherr, Martin; Gronenborn, Stephan; Gudde, Ralph; Kolb, Johanna; Miller, Michael; Weigl, Alexander

    2017-02-01

    VCSELs and VCSEL arrays are an ideal light source for time-of-flight based sensors. The narrow emission spectrum and the ability for short pulses make them superior to LEDs. Combined with fast photodiodes or special camera chips spatial 3D information can be obtained which is needed in diverse applications like camera autofocus, indoor navigation, 3Dobject recognition or even autonomously driving vehicles. VCSEL arrays are the way to tailor the output power. For pulse operation at low duty cycle average heat dissipation is no longer the upper limit to the operating point of VCSELs but over-pulsing becomes possible. Taking into account electrical boundary conditions and optimum conversion efficiency arrays can be designed for specific operating conditions. Measurements of arrays under short pulse operation are presented using a package with integrated driver.

  10. Performance of Advanced Light Source particle beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  11. Complex Evaluation of Light Sources in Case of Electric Power Cost Increase

    Directory of Open Access Journals (Sweden)

    Y. N. Kolesnik

    2008-01-01

    Full Text Available The paper gives complex evaluation of efficiency of incandescent lamps, luminescent and light-emitting-diode (LED light sources in case of electric power price increase. On the basis of experimental table lamp electric power indices of light-emitting-diode (LED light sources with equivalent luminous flux have been determined. Dependences of main indices of economic efficiency of various light sources on their operational regimes have been obtained and rate of influence on these indices of electric power price increase have been determined. Economically justified variants and conditions for application of various light sources have been substantiated.

  12. Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system

    Science.gov (United States)

    Hang, Chao; Huang, Guoxiang

    2014-01-01

    We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.

  13. Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography.

    Science.gov (United States)

    Lehmann, Dietrich; Faber, Pascal L; Tei, Shisei; Pascual-Marqui, Roberto D; Milz, Patricia; Kochi, Kieko

    2012-04-02

    Brain functional states are established by functional connectivities between brain regions. In experienced meditators (13 Tibetan Buddhists, 15 QiGong, 14 Sahaja Yoga, 14 Ananda Marga Yoga, 15 Zen), 19-channel EEG was recorded before, during and after that meditation exercise which their respective tradition regards as route to the most desirable meditative state. The head surface EEG data were recomputed (sLORETA) into 19 cortical regional source model time series. All 171 functional connectivities between regions were computed as 'lagged coherence' for the eight EEG frequency bands (delta through gamma). This analysis removes ambiguities of localization, volume conduction-induced inflation of coherence, and reference-dependence. All significant differences (corrected for multiple testing) between meditation compared to no-task rest before and after meditation showed lower coherence during meditation, in all five traditions and eight (inhibitory as well as excitatory) frequency bands. Conventional coherence between the original head surface EEG time series very predominantly also showed reduced coherence during meditation. The topography of the functional connectivities was examined via PCA-based computation of principal connectivities. When going into and out of meditation, significantly different connectivities revealed clearly different topographies in the delta frequency band and minor differences in the beta-2 band. The globally reduced functional interdependence between brain regions in meditation suggests that interaction between the self process functions is minimized, and that constraints on the self process by other processes are minimized, thereby leading to the subjective experience of non-involvement, detachment and letting go, as well as of all-oneness and dissolution of ego borders during meditation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography

    Science.gov (United States)

    Liu, Jonathan J.; Witkin, Andre J.; Adhi, Mehreen; Grulkowski, Ireneusz; Kraus, Martin F.; Dhalla, Al-Hafeez; Lu, Chen D.; Hornegger, Joachim; Duker, Jay S.; Fujimoto, James G.

    2014-01-01

    Purpose To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT). The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR) display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display. Design Observational prospective cross-sectional study. Methods Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2) were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1) standard logarithmic scale display, enhanced vitreous imaging using (2) vitreous window display and (3) HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method. Results Features observed included the bursa premacularis (BPM), area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid) detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s), and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%–81.1%) using standard logarithmic scale display, 80.6% (95%CI: 73.8%–86.0%) using HDR display, and 91.9% (95%CI: 86.6%–95.2%) using vitreous window display. Conclusions SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior

  15. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  16. Full-range swept source optical coherence tomography based on carrier frequency by transmissive dispersive optical delay line.

    Science.gov (United States)

    Wu, Tong; Ding, Zhihua; Wang, Chuan; Chen, Minghui

    2011-12-01

    A high speed swept source optical coherence tomography (SS-OCT) system capable of full-range imaging is presented. Wave-number carrier frequency is introduced into the spectral interference signal by a transmissive dispersive optical delay line (TDODL). High carrier frequency in the spectral interference signal corresponding to an equivalent distance-shift is exploited to obtain full-range OCT imaging. Theoretical development is conducted with the instantaneous coherence function introduced for a complete description of a spectral interference signal. Performance advantage of the TDODL-based method over the conventional approach where only one side (positive or negative path length difference) is used for imaging to avoid overlaying mirror artifacts is confirmed by the measured envelopes of spectral interference signal. Feasibility of the proposed method for full-range imaging is validated in a custom-built SS-OCT system by in vivo imaging of a biological sample.

  17. Non-Gaussian statistics of extreme events in stimulated Raman scattering: The role of coherent memory and source noise

    Science.gov (United States)

    Monfared, Yashar E.; Ponomarenko, Sergey A.

    2017-10-01

    We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.

  18. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  19. Status of PEP-X Light Source Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Bertsche, K.J.; Cai, Y.; Chao, A.; Huang, X.; Jiao, Y.; Ng, C.-K.; Nosochkov, Y.; Novokhatski, A.; Rivetta, C.H.; Safranek, J.A.; Stupakov, G.V.; Wang, L.; Wang, M.-H.; Xiao, L.; /SLAC; Hettel, R.O.; /SLAC; Rabedeau, T.; /SLAC

    2011-12-14

    The SLAC Beam Physics group and other SLAC collaborators continue to study options for implementing a near diffraction-limited ring-based light source in the 2.2-km PEP-II tunnel that will serve the SSRL scientific program in the future. The study team has completed the baseline design for a 4.5-GeV storage ring having 160 pm-rad emittance with stored beam current of 1.5 A, providing >10{sup 22} brightness for multi-keV photon beams from 3.5-m undulator sources. The team has also investigated possible 5-GeV ERL configurations which, similar to the Cornell and KEK ERL plans, would have {approx}30 pm-rad emittance with 100 mA current, and {approx}10 pm-rad emittance with 25 mA or less. Now a 4.5-GeV 'ultimate' storage ring having emittance similar to the ERL and operating with {approx}200 mA is under study. An overview of the progress of the PEP-X design study and SSRL's plans for defining performance parameters that will guide the choice of ring options is presented.

  20. National Synchrotron Light Source guidelines for the conduct of operations

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1998-01-01

    To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.