WorldWideScience

Sample records for coherent high energy

  1. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  2. Coherent and non-coherent double diffractive production of QQ-bar-pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Galoyan, A.S.; Enkovskij, L.L.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.

    1999-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pairs (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc-bar and bb-bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effect in Quark-Gluon Plasma, in the search got intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherently scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ-bar pair, M QQ-bar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη >5 [ru

  3. Coherent and non-coherent double diffractive production of QQ-bar - pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1998-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, M QQb ar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5

  4. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  5. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  6. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  7. Coherent error study in a retarding field energy analyzer

    International Nuclear Information System (INIS)

    Cui, Y.; Zou, Y.; Reiser, M.; Kishek, R.A.; Haber, I.; Bernal, S.; O'Shea, P.G.

    2005-01-01

    A novel cylindrical retarding electrostatic field energy analyzer for low-energy beams has been designed, simulated, and tested with electron beams of several keV, in which space charge effects play an important role. A cylindrical focusing electrode is used to overcome the beam expansion inside the device due to space-charge forces, beam emittance, etc. In this paper, we present the coherent error analysis for this energy analyzer with beam envelope equation including space charge and emittance effects. The study shows that this energy analyzer can achieve very high resolution (with relative error of around 10 -5 ) if taking away the coherent errors by using proper focusing voltages. The theoretical analysis is compared with experimental results

  8. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  9. Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals

    CERN Document Server

    Apyan, A; Badelek, B; Ballestrero, S; Biino, C; Birol, I; Cenci, P; Connell, S H; Eichblatt, S; Fonseca, T; Freund, A; Gorini, B; Groess, R; Ispirian, K; Ketel, T; Kononets, Y V; López, A; Mangiarotti, A; Sellschop, J P Friedel; Shieh, M; Sona, P; Strakhovenko, V M; Uggerhøj, U; Uggerhøj, Erik; Van Rens, B; Velasco, M; Vilakazi, Z Z; Wessely, O; Ünel, G; Kononets, Yu V

    2008-01-01

    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed these phenomena as well as their polarization dependence to be evaluated under conditions where single-photon cross-sections could be measured. This proved very important as the theoretical description of CB and CPP is an area of active theoretical debate and development. The theoretical approach used in this paper predicts both the cross sections and polarization observables very well for the experimental conditions investigated, indicating that the understanding of CB and CPP is reliable up to energies of 170 GeV. A birefringence effect in CPP was studied and it was demonstrated this enabled new technologies for high energy photon beam optics, such as polarimeters (for both linear and circular polarization) and phase plates. We also present new results regarding the features of coherent high energy photon emis...

  10. Elastic energies of coherent germanium islands on silicon

    International Nuclear Information System (INIS)

    Vanderbilt, D.; Wickham, L.K.

    1991-01-01

    Motivated by recent observations of coherent Ge island formation during growth of Ge on Si (100), the authors of this paper have carried out a theoretical study of the elastic energies associated with the evolution of a uniform strained overlayer as it segregates into coherent islands. In the context of a two-dimensional model, the authors have explored the conditions under which coherent islands may be energetically favored over both uniform epitaxial films and dislocated islands. The authors find that if the interface energy (for dislocated islands) is more than about 15% of the surface energy, then there is a range of island sizes for which the coherent island structure is preferred

  11. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  12. Coherent Behavior and the Bound State of Water and K(+) Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds.

    Science.gov (United States)

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.

  13. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  14. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    AUTHOR|(CDS)2210072; Mirarchi, Daniele; Redaelli, Stefano

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Experiments are being carried out to study in detail this phenomenon. The UA9 collaboration is using high energy protons and heavy ions beams from the SPS accelerator at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystal planes. The goal of the thesis is indeed to analyze the data and develop an improved simulation routine to better describe the data’s subtleties, in particular the transition between the volume reflection and amorphous modes of beam interaction with the crystal.

  15. Coherent spontaneous radiation from highly bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-01-01

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10 4 has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques

  16. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  17. Coherent Energy and Environmental System Analysis

    DEFF Research Database (Denmark)

    Hvelplund, Frede Kloster; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    This report presents a summary of results of the strategic research project “Coherent Energy and Environmental System Analysis” (CEESA) which was conducted in the period 2007-2011 and funded by the Danish Strategic Research Council together with the participating parties. The project...... was interdisciplinary and involved more than 20 researchers from 7 different university departments or research institutions in Denmark. Moreover, the project was supported by an international advisory panel. The results include further development and integration of existing tools and methodologies into coherent...

  18. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  19. Coherent radiation from high-current electron beams of linear accelerators and its applications

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Takanaka, Makoto; Nakamura, Mitsumi; Kato, Ryukou; Takahashi, Toshiharu; Nam, Soon-Kwon; Taniguchi, Ryouichi; Kojima, Takao

    2006-01-01

    The characteristics of the far-infrared light source using the coherent radiation emitted from a high-energy short electron bunch have been investigated. The coherent radiation has a continuous spectrum in a submillimeter to millimeter wavelength range and the brightness is relatively high. The spectrum of the radiation is determined by the longitudinal form factor of the electron bunch. The operational conditions of a high-current linear accelerator have been optimized using an electron bunch shape monitor. The coherent transition radiation light source has been applied to absorption spectroscopy for liquid water and to an imaging experiment for a leaf of rose

  20. Coherent and noncoherent double diffractive production of QQ-bar pairs in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1999-01-01

    The coherent and noncoherent double diffractive production of heavy quark-antiquark pairs in ion scattering at the LHC energies has been considered. The total and differential cross sections for such processes featuring the production of cc-bar and bb-bar quark pairs in pp, CaCa, and PbPb collisions have been estimated. It has been shown that the fraction of heavy quark-antiquark pairs produced in double diffractive scattering amounts to a few percent of the number of QQ-bar pairs produced in hard QCD scattering; therefore, it is necessary to take into account such processes in detecting heavy quarks, in seeking Higgs bosons of intermediate mass, in investigating the suppression of heavy quarkonia in quark-gluon plasma, and so on. It has been demonstrated that the cross section for coherent scattering is so large that this process can be used to study collective effects in nuclei at high energies. Large values of the quark-antiquark invariant mass, M QQ-bar > or approx. 100 GeV, in association with a large rapidity gap between diffractive jets, Δη>5, exemplify manifestations of such nuclear interactions

  1. Observation of high-power coherent synchrotron radiation in the THz region from the JAEA energy recovery linac

    International Nuclear Information System (INIS)

    Takahashi, Toshiharu; Okuda, Shuichi; Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobihiro; Iijima, Hokuto; Nishitani, Tomohiro; Nishimori, Nobuyuki

    2007-01-01

    The energy recovery linac (ERL) is able to generate high-power coherent synchrotron radiation (CSR) in the terahertz and the millimeter-wave regions, because it produces shorter bunches than usual storage rings and a higher current than conventional linacs. The spectrum of CSR has been measured at the JAEA-ERL in the wavenumber range from 0.5 to 15 cm -1 . The detected power was 2x10 -4 W/cm -1 at 2.5 cm -1 for the average beam current of 17.7 μA. When the infrared FEL was operated with the undulator in the ERL, the CSR spectrum was shifted to the longer wavelengths because of the energy broadening of the electron beam. (author)

  2. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    Forcher, Francesco; Redaelli, Stefano; Zanetti, Marco; CERN. Geneva. ATS Department

    2018-01-01

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Several studies are on-going at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystalline planes. The goal of this note is to analyze the data collected on extracted beam from the SPS and develop an improved model to simulate the data’s subtleties, in particular the transition between the volume reflection and amorphous interactions of the beam with crystals.

  3. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  4. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    Science.gov (United States)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  5. A highly unscientific guide to civil-military coherence

    DEFF Research Database (Denmark)

    Zartsdahl, Peter Horne

    2017-01-01

    Coordinating external instruments is easy. In this EU-CIVCAP newsletter editorial, we provide a highly unscientific guide to succesful civil-military coherence. A User's Guide to Coherence; and extensive collection of buzzwords.......Coordinating external instruments is easy. In this EU-CIVCAP newsletter editorial, we provide a highly unscientific guide to succesful civil-military coherence. A User's Guide to Coherence; and extensive collection of buzzwords....

  6. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  7. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  8. Canadian energy and climate policies: A SWOT analysis in search of federal/provincial coherence

    International Nuclear Information System (INIS)

    Fertel, Camille; Bahn, Olivier; Vaillancourt, Kathleen; Waaub, Jean-Philippe

    2013-01-01

    This paper presents an analysis of Canadian energy and climate policies in terms of the coherence between federal and provincial/territorial strategies. After briefly describing the institutional, energy, and climate contexts, we perform a SWOT analysis on the themes of energy security, energy efficiency, and technology and innovation. Within this analytical framework, we discuss the coherence of federal and provincial policies and of energy and climate policies. Our analysis shows that there is a lack of consistency in the Canadian energy and climate strategies beyond the application of market principles. Furthermore, in certain sectors, the Canadian approach amounts to an amalgam of decisions made at a provincial level without cooperation with other provinces or with the federal government. One way to improve policy coherence would be to increase the cooperation between the different jurisdictions by using a combination of policy tools and by relying on existing intergovernmental agencies. - Highlights: • We perform a SWOT analysis of the Canadian energy and climate policies. • We analyse policy coherence between federal and provincial/territorial strategies. • We show that a lack of coordination leads to a weak coherence among policies. • The absence of cooperation results in additional costs for Canada

  9. High-power SRS lasers – coherent summators (the way it was)

    International Nuclear Information System (INIS)

    Grasiuk, Arkadii Z; Zubarev, I G; Efimkov, V F; Smirnov, V G

    2012-01-01

    The history of the research works performed under the guidance of H.G. Basov and aimed at developing high-energy lasers – coherent summators (CSs) – based on stimulated Raman scattering (SRS) in liquid nitrogen and liquid oxygen is reported. The work was performed jointly by researchers of FIAN [the Laboratory of Quantum Radiophysics (LQRP)] and VNIIEF. Many problems were solved as a result of these studies. Liquid nitrogen and oxygen were found to be optimal active media for high-power SRS lasers with high energy per pulse. A method for purifying these cryogenic liquids from micro- and nanoimpurities was developed, which made it possible to eliminate nonlinear loss of pump radiation and converted radiation in the active medium and ensure effective operation of SRS lasers – coherent summators (SRSL CSs) with high output energy. Cryogenic cells providing high optical homogeneity of liquid nitrogen and oxygen were developed, which ensured low (at a level of 0.1 mrad) divergence of converted radiation with high energy density. Raster focusing systems providing optimal concentration of pump radiation in the active medium were designed. These studies resulted in the development of high-power highenergy SRSL CSs with a low beam divergence, based on liquid nitrogen (λ S = 1.89 μm) and liquid oxygen (λ S = 1.65 μm), with pumping by explosively pumped iodine lasers (EPILs) (λ p = 1.315 μm). The characteristics of the SRSL CSs developed were record for that time (the end of 1960s and the beginning of 1970s): energy up to 2.5 kJ per 10-μs pulse, beam divergence ∼10 -4 rad, and beam energy density of several hundreds of J cm -2 . (special issue devoted to the 90th anniversary of n.g. basov)

  10. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  11. Coherent bremsstrahlung in crystals as a tool for producing high energy photon beams to be used in photoproduction experiments at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Bilokon, H; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Bologna, G; Picchi, P [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Celani, F; Falcioni, R [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1983-01-01

    We recall the properties of coherent bremsstrahlung of high energy electrons in single crystals and show that a suitably oriented diamond crystal can produce a high energy bremsstrahlung beam whose quasimonochromatic spectral composition may be exploited for increasing the production rate in a photoproduction experiment at hundreds of GeV. A careful analysis of the required angular resolutions is performed. It turns out that the standard deviation of the electron beam angular divergence in one plane should be less than 0.3 mrad, for a beam energy of 150 GeV. The standard deviation in the perpendicular plane is not critical. In this situation the photoproduction rate in a typical case is increased by a factor of about 3 with respect to the conventional bremsstrahlung beam.

  12. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  13. Measurement of coherent $\\pi^{+}$ production in low energy neutrino-Carbon scattering

    CERN Document Server

    Abe, K.

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent $\\pi^{+}$ production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region.

  14. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  15. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  16. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  17. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  18. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  19. Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems

    International Nuclear Information System (INIS)

    Williams, R.O.

    1979-02-01

    Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures

  20. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw

    2015-02-02

    Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.

  1. Coherent properties of a tunable low-energy electron-matter-wave source

    Science.gov (United States)

    Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.

    2018-01-01

    A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.

  2. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2015-01-01

    The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity......, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart...

  3. Dynamic chaos phenomenon and coherent radiation accompanying high energy particle motion through crystals

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.

    1991-01-01

    A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)

  4. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  5. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  6. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    Science.gov (United States)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  7. Coherent pion photoproduction from deuterium at intermediate energies

    International Nuclear Information System (INIS)

    Osland, P.; Rej, A.K.

    1975-12-01

    The coherent photoproduction of neutral pions on deuterons is studied at energies around the (3,3) resonance and discuss the effects of the Fermi motion, rescattering and kinematical approximations. The results are very dependent upon what kinematical approximations one adopts for the impulse approximation term, which dominates up to very large angles. Allowing for this uncertainty in the kinematics, our results are in good agreement with the most recent experimental data

  8. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  9. High-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Norrenberg, Sarah; Jemec, Gregor

    2013-01-01

    to those described for reflectance confocal microscopy but with the advantages not only to visualize individual cells up to a depth of 570 μm but also in both slice and en face mode. An adapted algorithmic method for pattern analysis of common inflammatory skin diseases could be proposed. This new......High-definition optical coherence tomography (HD-OCT) is a non-invasive technique for morphological investigation of tissue with cellular resolution filling the imaging gap between reflectance confocal microscopy and conventional optical coherence tomography. The aim of this study is first...... dermatitis. Additional studies to test the sensitivity and specificity of the proposed algorithm for pattern analysis are essential. The other categories of Ackerman's pattern recognition need to be evaluated. This study provides a set of morphological features generated by HD-OCT imaging very similar...

  10. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  11. Editorial: Focus on X-ray Beams with High Coherence

    Science.gov (United States)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  12. Coherent or hopping like energy transfer in the chlorosome ?

    Science.gov (United States)

    Nalbach, Peter

    2014-08-01

    Chlorosomes, as part of the light-harvesting system of green bacteria, are the largest and most efficient antennae systems in nature. We have studied energy transfer dynamics in the chlorosome in a simplified toy model employing a master equation. Dephasing and relaxation due to environmental fluctuations are included by Lindblad dephasing and Redfield thermalization rates. We find at room temperature three separate time scales, i.e. 25 fs, 250 fs and 2.5 ps and determine the according energy pathways through the hierarchical structure in the chlorosome. Quantum coherence lives up to 150 fs at which time the energy is spread over roughly 12 pigments in our model.

  13. High energy KrCl electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  14. Coherent counter-steaming electrostatic wave Raman interaction system utilizing opposing electron beams for the production of coherent microwaves in plasmas

    International Nuclear Information System (INIS)

    Leiby, C.C. Jr.; Prasad, B.

    1977-01-01

    The generation of controlled, electromagnetic, coherent, microwave radiation from a warm, uniform plasma at approximately twice the electron plasma frequency by means of two oppositely directed streams of high energy electrons and the coupling of the resulting coherent, electromagnetic radiation from a cavity resonator into external circuitry, wherein the two opposing streams of high energy electrons directed into the warm, uniform plasma result in a conversion of electron beam and plasma energies into transverse electromagnetic radiation from 10 to 100 times that which is possible with a single electron beam-plasma system. 7 claims, 4 figures

  15. Quantum-path control in high-order harmonic generation at high photon energies

    International Nuclear Information System (INIS)

    Zhang Xiaoshi; Lytle, Amy L; Cohen, Oren; Murnane, Margaret M; Kapteyn, Henry C

    2008-01-01

    We show through experiment and calculations how all-optical quasi-phase-matching of high-order harmonic generation can be used to selectively enhance emission from distinct quantum trajectories at high photon energies. Electrons rescattered in a strong field can traverse short and long quantum trajectories that exhibit differing coherence lengths as a result of variations in intensity of the driving laser along the direction of propagation. By varying the separation of the pulses in a counterpropagating pulse train, we selectively enhance either the long or the short quantum trajectory, and observe distinct spectral signatures in each case. This demonstrates a new type of coupling between the coherence of high-order harmonic beams and the attosecond time-scale quantum dynamics inherent in the process

  16. Coherent synchrotron radiation transient effects in the energy-dependent region

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Botman, Jan; Goloviznin, Vladimir; Wiel, Marnix van der

    2002-01-01

    Coherent synchrotron radiation (CSR) is a well known phenomenon that originates from coherent superposition of electromagnetic waves by ultrarelativistic electrons. CSR longitudinal effects during the passage of a Gaussian beam from a straight to a circular path have often been studied in a regime in which they are energy independent. Nevertheless, the approximations used in such a regime may fail in several practical situations, as in the case of low-energy injectors or for small-wavelength structures within the bunch distribution in CSR-related instability problems. These situations demand a deeper investigation of longitudinal transient effects in the region where the approximations above are no longer valid: a strong γ dependence is found, and described in this paper, in the rate of energy change induced by CSR during the transient of a Gaussian bunch between a straight and a circular path, which was studied with the help of the authors' previous work. Results show that the overall CSR longitudinal effects, in this case, are reduced. One of the outcomes of previous work by Saldin et al. was extended to this situation and very good agreement between the two studies was found

  17. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  18. First observation of coherent Smith-Purcell radiation in the highly relativistic regime

    International Nuclear Information System (INIS)

    Blackmore, V.; Doucas, G.; Perry, C.; Kimmitt, M.F.

    2008-01-01

    Coherent Smith-Purcell (SP) radiation has already been applied as a technique to measure the longitudinal bunch profile of charged particle beams in the low to intermediate energy range. However, with the advent of the International Linear Collider and the need to develop a non-invasive method of measuring the bunch profile, it has become necessary to carry out experiments at the highest possible energies. The paper summarizes some recent work at intermediate (45 MeV) energy and presents the first observations of SP radiation from a 28.5 GeV beam at SLAC. The experimental challenges and future possibilities of coherent Smith-Purcell radiation as a longitudinal bunch profile diagnostic tool are also discussed

  19. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  20. Relaxation Mechanisms, Structure and Properties of Semi-Coherent Interfaces

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2015-10-01

    Full Text Available In this work, using the Cu–Ni (111 semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes. This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. The various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.

  1. An interface energy density-based theory considering the coherent interface effect in nanomaterials

    Science.gov (United States)

    Yao, Yin; Chen, Shaohua; Fang, Daining

    2017-02-01

    To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.

  2. Pion production - a probe for coherence in medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Stachel, J.

    1985-01-01

    Neutral pion production is observed in heavy ion collisions at beam energies as low as 25 MeV/u, where this process is consumming the major portion of the total center of mass energy available. At these low beam energies single nucleon nucleon collision models and also models that incorporate the cooperative sharing of the beam energy of several nucleons do not reproduce the data. Rather, the data presented here call for a fully coherent production mechanism. (orig.)

  3. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  4. Exploring coherent phenomena and energy discrimination in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas

    2011-05-04

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  5. Exploring coherent phenomena and energy discrimination in X-ray imaging

    International Nuclear Information System (INIS)

    Koenig, Thomas

    2011-01-01

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  6. Canada's role in the global energy picture: making the case for a more coherent national energy approach

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Philip; Drexhage, John [International Institute for Sustainable Development (Canada)

    2010-07-01

    Given Canada's position in the present global energy dynamic, there are opportunities for private sector economic actors to make large-scale investments in traditional energy resources such as oil, natural gas, hydropower and uranium. Canada, with so much to offer in terms of resources and potential for private investment, could play a leadership role in the push to develop clean energy. There is a need to articulate an overarching, coherent vision, not only in terms of Canada's stance on energy development but also in terms of national strategy. This is a critical moment, not only for Canada but for the whole world, when an effective, sustainable blueprint needs to be drawn up. If we can make a coherent case for a clean energy vision of the future, then Canada will make global progress in the energy field. Moreover, it seems clear that global governance with respect to energy issues will continue to be a topic of growing interest. Canada needs to give serious thought to what its position and its contribution will be with respect to a clean energy future.

  7. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  8. Apparatus for isotopic separation using a high-frequency wave and coherent radiation

    International Nuclear Information System (INIS)

    Mourier, G.

    1983-11-01

    The purpose of the present invention is an apparatus for industrial separation of isotopes, using a high-frequency electromagnetic field and coherent radiation such as that from a laser. Separation of isotopes by isotopically selective ionization, followed by entrainment of the ions by means of a magnetic field, is known. The selective ionization operation can be carried out in two consecutive stages: excitation of the chosen isotope, from the ground energy state to a specified excited level, near ionization; the energy required for this first stage can be supplied by means of a laser, the laser radiation being characterized for high power and well-defined frequency; this stage offers the advantage of being easily made isotopically selective; then ionization of the excited atoms by means of supplying relatively weak energy which should be insufficient to ionize the nonexcited ions; this second stage can also be carried out by means of a laser

  9. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  10. 30-lens interferometer for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G. [European Synchrotron Radiation facility (ESRF), CS 40220, 71, av des Martyrs, F-38043, Grenoble (France); Kohn, V. [National Research Centre “Kurchatov Institute”, 123182, Moscow (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka (Russian Federation); Snigirev, A. [Baltic Federal University, 236041, Kaliningrad (Russian Federation)

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  11. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  12. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    Science.gov (United States)

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  13. On the interfacial energy of coherent interfaces

    International Nuclear Information System (INIS)

    Kaptay, G.

    2012-01-01

    A thermodynamic model has been developed for interfacial energies of coherent interfaces using only the molar Gibbs energy and the molar volume of the two phases surrounding the interface as the initial data. The analysis is started from the simplest case of the interface formed by two solutions on the two sides of a miscibility gap, when both phases are described by the same Gibbs energy and molar volume functions. This method is applied to the fcc Au–Ni, liquid Ga–Pb and liquid Al–Bi systems. Reasonable agreement was found with the measured values in liquid Ga–Pb and Al–Bi systems. It was shown that the calculated results are sensitive to the choice of the Calphad-estimated thermodynamic data. The method is extended to the case where the two phases are described by different Gibbs energy and molar volume functions. The extended model is applied to the interface present in an Ni-based superalloy between the AlNi 3 face-centered cubic (fcc) compound and the Ni–Al fcc disordered solid solution. The calculated results are found to be similar to other values recently obtained from the combination of kinetic and thermodynamic data. The method is extended to ternary and higher order systems. It is predicted that the interfacial energy will gradually decrease with the increase in number of components in the system.

  14. High energy XeBr electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  15. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  16. Temporally coherent x-ray laser with the high order harmonic light

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kawazome, Hayato; Nagashima, Keisuke

    2005-01-01

    We obtained the neon-like manganese x-ray laser with the injection of the high order harmonic light as the seed x-ray at the wavelength of 26.9 nm for the purpose of generation of the temporally coherent x-ray laser. The x-ray amplifier, which has quite narrow spectral width, selected and amplified the temporally coherent mode of the harmonic light. The temporal coherence of the mode selected harmonic light was nearly transform limited pulse, and the obtained x-ray laser with the seed x-ray expected to be nearly temporally coherent x-ray. (author)

  17. Coherence Phenomena in Charmonium Production off Nuclei at the Energies of RHIC and LHC

    CERN Document Server

    Kopeliovich, V B; Hüfner, J

    2001-01-01

    In the energy range of RHIC and LHC the mechanisms of nuclear suppression of charmonia are expected to be strikingly different from what is known for the energy of the SPS. One cannot think any more of charmonium produced on a bound nucleon which then attenuates as it passes through the rest of the nucleus. The coherence length of charmonium production substantially exceeds the nuclear radius in the new energy range. Therefore the production amplitudes on different nucleons, rather than the cross sections, add up and interfere, i.e. shadowing is at work. So far no theoretical tool has been available to calculate nuclear effects for charmonium production in this energy regime. We develop a light-cone Green function formalism which incorporates the effects of the coherence of the production amplitudes and of charmonium wave function formation, and is the central result of this paper. We found a substantial deviation from QCD factorization, namely, gluon shadowing is much stronger for charmonium production than ...

  18. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  19. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  20. Possibility of coherent hard x-ray production by pumping with synchrotron radiation and low energy photons. Period covered: November 17, 1976--August 16, 1977

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1977-01-01

    Coherent x-rays in the keV range could be produced by pumping a suitable gas with synchrotron radiation in combination with low energy photon beams in the presence of appropriately arranged mirrors. With a wiggler magnet placed in the low beta section of the PEP machine to be constructed at Stanford, 1020 eV coherent photons could be produced from Ne. Appropriate synchrotron radiation will produce a highly ionized cool gas. Low energy photons modify the outer electron structure of ions to enhance lasing: they modify the lifetime of the inverted state, counterbalance unwanted collisionally induced transitions, reduce Stark line broadening

  1. Identification of small-scale discontinuities based on dip-oriented gradient energy entropy coherence estimation

    Science.gov (United States)

    Peng, Da; Yin, Cheng

    2017-09-01

    Locating small-scale discontinuities is one of the most challenging geophysical tasks; these subtle geological features are significant since they are often associated with subsurface petroleum traps. Subtle faults, fractures, unconformities, reef textures, channel boundaries, thin-bed boundaries and other structural and stratigraphic discontinuities have subtle geological edges which may provide lateral variation in seismic expression. Among the different geophysical techniques available, 3D seismic discontinuity attributes are particularly useful for highlighting discontinuities in the seismic data. Traditional seismic discontinuity attributes are sensitive to noise and are not very appropriate for detecting small-scale discontinuities. Thus, we present a dip-oriented gradient energy entropy (DOGEE) coherence estimation method to detect subtle faults and structural features. The DOGEE coherence estimation method uses the gradient structure tensor (GST) algorithm to obtain local dip information and construct a gradient correlation matrix to calculate gradient energy entropy. The proposed DOGEE coherence estimation method is robust to noise, and also improves the clarity of fault edges. It is effective for small-scale discontinuity characterisation and interpretation.

  2. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E

    2013-01-01

    With the continued development of non-invasive therapies for actinic keratosis such as PDT and immune therapies, the non-invasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography is a high-resolution imaging tool, with micrometre resolution in both...... transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...

  3. Incontri di Fisica delle Alte Energie Italian Meeting on High Energy Physics Napoli

    CERN Document Server

    Carlino, Gianpaolo; Merola, Leonardo; Paolucci, Pierluigi; Ricciardi, Giulia; IFAE 2007

    2008-01-01

    This book collects the Proceedings of the Workshop "Incontri di Fisica delle Alte Energie (IFAE) 2007, Napoli, 11-13 April 2007". This is the sixth edition of a series of meetings on fundamental research in particle physics and was attended by about 160 researchers. Presentations, both theoretical and experimental, addressed the status of Physics of the Standard Model and beyond, Flavour phyisc, Neutrino and Astroparticle physics, new technology in high energy physics. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation at the end of 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings ...

  4. Coherent rho+ production in neutrino-neon interactions

    International Nuclear Information System (INIS)

    Ballagh, H.C.; Bingham, H.H.; Lawry, T.J.

    1988-01-01

    Coherent rho + production on neon nuclei has been observed in charged-current events in a neutrino bubble-chamber experiment. The incident neutrino energy was 10--320 GeV, with a median event energy of 80 GeV. The rate per charged-current event was (0.28 +- 0.10)%. Comparison was made to vector-meson-dominance predictions; agreement with the overall rate, but disagreement at high neutrino energies and at high Q 2 , was found

  5. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  6. Brightness and coherence of synchrotron radiation and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1986-10-01

    The characteristics of synchrotron radiation are reviewed with particular attention to its phase-space properties and coherence. The transition of the simple undulator radiation to more intense, more coherent high-gain free electron lasers, is discussed

  7. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  8. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  9. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  10. Imaging of basal cell carcinoma by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Norrenberg, S; Jemec, G B E

    2012-01-01

    With the continued development of noninvasive therapies for basal cell carcinoma (BCC) such as photodynamic therapy and immune therapies, noninvasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography (HD-OCT) is a high-resolution imaging tool, wit......, with micrometre resolution in both transversal and axial directions, enabling visualization of individual cells up to a depth of around 570 μm, and filling the imaging gap between conventional optical coherence tomography (OCT) and reflectance confocal microscopy (RCM)....

  11. Energy loss and (de)coherence effects beyond eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A.

    2014-01-01

    The parton branching process is known to be modified in the presence of a medium. Colour decoherence processes are known to determine the process of energy loss when the density of the medium is large enough to break the correlations between partons emitted from the same parent. In order to improve existing calculations that consider eikonal trajectories for both the emitter and the hardest emitted parton, we provide in this work, the calculation of all finite energy corrections for the gluon radiation off a quark in a QCD medium that exist in the small angle approximation and for static scattering centres. Using the path integral formalism, all particles are allowed to undergo Brownian motion in the transverse plane and the offspring allowed to carry an arbitrary fraction of the initial energy. The result is a general expression that contains both coherence and decoherence regimes that are controlled by the density of the medium and by the amount of broadening that each parton acquires independently.

  12. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  13. High-density EEG coherence analysis using functional units applied to mental fatigue

    NARCIS (Netherlands)

    Caat, Michael ten; Lorist, Monicque M.; Bezdan, Eniko; Roerdink, Jos B.T.M.; Maurits, Natasha M.

    2008-01-01

    Electroencephalography (EEG) coherence provides a quantitative measure of functional brain connectivity which is calculated between pairs of signals as a function of frequency. Without hypotheses, traditional coherence analysis would be cumbersome for high-density EEG which employs a large number of

  14. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  15. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  16. Polarimetry of coherent bremsstrahlung by analysis of the photon energy spectrum

    International Nuclear Information System (INIS)

    Darbinyan, S.; Hakobyan, H.; Jones, R.; Sirunyan, A.; Vartapetian, H.

    2005-01-01

    A method of coherent bremsstrahlung (CB) polarimetry based on the analysis of the shape of the photon energy spectrum is presented. The influence of a number of uncertainty sources, including the choice of atomic form-factors, has been analyzed. For a CB source consisting of a diamond radiator and multi-GeV electrons, an absolute accuracy of polarimetry at the level of 0.01-0.02 is attainable

  17. Coherent and incoherent J /ψ photonuclear production in an energy-dependent hot-spot model

    Science.gov (United States)

    Cepila, J.; Contreras, J. G.; Krelina, M.

    2018-02-01

    In a previous publication, we have presented a model for the photoproduction of J /ψ vector mesons off protons, where the proton structure in the impact-parameter plane is described by an energy-dependent hot-spot profile. Here we extend this model to study the photonuclear production of J /ψ vector mesons in coherent and incoherent interactions of heavy nuclei. We study two methods to extend the model to the nuclear case: using the standard Glauber-Gribov formalism and using geometric scaling to obtain the nuclear saturation scale. We find that the incoherent cross section changes sizably with the inclusion of subnucleonic hot spots and that this change is energy dependent. We propose to search for this behavior by measuring the ratio of the incoherent to coherent cross sections at different energies. We compare the results of our model to results from the Relativistic Heavy-Ion Collider (RHIC) and from run 1 at the Large Hadron Collider (LHC), finding satisfactory agreement. We also present predictions for the LHC at the new energies reached in run 2. The predictions include J /ψ production in ultraperipheral collisions, as well as the recently observed photonuclear production in peripheral collisions.

  18. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  19. Coherent production of high-energy photons and π mesons in heavy ion reactions

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.

    1986-01-01

    A microscopic model of high-energy photon and pion production processes in collision of multicharged ions with kinetic energy of relative motion from 40 to 100 MeV per nucleon was constructed not using fitting parameters

  20. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  1. Hadron coherent production

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1981-01-01

    The process of the coherent production of hadrons analogous to Cherenkov radiation of photons is considered. Its appearence and qualitative treatment are possible now because it is known from experiment that the real part of the πp (and pp) forward elastic scattering amplitude is positive at high energies. The threshold behaviour of the process as well as very typical angular and psub(T)-distributions where psub(t)-transverse momentum corresponding to the ring structure of the target diagram at rather large angles and to high-psub(T) jet production are emphasized [ru

  2. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  3. Comparative study between hadron and heavy ion dissociation at high energies

    International Nuclear Information System (INIS)

    El-Bakry, Y.M.N.; Abd-Elhalim, S.M.

    2002-01-01

    The present work deals with the dissociation of hadrons and heavy ions at high energies. In investigating hadron nucleus and nucleus-nucleus collisions, it is important to classify the experimental data, into two main classes; the coherent. and incoherent reactions. The coherent production is the main of our study. This process called electromagnetic dissociation (ED) and can be differentiate into coulomb dissociation (CD) and diffraction dissociation (DD). This work explains the experimental data of collisions of hadrons K± (70 GeV/c) and π(340 Gc V/c) and heavy ions 6 L i, 7 L i, 1 2C and1 6O at Dubna energies (3-4.5 A GeV/c)with emulsion target, in the frame of some models and theories which describe the mechanism of ED dissociation

  4. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  5. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  6. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  7. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  8. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  9. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  10. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  11. Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media

    International Nuclear Information System (INIS)

    Takahashi, Eiji J.; Kanai, Tsuneto; Ishikawa, Kenichi L.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2008-01-01

    We demonstrate the generation of a coherent water window x ray by extending the plateau region of high-order harmonics under a neutral-medium condition. The maximum harmonic photon energies attained are 300 and 450 eV in Ne and He, respectively. Our proposed generation scheme, combining a 1.6 μm laser driver and a neutral Ne gas medium, is efficient and scalable in output yields of the water window x ray. Thus, the precept of the design parameter for a single-shot live-cell imaging by contact microscopy is presented

  12. Determination of the coherence length in high-mobility semiconductor-coupled Josephson weak links

    International Nuclear Information System (INIS)

    Kleinsasser, A.W.

    1991-01-01

    A Nb-InAs-Nb superconductor-semiconductor-superconductor weak link based on a high-mobility homoepitaxial n-InAs film was reported recently [Akazaki, Kawakami, and Nittu J. Appl. Phys. 66, 6121 (1989)]. Measurements of the electron concentration, effective mass, and mobility allowed the coherence length in the normal link to be calculated. The mobility was high enough that the dirty limit was not applicable in the temperature range (∼2--7 K) over which the device critical current was measured. The temperature dependence of the critical current could not be fit by the usual theoretical form, even though an expression for the coherence length was used that should be applicable in both the clean and dirty limits. In this paper is demonstrated an excellent fit to the data, obtained by using the magnitude of the coherence length as a fitting parameter and assuming the dirty limit temperature dependence. This implies a coherence length proportional to T -1/2 but far shorter than that calculated from the known material parameters. It is suggested that a different scaling length may apply in high-mobility devices

  13. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    Science.gov (United States)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  14. Estimations of Coherent Instabilities for JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    JLEIC is the medium energy electron-ion collider currently under active design at Jefferson Lab*. The design goals of JLEIC are both high luminosity (1033-1034 cm-2ses-1) and high polarization (>70%) for the electron and light ion beams, for a wide range of electron and ion beam energies and for a wide spectrum of ion species. The unprecedented luminosity goal for this electron-ion collider sets strong requirements for the understanding and management of potential collective effects in JLEIC. In this paper, we present preliminary estimations of single and coupled bunch coherent instabilities for the electron and proton beams at collision energies for the JLEIC design. Further improvement of the estimations and mitigation methods are discussed.

  15. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  16. Coherence energies in pre-equilibrium emission

    International Nuclear Information System (INIS)

    De Rosa, A.; Inglima, C.; Perillo, E.; Rosato, E.; Sandoli, M.; Spadaccini, G.

    1979-01-01

    A method, based on the spectral density analysis, has been developped in order to evaluate coherence of statistical fluctuations. It is specially suitable for reactions showing the contemporary presence of different emission mechanism (e.g. preequilibrium and evaporation - like mechanism)

  17. Arbitrarily shaped high-coherence electron bunches from cold atoms

    Science.gov (United States)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  18. Coherent pair creation from beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1989-09-01

    It has recently been recognized that in future linear colliders, there is a finite probability that the beamstrahlung photons will turn into e + e - pairs induced by the same beam-beam field, and this would potentially cause background problems. In this paper, we first review the probability of such a coherent pair creation process. It is seen that the constraint on the beamstrahlung parameter, Υ, is tight of these coherent pairs to be totally suppressed. We then point out that there exists a minimum energy for the pair-created particles, which scales as ∼1/5Υ. When combining this condition with the deflection angle for the low-energy particles, the constraint on the allowable Υ value is much relaxed. Finally, we calculate the effective cross section for producing the weak bosons by the low-energy e + e - pairs. It is shown that these cross sections are substantial for Υ > 1. We suggest that this effect can help to autoscan the particle spectrum in the high energy frontier. 10 refs., 2 figs

  19. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  20. Distance Support In-Service Engineering for the High Energy Laser

    Science.gov (United States)

    2015-03-01

    FEL only) o Isoplanatic angle (if available) o Fried coherence length o Object distance o Dwell time o Laser spot size While many of the items...system and the HEL system. Acquisition Sensor Laser Subsystem Beam Shaping Sensor Suile . Range Finder -. Coarse Tracker . Fine Tracker Optical...distribution is unlimited DISTANCE SUPPORT IN-SERVICE ENGINEERING FOR THE HIGH ENERGY LASER by Team Raising HEL from a Distance Cohort 311-133O March

  1. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    KAUST Repository

    Bredas, Jean-Luc

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder-structural and energetic-and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  2. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  3. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  4. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  5. Spatial and spectral coherence in propagating high-intensity twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Machulka, R.; Peřina ml., Jan; Allevi, A.; Bondani, M.

    2015-01-01

    Roč. 5, Sep (2015), s. 14365 ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spatial and spectral coherence * high-intensity twin beams Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  6. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  7. Coherent amplification and pulsar phenomena

    International Nuclear Information System (INIS)

    Casperson, L.W.

    1977-01-01

    A modification of the rotating-star model has been developed to interpret the periodic energy bursts from pulsars. This new configuration involves theta-directed oscillation modes in the stellar atmosphere or magnetosphere, and most aspects of the typical pulse characteristics are well accounted for. Gain is provided by resonant interactions with particles trapped in the stellar magnetic field. The most significant feature is the fact that highly directional beaming of the output energy results as a natural consequence of coherence between the radiation fields emerging from various locations about the pulsar; and a localized radiation origin is not required. (Auth.)

  8. Quarkonium+{gamma} production in coherent hadron-hadron interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Caixa Postal 354, Pelotas, RS (Brazil); Machado, M.M. [IF - Farroupilha, Instituto Federal de Educacao, Ciencia e Tecnologia, Sao Borja, RS (Brazil)

    2012-11-15

    In this paper we study the H+{gamma} (H=J/{Psi} and and upsilon;) production in coherent hadron-hadron interactions at LHC energies. Considering the ultrarelativistic protons as a source of photons, we estimate the {gamma}+p{yields}H+{gamma}+X cross section using the non-relativistic QCD (NRQCD) factorization formalism and considering different sets of values for the matrix elements. Our results for the total p+p{yields}p+H+{gamma}+X cross sections and rapidity distributions at {radical}(s) = 7 and 14 TeV demonstrate that the experimental analysis of the J/{Psi}+{gamma} production at LHC is feasible. (orig.)

  9. A heating mechanism of ions due to large amplitude coherent ion acoustic wave

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.

    1978-05-01

    Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)

  10. Laser excitation of SF6: spectroscopy and coherent pulse propagation effects

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Makarov, A.A.; Louisell, W.H.

    1978-01-01

    Recent theoretical studies of coherent propagation effects in SF 6 and other polyatomic molecules are summarized beginning with an account of relevant aspects of the high-resolution spectroscopy of the ν 3 band of SF 6 . A laser pulse propagating in a molecular gas can acquire new frequencies which were not initially present in the pulse, and, in fact, a wave is coherently generated at the frequency of every molecular transition accessible from the initial molecular energy levels. The possible consequences of coherent generation of sidebands for the multiple-photon excitation of SF 6 and other polyatomic molecules are discussed

  11. Further evidence of antibunching of two coherent beams of fermions

    International Nuclear Information System (INIS)

    Iannuzzi, M.; Messi, R.; Moricciani, D.; Orecchini, A.; Sacchetti, F.; Facchi, P.; Pascazio, S.

    2011-01-01

    We describe an experiment confirming the evidence of the antibunching effect on a beam of noninteracting thermal neutrons. The comparison between the results recorded with a high-energy-resolution source of neutrons and those recorded with a broad-energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.

  12. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  13. The Diamond Beamline I13L for Imaging and Coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-01-01

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  14. Baryon, charged hadron, Drell-Yan and J/ψ production in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Gale, Charles; Jeon, Sangyong; Kapusta, Joseph

    1999-01-01

    We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in rapidity of a produced charged meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number A. We show that this deviation can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4±0.1 fm/c, corresponding to a coherence path length of 8±2 fm in the rest frame of the nucleus. Finally, we apply the linear extrapolation to measured J/ψ production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/ψ on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/ψ on nuclear targets

  15. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  16. COHERENT Experiment: current status

    International Nuclear Information System (INIS)

    Akimov, D; Belov, V; Bolozdynya, A; Burenkov, A; Albert, J B; Del Valle Coello, M; D’Onofrio, M; Awe, C; Barbeau, P S; Cervantes, M; Becker, B; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Detwiler, J; Eberhardt, A; Dean, D; Dolgolenko, A G

    2017-01-01

    The COHERENT Collaboration is realizing a long term neutrino physics research program. The main goals of the program are to detect and study elastic neutrino-nucleus scattering (CEνNS). This process is predicted by Standard Model but it has never been observed experimentally because of the very low energy of the recoil nucleus. COHERENT is using different detector technologies: CsI[Na] and NaI scintillator crystals, a single-phase liquid Ar and a Ge detectors. The placement of all the detector setups is in the basement of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The current status of the COHERENT experimental program is presented. (paper)

  17. Detection of coherent X-ray transition radiation and its application to beam diagnostics

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Li Qiang; Moran, M.J.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.; Rothbart, G.B.

    1989-01-01

    We investigate the use of coherent X-ray transition radiation to measure the energy of ultra-relativistic charged particles. This can be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The research also has possible applications for the detection and identification of these particles. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charged particle energies. We have constructed three coherent radiators and tested them at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft X-ray emission (1-3 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5-9.0 mrad. The angle of peak emission was found to increase with electron-beam energy, in contrast to the incoherent case for which the angle of emission varies inversely with electron-beam energy. (orig.)

  18. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  19. Effect of angular-momentum dissipation and fluctuation on energy coherence lengths and time evolution in the dissipative collision 28Si+48Ti

    International Nuclear Information System (INIS)

    Kun, S.Yu.; WITS Univ., Johannesburg; Noerenberg, W.; TH Darmstadt; Papa, M.

    1992-09-01

    We analyze the energy autocorrelation functions and the energy coherence lengths in the strongly dissipative collision 28 Si(E lab = 130 MeV) + 4 8Ti for Z=11 and 12 reaction fragments. It is found that in order to obtain a good fit of both the energy averaged angular distributions and the angular dependence of the energy coherence lengths one has to take into account (i) the dissipation and fluctuation of the relative angular momentum of the dinucleus and (ii) the contribution from direct (fast) reactions in addition to the statistical (relatively slow) interaction processes. The established angular dependence is a direct consequence of the angular-momentum dissipation-fluctuation effects on the time-space evolution of the intermediate dinucleus. (orig.)

  20. High energy near- and far-field ptychographic tomography at the ESRF

    Science.gov (United States)

    da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter

    2017-09-01

    In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.

  1. CANCER-PAthological breakdown of coherent energy states

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan; Kobilková, J.; Jandová, Anna; Vrba, J.; Vrba, J. jr.

    2014-01-01

    Roč. 9, č. 1 (2014), s. 115-133 ISSN 1793-0480 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : breakdown of coherent states * Cancer electrodynamics * Warburg effect Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BO - Biophysics (FZU-D)

  2. High energy photon emission from wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, D. M., E-mail: dfarinel@uci.edu; Lau, C. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Taborek, P.; Tajima, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Zhang, X. M., E-mail: zhxm@siom.ac.cn [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Koga, J. K., E-mail: koga.james@qst.go.jp [Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA), Kizugawa, Kyoto 619-0215 (Japan); Ebisuzaki, T., E-mail: ebisu@riken.jp [RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-07-15

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  3. Results from neutral kaon regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.

    1976-01-01

    Experimental neutral kaon regeneration results at Serpukhov energies up to 50 GeV are presented, including the coherent regeneration on hydrogen, deuterium and carbon regenerators and elastic regeneration on deuterium and carbon regenerators. (author)

  4. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    R&D C-1 Block, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India. ∗. Corresponding author. E-mail: oprakash@rrcat.gov.in. DOI: 10.1007/s12043-013-0672-7; ePublication: 6 February 2014. Abstract. This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 ...

  5. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  6. Sense of coherence and burnout in the energy and chemicals industry: The moderating role of age

    Directory of Open Access Journals (Sweden)

    Sanet van der Westhuizen

    2015-11-01

    Full Text Available Orientation: Organisations are accommodating four different social generations in the working environment. This poses a challenge for Human Resources departments to manage these diverse age cohorts in the workforce, as they are likely to have different needs, values and variables affecting their wellness. Research purpose: The objective of the present study was to assess whether various age groups differ with regard to their sense of coherence and burnout, and whether age significantly moderates the relationship between sense of coherence and burnout. Motivation for the study: Although the literature review suggests that age groups may differ with regard to their sense of coherence and burnout, the findings seem to be somewhat inconclusive in this regard. There also seems to be a paucity of research examining the interaction effect between sense of coherence, burnout and age. Research approach, design and method: A cross-sectional quantitative survey approach was used. A nonprobability convenience sample of adults (N = 246 – employed in South Africa by an international integrated energy and chemicals company – participated in the study. Correlation, analysis of variance (ANOVA and hierarchical multiple regression analyses were performed to achieve the objectives of the study. Main findings: The results showed that employees between the ages of 51 and 60 years of age experienced higher levels of comprehensibility and lower levels of reduced professional efficacy than their younger counterparts. The relationship between sense of coherence and exhaustion was also stronger for employees between 51 and 60 years old than for younger age categories. Practical/managerial implications: The results of the study can be useful when planning human resource interventions to enhance the well-being of employees from different age groups. Contribution: The results of the study add new insights to the well-being literature by showing that employees’ age is

  7. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-01-01

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10 18 cm -3 ) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  8. Mesoscopic conductance fluctuations in high-T{sub c} grain boundary Josephson junctions: Coherent quasiparticle transport

    Energy Technology Data Exchange (ETDEWEB)

    Tafuri, F. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (Italy); CNR-INFM Coherentia, Dip. Scienze Fisiche, Universita di Napoli Federico II, 80125 Naples (Italy)], E-mail: tafuri@na.infn.it; Tagliacozzo, A.; Born, D.; Stornaiuolo, D. [CNR-INFM Coherentia, Dip. Scienze Fisiche, Universita di Napoli Federico II, 80125 Naples (Italy); Gambale, E.; Dalena, D. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (Italy); Lombardi, F. [Department of Microelectronics and Nanoscience, MINA, Chalmers University of Technology, 41296 Goeteborg (Sweden)

    2007-09-01

    Magneto-fluctuations of the normal resistance R{sub N} have been reproducibly observed in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (HTS) biepitaxial grain boundary junctions at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed.

  9. Control of Coherent Instabilities by Linear Coupling

    CERN Document Server

    Cappi, R; Möhl, D

    2001-01-01

    One of the main challenges in the design of high-energy colliders is the very high luminosity necessary to provide significant event rates. This imposes strong constraints to achieve and preserve beams of high brightness, i.e. intensity to emittance ratio, all along the injector chain. Amongst the phenomena that can blow up and even destroy the beam are transverse coherent instabilities. Two methods are widely used to damp these instabilities. The first one is Landau damping by non-linearities. The second consists in using an electronic feedback system. However, non-linearities are harmful to single-particle motion due to resonance phenomena, and powerful wideband feedback systems are expensive. It is shown in this paper that linear coupling is a further method that can be used to damp transverse coherent instabilities. The theory of collective motion is outlined, including the coupling of instability rise and damping rates, chromaticity and Landau damping. Experimental results obtained at the CERN PS are rep...

  10. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  11. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  12. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  13. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  14. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  15. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  16. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  17. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  18. High collimated coherent illumination for reconstruction of digitally calculated holograms: design and experimental realization

    Science.gov (United States)

    Morozov, Alexander; Dubinin, German; Dubynin, Sergey; Yanusik, Igor; Kim, Sun Il; Choi, Chil-Sung; Song, Hoon; Lee, Hong-Seok; Putilin, Andrey; Kopenkin, Sergey; Borodin, Yuriy

    2017-06-01

    Future commercialization of glasses-free holographic real 3D displays requires not only appropriate image quality but also slim design of backlight unit and whole display device to match market needs. While a lot of research aimed to solve computational issues of forming Computer Generated Holograms for 3D Holographic displays, less focus on development of backlight units suitable for 3D holographic display applications with form-factor of conventional 2D display systems. Thereby, we report coherent backlight unit for 3D holographic display with thickness comparable to commercially available 2D displays (cell phones, tablets, laptops, etc.). Coherent backlight unit forms uniform, high-collimated and effective illumination of spatial light modulator. Realization of such backlight unit is possible due to holographic optical elements, based on volume gratings, constructing coherent collimated beam to illuminate display plane. Design, recording and measurement of 5.5 inch coherent backlight unit based on two holographic optical elements are presented in this paper.

  19. Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers

    Directory of Open Access Journals (Sweden)

    J. Y. Xie

    2013-01-01

    Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.

  20. High-speed optical coherence tomography signal processing on GPU

    International Nuclear Information System (INIS)

    Li Xiqi; Shi Guohua; Zhang Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  1. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  2. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  3. Unraveling the nature of coherent beatings in chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dostál, Jakub [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Mančal, Tomáš; Pšenčík, Jakub [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Vácha, František [Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice (Czech Republic); Zigmantas, Donatas, E-mail: donatas.zigmantas@chemphys.lu.se [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden)

    2014-03-21

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.

  4. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    International Nuclear Information System (INIS)

    Livingston, Ken

    2009-01-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  5. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Ken [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)], E-mail: k.livingston@physics.gla.ac.uk

    2009-05-21

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  6. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    Science.gov (United States)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  7. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  8. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  9. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  10. Optimum Energy Extraction from Coherent Vortex Rings Passing Tangentially Over Flexible Plates

    Science.gov (United States)

    Pirnia, Alireza; Browning, Emily A.; Peterson, Sean D.; Erath, Byron D.

    2017-11-01

    Coherent vortical structures can incite self-sustained oscillations in flexible membranes. This concept has recently gained interest for energy extraction from ambient environments. In this study the special case of a vortex ring passing tangentially over a cantilevered flexible plate is investigated. This problem is governed by the Kirchhoff-Love plate equation, which can be expressed in terms of a non-dimensional mass parameter of the plate, non-dimensional pressure loading induced by the vortex ring, and a Strouhal (St) number which expresses the duration of pressure loading relative to the period of plate oscillation. For a plate with a fixed mass parameter immersed in a fluid environment, the St number specifies the beam dynamics and the energy exchange process. The aim of this study is to identify the St number corresponding to maximum energy exchange between plates and vortex rings. The energy exchange process between the vortex ring and the plate is investigated over a range of 0.3 transfer is reported in each case and an empirical correlation is provided for predictive purposes. Supported by the National Science Foundation (NSF) under Grant No. CBET-1511761, and the Natural Sciences and Engineering Research Council of Canada (NSERC), under Grant No. 05778-2015.

  11. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  12. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source

    Science.gov (United States)

    Odstrčil, M.; Baksh, P.; Kim, H.; Boden, S. A.; Brocklesby, W. S.; Frey, J. G.

    2015-09-01

    With the aim of improving imaging using table-top extreme ultraviolet sources, we demonstrate coherent diffraction imaging (CDI) with relative bandwidth of 20%. The coherence properties of the illumination probe are identified using the same imaging setup. The presented methods allows for the use of fewer monochromating optics, obtaining higher flux at the sample and thus reach higher resolution or shorter exposure time. This is important in the case of ptychography when a large number of diffraction patterns need to be collected. Our microscopy setup was tested on a reconstruction of an extended sample to show the quality of the reconstruction. We show that high harmonic generation based EUV tabletop microscope can provide reconstruction of samples with a large field of view and high resolution without additional prior knowledge about the sample or illumination.

  13. Generation of Coherent Synchrotron Radiation from JAERI-ERL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishitani, T; Sawamura, M

    2005-01-01

    An electron beam with high-average current and short bunch length can be accelerated by energy-recovery linac. Coherent synchrotron radiation (CSR) from such an electron beam will be a useful light source around millimeter wavelength. We report results from a preliminary measurement of CSR emitted from a bending magnet of JAERI-ERL. Possible enhancement of CSR power by FEL micro-bunching is also discussed.

  14. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  15. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Bi, Wanjun [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong, E-mail: liaomeisong@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Gao, Weiqing [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China)

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  16. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  17. Towards phase-coherent caloritronics in superconducting circuits

    Science.gov (United States)

    Fornieri, Antonio; Giazotto, Francesco

    2017-10-01

    The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

  18. The Observation of the Structure of M23C6/ γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel

    Science.gov (United States)

    Xu, Zhenfeng; Ding, Zhimin; Liang, Bo

    2018-03-01

    The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.

  19. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  20. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    Science.gov (United States)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  1. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    Science.gov (United States)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  2. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  3. Coherent electromagnetic excitation and disintegration of relativistic nuclei passing through crystals

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Shirokov, A.A.; Vorobiev, S.A.

    1990-01-01

    The energy dependence of electromagnetic excitation and electromagnetic disintegration cross sections for relativistic nuclei passing through crystals is investigated both theoretically and by means of computer simulation. For electromagnetic excitation, resonant peaks are found at definite energy values. An increase of electromagnetic excitation and disintegration cross sections in crystals at very high energies is found to be due to coherent addition of amplitudes. Numerical results are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron disintegration. (orig.)

  4. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  5. Intrinsic pinning in superconductors with extremely small coherence lengths

    International Nuclear Information System (INIS)

    Schimmele, L.; Kronmueller, H.; Teichler, H.

    1988-01-01

    By means of a Ginsburg-Landau-type theory which takes into account the discrete lattice structure the variation of the energy ('Peierls potential') of an isolated flux line is calculated when shifted relatively to the crystal lattice. In particular, a primitive cubic lattice is considered with a straight flux line, aligned parallel to a cubic axis. The resulting Peierls potential may lead to intrinsic pinning if the coherence length is smaller than about two nearest neighbour distances. The coherence lengths at low temperatures determined for the recently discovered high T c superconductors of the YBa 2 Cu 3 O 7 class come very close to this value so that intrinsic pinning might possibly be relevant for these superconductors. (author)

  6. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  7. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  8. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  9. Effect of low-energy coherent radiation with lambda=6328 A on the survival rate of Saccharomyces cerevisial of strain 14

    International Nuclear Information System (INIS)

    Abramova, N.V.

    1978-01-01

    The effect of the continuous monochromatic coherent laser radiation on the survival rate of Saccharomyces cerevisiae of strain 14 is studied. The effect of laser radiation is judged by the change in the survival rate of the yeast culture before and after the irradiation. The decrease of the number of the yeast cells in the initial moments of the irradiation was observed as a result of the laser irradiation. Then the rapid decrease of the number of cells with time changes into their constant number. It is established that the low-energy coherent radiation decreases the survival rate by 30-40%

  10. Regeneralized London free energy for high-Tc vortex lattices

    Directory of Open Access Journals (Sweden)

    M. A. Shahzamanian

    2006-09-01

    Full Text Available   The London free-energy is regeneralized by the Ginsburg-Landau free-energy density in the presence of both d and s order parameters. We have shown that the strength of the s-d coupling, makes an important rule to determine the form of the lattice vortex. Appearance of the ratios of the coherence length to penetration depth in the higher order corrections of the free-energy density will truncate these corrections for even large values of .

  11. Radiation physics, dosimetry, chemistry and biology Pt. 7. To the physical frame of the microscopic radiobiological action - coherence of events

    Energy Technology Data Exchange (ETDEWEB)

    Bednar, J [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1983-03-04

    The idea of a coupling field was used inside highly organized systems like living objects to show some reasons for the emergence of spontaneous or induced chaos in such systems. The role of the coherence of events in perturbed highly organized systems is discussed shortly. On all levels of structure, organization, energy and time there appears always the notion of (degree of) coherence connecting and .

  12. Method to generate a pulse train of few-cycle coherent radiation

    Directory of Open Access Journals (Sweden)

    Bryant Garcia

    2016-09-01

    Full Text Available We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. We discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. We examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.

  13. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  14. Epidermal segmentation in high-definition optical coherence tomography.

    Science.gov (United States)

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  15. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    OpenAIRE

    Mathew, Raeba; Papavasileiou, Evangelia; Sivaprasad, Sobha

    2010-01-01

    Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT) features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlus...

  16. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  17. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  18. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  19. Brightness and coherence of radiation from undulators and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1987-03-01

    The purpose of this paper is to review the radiation characteristics of undulators and high-gain free electron lasers (FELs). The topics covered are: a phase-space method in wave optics and synchrotron radiation, coherence from the phase-space point of view, discussions of undulator performances in next-generation synchrotron radiation facility and the characteristics of the high-gain FELs and their performances

  20. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  1. Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex

    International Nuclear Information System (INIS)

    Fidler, Andrew F; Caram, Justin R; Hayes, Dugan; Engel, Gregory S

    2012-01-01

    Observations of long-lived coherence between excited states in several photosynthetic antenna complexes has motivated interest in developing a more detailed understanding of the role of the protein matrix in guiding the underlying dynamics of the system. These experiments suggest that classical rate laws may not provide an adequate description of the energy transfer process and that quantum effects must be taken into account to describe the near unity transfer efficiency in these systems. Recently, it has been shown that coherences between different pairs of excitons dephase at different rates. These details should provide some insight about the underlying electronic structure of the complex and its coupling to the protein bath. Here we show that a simple model can account for the different dephasing rates as well as the most current available experimental evidence of excitonic coherences in the Fenna–Matthews–Olson complex. The differences in dephasing rates can be understood as arising largely from differences in the delocalization and shared character between the underlying electronic states. We also suggest that the anomalously low dephasing rate of the exciton 1–2 coherence is enhanced by non-secular effects. (paper)

  2. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    Directory of Open Access Journals (Sweden)

    Edoardo Baldini

    2016-11-01

    Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.

  3. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    Science.gov (United States)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC

  4. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  5. Color coherence in W + jet events

    International Nuclear Information System (INIS)

    Abbott, B.

    1997-11-01

    We report on preliminary studies of color coherence effects in p anti p collisions, based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron collider, at a center of mass energy √s = 1.8 TeV. Color interference effects are studied by examining particle distribution patterns in W + Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and to a recent analytic Modified-Leading-Log perturbative calculation based on the Local Parton-Hadron Duality hypothesis. Soft particle radiation is enhanced in the event plane relative to the transverse plane, in agreement with calculations in which the effects of color coherence are fully included

  6. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  7. Sense of coherence as a mediator of stress among high school students in Tromsø, Norway.

    OpenAIRE

    Mellem, Lise Sand

    2008-01-01

    School adaptation seems to have an impact on social, psychological, and behavioural outcomes. Empirical evidence on the stress moderating role of the sense of coherence (SOC), which implies to which degree one find life meaningful, comprehensible and manageable, may offer a scope for development of prevention policies. The aim of this study was to examine the relationship and interactions between high school students perceived stress (PSQ), sense of coherence (SOC-13), perceived health co...

  8. Coherent production of {epsilon}{sup +} particles in crystal using proton beam from SSC

    Energy Technology Data Exchange (ETDEWEB)

    Okorokov, V.V.; Dubin, A.Yu. [ITER, Moscow, (Russian Federation)

    1995-05-01

    The unique possibilities of the SSC can be ideally used for a new generation of coherent generation experiments with relativistic protons which require 20 Tev energy of the incident beam. The availability of 20 Tev proton beam at SSC allows new experiments on coherent production of {var_epsilon}{sup +} particle by relativistic proton in crystal. Experiment carried out at low energies can now be extended with protons in very narrow energy region (resonance energy, which easy can be calculated) using the new accelerator facilities at SSC. We propose to study coherent production via the Coulomb field of the cristal atoms to excite the transition p + {gamma}{implies} {var_epsilon} {sup +} (1189).

  9. Shielded coherent synchrotron radiation and its possible effect in the next linear collider

    International Nuclear Information System (INIS)

    Warnock, R.L.

    1991-05-01

    Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab

  10. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    Science.gov (United States)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-10-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  11. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  12. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  13. Generation and relaxation of high rank coherences in AX3 systems in a selectively methionine labelled SH2 domain

    International Nuclear Information System (INIS)

    Kloiber, Karin; Fischer, Michael; Ledolter, Karin; Nagl, Michael; Schmid, Walther; Konrat, Robert

    2007-01-01

    The usefulness of selective isotope labelling patterns is demonstrated using the C-terminal SH2 domain of PLC-γ1 selectively 13 C labelled at methionine methyl groups. We demonstrate the generation and relaxation of coherences that are second rank in protons and first rank in carbons that derive from quadrupolar order in protons. The decay rates of second rank double quantum proton coherences are measured. These terms exhibit fewer channels for cross-correlated relaxation compared to single quantum coherences. Our results indicate the potential application of the measurement of high order proton coherences to the analysis of dynamics in methyl-bearing side chains

  14. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  15. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  16. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  17. Enhancement of phase-conjugate reflectivity using Zeeman coherence in highly degenerate molecular systems

    International Nuclear Information System (INIS)

    Mukherjee, Nandini

    2010-01-01

    A comprehensive theoretical analysis is developed for the vectorial phase conjugation using resonant four-wave mixing (FWM) in a highly degenerate rotational vibrational molecular system. The dynamic Stark shifts, saturation, and Doppler broadening are included for a realistic analysis. It is shown that the electromagnetically induced multilevel coherence controls the nonlinear wave mixing yielding interesting results for the phase conjugate (PC) reflectivity. It turns out that the efficiency of the PC reflectivity is decided by the relative phase of the Zeeman coherence and the population grating. When these two contributions are aligned in phase by a small detuning of the pump frequency, a large PC reflectivity (∼20%) is obtained with moderate pump intensity (∼500 mW/cm 2 ).

  18. Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits

    Science.gov (United States)

    Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William

    Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  19. Digital processing optical transmission and coherent receiving techniques

    CERN Document Server

    Binh, Le Nguyen

    2013-01-01

    With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The

  20. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  1. Hard photon emission from high energy electrons and positrons in single crystals

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1991-01-01

    A radiation of electrons and positrons in single crystals in coherent bremsstrahlung (CBS) region has been considered for the case when CBS has the most hard spectrum. Under this condition a particle moves near a crystalline plane (in fcc(d) crystal for axis (001) this is the plane (110)) and influence of the continuous plane potential should be taken into account. This potential gives additional contribution in soft part of the spectrum and affects on hard photon emission. Observation of this phenomena at high energy is discussed. 14 refs.; 5 figs.; 1 tab

  2. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  3. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  4. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  5. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Kaishang Zhou

    2017-01-01

    Full Text Available We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (∼20  fs coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  6. Coherence properties of blackbody radiation and application to energy harvesting and imaging with nanoscale rectennas

    Science.gov (United States)

    Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.

    2015-01-01

    Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.

  7. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    Science.gov (United States)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-10-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ms˜1eV. This could result in better light element probes of (constraints on) these particles.

  8. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    International Nuclear Information System (INIS)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-01-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses m s ∼1 eV. This could result in better light element probes of (constraints on) these particles

  9. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  10. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  11. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  12. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  13. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  14. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  15. Dynamic coherence in excitonic molecular complexes under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, Aurélia; Malý, Pavel; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2014-08-17

    Highlights: • Dynamic coherence does not improve energy transfer efficiency in natural conditions. • Photo-induced quantum jumps are discussed in classical context. • Natural time scale of a light excitation event is identified. • Coherence in FMO complex averages out under excitation by neighboring antenna. • This result is valid even in absence of dissipation. - Abstract: We investigate the relevance of dynamic quantum coherence in the energy transfer efficiency of molecular aggregates. We derive the time evolution of the density matrix for an open quantum system excited by light or by a neighboring antenna. Unlike in the classical case, the quantum description does not allow for a formal decomposition of the dynamics into sudden jumps in an observable quantity – an expectation value. Rather, there is a natural finite time-scale associated with the excitation process. We propose a simple experiment to test the influence of this time scale on the yield of photosynthesis. We demonstrate, using typical parameters of the Fenna–Matthews–Olson (FMO) complex and a typical energy transfer rate from the chlorosome baseplate, that dynamic coherences are averaged out in the complex even when the FMO model is completely free of all dissipation and dephasing.

  16. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  17. Non-coherent contributions in charge-exchange reactions and η-η{sup '} mixing

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, M.L. [NRC ' ' Kurchatov Institute' ' , Institute for High Energy Physics, Protvino (Russian Federation)

    2017-05-15

    We analyse K{sup -}p → (η,η{sup '},π{sup 0})Λ on the basis of the fit of data in a wide region of energies, and π{sup -}p → (η,η{sup '})n at the energies of GAMS-4π. We show that disagreements between the data and the predictions of Regge theory may be explained by the mode change of summation of intermediate contributions at increasing energy, from coherent to non-coherent. A method of experimental measurement of the non-coherent contributions is proposed. On the basis of available data on the charge-exchange reactions the η-η{sup '} mixing is estimated. (orig.)

  18. Influence of HeartMath quick coherence technique on ...

    African Journals Online (AJOL)

    ... of high psychophysiological coherence, decreased feelings of sadness and increased feelings of peacefulness. Psychophysiological and emotional state findings are discussed in relation to health and sport psychology, theory and practice. Keywords: Biofeedback, physiological coherence, Quick Coherence Technique, ...

  19. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  20. Coherence protection in coupled quantum systems

    Science.gov (United States)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  1. Ultrashort soliton switching based on coherent energy hiding.

    Science.gov (United States)

    Romagnoli, M; Wabnitz, S; Zoccolotti, L

    1991-08-15

    Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

  2. Coherent photon scattering cross sections for helium near the delta resonance

    International Nuclear Information System (INIS)

    Delli Carpini, D.; Booth, E.C.; Miller, J.P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M.A.; Nathan, A.M.; Wells, D.P.

    1991-01-01

    The angular distributions for coherent photon scattering from 4 He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV

  3. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  4. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  5. Coherence effects in deep inelastic scattering

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Loennblad, L.; Pettersson, U.

    1988-09-01

    We present a framework for deep inelastic scattering, with bound state properties in accordance with a QCD force field acting like a vortex line in a colour superconducting vacuum, which implies some simple coherence effects. Within this scheme one may describe the results of present energies very well, but one obtains an appreciable depletion of gluon radiation in the HERA energy regime. (authors)

  6. Time–energy high-dimensional one-side device-independent quantum key distribution

    International Nuclear Information System (INIS)

    Bao Hai-Ze; Bao Wan-Su; Wang Yang; Chen Rui-Ke; Ma Hong-Xin; Zhou Chun; Li Hong-Wei

    2017-01-01

    Compared with full device-independent quantum key distribution (DI-QKD), one-side device-independent QKD (1sDI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution (HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice’s different detection efficiencies. The results show that our protocol can performance much better than the original 1sDI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice’s detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel. (paper)

  7. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  8. On the resonant coherent excitation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Pivovarov, Y.L.; Geissel, H.; Filimonov, Yu.M.; Krivosheev, O.E.; Scheidenberger, C.

    1995-07-01

    New accelerator facilities open up an interesting new field of experiments on basic channeling as well as on atomic and nuclear resonant coherent exitation (RCE) of heavy ions penetrating through aligned crystals at relativistic energies. Results of computer simulations are presented to characterize the resonant coherent excitation of atomic levels of relativistic hydrogen-like heavy ions. Nuclear resonant coherent excitation reveals interesting different characteristics compared to the corresponding atomic excitation inside crystals. An important result of our model calculations is that poorly-channeled ions have a higher nuclear excitation probability than well-channeled ions. (orig.)

  9. Coherent lattice vibrations in superconductors

    International Nuclear Information System (INIS)

    Kadin, Alan M.

    2008-01-01

    A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed

  10. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  11. The light element formation: a signature of high energy nuclear astrophysics

    International Nuclear Information System (INIS)

    Audouze, J.; Meneguzzi, M.; Reeves, H.

    1976-01-01

    Light elements D, 6 Li, 9 Be, 10 B and 11 B (and possibly also 7 Li) are not produced by the general nucleosynthetic processes occurring in stars. They appear to be synthesized by high energy processes occuring either during the interaction of galactic cosmic rays with the interstellar medium or in supernovae envelopes. These formation processes are discussed. It is emphasized that the most coherent scenario regarding the formation of the light elements is obtained by taking also into account the nuclear processes which may have occurred during hot phases of the early Universe (Big Bang). Implications on chemical evolution of galaxies and on cosmology are briefly recalled. (Auth.)

  12. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  13. Coherently Enhanced Wireless Power Transfer

    Science.gov (United States)

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea

    2018-04-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.

  14. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions

    International Nuclear Information System (INIS)

    Kojima, O.; Mizoguchi, K.; Nakayama, M..

    2005-01-01

    We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI

  15. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    International Nuclear Information System (INIS)

    Rosfjord, Kristine Marie

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium

  16. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Kristine Marie [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  17. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  18. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  19. The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum.

    Science.gov (United States)

    South, Mikle; Ozonoff, Sally; McMahon, William M

    2007-09-01

    This study examined the relationship between everyday repetitive behavior (primary symptoms of autism) and performance on neuropsychological tests of executive function and central coherence (secondary symptoms). It was hypothesized that the frequency and intensity of repetitive behavior would be positively correlated with laboratory measures of cognitive rigidity and weak central coherence. Participants included 19 individuals (ages 10-19) with high-functioning autism spectrum disorders (ASD group) and 18 age- and IQ-matched typically developing controls (TD group). There was partial support in the ASD group for the link between repetitive behavior and executive performance (the Wisconsin Card Sorting Task). There was no support for a link between repetitive behavior and measures of central coherence (a Gestalt Closure test and the Embedded Figures Test). Further research on repetitive behaviors in autism may benefit from a focus on narrow behavioral and cognitive constructs rather than general categories.

  20. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  1. Quantum coherence due to Bose-Einstein condensation of parametrically driven magnons

    International Nuclear Information System (INIS)

    Demokritov, S O; Demidov, V E; Dzyapko, O; Melkov, G A; Slavin, A N

    2008-01-01

    The room-temperature kinetics and thermodynamics of the magnon gas driven by microwave pumping has been investigated by means of the Brillouin light scattering (BLS) technique. We show that for high enough pumping powers the quantum relaxation of the driven gas results in a quasi-equilibrium state described by the Bose-Einstein statistics with a nonzero chemical potential. Further increase of the pumping power causes a Bose-Einstein condensation in the magnon gas documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the BLS to the coherence degree of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, if their density exceeds a critical value

  2. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  3. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  4. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  5. Simulation study on detection performance of eye-safe coherent Doppler wind lidar operating near 1.6 μm

    Science.gov (United States)

    Ma, Han; Wang, Qing; Na, Quanxin; Gao, Mingwei

    2018-01-01

    Coherent Doppler wind lidars (CDWL) are widely used in aerospace, atmospheric monitoring and other fields. The parameters of laser source such as the wavelength, pulse energy, pulse duration and pulse repetition rate (PRR) have significant influences on the detection performance of wind lidar. We established a simulation model which takes into account the effects of atmospheric transmission, backscatter, atmospheric turbulence and parameters of laser source. The maximum detection range is also calculated under the condition that the velocity estimation accuracy is 0.1 m/s by using this model. We analyzed the differences of the detection performance between two operation systems, which show the high pulse energy-low pulse repetition rate (HPE-LPRR) and low pulse energy-high repetition rate (LPE-HPRR), respectively. We proved our simulation model reliable by using the parameters of two commercial lidar products. This research has important theoretical and practical values for the design of eye-safe coherent Doppler wind lidar.

  6. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  7. Narrow coherent effects in πNN-dynamics

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Obrant, G.Z.

    1990-01-01

    Coherent effect production is considered in πNN-dynamics with resonant pion-nucleon interaction via Brueckner theory and Faddev equations. It is shown that the narrow energy and final momentum dependence can arise in the inelastic S-wave πd-scattering. The energy dependence peculiarities can have a width an order magnitude less than πN-resonance one

  8. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-01-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 ∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs

  9. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  10. Small-x physics at coherent p A/A A interactions at LHC

    International Nuclear Information System (INIS)

    Goncalves, Victor P.; Machado, Magno V.T.

    2007-01-01

    We report on our recent investigations in photonuclear production of heavy quarks and vector mesons in ultra peripheral collisions at nucleus-nucleus and proton-nucleus reactions. They are initiated by quasi-real photons coming from one of the nuclei or hadron in interactions taking place at large impact parameter. We focus on the role played by the high energy theoretical / phenomenological approaches in photon-nuclei scattering, namely the strength of parton saturation phenomenon and high energy nuclear shadowing. In particular, our theoretical predictions are compared with the recent experimental measurements on coherent r (STAR) and J/Y (PHENIX) photoproduction at RHIC and estimates for LHC are given. (author)

  11. Phase retrieval from coherent soft X-ray optics

    International Nuclear Information System (INIS)

    Peele, A.G.; Mancuso, A.P.; Tran, C.Q.; Paterson, D.; McNulty, I.; Hayes, J.P.; Nugent, K.A.

    2005-01-01

    We have recently probed the coherence of soft X-ray flux from a third generation synchrotron source [D. Paterson, B.E. Allman, P.J. McMahon, J. Lin, N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler, C.C. Retsch, T.H.K. Irving, D.C. Mancini, Opt. Commun. 195 (2001) 79; C.Q. Tran, A.G. Peele, D. Paterson, A. Roberts, I. McNulty, K.A. Nugent, Opt. Lett. 30 (2005) 204.]. The 1-2 keV radiation exhibits transverse coherence lengths of 60 μm, which means that coherent optical effects may be observed in reasonably sized objects. We present experimental results demonstrating the creation of a phase singularity in a synchrotron beam by passing the beam through a phase mask at similarly low X-ray energies. This complements our earlier work at higher energies and demonstrates that we can now produce phase singularities across a range of energies where we have tested certain intensity-based phase recovery methods. These methods fail when the field contains phase singularities. We describe the X-ray optical vortex and outline its use as a pathological test object for phase retrieval methods. We also present recent progress towards overcoming the problem of phase retrieval in singular optics

  12. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  13. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    Science.gov (United States)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  14. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  15. General sets of coherent states and the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Daoud, M.; Hussin, V.

    2002-01-01

    General sets of coherent states are constructed for quantum systems admitting a nondegenerate infinite discrete energy spectrum. They are eigenstates of an annihilation operator and satisfy the usual properties of standard coherent states. The application of such a construction to the quantum optics Jaynes-Cummings model leads to a new understanding of the properties of this model. (author)

  16. Coherently Enhanced Wireless Power Transfer

    OpenAIRE

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alu, Andrea

    2017-01-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load, which is not easily implemented in near-field WPT. Here, we introduce the concept of coherently enhanced wireless power transfer. We show that a principle similar to the on...

  17. Damping coherent phase oscillations by means of path-length modulation

    International Nuclear Information System (INIS)

    Rees, J.R.

    1978-06-01

    Multi-bunch storage rings and synchrotrons are typically plagued by a tendency for the bunches to indulge in unstable coherent phase oscillations engendered by their electromagnetic interactions with the vacuum chamber. In many machines feedback systems have been used successfully to damp these oscillations using a signal proportional to the coherent phase motion or the concomitant energy motion to control an auxiliary longitudinal electric field. The purpose of this note is to describe an alternative feedback system which, using the same kind of a signal, modulates the path length of the orbit of the reference particle (the synchronous particle in the absence of coherent phase oscillations) in such a way as to damp coherent oscillations. 2 refs., 1 fig

  18. Low-energy scattering data for oxygen

    International Nuclear Information System (INIS)

    Kopecky, S.; Plompen, A.J.M.

    2014-01-01

    A survey of literature data of the scattering lengths of oxygen is performed, and these values are compared to low-energy precise total cross-section data. To check the quality of the data and the correctness of the relation between coherent scattering lengths and low-energy total cross-sections the situation is examined first for carbon. A value and uncertainty for the coherent scattering length of oxygen is recommended for use in future evaluations of 16 O. This coherent scattering length is fully consistent with the high-precision, low-energy total cross-section data. The consistency requires the use of a larger uncertainty than claimed in the most accurate cross-section papers. This larger uncertainty is nevertheless very small and well within the requirements of applications of this cross-section. The recommended value is b c ( 16 O) = 5.816±0.015 fm and the associated total cross-section for the neutron-energy range 0.5 to 2 000 eV is 3.765±0.025 b. The stated uncertainties are one standard deviation total uncertainty. (authors)

  19. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  20. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  1. The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel

    International Nuclear Information System (INIS)

    Hamano, R.

    1993-01-01

    The effect of the coexistence of coherent and incoherent precipitates, such as M 2 C and NiAl, on the ductility and plane strain fracture toughness of 5 wt pct Ni-2 wt pct Al-based high-strength steels was studied. In order to disperse coherent and incoherent precipitates, the heat treatments were carried out as follows: (a) austenitizing at 1373 K, (b) tempering at 1023 or 923 K for dispersing the incoherent precipitates of M 2 C and NiAl, and then (c) aging at 843 K for 2.4 ks to disperse the coherent precipitate of NiAl into the matrix, which contains incoherent precipitates, such as M 2 C and NiAl. The results were obtained as follows: (a) when the strengthening precipitates consist of coherent ones, such as M 2 C and/or NiAl, the ductility and toughness are extremely low, and (b) when the strengthening precipitates consist of coherent and incoherent precipitates, such as M 2 C and NiAl, the ductility and fracture toughness significantly increase with no loss in strength. It is shown that the coexistence of coherent and incoherent precipitates increases homogeneous deformation, thus preventing local strain concentration and early cleavage cracking. Accordingly, the actions of coherent precipitates in strengthening the matrix and of incoherent precipitates in promoting, homogeneous deformation can be expected to increase both the strength and toughness of the material

  2. Coherent diffusive transport mediated by Andreev reflections at V=Δ/e in a mesoscopic superconductor/semiconductor/superconductor junction

    International Nuclear Information System (INIS)

    Kutchinsky, J.; Taboryski, R.; Kuhn, O.; So/rensen, C.B.; Lindelof, P.E.; Kristensen, A.; Hansen, J.B.; Jacobsen, C.S.; Skov, J.L.

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Δ/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes of aluminum configured as an interferometer. The phase-coherent component of the current is probed as the amplitude of h/2e vs magnetic-field oscillations in the differential resistance of the interferometer. copyright 1997 The American Physical Society

  3. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  4. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  5. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  6. Analysis of the Impact Caused by Coherent Structures in Swirling Flow Combustion Systems

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2012-04-01

    Full Text Available Amongst the technologies used in the energy and propulsion generation for the reduction of emissions, the use of swirling flows has demonstrated its high performance in anchoring the flame inside of the combustion systems. This, added to the use of premixing in the pre-chambers, has created one of the most innovative methods for the reduction of highly polluting particles such as NOx. However, the lack of understanding of these flows makes it necessary to increase the research on the topic in order to clarify themes as complex as the role of the coherent structures inside of the system. This paper explains some of the phenomena produced by some of the coherent structures observed in the system. The results showed the existence of complex Recirculation Zones (RZ, Precessing Vortex Core (PVC and Combustion Induced Vortex Breakdown (CIVB.

  7. Computer simulation for the effect of coherent strain on the precipitation progress of binary alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes, their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10] and [01] directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.

  8. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Rongmei; Han, Ke, E-mail: han@magnet.fsu.edu; Su, Yi-Feng; Salters, Vincent J. [National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States)

    2014-01-06

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and (111)-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  9. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    Science.gov (United States)

    Niu, Rongmei; Han, Ke; Su, Yi-Feng; Salters, Vincent J.

    2014-01-01

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and {111}-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  10. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    International Nuclear Information System (INIS)

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 μm and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 μsec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed

  11. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  12. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050

    International Nuclear Information System (INIS)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit. -- Highlights: ► Three future scenarios for Danish future in 2050 are compared. ► All of these scenarios suggest the same solutions for the future with minor differences. ► There are differences in methodologies for IDA 2050 and CEESA such as biomass, transport, and power grid. ► The contents of scenarios are assessed which scenario assume more radical technological change in the future.

  13. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  14. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Mislivec, Aaron Robert [Univ. of Rochester, NY (United States)

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  15. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  16. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  17. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  18. Italian energy scenarios: Markal model

    International Nuclear Information System (INIS)

    Gracceva, Francesco

    2005-01-01

    Energy scenarios carried out through formal models comply with scientific criteria such as internal coherence and transparency. Besides, Markal methodology allows a good understanding of the complex nature of the energy system. The business-as-usual scenario carried out through the Markal-Italy model shows that structural changes occurring in end-use sectors will continue to drive up energy consumption, in spite of the slow economic growth and the quite high energy prices [it

  19. Generation, amplification and propagation of partially coherent light in a Nd:glass laser driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nakano, Hitoshi; Tsubakimoto, Kouji; Miyanaga, Noriaki; Nakatsuka, Masahiro; Kanabe, Tadashi.

    1992-01-01

    A partially coherent light source has been introduced into the high power twelve beam Nd:glass laser system, Gekko XII for obtaining the smooth intensity distribution of a focused beam pattern. An amplified spontaneous emission (ASE) from Nd:glass was used as a partially coherent source. We adopted the angularly dispersed spectrum not only for beam smoothing but for efficient harmonic conversion. The temporal evolution of the speckle smoothing was experimentally evaluated and compared with a statistical model of speckle pattern. In the amplification of a partially coherent light in Gekko XII, no reduction of the energy gain was found at high power operation 1kJ level. The ASE light can be propagated using image relaying spatial filters, with maintaining the beam divergence up to 32 times diffraction limited. Irradiation nonuniformities on a spherical target were estimated from the focused beam patterns measured at an equivalent target plane. A partially coherent light is quite effective for reducing the nonuniformity from 19.7% (the coherent laser with random phase plate) to 3.8%. Doubling efficiency was found to be reduced at high intensity region due to the phase mismatching with the beam divergence of the ASE light. We discuss possible approaches to obtain the sufficient harmonic conversion with keeping the incoherency of the ASE light. (author)

  20. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  1. Choroidal thinning in high myopia measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ikuno Y

    2013-05-01

    Full Text Available Yasushi Ikuno, Satoko Fujimoto, Yukari Jo, Tomoko Asai, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: To investigate the rate of choroidal thinning in highly myopic eyes.Patients and methods: A retrospective observational study of 37 eyes of 26 subjects (nine males and 17 females, mean age 39.6 ± 7.7 years with high myopia but no pathologies who had undergone spectral domain optical coherence tomography and repeated the test 1 year later (1 ± 0.25 year at Osaka University Hospital, Osaka, Japan. Patients older than 50 years with visual acuity worse than 20/40 or with whitish chorioretinal atrophy involving the macula were excluded. Two masked raters measured the choroidal thicknesses (CTs at the foveda, 3 mm superiorly, inferiorly, temporally, and nasally on the images and averaged the values. The second examination was about 365 days after the baseline examination. The CT reduction per year (CTRPY was defined as (CT 1 year after - baseline CT/days between the two examinations × 365. The retinal thicknesses were also investigated.Results: The CTRPY at the fovea was −1.0 ± 22.0 µm (range –50.2 to 98.5 at the fovea, –6.5 ± 24.3 µm (range −65.8 to 90.2 temporally, –0.5 ± 22.3 µm (range –27.1 to 82.5 nasally, –9.7 ± 21.7 µm (range –40.1 to 60.1 superiorly, and –1.4 ± 25.5 µm (range –85.6 to 75.2 inferiorly. There were no significant differences in the CTRPY at each location (P = 0.34. The CT decreased significantly (P < 0.05 only superiorly. The superior CTRPY was negatively correlated with the axial length (P < 0.05. The retinal thickness at the fovea did not change. Stepwise analysis for CTRPY selected axial length (P = 0.04, R2 = 0.13 and age (P = 0.08, R2 = 0.21 as relevant factors.Conclusions: The highly myopic choroid might gradually thin and be affected by many factors. Location and axial length are key factors to regulate the rate of choroidal

  2. Theory of Mind and Central Coherence in Adults with High-Functioning Autism or Asperger Syndrome

    Science.gov (United States)

    Beaumont, Renae; Newcombe, Peter

    2006-01-01

    The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no…

  3. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  4. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  5. Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model

    Science.gov (United States)

    Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.

    2018-04-01

    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.

  6. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  7. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  8. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  9. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  10. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes...

  11. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  12. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics.

    Science.gov (United States)

    Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan

    2015-11-20

    The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.

  13. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  14. Coherent and Incoherent Neutral Current Scattering for Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2012-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the neutral current neutrino scattering off 40Ar and 132Xe isotopes at neutrino energies (Ev<100 MeV. The individual contribution coming from coherent and incoherent channels is taking into account. An enhancement of the neutral current component is achieved via the coherent (0gs+→0gs+ channel which is dominant with respect to incoherent (0gs+→Jf one. The response of the above isotopes as a supernova neutrino detection has been considered, assuming a two parameter Fermi-Dirac distribution for the supernova neutrino energy spectra. The calculated total cross sections are tested on a gaseous spherical TPC detector dedicated for supernova neutrino detection.

  15. The effect of n- and p-type doping on coherent phonons in GaN.

    Science.gov (United States)

    Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje

    2013-05-22

    The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.

  16. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    Science.gov (United States)

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  17. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  18. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  19. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  20. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  1. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    Science.gov (United States)

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  2. Understanding photon sideband statistics and correlation for determining phonon coherence

    Science.gov (United States)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-01-01

    Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.

  3. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  4. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  5. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  6. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  7. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  8. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  9. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    Science.gov (United States)

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  10. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  11. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  12. Coherence in Industrial Transformation

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær

    2003-01-01

    The notion of coherence is used to illustrate the general finding, that the impact of environmental management systems and environmental policy is highly dependent of the context and interrelatedness of the systems, procedures and regimes established in society....

  13. Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications

    Science.gov (United States)

    Garnache, A.; Laurain, A.; Myara, M.; Sellahi, M.; Cerutti, L.; Perez, J. P.; Michon, A.; Beaudoin, G.; Sagnes, I.; Cermak, P.; Romanini, D.

    2017-11-01

    We demonstrate high power (multiwatt) low noise single frequency operation of tunable compact verical-external- cavity surface-emitting-lasers exhibiting a low divergence high beam quality, of great interest for photonics applications. The quantum-well based lasers are operating in CW at RT at 1μm and 2.3μm exploiting GaAs and Sb technologies. For heat management purpose the VECSEL membranes were bonded on a SiC substrate. Both high power diode pumping (using GaAs commercial diode) at large incidence angle and electrical pumping are developed. The design and physical properties of the coherent wave are presented. We took advantage of thermal lens-based stability to develop a short (0.5-5mm) external cavity without any intracavity filter. We measured a low divergence circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB). The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (laser power and coherence will be discussed. These design/properties can be extended to other wavelengths.

  14. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  15. Indistinguishability and interference in the coherent control of atomic and molecular processes

    International Nuclear Information System (INIS)

    Gong Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  16. New Frontiers in Heart Rate Variability and Social Coherence Research: Techniques, Technologies, and Implications for Improving Group Dynamics and Outcomes

    Directory of Open Access Journals (Sweden)

    Rollin McCraty

    2017-10-01

    Full Text Available Concepts embraced by the term coherence have been identified as central to fields such as quantum physics, physiology, and social science. There are different types of coherence, although the term always implies a harmonious relationship, correlations and connections between the various parts of a system. A specific measure derived from heart rate variability (HRV provides a measure of physiological coherence. Another type of coherence, social coherence, relates to the harmonious alignment between couples or pairs, family units, small groups, or larger organizations in which a network of relationships exists among individuals who share common interests and objectives. A high degree of social coherence is reflected by stable and harmonious relationships, which allows for the efficient flow and utilization of energy and communication required for optimal collective cohesion and action. Social coherence requires that group members are attuned and are emotionally connected with each other, and that the group’s emotional energy is organized and regulated by the group as a whole. A number of studies are reviewed which have explored various types of synchronization in infants, pairs and groups, indicating that feelings of cooperation, trust, compassion and increased prosocial behaviors depends largely on the establishment of a spontaneous synchronization of various physiological rhythms between individuals. This article discusses a new application using HRV monitoring in social coherence research and the importance of physiological synchronization in group developmental processes and dynamics. Building on the extensive body of research showing that providing feedback of HRV coherence level at the individual level can improve self-regulation, we suggest the following hypotheses: (1 providing feedback of individual and collective HRV coherence and the degree of heart rhythm synchronization will increase group coherence, and heart rhythm synchronization

  17. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  18. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  19. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  20. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  1. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  2. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  3. A method for ultra-short pulse-shape measurements using far infrared coherent radiation from an undulator

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2004-01-01

    In this paper, we discuss a method for non-destructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers. The method is based on the detection of the coherent synchrotron radiation (CSR) produced by a bunch passing through an undulator. Coherent radiation energy within a central cone turns out to be proportional, per pulse, to the square modulus of the bunch form-factor at the resonant frequency of the fundamental harmonic. An attractive feature of the proposed technique is the absence of any apparent limitation which would distort measurements. Indeed, the radiation process takes place in vacuum and is described by analytical formulae. CSR propagates to the detector placed in vacuum. Since CSR energy is in the range up to a fraction of mJ, a simple bolometer is used to measure the energy with a high accuracy. The proposed technique is very sensitive and it is capable of probing the electron bunches with a resolution down to a few microns

  4. Real-time energy detector for relativistic charged particles

    International Nuclear Information System (INIS)

    Piestrup, A.

    1988-01-01

    The objective of the research is to investigate the use of coherent transition radiation to measure the energy of ultra-relativistic charged particles. The research has possible applications for the detection and identification of these particles. It can also be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The device is low cost and can operate in situ while causing little or no perturbation to the beam. Three such coherent radiators have been constructed and tested at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft x-ray emission (1 keV to 4 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5 to 9.0 mr. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charge-particle energies

  5. The Theory of Coherent Radiation by Intense Electron Beams

    CERN Document Server

    Buts, Vyacheslav A; Kurilko, V.I

    2006-01-01

    Spurred by the development of high-current, high-energy relativistic electron beams this books delves into the foundations of a device and geometry independent theoretical treatment of a large collection of interacting and radiating electron bunches. Part I deals with the basics of the radiation emission of a single charged particle, paying particular attention to the effect of radiation reaction and dwelling on the corresponding well-known paradoxes. Part II investigates the collective behaviour of a high-density electron bunch where both discrete and continous beam modelling is explored. Part III treats the application to modern systems while still keeping the treatment as general as possible. This book will be mandatory reading for anyone working on the foundations of modern devices such as free electron lasers, plasma accelerators, synchroton sources and other modern sources of bright, coherent radiation with high spectral density.

  6. [Research in experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.

    1989-01-01

    The Experimental High Energy Physics Program is directed toward the execution of experiments at both national and international accelerator facilities. During the next fiscal year, we will be primarily concentrating on the following projects: Fermilab direct photon experiment E706; Tevatron proton-antiproton collider experiment D-Zero; Analysis of Fermilab neutrino experiments and hadron experiment; Analysis of SLAC experiment E140 and all previous SLAC data; Running of the SLAC E140 extension (approved to run in 89/90); SLAC experiment NE11 (ran in 1989); Brookhaven galactic axion experiment; Coherent production of axions and Dellbruck scattering at BNL; The AMY experiment at TRISTAN; and Laser Switched LINAC at the Rochester Laser Laboratory. Projects which are in the completion stages: Search for new states of matter using the Rochester Tandem and SLAC experiment E141 Axion search. Projects in study and planning stages: Nonlinear Compton Scattering at LEP; Production of hybrid mesons in the nuclear coulomb field; Neutrino experiment for the Tevatron upgrade and the SSC; and Involvement in the CDF upgrade and the SSC

  7. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  8. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    International Nuclear Information System (INIS)

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-01-01

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA

  9. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  10. Coherent dynamics of plasma mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Thaury, C; George, H; Quere, F; Monot, P; Martin, Ph [CEA, DSM, IRAMIS, Serv Photons Atomes and Mol, F-91191 Gif Sur Yvette, (France); Loch, R [Univ Twente, Laser Phys and Nonlinear Opt Grp, Fac Sci and Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, (Netherlands); Geindre, J P [Ecole Polytech, Lab Pour Utilisat Lasers Intenses, CNRS, F-91128 Palaiseau, (France)

    2008-07-01

    Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of atto-second light bursts, short enough to study the dynamics of electrons in matter. Shorter and more intense atto-second pulses, together with higher harmonic orders, are expected by reflecting ultra intense laser pulses on a plasma mirror - a dense (approximate to 10{sup 23} electrons cm{sup -3}) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons. (authors)

  11. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  12. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    Science.gov (United States)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  13. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  14. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    Science.gov (United States)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  15. Autonomous Alignment Advancements for Eye-safe Coherent Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Eye-safe coherent lidar technology holds increasing promise of meeting NASA's demanding remote 3D space winds goal near term. Highly autonomous, long-range coherent...

  16. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  17. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  18. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  19. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F J [Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain); Pitarke, J M [Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain)

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  20. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pitarke, J.M.

    1994-01-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  1. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  2. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  3. Coherent Photoproduction of proton anti-proton pair on deiterium with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ghandilyan, Yeranuhi Ghandilyan [Yerevan Physics Inst. (YerPhI) (Armenia); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-04

    In this project coherent production of proton anti-proton pairs on deuterium with a high energy bremsstrahlung photon beam is studied. The main objective is to study claims of several groups on existence of two meson states, masses ~2.02 GeV and ~2.2 GeV. Coherent production on deuterium has an advantage compared to the production on hydrogen. It will eliminate ambiguities in the production mechanism, since only t-channel production of (p$\\bar{p}$) is allowed.

    Data from the CLAS detector at Jefferson Lab (TJNAF) has been analyzed. The experiment run in 2004-2005 with tagged bremsstrahlung photon beam of up to 5.5 GeV and a 40 cm long liquid deuterium target. During the experiment the CLAS torus magnet polarity was set to bend negatively charged particles outwards from the beam line. During the run the main trigger was tagger hodoscopes in relevant energy region in coincidence with three prong event in CLAS. The reactions γd→p$\\bar{p}$-d, γd→π+π-d, and γd→K+K-d in fully exclusive final states has been analyzed, and the cross sections have been extracted.

  4. Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition

    Energy Technology Data Exchange (ETDEWEB)

    Mollerach, Silvia; Roulet, Esteban, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar [CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 (8400) (Argentina)

    2013-10-01

    We discuss the effects of diffusion of high energy cosmic rays in turbulent extra-galactic magnetic fields. We find an approximate expression for the low energy suppression of the spectrum of the different mass components (with charge Z) in the case in which this suppression happens at energies below ∼ Z EeV, so that energy losses are dominated by the adiabatic ones. The low energy suppression appears when cosmic rays from the closest sources take a time comparable to the age of the Universe to reach the Earth. This occurs for energies E < Z EeV (B/nG)√(l{sub c}/Mpc)(d{sub s}/70Mpc) in terms of the magnetic field RMS strength B, its coherence length l{sub c} and the typical separation between sources d{sub s}. We apply this to scenarios in which the sources produce a mixed composition and have a relatively low maximum rigidity (E{sub max} ∼ (2–10)Z EeV), finding that diffusion has a significant effect on the resulting spectrum, the average mass and on its spread, in particular reducing this last one. For reasonable values of B and l{sub c} these effects can help to reproduce the composition trends observed by the Auger Collaboration for source spectra compatible with Fermi acceleration.

  5. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  6. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  7. Coherent synchrotron radiation experiments for the LCLS

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Russell, S.J.

    1998-01-01

    The authors describe a coherent synchrotron radiation experiment planned at Los Alamos to support the design of the Linac Coherent Light Source (LCLS) x-ray FEL. Preliminary simulations of the LCLS compressors show that a clever tuning strategy can be used to minimize the electron's beam emittance growth due to noninertial space-charge forces by employing a delicate cancellation of these forces. The purpose of the Los Alamos experiment, using a sub-picosecond chicane compressor, is to benchmark these simulations tools. In this paper, the authors present detailed numerical simulations of the experiment, and point out unique signatures of this effect that are measurable. As predicted previously, the largest emittance growths and induced energy spreads result from the nonradiative components of this space-charge force

  8. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  9. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  10. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    Science.gov (United States)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  11. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-02-22

    We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.

  12. Coherent lepton pair production in hadronic heavy ion collisions

    Science.gov (United States)

    Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S.

    2018-06-01

    Recently, significant enhancements of e+e- pair production at very low transverse momentum (pT < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and ρ in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. In this article, we present calculations of lepton pair (e+e- and μ+μ-) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  13. Theory of coherent transition radiation generated at a plasma-vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  14. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  15. Studying the high energy cosmic radiation: contributions to its detection and to the exploration of its origin

    International Nuclear Information System (INIS)

    Lamanna, Giovanni

    2009-01-01

    The Astro-particle Physics is a discipline where scientists from both the astrophysics and the particle physics communities meets to investigate the Universe aiming to answer to fundamental questions in the field of physics, cosmology and astrophysics. The high energy astrophysics domain, which explores the extremes sources where the larger collective transfer of energy take place, studies the most energetic cosmic radiation as privileged messengers of the history of the Universe. My research path, summarized in this work, is made of personal contributions in the development of new detection technologies, in the data analysis, perspectives and phenomenological studies about the scientific purposes of large experiments: e.g. AMS, ANTARES, HESS, CTA, POLAR. My contributions are the results of research activities in coherence with two main scientific goals in the context of the astro-particle physics domain: - The implication of the high energy cosmic radiation measurement for the investigation on the nature and distribution of the dark matter; - The investigation of the origin of the galactic cosmic radiation for the understanding of the most energetic processes in the Universe. (author)

  16. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  17. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  18. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  19. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  20. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel [Stanford Univ., CA (United States)

    2011-05-01

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  1. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  2. Self-induced coherence in a single pair of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Anna; Machnikowski, Pawel [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2011-04-15

    We study self-induced coherence (SIC) in a system composed of two coupled quantum dots (QDs). SIC consists in a coherent transfer of excitation between two systems (atoms or QDs) resulting from their collective interaction with the quantum electromagnetic vacuum. This leads to population trapping in a delocalized, optically inactive state. We focus on the effect of a difference in transition energies and coupling between the two emitters on the evolution of exciton occupation in the two QD system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Observation of Spontaneous Coherence in Bose-Einstein Condensate of Magnons

    International Nuclear Information System (INIS)

    Demidov, V. E.; Dzyapko, O.; Demokritov, S. O.; Melkov, G. A.; Slavin, A. N.

    2008-01-01

    The room-temperature dynamics of a magnon gas driven by short microwave pumping pulses is studied. An overpopulation of the lowest energy level of the system following the pumping is observed. Using the sensitivity of the Brillouin light scattering technique to the coherence degree of the scattering magnons we demonstrate the spontaneous emergence of coherence of the magnons at the lowest level, if their density exceeds a critical value. This finding is clear proof of the quantum nature of the observed phenomenon and direct evidence of Bose-Einstein condensation of magnons at room temperature

  4. Coherence and linewidth studies of a 4-nm high power FEL

    International Nuclear Information System (INIS)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width

  5. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  6. Color coherence in p pbar collisions at squareroot s = 1.8 TeV

    International Nuclear Information System (INIS)

    Abachi, S.

    1996-09-01

    We report on two preliminary studies of color coherence effects on p anti p collisions based on data collected by the D null detector during the 1992-1993 and 1994-1995 runs at the Fermilab Tevatron collider at a center of mass energy √s = 1. 8 TeV. Demonstration of initial-to-final state color interference effects is done in a higher energy region by measuring spatial correlations between the softer third jet and the second leading- E T jet in multi-jet events and in a lower energy regime by examining particle distribution patterns in W+Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and the predictions of an NLO parton level calculation

  7. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  8. Recent experimental results on Coherent Pion production in neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [Columbia University, Nevis Labs Irvington on Hudson, New York 10533 (United States)

    2012-08-15

    Recent experimental results on charged current ({pi}{sup +}) coherent production by KEK and SciBooNE and neutral current ({pi}{sup 0}) production by MiniBooNE, SciBooNE and NOMAD will be discussed. The NOMAD results are at an average neutrino energy of 25 GeV whereas the energies of the other experiments are in an average energy range of 1-2 GeV. A comparison with some theoretical models will be presented.

  9. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  10. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  11. Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics

    Science.gov (United States)

    Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen

    2018-02-01

    Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.

  12. Program controlled system for measuring and monitoring the electron coherent radiation spectrum of Yerevan synchrotron

    International Nuclear Information System (INIS)

    Adamyan, F.V.; Vartapetyan, G.A.; Galumyan, P.I.

    1980-01-01

    An automatic system for measurement, processing and control of energy spectrum of polarized photons realized at the Yerevan electron synchrotron is described. For measuring energy spectra of intensive high energy photon beams a pair spectrometer is used which comprises an aluminium target-converter, an analizing magnet and 2 telescopes of scintillation counters for electron-positron pairs registration. the procedure of spectra measurement by the pair spectrometer is reduced to determining the converted e + e - pairs yield at certain values of the H field intensity of the analizing magnet. An algorithm of the data express-processing for operative monitoring of peak energy stability of electron coherent radiation spectrum is given. The spectra measurement results obtained under real experimental conditions are presented

  13. Coherence characteristics of light-emitting diodes

    International Nuclear Information System (INIS)

    Mehta, Dalip Singh; Saxena, Kanchan; Dubey, Satish Kumar; Shakher, Chandra

    2010-01-01

    We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.

  14. A method for the coherence measurement of the supercontinuum source using Michelson interferometer

    International Nuclear Information System (INIS)

    Semenova, V A; Tsypkin, A V; Putilin, S E; Bespalov, V G

    2014-01-01

    Coherent properties of supercontinuum sources are highly significant for various applications, including low-coherence interferometry and optical frequency metrology. We propose a fast method for the spatial and temporal self-coherence of the SC measurement using Michelson interferometer without a mirror movement. Furthermore, we present self-coherence measurements of the supercontinuum, generated in microstructured fiber at 780 nm.

  15. Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis

    Czech Academy of Sciences Publication Activity Database

    Vácha, Lukáš; Baruník, Jozef

    2012-01-01

    Roč. 34, č. 1 (2012), s. 241-247 ISSN 0140-9883 R&D Projects: GA ČR GA402/09/0965; GA ČR GD402/09/H045; GA ČR GAP402/10/1610 Institutional research plan: CEZ:AV0Z10750506 Keywords : Correlation * Co-movement * Wavelet analysis * Wavelet coherence Subject RIV: AH - Economics Impact factor: 2.538, year: 2012

  16. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  17. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  18. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  19. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  20. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  1. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  2. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    Science.gov (United States)

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  3. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan; Hao, Kai; Dass, Chandriker Kavir; Singh, Akshay; Xu, Lixiang; Tran, Kha; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Clark, Genevieve; Bergh ä user, Gunnar; Malic, Ermin; Knorr, Andreas; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    Directory of Open Access Journals (Sweden)

    Raeba Mathew

    2010-10-01

    Full Text Available Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlusions are included in this series.Methods: A detailed clinical examination, color fundus photographs, autofluorescence, and HD-OCT of the subjects were performed.Results: HD-OCT demonstrates the localized and well-demarcated thickening of the inner retina in the acute phase of arterial occlusions that correlates with the areas of blocked autofluorescence caused by the cloudy swelling of the retina. The areas of blocked autofluorescence disappear with chronicity of the disease and this corresponds to the thinning of the inner retinal layers on HD-OCT.Conclusion: Heidelberg OCT and autofluorescence are useful tools to assess retinal arterial occlusions especially in subjects with unexplained visual field loss.Keywords: autofluorescence, high definition OCT, retinal artery occlusion

  6. Field Dependent Coherence Length in the Superclean, High-κ Superconductor CeCoIn5

    International Nuclear Information System (INIS)

    DeBeer-Schmitt, L.; Eskildsen, M. R.; Dewhurst, C. D.; Hoogenboom, B. W.; Petrovic, C.

    2006-01-01

    Using small-angle neutron scattering, we have studied the flux-line lattice (FLL) in the superclean, high-κ superconductor CeCoIn 5 . The FLL undergoes a first-order symmetry and reorientation transition at ∼0.55 T at 50 mK. In addition, the FLL form factor in this material is found to be independent of the applied magnetic field, in striking contrast to the exponential decrease usually observed in superconductors. This result is consistent with a strongly field-dependent coherence length, proportional to the vortex separation

  7. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  8. Energy difference and energy of mixing for crystalline structures of Ni-Ti-Mo alloys

    International Nuclear Information System (INIS)

    Skorentsev, L.F.; Demidenko, V.S.

    1995-01-01

    Using the locator variant of the coherent potential method combined with the canonical d band approximation, we have obtained the energy characteristics of molybdenum-containing titanium nickelide alloys for real and virtual high-symmetry crystalline phases. We have analyzed the reasons implied by the calculation results for the difference in the properties of molybdenum- and iron-containing alloys

  9. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  10. Wide-band coherent receiver development for enhanced surveillance

    International Nuclear Information System (INIS)

    Simpson, M.L.; Richards, R.K.; Hutchinson, D.P.

    1998-03-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced coherent IR heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Recent progress in wide band IR detectors and high speed electronics has significantly enhanced the measurement capabilities of coherent receivers. In addition, developments in new HgCdTe and quantum well IR photodetector (QWIP) focal plane arrays are providing the possibility of both active and passive coherent imaging. In this paper the authors discuss the implications of these new enabling technologies to the IR remote sensing community for enhanced surveillance. Coherent receivers, as opposed to direct or thermal detection, provide multiple dimensions of information about a scene or target in a single detector system. Combinations of range, velocity, temperature, and chemical species information are all available from a coherent heterodyne receiver. They present laboratory data showing measured noise equivalent power (NEP) of new QWIP detectors with heterodyne bandwidths greater than 7 GHz. For absorption measurements, a wide band coherent receiver provides the capability of looking between CO 2 lines at off-resonance peaks and thus the measurement of lines normally inaccessible with conventional heterodyne or direct detection systems. Also described are differential absorption lidar (DIAL) and Doppler laboratory measurements using an 8 x 8 HgCdTe focal plane array demonstrating the snapshot capability of coherent receiver detector arrays for enhanced chemical plume and moving hardbody capture. Finally they discuss a variety of coherent receiver configurations that can suppress (or enhance) sensitivity of present active remote sensing systems to speckle, glint, and other measurement anomalies

  11. Coherence and incoherence collective behavior in financial market

    Science.gov (United States)

    Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei

    2015-10-01

    Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.

  12. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  13. Coincidence Imaging and interference with coherent Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    CAI Yang-jian; ZHU Shi-yao

    2006-01-01

    we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.

  14. Theoretical aspects of some collective instabilities in high-energy particle storage rings

    International Nuclear Information System (INIS)

    Ruggiero, F.

    1986-01-01

    After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)

  15. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  16. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    Science.gov (United States)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  17. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Science.gov (United States)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  18. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  19. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  20. Optical coherence tomography in conjunction with bronchoscopy

    International Nuclear Information System (INIS)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi

    2012-01-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  1. Optical coherence tomography in conjunction with bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi, E-mail: ascedio@gmail.com [Servico de Endoscopia Respiratoria, Hospital das Clinicas, Universidade de Sao Paulo (FM/USP), SP (Brazil)

    2012-07-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  2. The potential of high intensity focused ultrasound (HIFU) combine phase-sensitive optical coherence tomography (PhS-OCT) for diseases diagnosis, treatment and monitoring

    Science.gov (United States)

    Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong

    2018-02-01

    HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.

  3. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  4. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  5. Color coherence in p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Cullen-Vidal, D.E.

    1996-09-01

    We report on two preliminary studies of color coherence effects in pp collisions based on data collected by the D OE detector during the 1992-1993 and 1994-1995 runs of the Fermilab Tevatron collider at a center of mass energy √s = 1.8 TeV. Demonstration of initial-to-final state color interference effects is done in a higher energy region by measuring spatial correlations between the softer third jet and the second leading-ET jet in multi-jet events and in a lower energy regime by examining particle distribution patterns in W+Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and to the predictions of a NLO parton-level calculation

  6. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther

    2014-01-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decell......While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting...... before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo......-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found...

  7. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  8. Self-biased broadband magnet-free linear isolator based on one-way space-time coherency

    Science.gov (United States)

    Taravati, Sajjad

    2017-12-01

    This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.

  9. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  10. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  11. Observation and control of coherent torsional dynamics in a quinquethiophene molecule.

    Science.gov (United States)

    Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo

    2010-07-28

    By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.

  12. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  13. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  14. Students’ reasoning about “high-energy bonds” and ATP: A vision of interdisciplinary education

    Directory of Open Access Journals (Sweden)

    Benjamin W. Dreyfus

    2014-05-01

    Full Text Available As interdisciplinary courses are developed, instructors and researchers have to grapple with questions of how students should make connections across disciplines. We explore the issue of interdisciplinary reconciliation (IDR: how students reconcile seemingly contradictory ideas from different disciplines. While IDR has elements in common with other frameworks for the reconciliation of ideas across contexts, it differs in that each disciplinary idea is considered canonically correct within its own discipline. The setting for the research is an introductory physics course for biology majors that seeks to build greater interdisciplinary coherence and therefore includes biologically relevant topics such as adenosine triphosphate (ATP and chemical bond energy. In our case-study data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see students justifying context-dependent modeling choices, showing nuance in articulating how system choices may be related to disciplinary problems of interest. This represents a desired end point of IDR, in which students can build coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context. Our case study also illustrates elements of the instructional environment that play roles in the process of IDR.

  15. Bunch Length Measurements using Coherent Radiation

    CERN Document Server

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  16. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  17. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  18. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  19. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  20. Coherent imaging with incoherent light in digital holographic microscopy

    Science.gov (United States)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  1. High resolution feature extraction from optical coherence tomography acquired internal fingerprint

    CSIR Research Space (South Africa)

    Khutlang, Rethabile

    2016-05-01

    Full Text Available coherence tomography (OCT) can be used to scan the internal skin features, up to the depth of the papillary layer. OCT is contactless and scans in three dimensions. The papillary contour represents an internal fingerprint, which does not suffer external skin...

  2. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  3. DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT

    Energy Technology Data Exchange (ETDEWEB)

    Gedalin, M. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il [Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg (Germany)

    2016-07-10

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  4. Coherent normalization of finger strontium XRF measurements: feasibility and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Zamburlini, M; Pejovic-Milic, A; Chettle, D R [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, L8S 4K1 (Canada)

    2008-08-07

    A non-invasive in vivo x-ray fluorescence (XRF) method of measuring bone strontium concentrations has previously been reported as a potential diagnostic tool able to detect strontium concentration in the finger and ankle bones. The feasibility of coherent normalization for {sup 125}I-source-based finger bone strontium x-ray fluorescence (XRF) measurements is assessed here by theoretical considerations and Monte Carlo simulations. Normalization would have several advantages, among which are the correction for the signal attenuation by the overlying soft tissue, and intersubject variability in the bone size and shape. The coherent normalization of bone strontium XRF measurements presents several challenges dictated by the behaviour of the coherent cross section and mass attenuation coefficient at the energies involved. It was found that the coherent normalization alone with either 22.1 keV or 35.5 keV photons was not successful in correcting for the overlying soft tissue attenuation. However, it was found that the coherent peak at 35.5 keV was able to correct effectively for variability in the finger bone size between people. Thus, it is suggested that, if the overlying soft tissue thickness can be obtained by means of an independent measurement, the 35.5 keV peak can be used to correct for the bone size, with an overall accuracy of the normalization process of better than 10%. (note)

  5. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  6. Measurement of dispersion of nanoparticles in a dense suspension by high-sensitivity low-coherence dynamic light scattering

    Science.gov (United States)

    Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki

    2014-08-01

    High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.

  7. Investigating Coherent Structures in the Standard Turbulence Models using Proper Orthogonal Decomposition

    International Nuclear Information System (INIS)

    Eliassen, Lene; Andersen, Søren

    2016-01-01

    The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)

  8. Improved wavefront correction for coherent image restoration.

    Science.gov (United States)

    Zelenka, Claudius; Koch, Reinhard

    2017-08-07

    Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

  9. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  10. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  11. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  12. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  13. Total and differential cross sections for pion production via coherent isobar and giant resonance formation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1985-01-01

    A quantal many-body formalism is presented that investigates pion production through the coherent formation of a nucleonic isobar in the projectile and its subsequent decay to various pion charge states along with concomitant excitation of the target to a coherent spin-isospin giant resonance via a peripheral collision of relativistic heavy ions. Total cross sections as a function of the incident energy per nucleon and Lorentz-invariant differential cross sections as a function of pion energy and angle are calculated. It is shown that the pion angular distributions, in coincidence with the target giant resonance excitations, might provide a well-defined signature for these coherent processes

  14. Doubly coherent production of π- by 3He ions of 910 MeV

    International Nuclear Information System (INIS)

    Aslanides, E.; Fassnacht, P.; Hibou, F.; Chiavassa, E.; Dellacasa, G.; Gallio, M.; Musso, A.; Bressani, T.; Puddu, G.

    1979-01-01

    The inclusive pion spectrum from the reaction 3 He+ 6 Li → π - +X at 910 MeV was measured at 0 0 with moderate resolution up to the kinematic limit of the two-body final-state reaction. A first analysis shows that the production of high-energy pions cannot be explained by the NN → NNπ process using conventional nucleon momentum distributions. At the end of the spectrum a clear deviation from the general falloff slope is observed and attributed to the doubly coherent reaction 3 He+ 6 Li → 9 C+π -

  15. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  16. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  17. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  18. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    , electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and β* = 5 cm, takes advantage of newly commissioned Nb 3 Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R and D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R and D in Section 5.

  19. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  20. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  1. Femtosecond coherent control of absorption and free induction decay in a GaAs multiple quantum well

    CERN Document Server

    Yee, D S

    2000-01-01

    Excitonic polarizations are coherently excited using two phase-locked pulses. By probing the linear propagation of the pulses through a GaAs/AlGaAs multiple quantum well sample, we directly demonstrate the intriguing interaction between the coherent exciton polarizations and the controlling pulses. It is shown that the second pulse can be either strongly amplified by taking up energy gained from the destruction of the exciton polarization or drastically decreased by giving up all its energy to excitons. The temporal signatures of the transmitted pulse shapes agree well with model calculations.

  2. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  3. In vivo high resolution human corneal imaging using full-field optical coherence tomography.

    Science.gov (United States)

    Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A Claude

    2018-02-01

    We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.

  4. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  5. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  6. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  7. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  8. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  9. Development and Utilization of Bright Tabletop Sources of Coherent Soft X-Ray Radiation

    International Nuclear Information System (INIS)

    Rocca, Jorge J.

    2005-01-01

    This project investigated aspects of the development and utilization of compact XUV sources based on fast capillary discharges and high order harmonic up conversion. These sources are very compact, yet can generate soft x-ray radiation with peak spectral brightness several orders of magnitude larger than a synchrotron beam lines. The work has included the characterization of some of the important parameters that enable the use of these sources in unique applications, such as the degree of spatial coherence and the wavefront characteristics that affect their focusing capabilities. In relation to source development, they have recently completed preliminary work towards exploring the generation of high harmonics in a pre-ionized medium created by a capillary discharge. Since ions are more difficult to ionize than neutral atoms, the use of pre-ionized nonlinear media may lead to the generation of coherent light at > 1 KeV photon energy. Recent application results include the first study of the damage threshold and damage mechanism of XUV mirrors exposed to intense focalized 46.9 nm laser radiation, and the study of the ablation of polymers with soft x-ray laser light

  10. Quantum mechanical signature in exclusive coherent pion production

    Science.gov (United States)

    Deutchman, P. A.; Buvel, R. L.; Maung, K. M.; Norbury, J. W.; Townsend, L. W.

    1986-01-01

    We calculate the coherent production of pions from subthreshold to relativistic energies in heavy-ion collisions using a quantum, microscopic, many-body model. For the first time, in this approach, we use harmonic oscillator wave functions to describe shell-model information. The theoretical quantum mechanical results obtained for the pion spectra represent an important improvement over our previous microscopic, many-body calculations.

  11. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  12. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  13. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  14. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  15. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  16. Sequential Coherence in Sentence Pairs Enhances Imagery during Comprehension: An Individual Differences Study.

    Directory of Open Access Journals (Sweden)

    Carol Madden-Lombardi

    Full Text Available The present study investigates how sequential coherence in sentence pairs (events in sequence vs. unrelated events affects the perceived ability to form a mental image of the sentences for both auditory and visual presentations. In addition, we investigated how the ease of event imagery affected online comprehension (word reading times in the case of sequentially coherent and incoherent sentence pairs. Two groups of comprehenders were identified based on their self-reported ability to form vivid mental images of described events. Imageability ratings were higher and faster for pairs of sentences that described events in coherent sequences rather than non-sequential events, especially for high imagers. Furthermore, reading times on individual words suggested different comprehension patterns with respect to sequence coherence for the two groups of imagers, with high imagers activating richer mental images earlier than low imagers. The present results offer a novel link between research on imagery and discourse coherence, with specific contributions to our understanding of comprehension patterns for high and low imagers.

  17. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  18. Energy dependence of ulrathin LiF-dosemeters for high energy electrons and high energy X-radiation

    International Nuclear Information System (INIS)

    Kupfer, T.

    1977-02-01

    The energy dependence of ultrathin LiF-dosemeters for high energy electrons (5-40 MeV) and high energy X-radiation (6 MV, 42 MV) is experimentally determined. The experimental values are compared to values calculted earlier by other authors. The influence of the thickness of the dosemeters have been considered by comparison of experimental values for 0.03 mm thick dosemeters and theoretical values for 0.13 mm and 0.38 mm thick ones. Also different commersially available dosemeters have been compared by experiments. It is difficult to draw any other conclutions about the energy dependence than that the variation of the relative responce is within +- 3 percent (2S). However the results seems to be sulficient for clinical applications

  19. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats

    Science.gov (United States)

    Jung, H.; Alsdorf, D.

    2006-12-01

    Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values

  20. Coherence and interlimb force control: Effects of visual gain.

    Science.gov (United States)

    Kang, Nyeonju; Cauraugh, James H

    2018-03-06

    Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Data Preservation in High Energy Physics

    International Nuclear Information System (INIS)

    Mount, Richard; Brooks, Travis; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gulzow, Volker

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  2. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  3. Electron-impact coherence parameters for 41 P 1 excitation of zinc

    Science.gov (United States)

    Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh

    2018-04-01

    We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.

  4. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  5. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  6. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  7. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  8. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2011-01-01

    Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...

  9. Emittance growth from transient coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-01-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems

  10. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  11. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  12. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  13. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  14. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  15. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  16. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  17. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  18. Coherent structures at ion scales in fast and slow solar wind: Cluster observations

    Science.gov (United States)

    Perrone, D.; Alexandrova, O.; Zouganelis, Y.; Roberts, O.; Lion, S.; Escoubet, C. P.; Walsh, A. P.; Maksimovic, M.; Lacombe, C.

    2017-12-01

    Spacecraft measurements generally reveal that solar wind electromagnetic fluctuations are in a state of fully-developed turbulence. Turbulence represents a very complex problem in plasmas since cross-scale coupling and kinetic effects are present. Moreover, the intermittency phenomenon, i.e. the manifestation of the non-uniform and inhomogeneous energy transfer and dissipation in a turbulent system, represents a very important aspect of the solar wind turbulent cascade. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to Alfvén vortex-like structures and current sheets. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures around ion characteristic scales, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field. Moreover, some of them propagate in the plasma rest frame in the direction perpendicular to the local field. Finally, a further analysis on the electron and ion velocity distributions shows a high variability; in particular, close to coherent structures the electron and ion distribution functions appear strongly deformed and far from the thermodynamic equilibrium. Possible interpretations of the observed structures and their role in the heating process of the plasma are also discussed.

  19. Efficient coherent beam combination of two-dimensional phase-locked laser arrays

    International Nuclear Information System (INIS)

    Li, Bing; Yan, Aimin; Liu, Liren; Dai, Enwen; Sun, Jianfeng; Shen, Baoliang; Lv, Xiaoyu; Wu, Yapeng

    2011-01-01

    An efficient technique in which a two-dimensional (2D) phase-locked laser array can be coherently combined into a high power and high quality beam by using a conjugate Dammann grating (CDG) is presented. A theoretical model is established to provide a physical interpretation of the proposed scheme. Using this technique, we investigate analytically and numerically the coherent combination of 2D laser arrays such as 5 × 5 and 32 × 32 arrangements. Far-field distributions and the near-field pattern of the combined beam are calculated and compared with experimental results. A verification experiment with a simulated 5 × 5 2D laser array using an aperture mask has been performed. Calculations and experimental results show that the proposed technique in this paper is an efficient coherent beam combination method to obtain a high power and high quality beam from laser arrays

  20. Coherence characteristics of random lasing in a dye doped hybrid powder

    Energy Technology Data Exchange (ETDEWEB)

    García-Revilla, S. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018, San Sebastián (Spain); Fernández, J., E-mail: wupferoj@bi.ehu.es [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018, San Sebastián (Spain); Barredo-Zuriarrain, M. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Pecoraro, E. [Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro (Portugal); Institute of Chemisty, São Paulo State University–UNESP, 14800-900, Araraquara (Brazil); Arriandiaga, M.A. [Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, Bilbao (Spain); Iparraguirre, I.; Azkargorta, J. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); and others

    2016-01-15

    The photon statistics of the random laser emission of a Rhodamine B doped di-ureasil hybrid powder is investigated to evaluate its degree of coherence above threshold. Although the random laser emission is a weighted average of spatially uncorrelated radiation emitted at different positions in the sample, a spatial coherence control was achieved due to an improved detection configuration based on spatial filtering. By using this experimental approach, which also allows for fine mode discrimination and time-resolved analysis of uncoupled modes from mode competition, an area not larger than the expected coherence size of the random laser is probed. Once the spectral and temporal behavior of non-overlapping modes is characterized, an assessment of the photon-number probability distribution and the resulting second-order correlation coefficient as a function of time delay and wavelength was performed. The outcome of our single photon counting measurements revealed a high degree of temporal coherence at the time of maximum pump intensity and at wavelengths around the Rhodamine B gain maximum. - Highlights: • The photon statistics of a diffusive random laser is explored. • The laser sample is a RhB doped di-ureasil hybrid powder. • The detection configuration allows for mode discrimination and time-resolved analysis. • The time and wavelength variation of the temporal coherence is examined. • A high degree of temporal coherence is found.