WorldWideScience

Sample records for cognitive radio channels

  1. Performance Analysis of Ad Hoc Dispersed Spectrum Cognitive Radio Networks over Fading Channels

    Directory of Open Access Journals (Sweden)

    Mohammad Muneer

    2011-01-01

    Full Text Available Cognitive radio systems can utilize dispersed spectrum, and thus such approach is known as dispersed spectrum cognitive radio systems. In this paper, we first provide the performance analysis of such systems over fading channels. We derive the average symbol error probability of dispersed spectrum cognitive radio systems for two cases, where the channel for each frequency diversity band experiences independent and dependent Nakagami- fading. In addition, the derivation is extended to include the effects of modulation type and order by considering M-ary phase-shift keying ( -PSK and M-ary quadrature amplitude modulation -QAM schemes. We then consider the deployment of such cognitive radio systems in an ad hoc fashion. We consider an ad hoc dispersed spectrum cognitive radio network, where the nodes are assumed to be distributed in three dimension (3D. We derive the effective transport capacity considering a cubic grid distribution. Numerical results are presented to verify the theoretical analysis and show the performance of such networks.

  2. Channel Selection Based on Trust and Multiarmed Bandit in Multiuser, Multichannel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Fanzi Zeng

    2014-01-01

    Full Text Available This paper proposes a channel selection scheme for the multiuser, multichannel cognitive radio networks. This scheme formulates the channel selection as the multiarmed bandit problem, where cognitive radio users are compared to the players and channels to the arms. By simulation negotiation we can achieve the potential reward on each channel after it is selected for transmission; then the channel with the maximum accumulated rewards is formally chosen. To further improve the performance, the trust model is proposed and combined with multi-armed bandit to address the channel selection problem. Simulation results validate the proposed scheme.

  3. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    OpenAIRE

    Junior , Paulo Roberto ,; Fonseca , Mauro; Munaretto , Anelise; Viana , Aline ,; Ziviani , Artur

    2011-01-01

    Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another ...

  4. Opportunistic spectrum access in cognitive radio based on channel switching

    KAUST Repository

    Gaaloul, Fakhreddine; Yang, Hongchuan; Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2012-01-01

    This paper investigates the performance of a cognitive radio transceiver that can monitor multiple channels and opportunistically use any one of them should it be available. In our work, we propose and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. Two switching strategies, namely the switch and examine and the switch and stay strategies, are proposed. For these proposed access schemes, we investigate their performance by deriving the analytical expression of the novel metric of the average access duration and the average waiting time and based on these two metrics a time average SU throughput formula is proposed to predict the performance of the secondary cognitive system. © 2012 ICST.

  5. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-06-18

    Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users\\' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users\\' benefits while maintaining the primary users\\' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without

  6. Matching Theory for Channel Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available For a cognitive radio network (CRN in which a set of secondary users (SUs competes for a limited number of channels (spectrum resources belonging to primary users (PUs, the channel allocation is a challenge and dominates the throughput and congestion of the network. In this paper, the channel allocation problem is first formulated as the 0-1 integer programming optimization, with considering the overall utility both of primary system and secondary system. Inspired by matching theory, a many-to-one matching game is used to remodel the channel allocation problem, and the corresponding PU proposing deferred acceptance (PPDA algorithm is also proposed to yield a stable matching. We compare the performance and computation complexity between these two solutions. Numerical results demonstrate the efficiency and obtain the communication overhead of the proposed scheme.

  7. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  8. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-05-08

    This thesis aims to investigate the incorporation of cooperative techniques in cognitive radio networks over Nakagami-m fading channels. These last years, spectrum sharing mechanisms has gained a lot of interest in the wireless communication domain. Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work, we consider two particular scenarios for cooperative cognitive radio systems. The first scenario consider multihop regenerative relaying in an underlay cognitive set up. The cooperation is performed in the secondary system, in the presence of multiple primary users. Both interference power and peak power constraints are taking into account. Closed-form expressions for the statistical characteristics and multiple end- to-end performance metrics are derived. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. In the second part of this work, we consider an overlay cognitive network with the spectrally efficient two-phase two-way relaying protocol. Two relay selection techniques, optimizing both the primary and the secondary communication, are presented. The overall outage performance is investigated and an optimal power allocation scheme, that ameliorate the outage performance of the system, is proposed. Numerical simulations are presented to illustrate and compare the obtained results.

  9. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  10. A Joint Link and Channel Assignment Routing Scheme for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    H.S.Zhao

    2013-12-01

    Full Text Available Cognitive radio (CR is a promising technology that enables opportunistic utilization of the temporarily vacant spectrum to mitigate the spectrum scarcity in wireless communications. Since secondary users (SUs should vacate the channel in use immediately after detecting the reappearances of primary users (PUs in cognitive radio networks (CRNs, the route reliability is a distinctive challenge for routing in CRNs. Furthermore, the throughput requirement of an SU session should be satisfied and it is always preferable to select a route with less negative influence on other current or latish sessions. To account for the route reliability challenge, we study the joint link and channel assignment routing problem for CRNs. It is formulated in a form of integer nonlinear programming (INLP, which is NP-hard, with the objective of minimizing the interference of a new route to other routes while providing route reliability and throughput guarantee. An on-demand route discovery algorithm is proposed to find reliable candidate paths, while a joint link and channel assignment routing algorithm with sequentially-connected-link coordination is proposed to choose the near-optimal route for improving the route reliability and minimizing negative influence. Simulation results demonstrate that the proposed algorithm achieves considerable improvement over existing schemes in both route reliability and throughput.

  11. Reduced-dimension power allocation over clustered channels in cognitive radios system under co-channel interference

    KAUST Repository

    Ben Ghorbel, Mahdi

    2014-05-12

    The objective of this paper is to propose a reduceddimension resource allocation scheme in the context of cognitive radio system in presence of co-channel interference between users. We assume a multicarrier transmission for both the primary and secondary systems. Instead of optimizing the powers over all sub-carriers, the sub-carriers are grouped into clusters of sub-carriers, where the power of each sub-carrier is directly related to the power of the correspondent cluster. The power optimization is done only over the set of clusters instead of all sub-carriers which can significantly reduce the complexity of the resource allocation problem. The performance loss of the reduced dimension solution with respect to the optimal solution, where the optimization is carried over all active sub-carriers, allows trading-off complexity versus performance. Numerical evaluation indeed revealed that a limited performance loss occurs by optimizing over a reduced set of clusters instead of the full optimization in the context of cognitive radio systems.

  12. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi

    2012-04-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  13. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2012-01-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  14. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Munaretto Anelise

    2011-01-01

    Full Text Available Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another challenge is the optimization of network capacity through interference minimization. In contrast to related work, ZAP addresses these challenges with a fully distributed approach based only on local (neighborhood knowledge, while significantly reducing computational costs and the number of messages required for channel assignment. Simulations confirm the efficiency of ZAP in terms of (i the performance tradeoff between different metrics and (ii the fast achievement of a suitable assignment solution regardless of network size and density.

  15. Data-Throughput Enhancement Using Data Mining-Informed Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Khashayar Kotobi

    2015-03-01

    Full Text Available We propose the data mining-informed cognitive radio, which uses non-traditional data sources and data-mining techniques for decision making and improving the performance of a wireless network. To date, the application of information other than wireless channel data in cognitive radios has not been significantly studied. We use a novel dataset (Twitter traffic as an indicator of network load in a wireless channel. Using this dataset, we present and test a series of predictive algorithms that show an improvement in wireless channel utilization over traditional collision-detection algorithms. Our results demonstrate the viability of using these novel datasets to inform and create more efficient cognitive radio networks.

  16. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-09-01

    Spectrum sensing is the first and main step for cognitive radio systems to achieve an efficient use of the spectrum. Cooperation among cognitive radio users is a technique employed to improve the sensing performance by exploiting the diversity between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information to the full soft information. Quantized information has shown its efficiency as a trade-off between binary hard and full soft for other cooperative schemes, in this paper, we investigate the use of quantized information between cooperating cognitive users. We derive closed-form expressions of the cooperative average false alarm and detection probabilities over fading channels for a generalized system model with not necessarily identical average sensing Signal-to-Noise Ratio (SNR) and imperfect reporting channels. Numerical simulations allow us to conclude a tradeoff between the quantization size and the reporting energy in order to achieve the optimal cooperative error probability. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  17. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users are necessary but are challenging tasks. Since it is impractical in cognitive radio systems to assume that the channel state information of the interference link is available at the cognitive transmitter, the interference at the primary users is hard to be estimated accurately. This paper introduces a resource allocation algorithm for OFDMA-based cognitive radio systems, which utilizes location information of the primary and secondary users instead of the channel state information of the interference link. Simulation results show that it is indeed effective to incorporate location information into resource allocation so that a near-optimal capacity is achieved.

  18. Dynamic Channel Selection for Cognitive Femtocells

    DEFF Research Database (Denmark)

    Da Costa, Gustavo Wagner Oliveira; Cattoni, Andrea Fabio; Mogensen, Preben

    2014-01-01

    on state-of-art techniques to manage the radio resources in order to cope with inter-cell interference in cognitive femtocells. Different techniques are presented as examples of gradually increasing sophistication of the cognitive femtocells, allowing for dynamic channel allocation, dynamic reuse......, but not least, the possibility of having closed-subscriber-groups aggravates the inter-cell interference problems. In order to tackle these issues we consider the implementation of some aspects of cognitive radio technology into femtocells, leading to the concept of cognitive femtocells. This chapter focuses...

  19. Distributed opportunistic spectrum sharing in cognitive radio networks

    KAUST Repository

    Hawa, Mohammed

    2016-05-19

    In cases where the licensed radio spectrum is underutilized, cognitive radio technology enables cognitive devices to sense and then dynamically access this scarce resource making the most out of it. In this work, we introduce a simple and intuitive, yet powerful and efficient, technique that allows opportunistic channel access in cognitive radio systems in a completely distributed fashion. Our proposed method achieves very high values of spectrum utilization and throughput. It also minimizes interference between cognitive base stations and the primary users licensed to use the spectrum. The algorithm responds quickly and efficiently to variations in the network parameters and also achieves a high degree of fairness between cognitive base stations. © 2016 John Wiley & Sons, Ltd.

  20. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang; Khan, Fahdahmed

    2012-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  1. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei

    2012-09-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  2. Channel Selection Policy in Multi-SU and Multi-PU Cognitive Radio Networks with Energy Harvesting for Internet of Everything

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2016-01-01

    Full Text Available Cognitive radio, which will become a fundamental part of the Internet of Everything (IoE, has been identified as a promising solution for the spectrum scarcity. In a multi-SU and multi-PU cognitive radio network, selecting channels is a fundamental problem due to the channel competition among secondary users (SUs and packet collision between SUs and primary users (PUs. In this paper, we adopt cooperative sensing method to avoid the packet collision between SUs and PUs and focus on how to collect the spectrum sensing data of SUs for cooperative sensing. In order to reduce the channel competition among SUs, we first consider the hybrid transmission model for single SU where a SU can opportunistically access both idle channels operating either the Overlay or the Underlay model and the busy channels by using the energy harvesting technology. Then we propose a competitive set based channel selection policy for multi-SU where all SUs competing for data transmission or energy harvesting in the same channel will form a competitive set. Extensive simulations show that the proposed cooperative sensing method and the channel selection policy outperform previous solutions in terms of false alarm, average throughput, average waiting time, and energy harvesting efficiency of SUs.

  3. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    Science.gov (United States)

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.

  4. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2013-01-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying

  5. Target Channel Visiting Order Design Using Particle Swarm Optimization for Spectrum Handoff in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Shilian Zheng

    2014-08-01

    Full Text Available In a dynamic spectrum access network, when a primary user (licensed user reappears on the current channel, cognitive radios (CRs need to vacate the channel and reestablish a communications link on some other channel to avoid interference to primary users, resulting in spectrum handoff. This paper studies the problem of designing target channel visiting order for spectrum handoff to minimize expected spectrum handoff delay. A particle swarm optimization (PSO based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithm performs far better than random target channel visiting scheme. The solutions obtained by PSO are very close to the optimal solution which further validates the effectiveness of the proposed method.

  6. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  7. PREDICTION BASED CHANNEL-HOPPING ALGORITHM FOR RENDEZVOUS IN COGNITIVE RADIO NETWORKS

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2012-12-01

    Full Text Available Most common works for rendezvous in cognitive radio networks deal only with two user scenarios involving two secondary users and variable primary users and aim at reducing the time-to-rendezvous. A common control channel for the establishment of communication is not considered and hence the work comes under the category of ‘Blind Rendezvous’. Our work deal with multi-user scenario and provides a methodology for the users to find each other in the very first time slot spent for rendezvous or otherwise called the firstattempt- rendezvous. The secondary users make use of the history of past communications to enable them to predict the frequency channel that the user expects the rendezvous user to be. Our approach prevents greedy decision making between the users involved by the use of a cut-off time period for attempting rendezvous. Simulation results show that the time-to-rendezvous (TTR is greatly reduced upon comparison with other popular rendezvous algorithms.

  8. Call Arrival Rate Prediction and Blocking Probability Estimation for Infrastructure based Mobile Cognitive Radio Personal Area Network

    Directory of Open Access Journals (Sweden)

    Neeta Nathani

    2017-08-01

    Full Text Available The Cognitive Radio usage has been estimated as non-emergency service with low volume traffic. Present work proposes an infrastructure based Cognitive Radio network and probability of success of CR traffic in licensed band. The Cognitive Radio nodes will form cluster. The cluster nodes will communicate on Industrial, Scientific and Medical band using IPv6 over Low-Power Wireless Personal Area Network based protocol from sensor to Gateway Cluster Head. For Cognitive Radio-Media Access Control protocol for Gateway to Cognitive Radio-Base Station communication, it will use vacant channels of licensed band. Standalone secondary users of Cognitive Radio Network shall be considered as a Gateway with one user. The Gateway will handle multi-channel multi radio for communication with Base Station. Cognitive Radio Network operators shall define various traffic data accumulation counters at Base Station for storing signal strength, Carrier-to-Interference and Noise Ratio, etc. parameters and record channel occupied/vacant status. The researches has been done so far using hour as interval is too long for parameters like holding time expressed in minutes and hence channel vacant/occupied status time is only probabilistically calculated. In the present work, an infrastructure based architecture has been proposed which polls channel status each minute in contrary to hourly polling of data. The Gateways of the Cognitive Radio Network shall monitor status of each Primary User periodically inside its working range and shall inform to Cognitive Radio- Base Station for preparation of minutewise database. For simulation, the occupancy data for all primary user channels were pulled in one minute interval from a live mobile network. Hourly traffic data and minutewise holding times has been analyzed to optimize the parameters of Seasonal Auto Regressive Integrated Moving Average prediction model. The blocking probability of an incoming Cognitive Radio call has been

  9. Game Theoretical Approaches for Transport-Aware Channel Selection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Chen Shih-Ho

    2010-01-01

    Full Text Available Effectively sharing channels among secondary users (SUs is one of the greatest challenges in cognitive radio network (CRN. In the past, many studies have proposed channel selection schemes at the physical or the MAC layer that allow SUs swiftly respond to the spectrum states. However, they may not lead to enhance performance due to slow response of the transport layer flow control mechanism. This paper presents a cross-layer design framework called Transport Aware Channel Selection (TACS scheme to optimize the transport throughput based on states, such as RTT and congestion window size, of TCP flow control mechanism. We formulate the TACS problem as two different game theoretic approaches: Selfish Spectrum Sharing Game (SSSG and Cooperative Spectrum Sharing Game (CSSG and present novel distributed heuristic algorithms to optimize TCP throughput. Computer simulations show that SSSG and CSSG could double the SUs throughput of current MAC-based scheme when primary users (PUs use their channel infrequently, and with up to 12% to 100% throughput increase when PUs are more active. The simulation results also illustrated that CSSG performs up to 20% better than SSSG in terms of the throughput.

  10. SINR balancing in the downlink of cognitive radio networks with imperfect channel knowledge

    KAUST Repository

    Hanif, Muhammad Fainan

    2010-01-01

    In this paper we consider the problem of signal-to-interference-plus-noise ratio (SINR) balancing in the downlink of cognitive radio (CR) networks while simultaneously keeping interference levels at primary user (PU) receivers (RXs) below an acceptable threshold with uncertain channel state information available at the CR base-station (BS). We optimize the beamforming vectors at the CR BS so that the worst user SINR is maximized and transmit power constraints at the CR BS and interference constraints at the PU RXs are satisfied. With uncertainties in the channel bounded by a Euclidean ball, the semidefinite program (SDP) modeling the balancing problem is solved using the recently developed convex iteration technique without relaxing the rank constraints. Numerical simulations are conducted to show the effectiveness of the proposed technique in comparison to known approximations.

  11. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2010-01-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system

  12. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2010-09-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system usually use the channel state information of the primary user which is often impractical to obtain. However, using location information, we can estimate this interference by pathloss computation. In this paper, we introduce a low-complexity resource allocation algorithm for orthogonal frequency division multiple access (OFDMA) based cognitive radio systems, which uses relative location information between primary and secondary users to estimate the interference. This algorithm considers interference with multiple primary users having different thresholds. The simulation results show the efficiency of the proposed algorithm by comparing it with an optimal exhaustive search method. © 2010 IEEE.

  13. Towards low-delay and high-throughput cognitive radio vehicular networks

    Directory of Open Access Journals (Sweden)

    Nada Elgaml

    2017-12-01

    Full Text Available Cognitive Radio Vehicular Ad-hoc Networks (CR-VANETs exploit cognitive radios to allow vehicles to access the unused channels in their radio environment. Thus, CR-VANETs do not only suffer the traditional CR problems, especially spectrum sensing, but also suffer new challenges due to the highly dynamic nature of VANETs. In this paper, we present a low-delay and high-throughput radio environment assessment scheme for CR-VANETs that can be easily incorporated with the IEEE 802.11p standard developed for VANETs. Simulation results show that the proposed scheme significantly reduces the time to get the radio environment map and increases the CR-VANET throughput.

  14. Achievable Rate of Spectrum Sharing Cognitive Radio Multiple-Antenna Channels

    KAUST Repository

    Sboui, Lokman

    2015-04-28

    We investigate the spectral efficiency gain of an uplink Cognitive Radio (CR) Multi-Input-Multi-Output system in which the Secondary User (SU) is allowed to share the spectrum with the Primary User (PU) using a specific precoding scheme to communicate with a common receiver. The proposed scheme exploits, at the same time, the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. At the common receiver, we adopt a Successive Interference Cancellation (SIC) technique to eliminate the effect of the detected primary signal transmitted through the exploited eigenmodes. Furthermore, we analyze the SIC operation inaccuracy as well as the CSI estimation imperfection on the PU and SU throughputs. Numerical results show that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, the CR rate remains non-zero for high Signal to Noise Ratio which is usually impossible when we only employ a space alignment technique. We show that a modified water-filling power allocation policy at the PU can increase the secondary rate with a marginal degradation of the primary rate. Finally, we investigate the behavior of the PU and SU rates through the study of the rate achievable region.

  15. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  16. Relay-Assisted Primary and Secondary Transmissions in Cognitive Radio Networks

    KAUST Repository

    Shafie, Ahmed El; Khattab, Tamer; Salem, Ahmed Sultan

    2016-01-01

    We assume a set of cognitive relay nodes that assists both primary and secondary transmissions in a time-slotted cognitive radio networks. To regulate the channel access of the various nodes in the network, we propose an overlapped spectrum sensing

  17. Contribution Towards Practical Cognitive Radios Systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-07-01

    Cognitive radios is one of the hot topics for emerging and future wireless commu- nication. It has been proposed as a suitable solution for the spectrum scarcity caused by the increase in frequency demand. The concept is based on allowing unlicensed users, called cognitive or secondary users, to share the unoccupied frequency bands with their owners, called the primary users, under constraints on the interference they cause to them. The objective of our work is to propose some enhancements to cognitive radio systems while taking into account practical constraints. Cogni- tive radios requires a capability to detect spectrum holes (spectrum sensing) and a scheduling flexibility to avoid the occupied spectrum and selectively use the empty spectrum (dynamic resource allocation). Thus, the work is composed of two main parts. The first part focuses on cooperative spectrum sensing. We compute in this part the analytical performance of cooperative spectrum sensing under non identical and imperfect channels. Different schemes are considered for the cooperation between users such as hard binary, censored information, quantized, and soft information. The second part focuses on the dynamic resource allocation. We first propose low-cost re- source allocation algorithms that use location information to estimate the interference to primary users to replace absence of instantaneous channel state information. We extend these algorithms to handle practical implementation constraints such as dis- 5 crete bit-loading and collocated subcarriers allocations. We then propose a reduced dimension approach based on the grouping of subcarriers into clusters and performing the resource allocation over clusters of subcarriers instead of single subcarriers. This approach is shown to reduce the computational complexity of the algorithm with lim- ited performance loss. In addition, it is valid for a generic set of resource allocation problems in presence of co-channel interference between users.

  18. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  19. Cognitive radio networks medium access control for coexistence of wireless systems

    CERN Document Server

    Bian, Kaigui; Gao, Bo

    2014-01-01

    This book gives a comprehensive overview of the medium access control (MAC) principles in cognitive radio networks, with a specific focus on how such MAC principles enable different wireless systems to coexist in the same spectrum band and carry out spectrum sharing.  From algorithm design to the latest developments in the standards and spectrum policy, readers will benefit from leading-edge knowledge of how cognitive radio systems coexist and share spectrum resources.  Coverage includes cognitive radio rendezvous, spectrum sharing, channel allocation, coexistence in TV white space, and coexistence of heterogeneous wireless systems.   • Provides a comprehensive reference on medium access control (MAC)-related problems in the design of cognitive radio systems and networks; • Includes detailed analysis of various coexistence problems related to medium access control in cognitive radio networks; • Reveals novel techniques for addressing the challenges of coexistence protocol design at a higher level ...

  20. Capacity of spectrum sharing Cognitive Radio systems over Nakagami fading channels at low SNR

    KAUST Repository

    Sboui, Lokman

    2013-06-01

    In this paper, we study the ergodic capacity of Cognitive Radio (CR) spectrum sharing systems at low power regime. We focus on Nakagami fading channels. We formally define the low power regime and present closed form expressions of the capacity in the low power regime under various types of interference and/or power constraints, depending on the available channel state information (CSI) of the cross link (CL) between the secondary user transmitter and the primary user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link ergodic capacity. Interestingly, we show that the low power regime analysis provides a specific insight on the capacity behavior of CR that has not been reported by previous studies. © 2013 IEEE.

  1. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei

    2011-06-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical results show that spectrum sensing and primary user traffic cause considerable degradation to the bit error rate performance of adaptive modulation in a cognitive radio system with opportunistic access to the licensed channel. They also show that primary user traffic does not affect the link spectral efficiency performance of adaptive modulation, while the spectrum sensing degrades the link spectral efficiency performance. © 2011 IEEE.

  2. Fast Detection Method in Cooperative Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhengyi Li

    2010-01-01

    Full Text Available Cognitive Radio (CR technology improves the utilization of spectrum highly via opportunistic spectrum sharing, which requests fast detection as the spectrum utilization is dynamic. Taking into consideration the characteristic of wireless channels, we propose a fast detection scheme for a cooperative cognitive radio network, which consists of multiple CRs and a central control office. Specifically, each CR makes individual detection decision using the sequential probability ratio test combined with Neyman Pearson detection with respect to a specific observation window length. The proposed method upper bounds the detection delay. In addition, a weighted K out of N fusion rule is also proposed for the central control office to reach fast global decision based on the information collected from CRs, with more weights assigned for CRs with good channel conditions. Simulation results show that the proposed scheme can achieve fast detection while maintaining the detection accuracy.

  3. Real-Time Measurements for Adaptive and Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Hüseyin Arslan

    2009-01-01

    Full Text Available Adaptive and cognitive radios (CR have been becoming popular for optimizing mobile radio system transmission and reception. One of the most important elements of the adaptive radio and CR concepts is the ability to measure, sense, learn about, and be aware of parameters related to the radio channel characteristics, availability of spectrum and power, interference and noise temperature, operational environment of radio, user requirements and applications, available networks and infrastructures, local policies, other operating restrictions, and so on. This paper discusses some of the important measurement parameters for enabling adaptive radio and CR systems along with their relationships and impacts on the performance including relevant challenges.

  4. Spectrum sharing in cognitive radio networks medium access control protocol based approach

    CERN Document Server

    Pandit, Shweta

    2017-01-01

    This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.

  5. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  6. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad

    2013-11-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying the primary messages opportunistically, aided by a buffer to store the primary messages temporarily. The optimal channel-aware transmitter- selection strategy is the solution of the maximization of the average secondary rate under the average primary rate requirement and the buffer stability constraints. Numerical results demonstrate the gains of the proposed opportunistic selection strategy. © 2013 IEEE.

  7. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  8. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  9. The Improved Adaptive Silence Period Algorithm over Time-Variant Channels in the Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2018-01-01

    Full Text Available In the field of cognitive radio spectrum sensing, the adaptive silence period management mechanism (ASPM has improved the problem of the low time-resource utilization rate of the traditional silence period management mechanism (TSPM. However, in the case of the low signal-to-noise ratio (SNR, the ASPM algorithm will increase the probability of missed detection for the primary user (PU. Focusing on this problem, this paper proposes an improved adaptive silence period management (IA-SPM algorithm which can adaptively adjust the sensing parameters of the current period in combination with the feedback information from the data communication with the sensing results of the previous period. The feedback information in the channel is achieved with frequency resources rather than time resources in order to adapt to the parameter change in the time-varying channel. The Monte Carlo simulation results show that the detection probability of the IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.

  10. A Multi-Channel Spectrum Sensing Fusion Mechanism for Cognitive Radio Networks: Design and Application to IEEE 802.22 WRANs

    OpenAIRE

    Tadayon, Navid; Aissa, Sonia

    2016-01-01

    The IEEE 802.22 is a new cognitive radio standard that is aimed at extending wireless outreach to rural areas. Known as wireless regional area networks, and designed based on the not-to-interfere spectrum sharing model, WRANs are channelized and centrally-controlled networks working on the under-utilized UHF/VHF TV bands to establish communication with remote users, so-called customer premises equipment (CPEs). Despite the importance of reliable and interference-free operation in these freque...

  11. Combined Sector and Channel Hopping Schemes for Efficient Rendezvous in Directional Antenna Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    AbdulMajid M. Al-Mqdashi

    2017-01-01

    Full Text Available Rendezvous is a prerequisite and important process for secondary users (SUs to establish data communications in cognitive radio networks (CRNs. Recently, there has been a proliferation of different channel hopping- (CH- based schemes that can provide rendezvous without relying on any predetermined common control channel. However, the existing CH schemes were designed with omnidirectional antennas which can degrade their rendezvous performance when applied in CRNs that are highly crowded with primary users (PUs. In such networks, the large number of PUs may lead to the inexistence of any common available channel between neighboring SUs which result in a failure of their rendezvous process. In this paper, we consider the utilization of directional antennas in CRNs for tackling the issue. Firstly, we propose two coprimality-based sector hopping (SH schemes that can provide efficient pairwise sector rendezvous in directional antenna CRNs (DIR-CRNs. Then, we propose an efficient CH scheme that can be combined within the SH schemes for providing a simultaneous sector and channel rendezvous. The guaranteed rendezvous of our schemes are proven by deriving the theoretical upper bounds of their rendezvous delay metrics. Furthermore, extensive simulation comparisons with other related rendezvous schemes are conducted to illustrate the significant outperformance of our schemes.

  12. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang

    2011-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme

  13. Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy

    Science.gov (United States)

    Knoblock, Eric J.

    2018-01-01

    The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.

  14. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman

    2014-11-01

    We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  15. Analytical Frameworks of Cooperative and Cognitive Radio Systems with Practical Considerations

    KAUST Repository

    Khan, Fahd Ahmed

    2013-01-01

    for cooperative and cognitive radio systems considering real world scenarios and to make these technologies implementable. In most of the research on cooperative relaying, it has been assumed that the communicating nodes have perfect channel state information

  16. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  17. Cognitive two-way relay beamforming: Design with resilience to channel state uncertainties

    KAUST Repository

    Ubaidulla, P.; Alouini, Mohamed-Slim; Aissa, Sonia

    2016-01-01

    In this paper, we propose a robust distributed relay beamformer design for cognitive radio network operating under uncertainties in the available channel state information. The cognitive network consists of a pair of transceivers and a set of non

  18. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  19. Achievable rate of cognitive radio spectrum sharing MIMO channel with space alignment and interference temperature precoding

    KAUST Repository

    Sboui, Lokman

    2013-06-01

    In this paper, we investigate the spectral efficiency gain of an uplink Cognitive Radio (CR) Multi-Input MultiOutput (MIMO) system in which the Secondary/unlicensed User (SU) is allowed to share the spectrum with the Primary/licensed User (PU) using a specific precoding scheme to communicate with a common receiver. The proposed scheme exploits at the same time the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. In our work, we study the maximum achievable rate of the CR node after deriving an optimal power allocation with respect to an outage interference and an average power constraints. We, then, study a protection protocol that considers a fixed interference threshold. Applied to Rayleigh fading channels, we show, through numerical results, that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, after applying Successive Interference Cancellation (SIC), the CR rate remains non-zero for high Signal to Noise Ratio (SNR) which is usually impossible when we only use space alignment technique. In addition, we show that the rate gain is proportional to the allowed interference threshold by providing a fixed rate even in the high SNR range. © 2013 IEEE.

  20. Equal gain combining for cooperative spectrum sensing in cognitive radio networks

    KAUST Repository

    Hamza, Doha R.

    2014-08-01

    Sensing with equal gain combining (SEGC), a novel cooperative spectrum sensing technique for cognitive radio networks, is proposed. Cognitive radios simultaneously transmit their sensing results to the fusion center (FC) over multipath fading reporting channels. The cognitive radios estimate the phases of the reporting channels and use those estimates for coherent combining of the sensing results at the FC. A global decision is made at the FC by comparing the received signal with a threshold. We obtain the global detection probabilities and secondary throughput exactly through a moment generating function approach. We verify our solution via system simulation and demonstrate that the Chernoff bound and central limit theory approximation are not tight. The cases of hard sensing and soft sensing are considered and we provide examples in which hard sensing is advantageous to soft sensing. We contrast the performance of SEGC with maximum ratio combining of the sensors\\' results and provide examples where the former is superior. Furthermore, we evaluate the performance of SEGC against existing orthogonal reporting techniques such as time division multiple access (TDMA). SEGC performance always dominates that of TDMA in terms of secondary throughput. We also study the impact of phase and synchronization errors and demonstrate the robustness of the SEGC technique against such imperfections. © 2002-2012 IEEE.

  1. On end-to-end performance of MIMO multiuser in cognitive radio networks

    KAUST Repository

    Yang, Yuli

    2011-12-01

    In this paper, a design for the multiple-input-multiple-output (MIMO) multiuser transmission in the cognitive radio network is developed and its end-to-end performance is investigated under spectrum-sharing constraints. Firstly, the overall average packet error rate is analyzed by considering the channel state information feedback delay and the multiuser scheduling. Then, we provide corresponding numerical results to measure the performance evaluation for several separate scenarios, which presents a convenient tool for the cognitive radio network design with multiple secondary MIMO users. © 2011 IEEE.

  2. On end-to-end performance of MIMO multiuser in cognitive radio networks

    KAUST Repository

    Yang, Yuli; Aissa, Sonia

    2011-01-01

    In this paper, a design for the multiple-input-multiple-output (MIMO) multiuser transmission in the cognitive radio network is developed and its end-to-end performance is investigated under spectrum-sharing constraints. Firstly, the overall average packet error rate is analyzed by considering the channel state information feedback delay and the multiuser scheduling. Then, we provide corresponding numerical results to measure the performance evaluation for several separate scenarios, which presents a convenient tool for the cognitive radio network design with multiple secondary MIMO users. © 2011 IEEE.

  3. Improving the throughput of cognitive radio networks using the broadcast approach

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    We study the impact of adopting a multi layer coding (MLC) strategy, i.e., the so-called broadcast approach (BA) on the throughput of Cognitive Radio (CR) spectrum sharing systems for general fading channels. First, we consider a scenario where

  4. Mathematical models for estimating radio channels utilization when ...

    African Journals Online (AJOL)

    Definition of the radio channel utilization indicator is given. Mathematical models for radio channels utilization assessment by real-time flows transfer in the wireless self-organized network are presented. Estimated experiments results according to the average radio channel utilization productivity with and without buffering of ...

  5. Flexible Adaptation in Cognitive Radios

    CERN Document Server

    Li, Shujun

    2013-01-01

    This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described. Readers with a background in semantic web and artificial intelligence will find in this book the application of semantic web and artificial intelligence technologies to wireless communications. For readers in networks and network management, this book presents a new approach to enable interoperability, collaborative optimization and flexible adaptation of network components. Provides a comprehensive ontology covering the core concepts of wireless communications using a formal language; Presents the technical realization of using a ...

  6. An approach involving dynamic group search optimization for allocating resources in OFDM-based cognitive radio system

    Directory of Open Access Journals (Sweden)

    Sameer Suresh Nanivadekar

    2018-03-01

    Full Text Available Allocation of channel resources in a cognitive radio system for achieving minimized transmission energy at an increased transmission rate is a challenging research. This paper proposes a resource allocation algorithm based on the meta-heuristic search principle. The proposed algorithm is an improved version of the Group Search Optimizer (GSO, which is a currently developed optimization algorithm that works through imitating the searching behaviour of the animals. The improvement is accomplished through introducing dynamics in the maximum pursuit angle of the GSO members. A cognitive radio system, relying on Orthogonal Frequency Division Multiplexing (OFDM for its operation, is simulated and the experimentations are carried out for sub-channel allocation. The proposed algorithm is experimentally compared with five renowned optimization algorithms, namely, conventional GSO, Particle Swarm Optimization, Genetic Algorithm, Firefly Algorithm and Artificial Bee Colony algorithm. The obtained results assert the competing performance of the proposed algorithm over the other algorithms. Keywords: Cognitive radio, OFDM, Resource, Allocation, Optimization, GSO

  7. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks.

    Science.gov (United States)

    Qian, Xiaomin; Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-02-06

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.

  8. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  9. Achievable Rates of Cognitive Radio Networks Using Multi-Layer Coding with Limited CSI

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    In a Cognitive Radio (CR) framework, the channel state information (CSI) feedback to the secondary transmitter (SU Tx) can be limited or unavailable. Thus, the statistical model is adopted in order to determine the system performance using

  10. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  11. Outage performance analysis of underlay cognitive RF and FSO wireless channels

    KAUST Repository

    Ansari, Imran Shafique; Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2014-01-01

    In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channel cascaded with a free-space optical (FSO) link is presented. For the RF link, an underlay cognitive network

  12. NDN-CRAHNs: Named Data Networking for Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Rana Asif Rehman

    2015-01-01

    Full Text Available Named data networking (NDN is a newly proposed paradigm for future Internet, in which communication among nodes is based on data names, decoupling from their locations. In dynamic and self-organized cognitive radio ad hoc networks (CRAHNs, it is difficult to maintain end-to-end connectivity between ad hoc nodes especially in the presence of licensed users and intermittent wireless channels. Moreover, IP-based CRAHNs have several issues like scalability, inefficient-mapping, poor resource utilization, and location dependence. By leveraging the advantages of NDN, in this paper, we propose a new cross layer fine-grained architecture called named data networking for cognitive radio ad hoc networks (NDN-CRAHNs. The proposed architecture provides distinct features such as in-networking caching, security, scalability, and multipath routing. The performances of the proposed scheme are evaluated comparing to IP-based scheme in terms of average end-to-end delay and packet delivery ratio. Simulation results show that the proposed scheme is effective in terms of average contents download time and packet delivery ratios comparing to conventional cognitive radio ad hoc networks.

  13. Multiagent Reinforcement Learning Dynamic Spectrum Access in Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Wu Chun

    2014-02-01

    Full Text Available A multiuser independent Q-learning method which does not need information interaction is proposed for multiuser dynamic spectrum accessing in cognitive radios. The method adopts self-learning paradigm, in which each CR user performs reinforcement learning only through observing individual performance reward without spending communication resource on information interaction with others. The reward is defined suitably to present channel quality and channel conflict status. The learning strategy of sufficient exploration, preference for good channel, and punishment for channel conflict is designed to implement multiuser dynamic spectrum accessing. In two users two channels scenario, a fast learning algorithm is proposed and the convergence to maximal whole reward is proved. The simulation results show that, with the proposed method, the CR system can obtain convergence of Nash equilibrium with large probability and achieve great performance of whole reward.

  14. Interweave Cognitive Radio with Improper Gaussian Signaling

    KAUST Repository

    Hedhly, Wafa; Amin, Osama; Alouini, Mohamed-Slim

    2018-01-01

    Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS

  15. Cognitive Radio MAC Protocol for WLAN

    DEFF Research Database (Denmark)

    Zhang, Qi; Fitzek, Frank H.P.; Iversen, Villy Bæk

    2008-01-01

    hole; moreover, it designs dual inband sensing scheme to detect primary user appearance. Additionally, C-CSMA/CA has the advantage to effectively solve the cognitive radio self-coexistence issues in the overlapping CR BSSs scenario. It also realizes station-based dynamic resource selection......To solve the performance degradation issue in current WLAN caused by the crowded unlicensed spectrum, we propose a cognitive radio (CR) media access protocol, C-CSMA/CA. The basic idea is that with cognitive radio techniques the WLAN devices can not only access the legacy WLAN unlicensed spectrum...

  16. Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Mahdi Zareei

    2017-09-01

    Full Text Available New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN. First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective.

  17. Multipath Activity Based Routing Protocol for Mobile ‎Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Shereen Omar

    2017-01-01

    Full Text Available Cognitive radio networks improve spectrum utilization by ‎sharing licensed spectrum with cognitive radio devices. In ‎cognitive radio ad hoc networks the routing protocol is one ‎of the most challenging tasks due to the changes in ‎frequency spectrum and the interrupted connectivity ‎caused by the primary user activity. In this paper, a multi‎path activity based routing protocol for cognitive radio ‎network (MACNRP is proposed. The protocol utilizes ‎channel availability and creates multiple node-disjoint ‎routes between the source and destination nodes. The ‎proposed protocol is compared with D2CARP and FTCRP ‎protocols. The performance evaluation is conducted ‎through mathematical analysis and using OPNET ‎simulation. The performance of the proposed protocol ‎achieves an increase in network throughput; besides it ‎decreases the probability of route failure due to node ‎mobility and primary user activity. We have found that the ‎MACNRP scheme results in 50% to 75% reduction in ‎blocking probability and 33% to 78% improvement in ‎network throughput, with a reasonable additional routing ‎overhead and average packet delay. Due to the successful ‎reduction of collision between primary users and ‎cognitive users, the MACNRP scheme results in decreasing ‎the path failure rate by 50% to 87%.‎

  18. Spectrum access and management for cognitive radio networks

    CERN Document Server

    2017-01-01

    This book presents cutting-edge research contributions that address various aspects of network design, optimization, implementation, and application of cognitive radio technologies. It demonstrates how to make better utilization of the available spectrum, cognitive radios and spectrum access to achieve effective spectrum sharing between licensed and unlicensed users. The book provides academics and researchers essential information on current developments and future trends in cognitive radios for possible integration with the upcoming 5G networks. In addition, it includes a brief introduction to cognitive radio networks for newcomers to the field.

  19. Listen and talk full-duplex cognitive radio networks

    CERN Document Server

    Liao, Yun; Han, Zhu

    2016-01-01

    This brief focuses on the use of full-duplex radio in cognitive radio networks, presenting a novel spectrum sharing protocol that allows the secondary users to simultaneously sense and access the vacant spectrum. This protocol, called “Listen-and-talk” (LAT), is evaluated by both mathematical analysis and computer simulations in comparison with other existing protocols, including the listen-before-talk protocol. In addition to LAT-based signal processing and resource allocation, the brief discusses techniques such as spectrum sensing and dynamic spectrum access. The brief proposes LAT as a suitable access scheme for cognitive radio networks, which can support the quality-of-service requirements of these high priority applications. Fundamental theories and key techniques of cognitive radio networks are also covered. Listen and Talk: Full-duplex Cognitive Radio Networks is designed for researchers, developers, and professionals involved in cognitive radio networks. Advanced-level students studying signal pr...

  20. Mobile radio channel as a complex medium

    DEFF Research Database (Denmark)

    Matic, Dusan; Prasad, Ramjee; Kalluri, Dikshitulu K.

    2001-01-01

    physical phenomena, their implications on the transmitted signal, and how the radio channels are modelled. Special attention is given to the small-scale effects, such as multipath, and Rayleigh and Rice distributions of received signal, as these dominate in the case of indoor communication systems.......Optical fibres have almost unlimited capacity, but can not the address the users desire for mobility and ubiquitous access. The synergy of these two worlds can be seen in the direction of the Radio-over-Fibre. This paper presents to the reader an introduction for the mobile radio channel - basic...

  1. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  2. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  3. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  4. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  5. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  6. A Dynamic Spectrum Allocation Algorithm for a Maritime Cognitive Radio Communication System Based on a Queuing Model

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2017-09-01

    Full Text Available With the rapid development of maritime digital communication, the demand for spectrum resources is increasing, and building a maritime cognitive radio communication system is an effective solution. In this paper, the problem of how to effectively allocate the spectrum for secondary users (SUs with different priorities in a maritime cognitive radio communication system is studied. According to the characteristics of a maritime cognitive radio and existing research about cognitive radio systems, this paper establishes a centralized maritime cognitive radio communication model and creates a simplified queuing model with two queues for the communication model. In the view of the behaviors of SUs and primary users (PUs, we propose a dynamic spectrum allocation (DSA algorithm based on the system status, and analyze it with a two-dimensional Markov chain. Simulation results show that, when different types of SUs have similar arrival rates, the algorithm can vary the priority factor according to the change of users’ status in the system, so as to adjust the channel allocation, decreasing system congestion. The improvement of the algorithm is about 7–26%, and the specific improvement is negatively correlated with the SU arrival rate.

  7. Cognitive radio application for vehicular ad hoc networks (VANETS

    Directory of Open Access Journals (Sweden)

    Miladić Suzana D.

    2016-01-01

    Full Text Available This paper presents the application of cognitive radio technology in vehicular ad-hoc networks aimed to improve the communications between vehicles themselves as well as between vehicles and roadside infrastructure. Due to dynamic approach of spectrum access, cognitive radio is a technology that enables more efficient usage of radio-frequency spectrum. We review actual approaches and discuss research challenges related to the use of cognitive radio technology in vehicular ad hoc networks with emphasis on architecture, spectrum management as well as QoS optimization. The researching on cognitive radio application in vehicular networks is still developing and there are not many experimental platforms due to their complex setups. Some related research projects and cognitive radio realizations are provided in this paper.

  8. Variable Bandwidth Analog Channel Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is

  9. Cognitive Radio for Smart Grid with Security Considerations

    Directory of Open Access Journals (Sweden)

    Khaled Shuaib

    2016-04-01

    Full Text Available In this paper, we investigate how Cognitive Radio as a means of communication can be utilized to serve a smart grid deployment end to end, from a home area network to power generation. We show how Cognitive Radio can be mapped to integrate the possible different communication networks within a smart grid large scale deployment. In addition, various applications in smart grid are defined and discussed showing how Cognitive Radio can be used to fulfill their communication requirements. Moreover, information security issues pertained to the use of Cognitive Radio in a smart grid environment at different levels and layers are discussed and mitigation techniques are suggested. Finally, the well-known Role-Based Access Control (RBAC is integrated with the Cognitive Radio part of a smart grid communication network to protect against unauthorized access to customer’s data and to the network at large.

  10. A Survey of MAC Protocols for Cognitive Radio Body Area Networks.

    Science.gov (United States)

    Bhandari, Sabin; Moh, Sangman

    2015-04-20

    The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.

  11. Discrete rate resource allocation for OFDMA cognitive radio systems with location information

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2010-01-01

    In this paper we introduce a resource allocation algorithm based on location information for cognitive radio systems. The location information allows a practical implementation of cognitive radio systems when the channel state knowledge of the interference links with the primary users is not available. Using this information and measurements, the secondary users estimate the pathloss between the secondary and primary users to avoid interfering the primary users while sharing the frequency bands. The major improvement in this paper is low-complex algorithms for downlink and uplink resource allocations with integer bit distributions, where collocated subchannel constraint is considered in uplink case. We show, through numerical simulations, that for the downlink case, the proposed algorithm is indeed optimal while for the uplink case, it is near-optimal. ©2010 IEEE.

  12. Discrete rate resource allocation for OFDMA cognitive radio systems with location information

    KAUST Repository

    Ben Ghorbel, Mahdi

    2010-09-01

    In this paper we introduce a resource allocation algorithm based on location information for cognitive radio systems. The location information allows a practical implementation of cognitive radio systems when the channel state knowledge of the interference links with the primary users is not available. Using this information and measurements, the secondary users estimate the pathloss between the secondary and primary users to avoid interfering the primary users while sharing the frequency bands. The major improvement in this paper is low-complex algorithms for downlink and uplink resource allocations with integer bit distributions, where collocated subchannel constraint is considered in uplink case. We show, through numerical simulations, that for the downlink case, the proposed algorithm is indeed optimal while for the uplink case, it is near-optimal. ©2010 IEEE.

  13. Adaptive OFDM System Design For Cognitive Radio

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2006-01-01

    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed

  14. Statistical Analysis of Radio Propagation Channel in Ruins Environment

    Directory of Open Access Journals (Sweden)

    Jiao He

    2015-01-01

    Full Text Available The cellphone based localization system for search and rescue in complex high density ruins has attracted a great interest in recent years, where the radio channel characteristics are critical for design and development of such a system. This paper presents a spatial smoothing estimation via rotational invariance technique (SS-ESPRIT for radio channel characterization of high density ruins. The radio propagations at three typical mobile communication bands (0.9, 1.8, and 2 GHz are investigated in two different scenarios. Channel parameters, such as arrival time, delays, and complex amplitudes, are statistically analyzed. Furthermore, a channel simulator is built based on these statistics. By comparison analysis of average excess delay and delay spread, the validation results show a good agreement between the measurements and channel modeling results.

  15. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  16. Analytical Frameworks of Cooperative and Cognitive Radio Systems with Practical Considerations

    KAUST Repository

    Khan, Fahd Ahmed

    2013-08-01

    Cooperative and cognitive radio systems have been proposed as a solution to improve the quality-of-service (QoS) and spectrum efficiency of existing communication systems. The objective of this dissertation is to propose and analyze schemes for cooperative and cognitive radio systems considering real world scenarios and to make these technologies implementable. In most of the research on cooperative relaying, it has been assumed that the communicating nodes have perfect channel state information (CSI). However, in reality, this is not the case and the nodes may only have an estimate of the CSI or partial knowledge of the CSI. Thus, in this dissertation, depending on the amount of CSI available, novel receivers are proposed to improve the performance of amplify-and forward relaying. Specifically, new coherent receivers are derived which do not perform channel estimation at the destination by using the received pilot signals directly for decoding. The derived receivers are based on new metrics that use distribution of the channels and the noise to achieve improved symbol-error-rate (SER) performance. The SER performance of the derived receivers is further improved by utilizing the decision history in the receivers. In cases where receivers with low complexity are desired, novel non-coherent receiver which detects the signal without knowledge of CSI is proposed. In addition, new receivers are proposed for the situation when only partial CSI is available at the destination i.e. channel knowledge of either the source-relay link or the relay-destination link but not both, is available. These receivers are termed as `half-coherent receivers\\' since they have channel-state-information of only one of the two links in the system. In practical systems, the CSI at the communicating terminals becomes outdated due to the time varying nature of the channel and results in system performance degradation. In this dissertation, the impact of using outdated CSI for relay selection on

  17. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    Science.gov (United States)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  18. Primary user localisation and uplink resource allocation in orthogonal frequency division multiple access cognitive radio systems

    KAUST Repository

    Nam, Haewoon

    2015-05-21

    In cognitive radio networks, secondary users (SUs) can share spectrum with primary users (PUs) under the condition that no interference is caused to the PUs. To evaluate the interference imposed to the PUs, the cognitive systems discussed in the literature usually assume that the channel state information (CSI) of the link from a secondary transmitter to a primary receiver (interference link) is known at the secondary transmitter. However, this assumption may often be impractical in cognitive radio systems, since the PUs need to be oblivious to the presence of the SUs. The authors first discuss PU localisation and then introduce an uplink resource allocation algorithm for orthogonal frequency division multiple access-based cognitive radio systems, where relative location information between primary and SUs is used instead of CSI of the interference link to estimate the interference. Numerical and simulation results show that it is indeed effective to use location information as a part of resource allocation and thus a near-optimal capacity is achieved. © The Institution of Engineering and Technology 2015.

  19. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  20. Distributed opportunistic spectrum sharing in cognitive radio networks

    KAUST Repository

    Hawa, Mohammed; Alammouri, Ahmad; Alhiary, Ala; Alhamad, Nidal

    2016-01-01

    In cases where the licensed radio spectrum is underutilized, cognitive radio technology enables cognitive devices to sense and then dynamically access this scarce resource making the most out of it. In this work, we introduce a simple and intuitive

  1. Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Science.gov (United States)

    Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn

    2018-02-01

    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.

  2. Contribution Towards Practical Cognitive Radios Systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-01-01

    to cognitive radio systems while taking into account practical constraints. Cogni- tive radios requires a capability to detect spectrum holes (spectrum sensing) and a scheduling flexibility to avoid the occupied spectrum and selectively use the empty spectrum

  3. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  4. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel

    2013-06-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  5. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed

  6. Auction based spectrum management of cognitive radio networks

    DEFF Research Database (Denmark)

    Chang, H. B.; Chen, K.-C.; Prasad, Ramjee

    2009-01-01

    (PS-MSs), and we therefore construct a cognitive radio network (CRN) consisting of a PRN with multiple CR-MSs. We propose a spectrum management policy framework such that CR-MSs can compete in utilization of the PRN spectrum bands available to opportunistic transmission of CR-MSs by Vickrey auction...... to the PRN, the overall spectrum utilization, the profit of the service provider, the spectrum access opportunity of the CR-MSs are increased to achieve cowin situation for every party in cognitive radio networks.......Cognitive radio (CR) technology is considered as an effective solution to enhance overall spectrum efficiency, especially primary radio network (PRN) typically having relatively low spectrum utilization. However, to realize CR concept, it is essential to provide enough incentives to PRN and extra...

  7. Resource Allocation for Downlink Multi-Cell OFDMA Cognitive Radio Network Using Hungarian Method

    Directory of Open Access Journals (Sweden)

    N. Forouzan

    2013-12-01

    Full Text Available This paper considers the problem of resource allocation for downlink part of an OFDM-based multi-cell cognitive radio network which consists of multiple secondary transmitters and receivers communicating simultaneously in the presence of multiple primary users. We present a new framework to maximize the total data throughput of secondary users by means of subchannel assignment, while ensuring interference leakage to PUs is below a threshold. In this framework, we first formulate the resource allocation problem as a nonlinear and non-convex optimization problem. Then we represent the problem as a maximum weighted matching in a bipartite graph and propose an iterative algorithm based on Hungarian method to solve it. The present contribution develops an efficient subchannel allocation algorithm that assigns subchannels to the secondary users without the perfect knowledge of fading channel gain between cognitive radio transmitter and primary receivers. The performance of the proposed subcarrier allocation algorithm is compared with a blind subchannel allocation as well as another scheme with the perfect knowledge of channel-state information. Simulation results reveal that a significant performance advantage can still be realized, even if the optimization at the secondary network is based on imperfect network information.

  8. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  9. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  10. Improving the throughput of cognitive radio networks using the broadcast approach

    KAUST Repository

    Sboui, Lokman

    2013-12-01

    We study the impact of adopting a multi layer coding (MLC) strategy, i.e., the so-called broadcast approach (BA) on the throughput of Cognitive Radio (CR) spectrum sharing systems for general fading channels. First, we consider a scenario where the secondary transmitter, a part from the statistics, has no channel state information (CSI) of the cross link and its own link. We show that using BA improves the cognitive achievable rate compared to the outage rate provided by a single layer coding (SLC). In addition, we, also, observe numerically that 2-Layer coding achieves most of the gain. Then, we consider a situation where the secondary transmitter has a partial CSI about its own link through quantized CSI. Again, we compute the secondary achievable rate adopting the BA and highlight the improvement over SLC. Numerical results show that the advantage of MLC decreases as the rate of the feedback link increases. 1 © 2013 IEEE.

  11. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  12. Intelligent cognitive radio jamming - a game-theoretical approach

    Science.gov (United States)

    Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.

    2014-12-01

    Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

  13. Achievable Rate of Multi-relay Cognitive Radio MIMO Channel with Space Alignment

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We study the impact of multiple relays on the primary user (PU) and secondary user (SU) rates of underlay MIMO cognitive radio. Both users exploit amplify-and-forward relays to communicate with the destination. A space alignment technique and a special linear precoding and decoding scheme are applied to allow the SU to use the resulting free eigenmodes. In addition, the SU can communicate over the used eigenmodes under the condition of respecting an interference constraint tolerated by the PU. At the destination, a successive interference cancellation (SIC) is performed to estimate the secondary signal. We present the explicit expressions of the optimal PU and SU powers that maximize their achievable rates. In the numerical results, we show that our scheme provides cognitive rate gain even in absence of tolerated interference. In addition, we show that increasing the number of relays enhances the PU and SU rates at low power regime and/or when the relays power is sufficiently high.

  14. Achievable Rate of Multi-relay Cognitive Radio MIMO Channel with Space Alignment

    KAUST Repository

    Sboui, Lokman

    2015-04-21

    We study the impact of multiple relays on the primary user (PU) and secondary user (SU) rates of underlay MIMO cognitive radio. Both users exploit amplify-and-forward relays to communicate with the destination. A space alignment technique and a special linear precoding and decoding scheme are applied to allow the SU to use the resulting free eigenmodes. In addition, the SU can communicate over the used eigenmodes under the condition of respecting an interference constraint tolerated by the PU. At the destination, a successive interference cancellation (SIC) is performed to estimate the secondary signal. We present the explicit expressions of the optimal PU and SU powers that maximize their achievable rates. In the numerical results, we show that our scheme provides cognitive rate gain even in absence of tolerated interference. In addition, we show that increasing the number of relays enhances the PU and SU rates at low power regime and/or when the relays power is sufficiently high.

  15. Multi-channel software defined radio experimental evaluation and analysis

    CSIR Research Space (South Africa)

    Van der Merwe, JR

    2014-09-01

    Full Text Available Multi-channel software-defined radios (SDRs) can be utilised as inexpensive prototyping platforms for transceiver arrays. The application for multi-channel prototyping is discussed and measured results of coherent channels for both receiver...

  16. Cognitive radio network in vehicular ad-hoc network (VANET: A survey

    Directory of Open Access Journals (Sweden)

    Joanne Mun-Yee Lim

    2016-05-01

    Full Text Available Cognitive radio network and Vehicular Ad hoc Network (VANET are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges and performance metrics, for different cognitive radio VANET applications.

  17. Utilization-Based Modeling and Optimization for Cognitive Radio Networks

    Science.gov (United States)

    Liu, Yanbing; Huang, Jun; Liu, Zhangxiong

    The cognitive radio technique promises to manage and allocate the scarce radio spectrum in the highly varying and disparate modern environments. This paper considers a cognitive radio scenario composed of two queues for the primary (licensed) users and cognitive (unlicensed) users. According to the Markov process, the system state equations are derived and an optimization model for the system is proposed. Next, the system performance is evaluated by calculations which show the rationality of our system model. Furthermore, discussions among different parameters for the system are presented based on the experimental results.

  18. An Oversampled Filter Bank Multicarrier System for cognitive Radio

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Zhang, Q; Zhang, Q.

    2008-01-01

    Due to small sideband power leakage, filter bank multicarrier techniques are considered as interesting alternatives to traditional OFDMs for spectrum pooling Cognitive Radio. In this paper, we propose an oversampled filter bank multicarrier system for Cognitive Radio. The increased spacing between

  19. Performance evaluation of cognitive radio in advanced metering infrastructure communication

    Science.gov (United States)

    Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md

    2016-03-01

    Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.

  20. Relay-Assisted Primary and Secondary Transmissions in Cognitive Radio Networks

    KAUST Repository

    Shafie, Ahmed El

    2016-09-27

    We assume a set of cognitive relay nodes that assists both primary and secondary transmissions in a time-slotted cognitive radio networks. To regulate the channel access of the various nodes in the network, we propose an overlapped spectrum sensing strategy for channel sensing, where the secondary source node senses the channel from the beginning of the time slot and the cognitive relay nodes sense the channel for double the sensing time used by the secondary source node to detect the activities of both the primary and secondary source nodes. Hence, the secondary source node has an intrinsic priority over the relay nodes. The relay nodes help both the primary user and the secondary user to deliver their unsuccessfully decoded packets at their destinations. In a given time slot, the scheduled relay node for data transmission starts its transmission when both the primary and secondary users are sensed to be inactive (i.e. have no data to transmit). We propose two optimization-based formulations with quality-of-service (QoS) constraints involving average queueing delay and average service rate requirements. We investigate both cases of perfect and imperfect spectrum sensing. To further enhance the users\\' QoS requirements, we propose three packet decoding strategies at the relay nodes and compare their performance. We derive an upper bound on the secondary queue average service rate to determine which decoding strategy can achieve that bound. Our numerical results show the benefits of relaying and its ability to enhance the performance of both the primary and secondary users. Moreover, the performance of the proposed schemes is close to the derived upper bound.

  1. Energy Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2016-01-06

    Two major issues are facing today s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produces 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, an energy efficient power allocation framework based on maximizing the average EE per parallel channel is presented.

  2. VHF spectrum monitoring using Meraka cognitive radio platform

    CSIR Research Space (South Africa)

    Aderonmu, AI

    2012-11-01

    Full Text Available discuss the Meraka Cognitive Radio Platform (MCRP) developed using the second version of the Universal Serial Radio Peripheral (USRP2) hardware and the GNU Radio software. We also discussed how the spectrum monitoring system is being implemented...

  3. Secrecy performance analysis of SIMO underlay cognitive radio systems with outdated CSI

    KAUST Repository

    Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Ansari, Imran Shafique; Pan, Gaofeng; Alouini, Mohamed-Slim

    2017-01-01

    This study investigates the secrecy outage performance of a single-input multiple-output underlay cognitive radio network (CRN) with outdated channel state information (CSI). The confidential messages are transmitted from transmitter to the destination, while a multi-antenna eavesdropper exists. The maximal ratio combining and selection combining schemes are utilised at the receivers to improve the quality of the received signal-to-noise ratio. The exact and asymptotic closed-form expressions of secrecy outage probability are derived, and simulation results are provided to verify the authors' proposed analytical results. The results reveal that imperfect CSI of main channels deteriorates the secrecy outage performance while that of eavesdropping and interfering channels has contrary effect, and only a unity diversity order can be obtained in underlay CRNs with imperfect CSI.

  4. Secrecy performance analysis of SIMO underlay cognitive radio systems with outdated CSI

    KAUST Repository

    Lei, Hongjiang

    2017-06-13

    This study investigates the secrecy outage performance of a single-input multiple-output underlay cognitive radio network (CRN) with outdated channel state information (CSI). The confidential messages are transmitted from transmitter to the destination, while a multi-antenna eavesdropper exists. The maximal ratio combining and selection combining schemes are utilised at the receivers to improve the quality of the received signal-to-noise ratio. The exact and asymptotic closed-form expressions of secrecy outage probability are derived, and simulation results are provided to verify the authors\\' proposed analytical results. The results reveal that imperfect CSI of main channels deteriorates the secrecy outage performance while that of eavesdropping and interfering channels has contrary effect, and only a unity diversity order can be obtained in underlay CRNs with imperfect CSI.

  5. An Examination of Application of Artificial Neural Network in Cognitive Radios

    International Nuclear Information System (INIS)

    Salau, H Bello; Onwuka, E N; Aibinu, A M

    2013-01-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined

  6. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  7. A generalized and parameterized interference model for cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2011-06-01

    For meaningful co-existence of cognitive radios with primary system, it is imperative that the cognitive radio system is aware of how much interference it generates at the primary receivers. This can be done through statistical modeling of the interference as perceived at the primary receivers. In this work, we propose a generalized model for the interference generated by a cognitive radio network, in the presence of small and large scale fading, at a primary receiver located at the origin. We then demonstrate how this model can be used to estimate the impact of cognitive radio transmission on the primary receiver in terms of different outage probabilities. Finally, our analytical findings are validated through some selected computer-based simulations. © 2011 IEEE.

  8. Improving Spectral Capacity and Wireless Network Coverage by Cognitive Radio Technology and Relay Nodes in Cellular Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge

    2008-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase the...... the coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....

  9. Cognitive Radio and its Application for Next Generation Cellular and Wireless Networks

    CERN Document Server

    Muntean, Gabriel-Miro

    2012-01-01

    This book provides a broad introduction to Cognitive Radio, which attempts to mimic human cognition and reasoning applied to Software Defined Radio and reconfigurable radio over wireless networks.  It provides readers with significant technical and practical insights into different aspects of Cognitive Radio, starting from a basic background, the principle behind the technology, the inter-related technologies and application to cellular and vehicular networks, the technical challenges, implementation and future trends.  The discussion balances theoretical concepts and practical implementation. Wherever feasible, the different concepts explained are linked to application of the corresponding scheme in a particular wireless standard.     This book has two sections: the first section begins with an introduction to cognitive radio and discusses in detail various, inter-dependent technologies such as network coding, software-based radio, dirty RF, etc. and their relation to cognitive radio. The second section ...

  10. Interference Management And Game Theoretic Analysis of Cognitive Radio

    DEFF Research Database (Denmark)

    Di Taranto, Rocco

    dynamics between independent primary and cognitive user and to derive rules of local action at the independent cognitive users that result in stable and efficient system operation. We have modeled our scenario via a non-cooperative power control game so that the corresponding Nash equilibriums are taken......Cognitive Radio systems are intended to dynamically access the spectrum that is underutilized by its owner at certain time, geographical location or frequency. Dynamic spectrum access presents a great opportunity to increase the available bandwidth, but it has also posed new challenges...... to the research community. This Ph.D. thesis deals with interference management in Cognitive Radio systems: interference management is a conditio sine qua non for cognitive radio systems, as they can re-use the primary resources underused or not utilized by the respective owners, provided that primary...

  11. Optimization of Cognitive Radio Secondary Information Gathering Station Positioning and Operating Channel Selection for IoT Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinyi Wen

    2018-01-01

    Full Text Available The Internet of Things (IoT is the interconnection of different objects through the internet using different communication technologies. The objects are equipped with sensors and communications modules. The cognitive radio network is a key technique for the IoT and can effectively address spectrum-related issues for IoT applications. In our paper, a novel method for IoT sensor networks is proposed to obtain the optimal positions of secondary information gathering stations (SIGSs and to select the optimal operating channel. Our objective is to maximize secondary system capacity while protecting the primary system. In addition, we propose an appearance probability matrix for secondary IoT devices (SIDs to maximize the supportable number of SIDs that can be installed in a car, in wearable devices, or for other monitoring devices, based on optimal deployment and probability. We derive fitness functions based on the above objectives and also consider signal to interference-plus-noise ratio (SINR and position constraints. The particle swarm optimization (PSO technique is used to find the best position and operating channel for the SIGSs. In a simulation study, the performance of the proposed method is evaluated and compared with a random resources allocation algorithm (parts of this paper were presented at the ICTC2017 conference (Wen et al., 2017.

  12. On Hybrid Cooperation in Underlay Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Øien, Geir E.

    2013-01-01

    of opportunistic wireless systems such as cognitive radio networks. In order to balance the performance gains from cooperative communication against the possible over-utilization of resources, we propose and analyze an adaptive-cooperation technique for underlay cognitive radio networks, termed as hybrid......Cooperative communication is a promising strategy to enhance the performance of a communication network as it helps to improve the coverage area and the outage performance. However, such enhancement comes at the expense of increased resource utilization, which is undesirable; more so in the case......-cooperation. Under the proposed cooperation scheme, secondary users in a cognitive radio network cooperate adaptively to enhance the spectral efficiency and the error performance of the network. The bit error rate, the spectral efficiency and the outage performance of the network under the proposed hybrid...

  13. A generalized and parameterized interference model for cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2011-01-01

    For meaningful co-existence of cognitive radios with primary system, it is imperative that the cognitive radio system is aware of how much interference it generates at the primary receivers. This can be done through statistical modeling

  14. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  15. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-04-06

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  16. Radio frequency channel coding made easy

    CERN Document Server

    Faruque, Saleh

    2016-01-01

    This book introduces Radio Frequency Channel Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  17. Adaptive Decision-Making Scheme for Cognitive Radio Networks

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2014-01-01

    Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy

  18. mathematical models for estimating radio channels utilization

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.

  19. Cognitive Radio for Smart Grid: Theory, Algorithms, and Security

    Directory of Open Access Journals (Sweden)

    Raghuram Ranganathan

    2011-01-01

    Full Text Available Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are intelligent software defined radios (SDRs that efficiently utilize the unused regions of the spectrum, to achieve higher data rates. The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality reduction techniques such as principal component analysis (PCA, kernel PCA, and landmark maximum variance unfolding (LMVU on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM is used for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed, in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.

  20. Spatial Stationarity of Ultrawideband and Millimeter Wave Radio Channels

    DEFF Research Database (Denmark)

    Yi, Tan; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    For radio channels with broad bandwidth resource, such as those often used for ultrawideband (UWB) and millimeter wave (mmwave) systems, the Wide-Sense Stationary Uncorrelated Scattering (WSSUS) and spatial stationary assumptions are more critical than typical cellular channels with very limited ...

  1. Location-Based Resource Allocation for OFDMA Cognitive Radio Systems

    KAUST Repository

    Ghorbel, Mahdi

    2011-05-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. It has been proposed as a suitable solution for the spectrum scarcity caused by the increase in frequency demand. The concept is based on allowing unlicensed users, called cognitive or secondary users, to share the unoccupied frequency bands with their owners, called the primary users, under constraints on the interference they cause to them. In order to estimate this interference, the cognitive system usually uses the channel state information to the primary user, which is often impractical to obtain. However, we propose to use location information, which is easier to obtain, to estimate this interference. The purpose of this work is to propose a subchannel and power allocation method which maximizes the secondary users\\' total capacity under the constraints of limited budget power and total interference to the primary under certain threshold. We model the problem as a constrained optimization problem for both downlink and uplink cases. Then, we propose low-complexity resource allocation schemes based on the waterfilling algorithm. The simulation results show the efficiency of the proposed method with comparison to the exhaustive search algorithm.

  2. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  3. QoS and energy management in cognitive radio network case study approach

    CERN Document Server

    Mishra, Vishram; Lau, Chiew-Tong

    2017-01-01

    This book covers the important aspects involved in making cognitive radio devices portable, mobile and green, while also extending their service life. At the same time, it presents a variety of established theories and practices concerning cognitive radio from academia and industry. Cognitive radio can be utilized as a backbone communication medium for wireless devices. To effectively achieve its commercial application, various aspects of quality of service and energy management need to be addressed. The topics covered in the book include energy management and quality of service provisioning at Layer 2 of the protocol stack from the perspectives of medium access control, spectrum selection, and self-coexistence for cognitive radio networks.

  4. PERFORMANCE OPTIMIZATION OF COGNITIVE RADIO WITH WIDEBAND SPECTRUM SENSING

    Directory of Open Access Journals (Sweden)

    E. Saraniya

    2014-09-01

    Full Text Available Cognitive radio (CR technology allows the unlicensed user to access the licensed spectrum bands. Spectrum sensing is an essential function in cognitive radio to detect the spectrum holes and opportunistically use the underutilized frequency bands without causing interference to primary user (PU. In this paper we are maximizing the throughput capacity of cognitive radio user and hence the performance of spectrum sensing and protection to licensed user improves over a wideband spectrum sensing band. The simulation of cognitive radio is done by analyzing the performance of energy detector spectrum sensing technique to detect primary user and to formulate the optimization using multiband joint detection method (MJD to achieve suitable trade- off between secondary user access and primary user network. The main aim of this paper is to maximize the probability of detection and to decrease the probabilities of miss detection and false alarm. To maximize the throughput it requires minimizing the throughput loss caused by miss detection and the significant reduction in probability of false alarm helps in achieving the spectral efficiency from the secondary user’s perspective. The simulation results show that the performance increases with the MJD method.

  5. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  6. Analysis of Secret Key Randomness Exploiting the Radio Channel Variability

    Directory of Open Access Journals (Sweden)

    Taghrid Mazloum

    2015-01-01

    Full Text Available A few years ago, physical layer based techniques have started to be considered as a way to improve security in wireless communications. A well known problem is the management of ciphering keys, both regarding the generation and distribution of these keys. A way to alleviate such difficulties is to use a common source of randomness for the legitimate terminals, not accessible to an eavesdropper. This is the case of the fading propagation channel, when exact or approximate reciprocity applies. Although this principle has been known for long, not so many works have evaluated the effect of radio channel properties in practical environments on the degree of randomness of the generated keys. To this end, we here investigate indoor radio channel measurements in different environments and settings at either 2.4625 GHz or 5.4 GHz band, of particular interest for WIFI related standards. Key bits are extracted by quantizing the complex channel coefficients and their randomness is evaluated using the NIST test suite. We then look at the impact of the carrier frequency, the channel variability in the space, time, and frequency degrees of freedom used to construct a long secret key, in relation to the nature of the radio environment such as the LOS/NLOS character.

  7. Reconfigurable, Cognitive Software-Defined Radio

    Science.gov (United States)

    Bhat, Arvind

    2015-01-01

    Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.

  8. Reliable Geographical Forwarding in Cognitive Radio Sensor Networks Using Virtual Clusters

    Science.gov (United States)

    Zubair, Suleiman; Fisal, Norsheila

    2014-01-01

    The need for implementing reliable data transfer in resource-constrained cognitive radio ad hoc networks is still an open issue in the research community. Although geographical forwarding schemes are characterized by their low overhead and efficiency in reliable data transfer in traditional wireless sensor network, this potential is still yet to be utilized for viable routing options in resource-constrained cognitive radio ad hoc networks in the presence of lossy links. In this paper, a novel geographical forwarding technique that does not restrict the choice of the next hop to the nodes in the selected route is presented. This is achieved by the creation of virtual clusters based on spectrum correlation from which the next hop choice is made based on link quality. The design maximizes the use of idle listening and receiver contention prioritization for energy efficiency, the avoidance of routing hot spots and stability. The validation result, which closely follows the simulation result, shows that the developed scheme can make more advancement to the sink as against the usual decisions of relevant ad hoc on-demand distance vector route select operations, while ensuring channel quality. Further simulation results have shown the enhanced reliability, lower latency and energy efficiency of the presented scheme. PMID:24854362

  9. Reliable Geographical Forwarding in Cognitive Radio Sensor Networks Using Virtual Clusters

    Directory of Open Access Journals (Sweden)

    Suleiman Zubair

    2014-05-01

    Full Text Available The need for implementing reliable data transfer in resource-constrained cognitive radio ad hoc networks is still an open issue in the research community. Although geographical forwarding schemes are characterized by their low overhead and efficiency in reliable data transfer in traditional wireless sensor network, this potential is still yet to be utilized for viable routing options in resource-constrained cognitive radio ad hoc networks in the presence of lossy links. In this paper, a novel geographical forwarding technique that does not restrict the choice of the next hop to the nodes in the selected route is presented. This is achieved by the creation of virtual clusters based on spectrum correlation from which the next hop choice is made based on link quality. The design maximizes the use of idle listening and receiver contention prioritization for energy efficiency, the avoidance of routing hot spots and stability. The validation result, which closely follows the simulation result, shows that the developed scheme can make more advancement to the sink as against the usual decisions of relevant ad hoc on-demand distance vector route select operations, while ensuring channel quality. Further simulation results have shown the enhanced reliability, lower latency and energy efficiency of the presented scheme.

  10. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  11. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail

    2014-12-01

    Cognitive Radio is an intelligent Software Defined Radio that is capable to alter its transmission parameters according to predefined objectives and wireless environment conditions. Cognitive engine is the actuator that performs radio parameters configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance. The optimization relies on adapting radio transmission parameters to environment conditions using constrained optimization modeling called fitness functions in an iterative manner. These functions include minimizing power consumption, Bit Error Rate, delay and interference. On the other hand, maximizing throughput and spectral efficiency. Cross-layer optimization is exploited to access environmental parameters from all TCP/IP stack layers. AMOS uses adaptive Genetic Algorithm in terms of its parameters and objective weights as the vehicle of optimization. The proposed scheme has demonstrated quick response and efficiency in three different scenarios compared to other schemes. In addition, it shows its capability to optimize the performance of TCP/IP layers as whole not only the physical layer.

  12. Multiagent -Learning for Aloha-Like Spectrum Access in Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Li Husheng

    2010-01-01

    Full Text Available An Aloha-like spectrum access scheme without negotiation is considered for multiuser and multichannel cognitive radio systems. To avoid collisions incurred by the lack of coordination, each secondary user learns how to select channels according to its experience. Multiagent reinforcement leaning (MARL is applied for the secondary users to learn good strategies of channel selection. Specifically, the framework of -learning is extended from single user case to multiagent case by considering other secondary users as a part of the environment. The dynamics of the -learning are illustrated using a Metrick-Polak plot, which shows the traces of -values in the two-user case. For both complete and partial observation cases, rigorous proofs of the convergence of multiagent -learning without communications, under certain conditions, are provided using the Robins-Monro algorithm and contraction mapping, respectively. The learning performance (speed and gain in utility is evaluated by numerical simulations.

  13. Cognitive Radio on a Reconfigurable MPSoC Platform

    NARCIS (Netherlands)

    Zhang, Q.

    2009-01-01

    Due to the explosive growth of wireless communication, the demands for radio spectrum are rapidly increasing. It is very di±cult to accommodate new wireless services under the current spectrum allocation scheme. On the other hand, the allocated spectrum is not e±ciently utilized. Cognitive Radio is

  14. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  15. Interweave Cognitive Radio with Improper Gaussian Signaling

    KAUST Repository

    Hedhly, Wafa

    2018-01-15

    Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS. The instantaneous achievable rate performance of both the primary and secondary users are analyzed for specific secondary user sensing and detection capabilities. Next, the IGS scheme is optimized to maximize the achievable rate secondary user while satisfying a target minimum rate requirement for the primary user. Proper Gaussian signaling (PGS) scheme design is also derived to be used as benchmark of the IGS scheme design. Finally, different numerical results are introduced to show the gain reaped from adopting IGS over PGS under different system parameters. The main advantage of employing IGS is observed at low sensing and detection capabilities of the SU, lower PU direct link and higher SU interference on the PU side.

  16. Distortion mitigation in cognitive radio receivers

    NARCIS (Netherlands)

    Mahrof, D.H.

    2015-01-01

    The exponential increase of wireless communication increasingly leads to spectrum congestion. Attempts are being made to increase RF spectrum utilization efficiency by introducing Cognitive Radio (CR) concept. A CR tries to intelligently solve the congestion problem via Dynamic Spectrum Access

  17. Modeling of Doppler frequency shift in multipath radio channels

    Directory of Open Access Journals (Sweden)

    Penzin M.S.

    2016-06-01

    Full Text Available We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect. The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase variation in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of variation in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.

  18. Collaborative multi-layer network coding for cellular cognitive radio networks

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  19. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-08-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints is derived. A suboptimal scheme is proposed to overcome the frequency of outages for the independent peak transmission rate constraint. In all cases, numerical results are provided for Rayleigh fading channels. © 2012 IEEE.

  20. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  1. Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its...

  2. On hybrid cooperation in underlay cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2012-11-01

    In wireless systems where transmitters are subject to a strict received power constraint, such as in underlay cognitive radio networks, cooperative communication is a promising strategy to enhance network performance, as it helps to improve the coverage area and outage performance of a network. However, this comes at the expense of increased resource utilization. To balance the performance gain against the possible over-utilization of resources, we propose a hybrid-cooperation technique for underlay cognitive radio networks, where secondary users cooperate only when required. Various performance measures of the proposed hybrid-cooperation technique are analyzed in this paper, and are also further validated numerically. © 2012 IEEE.

  3. Cooperative Detection for Primary User in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jia

    2009-01-01

    Full Text Available We propose two novel cooperative detection schemes based on the AF (Amplify and Forward and DF (Decode and Forward protocols to achieve spatial diversity gains for cognitive radio networks, which are referred to as the AF-CDS, (AF-based Cooperative Detection Scheme and DF-CDS (DF-based Cooperative Detection Scheme, respectively. Closed-form expressions of detection probabilities for the noncooperation scheme, AND-CDS (AND-based Cooperative Detection Scheme, AF-CDS and DF-CDS, are derived over Rayleigh fading channels. Also, we analyze the overall agility for the proposed cooperative detection schemes and show that our schemes can further reduce the detection time. In addition, we compare the DF-CDS with the AF-CDS in terms of detection probability and agility gain, depicting the advantage of DF-CDS at low SNR region and high false alarm probability region.

  4. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  5. Method of modeling the cognitive radio using Opnet Modeler

    OpenAIRE

    Yakovenko, I. V.; Poshtarenko, V. M.; Kostenko, R. V.

    2012-01-01

    This article is a review of the first wireless standard based on cognitive radio networks. The necessity of wireless networks based on the technology of cognitive radio. An example of the use of standard IEEE 802.22 in Wimax network through which was implemented in the simulation software environment Opnet Modeler. Schedules to check the performance of HTTP and FTP protocols CR network. Simulation results justify the use of standard IEEE 802.22 in wireless networks. Ця стаття являє собою о...

  6. An Efficient FFT For OFDM Based Cognitive Radio On A Reconfigurable Architecture

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2007-01-01

    Cognitive Radio is a promising technology to utilize non-used parts of the spectrum that actually are assigned to licensed services. An adaptive OFDM based Cognitive Radio system has the capacity to nullify individual carriers to avoid interference to the licensed user. Therefore, there could be a

  7. Towards Energy Efficient Cognitive Radio Systems

    KAUST Repository

    Alabbasi, AbdulRahman

    2016-07-14

    Cognitive radio (CR) is a cutting-edge wireless communication technology that adopts several existing communication concepts in order to efficiently utilize the spectrum and meet the users demands of high throughput and real-time systems. Conventionally, high throughput demands are met through adopting broadband and multi-antenna technologies such as, orthogonal frequency division multiplexing (OFDM) and Multi-Input Multi-Output (MIMO). Whereas, real-time application demands are met by analyzing metrics which characterize the delay limited channels, such as, outage probability over block-fading channels. Being an environmental friendly technology, energy efficiency metrics should be considered in the design of a CR application. This thesis tackles the energy efficiency of CR system from different aspects, utilizing different measuring metrics and constrains. Under the single-input single-output (SISO) OFDM we minimized the energy per goodbit (EPG) metric subject to several power and Quality of Service (QoS) constraints. In this approach, the minimum EPG metric is optimized via proposing two optimal and sub-optimal resource allocation schemes. We consider several parameters as optimization variables, such as, power policy, sensing threshold, and channel quality threshold. We also captured the impact of involving the media access control (MAC) layers parameters, such as, frame length, in the minimization of a modified EPG metric. Also, a MAC protocol, i.e., hybrid automatic repeat request (HARQ), and the associated power consumption of the retransmission mechanism is considered in the formulation of the problem. In this context, the optimal power and frame length are derived to minimize the modified EPG while considering several spectrum-sharing scenarios, which depend on sensing information. In MIMO based CR system, we maximized capacity to power ratio (CPR) (as an energy efficiency (EE) metric) subject to several power and QoS constraints. In this context, the

  8. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2012-01-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing

  9. Cognitive radio-based transmission energy management in Wi-Fi nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-10-01

    Full Text Available -services. To solve such problems, in part, this study addresses the transmission energy management in Wi-Fi networks. Figure 1: Internet needs of rural communities PROPOSAL A cognitive radio-based transmission energy management (CR-TEM) solution for Wi... is incorporated into the Wi-Fi device to monitor the operation environments. Based on the environmental data, the transmission energy is adaptively adjusted until optimal conditions are achieved. Figure 2 illustrates the fundamentals of the cognitive radio...

  10. Emulating Dynamic Radio Channels for Radiated Testing of Massive MIMO Devices

    DEFF Research Database (Denmark)

    Kyösti, Pekka; Hentilä, Lassi; Kyröläinen, Jukka

    2018-01-01

    This paper discusses a multi-probe anechoic chamber based (MPAC) setup, capable of reconstructing non-stationary radio propagation environments for testing of mm-wave and massive MIMO devices. The test setup is aimed for evaluation of end to end performance of devices, including hybrid beamforming...... operations of antenna arrays and base band processing, in highly time variant channel conditions. In this work we present simulated comparison of an ideal reference radio channel model and corresponding model implemented with limited resources of MPAC components. We give a qualitative analysis of the results...... with non-line of sight (NLOS) channel models, without quantitative evaluation. The example device under test (DUT) is a 8x8 planar array with half wavelength inter-element spacing....

  11. Achievable Rates of Cognitive Radio Networks Using Multi-Layer Coding with Limited CSI

    KAUST Repository

    Sboui, Lokman

    2016-03-01

    In a Cognitive Radio (CR) framework, the channel state information (CSI) feedback to the secondary transmitter (SU Tx) can be limited or unavailable. Thus, the statistical model is adopted in order to determine the system performance using the outage concept. In this paper, we adopt a new approach using multi-layer-coding (MLC) strategy, i.e., broadcast approach, to enhance spectrum sharing over fading channels. First, we consider a scenario where the secondary transmitter has no CSI of both the link between SU Tx and the primary receiver (cross-link) and its own link. We show that using MLC improves the cognitive rate compared to the rate provided by a singlelayer- coding (SLC). In addition, we observe numerically that 2-Layer coding achieves most of the gain for Rayleigh fading. Second, we analyze a scenario where SU Tx is provided by partial CSI about its link through quantized CSI. We compute its achievable rate adopting the MLC and highlight the improvement over SLC. Finally, we study the case in which the cross-link is perfect, i.e., a cooperative primary user setting, and compare the performance with the previous cases. We present asymptotic analysis at high power regime and show that the cooperation enhances considerably the cognitive rate at high values of the secondary power budget.

  12. On hybrid cooperation in underlay cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2013-09-01

    Cooperative communication is a promising strategy to enhance the performance of a communication network as it helps to improve the coverage area and the outage performance. However, such enhancement comes at the expense of increased resource utilization, which is undesirable; more so in the case of opportunistic wireless systems such as cognitive radio networks. In order to balance the performance gains from cooperative communication against the possible over-utilization of resources, we propose and analyze an adaptive-cooperation technique for underlay cognitive radio networks, termed as hybrid-cooperation. Under the proposed cooperation scheme, secondary users in a cognitive radio network cooperate adaptively to enhance the spectral efficiency and the error performance of the network. The bit error rate, the spectral efficiency and the outage performance of the network under the proposed hybrid cooperation scheme with amplify-and-forward relaying are analyzed in this paper, and compared against conventional cooperation technique. Findings of the analytical performance analyses are further validated numerically through selected computer-based Monte-Carlo simulations. The proposed scheme is found to achieve significantly better performance in terms of the spectral efficiency and the bit error rate, compared to the conventional amplify-and-forward cooperation scheme. © 2013 IEEE.

  13. Spatial Dynamics of Indoor Radio Wideband Channels

    Directory of Open Access Journals (Sweden)

    Hayar Aawatif

    2010-01-01

    Full Text Available The multipath components of superwideband (2–17.2 GHz nonline-of-sight channel responses measured inside several buildings are stable along sections that are 27 cm long on average with a standard deviation of 16 cm. The stability regions of multipath components have an approximately log-normal histogram. An analysis of measured channels that explicitly includes finite spatial areas of visibility of the multipath components is superior to the classic analysis that attributes spatial dynamics to interference of the multipath. The spatial stability of measured responses, that is, the size of the typical area of visibility of each multipath component, decreases as the carrier frequency increases but does not depend on bandwidth. The results offer insight into the nature of the diffuse part of the radio channel.

  14. Multicriteria Parent Selection Using Cognitive Radio for RPL in Smart Grid Network

    Directory of Open Access Journals (Sweden)

    Adisorn Kheaksong

    2018-01-01

    Full Text Available To maintain reliability of advanced metering infrastructure network in smart grid, data sent from a smart meter must reach a data concentrator unit efficiently. Parent selecting mechanism in routing protocol for low-power and lossy (RPL is a key to maintain the reliability by balancing workload of meters in the network. In this paper, a parent selecting mechanism with three criteria including expected transmission count, residual energy, and expected transmission time is proposed to improve workload balancing and lifetime differences of all meters. A meter selects an immediate parent based on three factors. From simulation results, parents’ workload is better balanced and the lifetime of all meters in the network is depleted nearly at the same time. Moreover, a simulation with cognitive radio enabled meters, where data can be transmitted on a licensed channel opportunistically when the channel is not utilized, shows an improvement in the packet delivery ratio.

  15. On the throughput of a relay-assisted cognitive radio MIMO channel with space alignment

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2014-01-01

    We study the achievable rate of a multiple antenna relay-assisted cognitive radio system where a secondary user (SU) aims to communicate instantaneously with the primary user (PU). A special linear precoding scheme is proposed to enable the SU to take advantage of the primary eigenmodes. The used eigenmodes are subject to an interference constraint fixed beforehand by the primary transmitter. Due to the absence of a direct link, both users exploit an amplify-and-forward relay to accomplish their transmissions to a common receiver. After decoding the PU signal, the receiver employs a successive interference cancellation (SIC) to estimate the secondary message. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting interference, peak and relay power constraints. Furthermore, we analyze the SIC detection accuracy on the PU throughput. Numerical results highlight the cognitive rate gain achieved by our proposed scheme without harming the primary rate. In addition, we show that the relay has an important role in increasing or decreasing PU and SU rates especially when varying its power and/or its amplifying gain. © 2014 IFIP.

  16. On the throughput of a relay-assisted cognitive radio MIMO channel with space alignment

    KAUST Repository

    Sboui, Lokman

    2014-05-01

    We study the achievable rate of a multiple antenna relay-assisted cognitive radio system where a secondary user (SU) aims to communicate instantaneously with the primary user (PU). A special linear precoding scheme is proposed to enable the SU to take advantage of the primary eigenmodes. The used eigenmodes are subject to an interference constraint fixed beforehand by the primary transmitter. Due to the absence of a direct link, both users exploit an amplify-and-forward relay to accomplish their transmissions to a common receiver. After decoding the PU signal, the receiver employs a successive interference cancellation (SIC) to estimate the secondary message. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting interference, peak and relay power constraints. Furthermore, we analyze the SIC detection accuracy on the PU throughput. Numerical results highlight the cognitive rate gain achieved by our proposed scheme without harming the primary rate. In addition, we show that the relay has an important role in increasing or decreasing PU and SU rates especially when varying its power and/or its amplifying gain. © 2014 IFIP.

  17. Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs.

    Science.gov (United States)

    Moon, Bongkyo

    2017-12-05

    In this paper, we focus on a dynamic spectrum access strategy for Internet of Things (IoT) applications in two types of radio systems: cellular networks and cognitive radio-enabled low power wide area networks (CR-LPWANs). The spectrum channel contention between the licensed cellular networks and the unlicensed CR-LPWANs, which work with them, only takes place within the cellular radio spectrum range. Our aim is to maximize the spectrum capacity for the unlicensed users while ensuring that it never interferes with the licensed network. Therefore, in this paper we propose a dynamic spectrum access strategy for CR-LPWANs operating in both licensed and unlicensed bands. The simulation and the numerical analysis by using a matrix geometric approach for the strategy are presented. Finally, we obtain the blocking probability of the licensed users, the mean dwell time of the unlicensed user, and the total carried traffic and combined service quality for the licensed and unlicensed users. The results show that the proposed strategy can maximize the spectrum capacity for the unlicensed users using IoT applications as well as keep the service quality of the licensed users independent of them.

  18. Energy-Efficient Power Allocation of Cognitive Radio Systems without CSI at the Transmitter

    KAUST Repository

    Sboui, Lokman

    2015-01-07

    Two major issues are facing today’s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produce 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, we aim to determine the optimal energy efficient power allocation of CR when the channel state information at the transmitter CSI-T is not available.

  19. Energy-Efficient Power Allocation of Cognitive Radio Systems without CSI at the Transmitter

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    Two major issues are facing today’s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produce 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, we aim to determine the optimal energy efficient power allocation of CR when the channel state information at the transmitter CSI-T is not available.

  20. Video over cognitive radio networks when quality of service meets spectrum

    CERN Document Server

    Mao, Shiwen

    2014-01-01

    This book focuses on the problem of video streaming over emerging cognitive radio (CR) networks. The book discusses the problems and techniques for scalable video streaming over cellular cognitive radio networks, ad hoc CR networks, cooperative CR networks, and femtocell CR networks. The author formulates these problems and proposes optimal algorithms to solve these problems. Also, the book analyzes the proposed algorithms and validates the algorithms with simulations.

  1. Spectrum access games for cognitive radio networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2010-09-01

    Full Text Available received a wide acceptance in next generation and intelligent wireless communication systems. In this paper the authors make use of game theory approach to model and analyze cognitive radio networks in order to allow dynamic spectrum access in broadband...

  2. Sea Turtles Geolocalization in the Indian Ocean: An Over Sea Radio Channel framework integrating a trilateration technique

    Science.gov (United States)

    Guegan, Loic; Murad, Nour Mohammad; Bonhommeau, Sylvain

    2018-03-01

    This paper deals with the modeling of the over sea radio channel and aims to establish sea turtles localization off the coast of Reunion Island, and also on Europa Island in the Mozambique Channel. In order to model this radio channel, a framework measurement protocol is proposed. The over sea measured channel is integrated to the localization algorithm to estimate the turtle trajectory based on Power of Arrival (PoA) technique compared to GPS localization. Moreover, cross correlation tool is used to characterize the over sea propagation channel. First measurement of the radio channel on the Reunion Island coast combine to the POA algorithm show an error of 18 m for 45% of the approximated points.

  3. Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms

    Directory of Open Access Journals (Sweden)

    Kok-Lim Alvin Yau

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL, which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR.

  4. Hybrid Experiential-Heuristic Cognitive Radio Engine Architecture and Implementation

    Directory of Open Access Journals (Sweden)

    Ashwin Amanna

    2012-01-01

    Full Text Available The concept of cognitive radio (CR focuses on devices that can sense their environment, adapt configuration parameters, and learn from past behaviors. Architectures tend towards simplified decision-making algorithms inspired by human cognition. Initial works defined cognitive engines (CEs founded on heuristics, such as genetic algorithms (GAs, and case-based reasoning (CBR experiential learning algorithms. This hybrid architecture enables both long-term learning, faster decisions based on past experience, and capability to still adapt to new environments. This paper details an autonomous implementation of a hybrid CBR-GA CE architecture on a universal serial radio peripheral (USRP software-defined radio focused on link adaptation. Details include overall process flow, case base structure/retrieval method, estimation approach within the GA, and hardware-software lessons learned. Unique solutions to realizing the concept include mechanisms for combining vector distance and past fitness into an aggregate quantification of similarity. Over-the-air performance under several interference conditions is measured using signal-to-noise ratio, packet error rate, spectral efficiency, and throughput as observable metrics. Results indicate that the CE is successfully able to autonomously change transmit power, modulation/coding, and packet size to maintain the link while a non-cognitive approach loses connectivity. Solutions to existing shortcomings are proposed for improving case-base searching and performance estimation methods.

  5. Enhanced cognitive Radio Resource Management for LTE systems

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem; Shin, Kang G.

    2013-01-01

    as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE

  6. Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.

  7. Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems

    KAUST Repository

    Sboui, Lokman

    2017-04-19

    We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.

  8. On the Capacity of Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2013-05-05

    Due to the scarcity of frequency spectrum in view of the evolution of wireless communication technologies, the cognitive radio (CR) concept has been introduced to efficiently exploit the available spectrum. This concept consists in introducing unlicensed/secondary users (SU’s) in existing networks to share the spectrum of licensed/primary users (PU’s) without harming primary communications hence the name of “spectrum sharing” technique. We study in this dissertation, the capacity and the achievable rate of the secondary user within various communication settings. We, firstly, investigate the capacity of the (SU’s) at low power regime for Nakagami fading channels and present closed form of the capacity under various types of interference and/or power constraints. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link ergodic capacity. Interestingly, we show that the low power regime analysis provides a specific insight on the capacity behavior of CR that has not been reported by previous studies. Next, we determine the spectral efficiency gain of an uplink CR Multi-Input Multi- Output (MIMO) system in which the SU is allowed to share the spectrum with the PU using a specific precoding scheme to communicate with a common receiver. Applied to Rayleigh fading channels, we show, through numerical results, that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, after applying Successive Interference Cancellation (SIC), the CR rate remains non-zero for high Signal to Noise Ratio (SNR) which is usually impossible when we only use space alignment technique. In addition, we show that the rate gain is proportional to the allowed interference threshold by providing a fixed rate even in the high SNR range

  9. On the Capacity of Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2013-01-01

    Due to the scarcity of frequency spectrum in view of the evolution of wireless communication technologies, the cognitive radio (CR) concept has been introduced to efficiently exploit the available spectrum. This concept consists in introducing

  10. Characterisation of propagation in 60 GHz radio channels (invited)

    NARCIS (Netherlands)

    Smulders, P.F.M.; Correia, L.M.

    1997-01-01

    Narrowband as well as wideband measurements have been performed in various indoor and outdoor environments in order to enable the development of reliable prediction models for 60 GHz radio channels. In addition, results of deterministic modelling on the basis of geometric ray-tracing have been

  11. Adaptive Decision-Making Scheme for Cognitive Radio Networks

    KAUST Repository

    Alqerm, Ismail

    2014-05-01

    Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.

  12. K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fading Effects

    Directory of Open Access Journals (Sweden)

    Ankur S. Kang

    2016-09-01

    Full Text Available Land mobile communication is burdened with typical propagation constraints due to the channel characteristics in radio systems.Also,the propagation characteristics vary form place to place and also as the mobile unit moves,from time to time.Hence,the tramsmission path between transmitter and receiver varies from simple direct LOS to the one which is severely obstructed by buildings,foliage and terrain.Multipath propagation and shadow fading effects affect the signal strength of an arbitrary Transmitter-Receiver due to the rapid fluctuations in the phase and amplitude of signal which also determines the average power over an area of tens or hundreds of meters.Shadowing introduces additional fluctuations,so the received local mean power varies around the area –mean.The present section deals with the performance analysis of fifth generation wireless cognitive radio network on the basis of signal and interference level based k coverage probability under the shadow fading effects.

  13. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  14. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-01-01

    . Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work

  15. Dynamic channel assignment scheme for multi-radio wireless mesh networks

    CSIR Research Space (South Africa)

    Kareem, TR

    2008-09-01

    Full Text Available This paper investigates the challenges involve in designing a dynamic channel assignment (DCA) scheme for wireless mesh networks, particularly for multi-radio systems. It motivates the need for fast switching and process coordination modules...

  16. Radio Channel Modelling for UAV Communication over Cellular Networks

    DEFF Research Database (Denmark)

    Amorim, Rafhael Medeiros de; Nguyen, Huan Cong; Mogensen, Preben Elgaard

    2017-01-01

    The main goal of this paper is to obtain models for path loss exponents and shadowing for the radio channel between airborne Unmanned Aerial Vehicles (UAVs) and cellular networks. In this pursuit, field measurements were conducted in live LTE networks at the 800 MHz frequency band, using a commer...

  17. Optimal satisfaction degree in energy harvesting cognitive radio networks

    International Nuclear Information System (INIS)

    Li Zan; Liu Bo-Yang; Si Jiang-Bo; Zhou Fu-Hui

    2015-01-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. (paper)

  18. Signal processing for cognitive radios

    CERN Document Server

    Jayaweera, Sudharman K

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, and it can be used both as a textbook and reference book.  Introduces the specific type of CR that has gained the most research attention in recent years: the CR for Dynamic Spectrum Access (DSA). Provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS cognitive radios  

  19. Threshold Based Opportunistic Scheduling of Secondary Users in Underlay Cognitive Radio Networks

    KAUST Repository

    Song, Yao

    2011-12-01

    In underlay cognitive radio networks, secondary users can share the spectrum with primary users as long as the interference caused by the secondary users to primary users is below a certain predetermined threshold. It is reasonable to assume that there is always a large pool of secondary users trying to access the channel, which can be occupied by only one secondary user at a given time. As a result, a multi-user scheduling problem arises among the secondary users. In this thesis, by manipulating basic schemes based on selective multi-user diversity, normalized thresholding, transmission power control, and opportunistic round robin, we propose and analyze eight scheduling schemes of secondary users in an underlay cognitive radio set-up. The system performance of these schemes is quantified by using various performance metrics such as the average system capacity, normalized average feedback load, scheduling outage probability, and system fairness of access. In our proposed schemes, the best user out of all the secondary users in the system is picked to transmit at each given time slot in order to maximize the average system capacity. Two thresholds are used in the two rounds of the selection process to determine the best user. The first threshold is raised by the power constraint from the primary user. The second threshold, which can be adjusted by us, is introduced to reduce the feedback load. The overall system performance is therefore dependent on the choice of these two thresholds and the number of users in the system given the channel conditions for all the users. In this thesis, by deriving analytical formulas and presenting numerical examples, we try to provide insights of the relationship between the performance metrics and the involved parameters including two selection thresholds and the number of active users in the system, in an effort to maximize the average system capacity as well as satisfy the requirements of scheduling outage probability and

  20. Energy-Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2017-03-20

    Due to the massive data traffic in wireless networks, energy consumption has become a crucial concern, especially with the limited power supply of the mobile terminals and the increasing CO2 emission of the cellular industry. In this context, we study the energy efficiency (EE) of MIMO spectrum sharing cognitive radio (CR) systems under power and interference constraints. We present an energy-efficient power allocation framework based on maximizing the average EE per parallel channel resulting from the singular value decomposition (SVD) eigenmode transmission. We also present a sub-optimal low-complexity power allocation scheme based on the water-filling power allocation. In the numerical results, we show that the sub-optimal power allocation achieves at least 95% of the optimal performance. In addition, we show that adopting more antennas is more energy efficient for a given power budget. Finally, we show that the interference threshold has a significant effect on both the EE and the spectral efficiency at high-power regime.

  1. Cognitive Radio Application for Evaluating Coexistence with Cognitive Radars: A Software User’s Guide

    Science.gov (United States)

    2017-10-01

    with both conventional wireless systems as well as other types of cognitive RF systems (e.g., cognitive radar). The radio hardware for this...the base stations are at fixed positions and often elevated and operating with relatively high power compared with mobiles, it is straightforward...for cognitive RF systems to detect the base station’s transmissions and avoid activity that would harm this downlink. By contrast, the mobile

  2. Green Cooperative Spectrum Sensing and Scheduling in Heterogeneous Cognitive Radio Networks

    KAUST Repository

    Celik, Abdulkadir

    2016-09-12

    In this paper, we consider heterogeneous cognitive radio networks (CRNs) comprising primary channels (PCs) with heterogeneous characteristics and secondary users (SUs) with various sensing and reporting qualities for different PCs. We first define the opportunity as the achievable total data rate and its cost as the energy consumption caused from sensing, reporting, and channel switching operations and formulate a joint spectrum discovery and energy efficiency objective to minimize the energy spent per unit of data rate. Then, a mixed integer nonlinear programming problem is formulated to determine: 1) the optimal subset of PCs to be scheduled for sensing; 2) the SU assignment set for each scheduled PC; and 3) sensing durations and detection thresholds of each SU on PCs it is assigned to sense. Thereafter, an equivalent convex framework is developed for specific instances of the above combinatorial problem. For comparison, optimal detection and sensing thresholds are also derived analytically under the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy, and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and is shown to perform very close to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed under these regimes with respect to different numbers of SUs, PCs, and sensing qualities.

  3. Robust distributed two-way relay beamforming in cognitive radio networks

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2012-04-01

    In this paper, we present distributed beamformer designs for a cognitive radio network (CRN) consisting of a pair of cognitive (or secondary) transceiver nodes communicating with each other through a set of secondary non-regenerative two-way relays. The secondary network shares the spectrum with a licensed primary user (PU), and operates under a constraint on the maximum interference to the PU, in addition to its own resource and quality of service (QoS) constraints. We propose beamformer designs assuming that the available channel state information (CSI) is imperfect, which reflects realistic scenarios. The performance of proposed designs is robust to the CSI errors. Such robustness is critical in CRNs given the difficulty in acquiring perfect CSI due to loose cooperation between the PUs and the secondary users (SUs), and the need for strict enforcement of PU interference limit. We consider a mean-square error (MSE)-constrained beamformer that minimizes the total relay transmit power and an MSE-balancing beamformer with a constraint on the total relay transmit power. We show that the proposed designs can be reformulated as convex optimization problems that can be solved efficiently. Through numerical simulations, we illustrate the improved performance of the proposed robust designs compared to non-robust designs. © 2012 IEEE.

  4. TV white space opportunity for cognitive radio networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available to benefit from the digital dividend brought about by the DSO, regulators from the developed countries are promoting license-exempt cognitive radio (CR) access to TVWS. However, there is a need to understand how much TVWS is available in South Africa...

  5. Cognitive two-way relay beamforming: Design with resilience to channel state uncertainties

    KAUST Repository

    Ubaidulla, P.

    2016-07-26

    In this paper, we propose a robust distributed relay beamformer design for cognitive radio network operating under uncertainties in the available channel state information. The cognitive network consists of a pair of transceivers and a set of non-regenerative two-way relays that assist the communication between the transceiver pair. The secondary nodes share the spectrum with a licensed primary user node while ensuring that the interference to the primary receiver is maintained below a certain threshold. The proposed robust design maximizes the worst-case signal-to-interference-plus-noise ratio at the secondary transceivers while satisfying constraints on the interference to the primary user and on the total relay transmit power. Though the robust design problem is not a convex problem in its original form, we show that it can be reformulated as a convex optimization problem, which can be solved efficiently. Numerical results are provided and illustrate the merits of the proposed design for various operating conditions and parameters. © 2016 IEEE.

  6. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon; Ben Ghorbel, Mahdi; Alouini, Mohamed-Slim

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users

  7. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  8. Towards Reliable, Scalable, and Energy Efficient Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2017-11-01

    The cognitive radio (CR) concept is expected to be adopted along with many technologies to meet the requirements of the next generation of wireless and mobile systems, the 5G. Consequently, it is important to determine the performance of the CR systems with respect to these requirements. In this thesis, after briefly describing the 5G requirements, we present three main directions in which we aim to enhance the CR performance. The first direction is the reliability. We study the achievable rate of a multiple-input multiple-output (MIMO) relay-assisted CR under two scenarios; an unmanned aerial vehicle (UAV) one-way relaying (OWR) and a fixed two-way relaying (TWR). We propose special linear precoding schemes that enable the secondary user (SU) to take advantage of the primary-free channel eigenmodes. We study the SU rate sensitivity to the relay power, the relay gain, the UAV altitude, the number of antennas and the line of sight availability. The second direction is the scalability. We first study a multiple access channel (MAC) with multiple SUs scenario. We propose a particular linear precoding and SUs selection scheme maximizing their sum-rate. We show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. Secondly, we expand our scalability study to cognitive cellular networks. We propose a low-complexity algorithm for base station activation/deactivation and dynamic spectrum management maximizing the profits of primary and secondary networks subject to green constraints. We show that our proposed algorithms achieve performance close to those obtained with the exhaustive search method. The third direction is the energy efficiency (EE). We present a novel power allocation scheme based on maximizing the EE of both single-input and single-output (SISO) and MIMO systems. We solve a non-convex problem and derive explicit expressions of the corresponding optimal power. When the instantaneous channel is not available, we

  9. Dynamic spectrum management in green cognitive radio cellular networks

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose a new cellular network operation scheme fulfilling the 5G requirements related to spectrum management and green communications. We focus on cognitive radio cellular networks in which both the primary network (PN

  10. Concurrent bandits and cognitive radio networks

    OpenAIRE

    Avner, Orly; Mannor, Shie

    2014-01-01

    We consider the problem of multiple users targeting the arms of a single multi-armed stochastic bandit. The motivation for this problem comes from cognitive radio networks, where selfish users need to coexist without any side communication between them, implicit cooperation or common control. Even the number of users may be unknown and can vary as users join or leave the network. We propose an algorithm that combines an $\\epsilon$-greedy learning rule with a collision avoidance mechanism. We ...

  11. Novel Radio Architectures for UWB, 60 GHz, and Cognitive Wireless Systems

    Directory of Open Access Journals (Sweden)

    Cabric Danijela

    2006-01-01

    Full Text Available There are several new radio systems which exploit novel strategies being made possible by the regulatory agencies to increase the availability of spectrum for wireless applications. Three of these that will be discussed are ultra-wideband (UWB, 60 GHz, and cognitive radios. The UWB approach attempts to share the spectrum with higher-priority users by transmitting at power levels that are so low that they do not cause interference. On the other hand, cognitive radios attempt to share spectra by introducing a spectrum sensing function, so that they are able to transmit in unused portions at a given time, place, and frequency. Another approach is to exploit the advances in CMOS technology to operate in frequency bands in the millimeter-wave region. 60 GHz operation is particularly attractive because of the 7 GHz of unlicensed spectrum that has been made available there. In this paper, we present an overview of novel radio architecture design approaches and address challenges dealing with high-frequencies, wide-bandwidths, and large dynamic-range signals encountered in these future wireless systems.

  12. Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

    International Nuclear Information System (INIS)

    Qi Pei-Han; Zheng Shi-Lian; Yang Xiao-Niu; Zhao Zhi-Jin

    2016-01-01

    Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. (paper)

  13. A Sensitive Secondary Users Selection Algorithm for Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Aohan Li

    2016-03-01

    Full Text Available Secondary Users (SUs are allowed to use the temporarily unused licensed spectrum without disturbing Primary Users (PUs in Cognitive Radio Ad Hoc Networks (CRAHNs. Existing architectures for CRAHNs impose energy-consuming Cognitive Radios (CRs on SUs. However, the advanced CRs will increase energy cost for their cognitive functionalities, which is undesirable for the battery powered devices. A new architecture referred to as spectral Requirement-based CRAHN (RCRAHN is proposed to enhance energy efficiency for CRAHNs in this paper. In RCRAHNs, only parts of SUs are equipped with CRs. SUs equipped with CRs are referred to as Cognitive Radio Users (CRUs. To further enhance energy efficiency of CRAHNs, we aim to select minimum CRUs to sense available spectrum. A non-linear programming problem is mathematically formulated under the constraints of energy efficiency and real-time. Considering the NP-hardness of the problem, a framework of a heuristic algorithm referred to as Sensitive Secondary Users Selection (SSUS was designed to compute the near-optimal solutions. The simulation results demonstrate that SSUS not only improves the energy efficiency, but also achieves satisfied performances in end-to-end delay and communication reliability.

  14. A Sensitive Secondary Users Selection Algorithm for Cognitive Radio Ad Hoc Networks.

    Science.gov (United States)

    Li, Aohan; Han, Guangjie; Wan, Liangtian; Shu, Lei

    2016-03-26

    Secondary Users (SUs) are allowed to use the temporarily unused licensed spectrum without disturbing Primary Users (PUs) in Cognitive Radio Ad Hoc Networks (CRAHNs). Existing architectures for CRAHNs impose energy-consuming Cognitive Radios (CRs) on SUs. However, the advanced CRs will increase energy cost for their cognitive functionalities, which is undesirable for the battery powered devices. A new architecture referred to as spectral Requirement-based CRAHN (RCRAHN) is proposed to enhance energy efficiency for CRAHNs in this paper. In RCRAHNs, only parts of SUs are equipped with CRs. SUs equipped with CRs are referred to as Cognitive Radio Users (CRUs). To further enhance energy efficiency of CRAHNs, we aim to select minimum CRUs to sense available spectrum. A non-linear programming problem is mathematically formulated under the constraints of energy efficiency and real-time. Considering the NP-hardness of the problem, a framework of a heuristic algorithm referred to as Sensitive Secondary Users Selection (SSUS) was designed to compute the near-optimal solutions. The simulation results demonstrate that SSUS not only improves the energy efficiency, but also achieves satisfied performances in end-to-end delay and communication reliability.

  15. Cognitive Relay Networks: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    Ayesha Naeem

    2015-07-01

    Full Text Available Cognitive radio is an emerging technology to deal with the scarcity and requirement of radio spectrum by dynamically assigning spectrum to unlicensed user . This revolutionary technology shifts the paradigm in the wireless system design by all owing unlicensed user the ability to sense, adapt and share the dynamic spectrum. Cognitive radio technology have been applied to different networks and applications ranging from wireless to public saf ety, smart grid, medical, rela y and cellular applications to increase the throughput and spectrum efficiency of the network. Among these applications, cognitive relay networks is one of the application where cognitive radio technology has been applied. Cognitiv e rela y network increases the network throughput by reducing the complete pa th loss and also by ensuring cooper ation among secondary users and cooperation among primary and secondary users. In this paper , our aim is to provide a survey on cognitive relay network. We also provide a detailed review on existing schemes in cognitive relay networks on the basis of relaying protocol, relay cooperation and channel model.

  16. Regret of Multi-Channel Bandit Game in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Ma Jun

    2016-01-01

    Full Text Available The problem of how to evaluate the rate of convergence to Nash equilibrium solutions in the process of channel selection under incomplete information is studied. In this paper, the definition of regret is used to reflect the convergence rates of online algorithms. The process of selecting an idle channel for each secondary user is modeled as a multi-channel bandit game. The definition of the maximal averaged regret is given. Two existing online learning algorithms are used to obtain the Nash equilibrium for each SU. The maximal averaged regrets are used to evaluate the performances of online algorithms. When there is a pure strategy Nash equilibrium in the multi-channel bandit game, the maximal averaged regrets are finite. A cooperation mechanism is also needed in the process of calculating the maximal averaged regrets. Simulation results show the maximal averaged regrets are finite and the online algorithm with greater convergence rate has less maximal averaged regrets.

  17. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  18. Characterisation of mobile radio channels for small multiantenna terminals

    DEFF Research Database (Denmark)

    Kotterman, Wim Anton Theo

    The Ph.D. thesis "Characterisation of mobile radio channels for small multiantenna terminals" discusses the work on and presents the results of the Ph.D. project "Smart antennas for small terminals". The scope of the project was to determine whether the use of multiple antennas on small handheld...... mobile terminals could improve the transmission quality and throughput of mobile communication links under typical usage conditions. That is, using multiple antennas of typical design, handled by users in typical ways in typical environments as handling by users has a strong influence on channel...... for multiantenna operation, and user influences. Additionally, the reduction of rank of narrow band channels on small observation intervals is discussed. One of the consequences is that fading prediction is limited to about less than a wavelength ahead in practical circumstances....

  19. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  20. Analysis of Practical Implementation for Secure Spectrum Sensing in Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Ivanov, Antoni; Mihovska, Albena Dimitrova; Tonchev, Krasimir

    2017-01-01

    Spectrum sensing is vitally important functionality for the cognitive radio (CR) device because it allows for assessing, which part of the spectrum is unoccupied and suitable for temporal use. Most of the proposed research efforts until now have been based on theoretical findings about the perfor......Spectrum sensing is vitally important functionality for the cognitive radio (CR) device because it allows for assessing, which part of the spectrum is unoccupied and suitable for temporal use. Most of the proposed research efforts until now have been based on theoretical findings about...

  1. Exploring Cognition Using Software Defined Radios for NASA Missions

    Science.gov (United States)

    Mortensen, Dale J.; Reinhart, Richard C.

    2016-01-01

    NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and

  2. Impact of Improper Gaussian Signaling on the Achievable Rate of Overlay Cognitive Radio

    KAUST Repository

    Amin, Osama

    2017-05-12

    Improper Gaussian signaling (IGS) has been recently shown to provide performance improvements in underlay cognitive radio systems as opposed to the conventional proper Gaussian signaling (PGS) scheme. For the first time, this paper implements IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to support the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio that employs IGS to maximize the secondary link achievable rate while satisfying the minimum rate requirement of the primary network. In particular, we derive closed form expressions for the circularity coefficient used in the IGS scheme and the power distribution parameters. Simulation results are provided to support our theoretical derivations.

  3. Impact of Improper Gaussian Signaling on the Achievable Rate of Overlay Cognitive Radio

    KAUST Repository

    Amin, Osama; Abediseid, Walid; Alouini, Mohamed-Slim

    2017-01-01

    Improper Gaussian signaling (IGS) has been recently shown to provide performance improvements in underlay cognitive radio systems as opposed to the conventional proper Gaussian signaling (PGS) scheme. For the first time, this paper implements IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to support the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio that employs IGS to maximize the secondary link achievable rate while satisfying the minimum rate requirement of the primary network. In particular, we derive closed form expressions for the circularity coefficient used in the IGS scheme and the power distribution parameters. Simulation results are provided to support our theoretical derivations.

  4. Energy Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Salem, Ahmed Sultan; Alouini, Mohamed-Slim

    2016-01-01

    Two major issues are facing today s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users

  5. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2014-01-01

    configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance

  6. Energy Efficient Resource Allocation for Cognitive Radios: A Generalized Sensing Analysis

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    In this paper, two resource allocation schemes for energy efficient cognitive radio systems are proposed. Our design considers resource allocation approaches that adopt spectrum sharing combined with soft-sensing information, adaptive sensing thresholds, and adaptive power to achieve an energy efficient system. An energy per good-bit metric is considered as an energy efficient objective function. A multi-carrier system, such as, orthogonal frequency division multiplexing, is considered in the framework. The proposed resource allocation schemes, using different approaches, are designated as sub-optimal and optimal. The sub-optimal approach is attained by optimizing over a channel inversion power policy. The optimal approach utilizes the calculus of variation theory to optimize a problem of instantaneous objective function subject to average and instantaneous constraints with respect to functional optimization variables. In addition to the analytical results, selected numerical results are provided to quantify the impact of soft-sensing information and the optimal adaptive sensing threshold on the system performance.

  7. Energy Efficient Resource Allocation for Cognitive Radios: A Generalized Sensing Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-12-31

    In this paper, two resource allocation schemes for energy efficient cognitive radio systems are proposed. Our design considers resource allocation approaches that adopt spectrum sharing combined with soft-sensing information, adaptive sensing thresholds, and adaptive power to achieve an energy efficient system. An energy per good-bit metric is considered as an energy efficient objective function. A multi-carrier system, such as, orthogonal frequency division multiplexing, is considered in the framework. The proposed resource allocation schemes, using different approaches, are designated as sub-optimal and optimal. The sub-optimal approach is attained by optimizing over a channel inversion power policy. The optimal approach utilizes the calculus of variation theory to optimize a problem of instantaneous objective function subject to average and instantaneous constraints with respect to functional optimization variables. In addition to the analytical results, selected numerical results are provided to quantify the impact of soft-sensing information and the optimal adaptive sensing threshold on the system performance.

  8. NASH BARGAINING BASED BANDWIDTH ALLOCATION IN COGNITIVE RADIO FOR DELAY CRITICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Kalyani Kulkarni

    2015-11-01

    Full Text Available In order to effectively regulate the existing resources, dynamic spectrum access in cognitive radio needs to adopt the effective resource allocation strategies. Multimedia applications require large bandwidth and have to meet the delay constraints while maintaining the data quality. Game theory is emerging as an effective analytical tool for the analysis of available resources and its allocation. This paper addresses resource allocation schemes employing bargaining game model for Multi-carrier CDMA based Cognitive Radio. Resource allocation scheme is designed for transmission of video over cognitive radio networks and aim to perform bandwidth allocation for different cognitive users. Utility function based on bargaining model is proposed. Primary user utility function includes the pricing factor and an upbeat factor that can be adjusted by observing the delay constraints of the video. Allocated bandwidth to the secondary user can be adjusted by changing the upbeat factor. Throughput in the proposed scheme is increased by 2% as compared to other reported pricing based resource allocation schemes. The edge PSNR of reconstructed video obtained as 32.6dB resulting to optimum decoding of the video at the receiver. The study also shows upbeat factor can be used to enhanced capacity of the network.

  9. Incentivize Spectrum Leasing in Cognitive Radio Networks by Exploiting Cooperative Retransmission

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2015-07-01

    Full Text Available This paper addresses the spectrum leasing issue in cognitive radio networks by exploiting the secondary user’s cooperative retransmission. In contrast with the previous researches that focuses on cancellationbased or coding-based cooperative retransmissions, we propose a novel trading-based mechanism to facilitate the cooperative retransmission for cognitive radio networks. By utilizing the Stackelberg game model, we incentivize the otherwise non-cooperative users by maximizing their utilities in terms of transmission rates and economic profit. We analyze the existence of the unique Nash equilibrium of the game, and provide the optimal solutions with corresponding constraints. Numerical results demonstrate the efficiency of the proposed mechanism, under which the performance of the whole system could be substantially improved.

  10. A tree routing protocol for cognitive radio network

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem

    2017-07-01

    Full Text Available Cognitive Radio (CR technology is an agile solution for spectrum congestion and spectrum access utilization problems that result from the legacy fixed spectrum management policies. CR technology can exploit unused licensed band to meet the increasing demand for radio frequency. The routing process faces many challenges in CR Network (CRN such as the absence of centralized infrastructure, the coordination between the routing module and spectrum management module, in addition to the frequent link failure due to the sudden appearance of PUs. In this paper we propose a Tree routing protocol for cognitive radio network (C-TRP that jointly utilizes the tree routing algorithm with a spectrum management module in routing decisions, and also we proposed a new metric used in taking the best route decisions. In addition, we enhance the traditional tree routing algorithm by using a neighbor table technique that speeds up the forwarding data packets. Moreover, we add a robust recovery module to C-TRP to resume the network in case of the link failure. The main motivation in the design of C-TRP is quick data transmission and maximization of date rates. The performance evaluation is carried out in NS2 simulator. The simulation results proved that C-TRP protocol achieves better performance in terms of average “PDR”, “end-to-end delay” and “routing overhead ratio “compared to “CTBR” and “STOD-RP” routing protocols.

  11. Optimal satisfaction degree in energy harvesting cognitive radio networks

    Science.gov (United States)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  12. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available Energy consumption of mobile and wireless networks and devices is significant, indirectly increasing greenhouse gas emissions and energy costs for operators. Cognitive radio (CR) solutions can save energy for such networks and devices; moreover...

  13. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  14. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  15. On the capacity of cognitive radio under limited channel state information over fading channels

    KAUST Repository

    Rezki, Zouheir

    2011-06-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics and an estimated version of the secondary transmitter-primary receiver (ST-PR) link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show, for instance, that the interference constraint is harmful at high-power regime, whereas at low-power regime, it has a marginal impact and no-interference performance may be achieved. © 2011 IEEE.

  16. Investigation of Semiotics in Public Service Anouncement of Radio Health Channel

    Directory of Open Access Journals (Sweden)

    Tahere Jolani

    2017-05-01

    Full Text Available Semiotics is one of the branches seem that comprehending of It is very helpful in the process of programming the new structures in the mass media programming ; and one of these new formats called public service announcement (PSA is not an exception among them. The author of this study examines the semiotics of factors and constructive elements of PSA in the radio channel of health. A channel that appears in today's fast world has very important tips in health realm.

  17. Interference-aware power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available are well known in [9], [6]. The operation of multi-radio multi-channel (MRMC) WMNs generally requires sustainable energy supply. Substantial deployments of WMNs have recently been witnessed in rural and remote communities [4]. In such applications...]. Power resources are dynamically adjusted by each NIC using intra and inter-subsystem (channel) states. Due to the decentralized nature, each MP assumes imperfect knowledge about the global network. Further we assume that there exists...

  18. Secure Cooperative Spectrum Sensing for the Cognitive Radio Network Using Nonuniform Reliability

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2014-01-01

    Full Text Available Both reliable detection of the primary signal in a noisy and fading environment and nullifying the effect of unauthorized users are important tasks in cognitive radio networks. To address these issues, we consider a cooperative spectrum sensing approach where each user is assigned nonuniform reliability based on the sensing performance. Users with poor channel or faulty sensor are assigned low reliability. The nonuniform reliabilities serve as identification tags and are used to isolate users with malicious behavior. We consider a link layer attack similar to the Byzantine attack, which falsifies the spectrum sensing data. Three different strategies are presented in this paper to ignore unreliable and malicious users in the network. Considering only reliable users for global decision improves sensing time and decreases collisions in the control channel. The fusion center uses the degree of reliability as a weighting factor to determine the global decision in scheme I. Schemes II and III consider the unreliability of users, which makes the computations even simpler. The proposed schemes reduce the number of sensing reports and increase the inference accuracy. The advantages of our proposed schemes over conventional cooperative spectrum sensing and the Chair-Varshney optimum rule are demonstrated through simulations.

  19. Cognitive relaying and power allocation under channel state uncertainties

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2013-04-01

    In this paper, we present robust joint relay precoder designs and transceiver power allocations for a cognitive radio network under imperfect channel state information (CSI). The secondary (or cognitive) network consists of a pair of single-antenna transceiver nodes and a non-regenerative two-way relay with multiple antennas which aids the communication process between the transceiver pair. The secondary nodes share the spectrum with a licensed primary user (PU) while guaranteeing that the interference to the PU receiver is maintained below a specified threshold. We consider two robust designs: the first is based on the minimization of the total transmit power of the secondary relay node required to provide the minimum quality of service, measured in terms of mean-square error (MSE) of the transceiver nodes, and the second is based on the minimization of the sum-MSE of the transceiver nodes. The robust designs are based on worst-case optimization and take into account known parameters of the error in the CSI to render the performance immune to the presence of errors in the CSI. Though the original problem is non-convex, we show that the proposed designs can be reformulated as tractable convex optimization problems that can be solved efficiently. We illustrate the performance of the proposed designs through some selected numerical simulations. © 2013 IEEE.

  20. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suleiman Zubair

    2016-01-01

    Full Text Available The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage, PU signal protection (by the introduction of a mobility-induced guard (mguard distance and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput. It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  1. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-29

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  2. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  3. Enhanced cognitive Radio Resource Management for LTE systems

    KAUST Repository

    Alqerm, Ismail

    2013-10-01

    The explosive growth in mobile Internet and related services has increased the need for more bandwidth in cellular networks. The Long-Term Evolution (LTE) technology is an attractive solution for operators and subscribers to meet such need since it provides high data rates and scalable bandwidth. Radio Resource Management (RRM) is essential for LTE to provide better communication quality and meet the application QoS requirements. Cognitive resource management is a promising solution for LTE RRM as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE network parameters to the environment conditions. The scheme optimizes resource blocks assignment, modulation selection and bandwidth selection to maximize throughput and minimize interference. The scheme uses constrained optimization for throughput maximization and interference control. It is also enhanced by learning mechanism to reduce the optimization complexity and improve the decision-making quality. Our evaluation results show that our scheme achieved significant improvements in throughput and LTE system capacity. Results also show the improvement in the user satisfaction over other techniques in LTE RRM.

  4. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual

  5. Spectrum Band Selection in Delay-QoS Constrained Cognitive Radio Networks

    KAUST Repository

    Yang, Yuli

    2014-01-01

    In this paper, a cognitive radio (CR) network with multiple spectrum bands available for secondary users (SUs) is considered. For the SU\\'s active spectrum-band selection, two criteria are developed. One is to select the band with the highest secondary channel power gain, and the other is to select the band with the lowest interference channel power gain to primary users (PUs). With the quality-of-service (QoS) requirement concerning delay, the effective capacity (EC) behaviors over secondary links are investigated for both criteria under two spectrum-sharing constraints. To begin by presenting full benefits in these criteria, the constraint imposed on the secondary transmitter (ST) is the average interference limitation to PUs only. Furthermore, taking into account the ST\\'s battery/energy budget, the ST is imposed by joint constraints on its average interference to PUs, as well as on its own average transmit power. For either constraint, we formulate the ST\\'s optimal transmit power allocation to maximize the SU\\'s EC with both band-selection criteria and, correspondingly, obtain the secondary\\'s power allocation and maximum EC in closed forms. Numerical results demonstrated subsequently substantiate the validity of our derivations and provide a powerful tool for the spectrum-band selection in CR networks with multiple bands available. © 1967-2012 IEEE.

  6. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized through- put maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  7. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized throughput maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  8. Multi-Destination Cognitive Radio Relay Network with SWIPT and Multiple Primary Receivers

    KAUST Repository

    Al-Habob, Ahmed A.

    2017-05-12

    In this paper, we study the performance of simultaneous wireless information and power transfer (SWIPT) technique in a multi-destination dual-hop underlay cognitive relay network with multiple primary receivers. Information transmission from the secondary source to destinations is performed entirely via a decode- and-forward (DF) relay. The relay is assumed to have no embedded power source and to harvest energy from the source signal using a power splitting (PS) protocol and employing opportunistic scheduling to forward the information to the selected destination. We derive analytical expressions for the outage probability assuming Rayleigh fading channels and considering the energy harvesting efficiency at relay, the source maximum transmit power and primary receivers interference constraints. The system performance is also studied at high signal-to-noise ratio (SNR) values where approximate expressions for the outage probability are provided and analyzed in terms of diversity order and coding gain. Monte-Carlo simulations and some numerical examples are provided to validate the derived expressions and to illustrate the effect of various system parameters on the system performance. In contrast to their conventional counterparts where a multi- destination diversity is usually achieved, the results show that the multi-destination cognitive radio relay networks with the SWIPT technique achieve a constant diversity order of one.

  9. TESTBED IMPLEMENTATION OF MULTI DIMENSIONAL SPECTRUM SENSING SCHEMES FOR COGNITIVE RADIO

    Directory of Open Access Journals (Sweden)

    Deepa N Reddy

    2016-06-01

    Full Text Available Cognitive Radio (CR is a promising technology to exploit the underutilized spectrum. Spectrum sensing is one of the most important components for the establishment of cognitive radio system. Spectrum sensing allows the secondary users (SUs to detect the presence of the primary users (PUs. The aim of this work is to create a CR environment to study the spectrum sensing methods using Universal software radio Peripheral (USRP boards. In this paper a novel method of estimation of spectrum opportunities in multiple dimensions especially the space and the angle dimensions are carried out on USRP boards. This paper typically provides the experimental results carried out in an indoor wireless environment. To enhance the sensing performance the space dimension is firstly studied using spatial diversity of the cooperative SUs. Secondly the receiver diversity is analyzed using multiple antennas to enhance the error performance of the wireless system. The spectrum usage is also determined in the angle dimension by investigating the direction of the dominant signals using MUSIC algorithm.

  10. Secondary link adaptation in cognitive radio networks: End-to-end performance with cross-layer design

    KAUST Repository

    Ma, Hao

    2012-04-01

    Under spectrum-sharing constraints, we consider the secondary link exploiting cross-layer combining of adaptive modulation and coding (AMC) at the physical layer with truncated automatic repeat request (T-ARQ) at the data link layer in cognitive radio networks. Both, basic AMC and aggressive AMC, are adopted to optimize the overall average spectral efficiency, subject to the interference constraints imposed by the primary user of the shared spectrum band and a target packet loss rate. We achieve the optimal boundary points in closed form to choose the AMC transmission modes by taking into account the channel state information from the secondary transmitter to both the primary receiver and the secondary receiver. Moreover, numerical results substantiate that, without any cost in the transmitter/receiver design nor the end-to-end delay, the scheme with aggressive AMC outperforms that with conventional AMC. The main reason is that, with aggressive AMC, different transmission modes utilized in the initial packet transmission and the following retransmissions match the time-varying channel conditions better than the basic pattern. © 2012 IEEE.

  11. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  12. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir

    2012-09-08

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  13. Transmit Antenna Selection for Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad; Yang, Hong Chuan; Alouini, Mohamed-Slim

    2016-01-01

    Cognitive radio (CR) technology addresses the problem of spectrum under-utilization. In underlay CR mode, the secondary users are allowed to communicate provided that their transmission is not detrimental to primary user communication. Transmit

  14. Decode and Zero-Forcing Forward Relaying with Relay Selection in Cognitive Radio Systems

    KAUST Repository

    Park, Kihong

    2014-05-01

    In this paper, we investigate a cognitive radio (CR) relay network with multiple relay nodes that help forwarding the signal of CR users. Best relay selection is considered to take advantage of its low complexity of implementation. When the primary user (PU) is located close to the relay nodes, the performance of the secondary network is severely degraded due to the interference power constraint during the transmission in the second hop. We propose a decode and zero-forcing forward scheme to suppress the interference power at the relay nodes and analyze the statistics of the end-to-end signal-to-noise ratio when the relay nodes are located arbitrarily and experience therefore non-identical Rayleigh fading channels. Numerical results validate our theoretical results and show that our proposed scheme improves the performance of the CR network when the PU is close to the relay nodes. © 2014 IEEE.

  15. Intelligent Spectrum Handoff via Docitive Learning in Cognitive Radio Networks (CRNs)

    Science.gov (United States)

    2017-03-01

    Release; Distribution Unlimited. 22 error style to seek proper MDP settings, it may find a neighboring SU with similar traffic QoS demands, and...for CRN testbed implementation (Figure 20). USRP products are a family of computer-hosted hardware units offered by Ettus Research LLC and its parent ...Networking Technologies for Software-Defined Radio and White Space, 2010. Boston, MA, USA, 2010, pp. 1-6. [26] T. R. Newman and T. Bose, “A cognitive radio

  16. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  17. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-01-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  18. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  19. The Spectrum Sharing in Cognitive Radio Networks Based on Competitive Price Game

    Directory of Open Access Journals (Sweden)

    Y. B. Li

    2012-09-01

    Full Text Available The competitive price game model is used to analyze the spectrum sharing problem in the cognitive radio networks, and the spectrum sharing problem with the constraints of available spectrum resource from primary users is further discussed in this paper. The Rockafeller multiplier method is applied to deal with the constraints of available licensed spectrum resource, and the improved profits function is achieved, which can be used to measure the impact of shared spectrum price strategies on the system profit. However, in the competitive spectrum sharing problem of practical cognitive radio network, primary users have to determine price of the shared spectrum without the acknowledgement of the other primary user’s price strategies. Thus a fast gradient iterative calculation method of equilibrium price is proposed, only with acknowledgement of the price strategies of shared spectrum during last cycle. Through the adaptive iteration at the direction with largest gradient of improved profit function, the equilibrium price strategies can be achieved rapidly. It can also avoid the predefinition of adjustment factor according to the parameters of communication system in conventional linear iteration method. Simulation results show that the proposed competitive price spectrum sharing model can be applied in the cognitive radio networks with constraints of available licensed spectrum, and it has better convergence performance.

  20. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  1. Energy-Efficient Power Allocation for Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2015-09-01

    We present a power allocation framework for spectrum sharing Cognitive Radio (CR) systems based on maximizing the energy efficiency (EE). First, we show that the relation between the EE and the spectral efficiency (SE) is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and explicitly derive the optimal power for the proposed average EE under either a peak or an average power constraint. We apply our results to the underlay CR systems where the power is limited by an additional interference constraint. When the instantaneous channel is not available, we provide a necessary and sufficient condition for the optimal power and present a simple sub-optimal power. In the numerical results, we show that the proposed EE corresponds to a higher SE at mid-range and high power regime compared to the classical EE. We also show that the sup-optimal solution is very close to the optimal solution. In addition, we deduce that the absence of instantaneous CSI affects the EE and the SE at high power regime compared to full CSI. In the CR context, we show that the interference threshold has a minimal effect on the EE compared to the SE.

  2. Energy-Efficient Power Allocation for Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We present a power allocation framework for spectrum sharing Cognitive Radio (CR) systems based on maximizing the energy efficiency (EE). First, we show that the relation between the EE and the spectral efficiency (SE) is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and explicitly derive the optimal power for the proposed average EE under either a peak or an average power constraint. We apply our results to the underlay CR systems where the power is limited by an additional interference constraint. When the instantaneous channel is not available, we provide a necessary and sufficient condition for the optimal power and present a simple sub-optimal power. In the numerical results, we show that the proposed EE corresponds to a higher SE at mid-range and high power regime compared to the classical EE. We also show that the sup-optimal solution is very close to the optimal solution. In addition, we deduce that the absence of instantaneous CSI affects the EE and the SE at high power regime compared to full CSI. In the CR context, we show that the interference threshold has a minimal effect on the EE compared to the SE.

  3. Cognitive radio and networking for heterogeneous wireless networks recent advances and visions for the future

    CERN Document Server

    Cattoni, Andrea; Fiorina, Jocelyn; Bader, Faouzi; Nardis, Luca

    2015-01-01

    This book, written by leading experts from academia and industry, offers a condensed overview on hot topics among the Cognitive Radios and Networks scientific and industrial communities (including those considered within the framework of the European COST Action IC0902) and presents exciting visions for the future. Examples of the subjects considered include the design of new filter bank-based air interfaces for spectrum sharing, medium access control design protocols, the design of cloud-based radio access networks, an evolutionary vision for the development and deployment of cognitive TCP/IP, and regulations relevant to the development of a spectrum sharing market. The concluding chapter comprises a practical, hands-on tutorial for those interested in developing their own research test beds. By focusing on the most recent advances and future avenues, this book will assist researchers in understanding the current issues and solutions in Cognitive Radios and Networks designs.

  4. MF-CRA: Multi-Function Cognitive Radio Architecture for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EpiSys Science, Inc. and University of Arizona propose to develop, implement, and demonstrate Multi-Function Cognitive Radio Architecture (MF-CRA) for Space...

  5. Outage performance analysis of underlay cognitive RF and FSO wireless channels

    KAUST Repository

    Ansari, Imran Shafique

    2014-09-01

    In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channel cascaded with a free-space optical (FSO) link is presented. For the RF link, an underlay cognitive network is considered where the secondary users share the spectrum with licensed primary users. Indoor femtocells act as a practical example for such networks. More specifically, it is assumed that the RF link applies power control to maintain the interference at the primary network below a predetermined threshold. While the RF channel is modeled by the Rayleigh fading distribution, the FSO link is modeled by a unified Gamma-Gamma turbulence distribution. The FSO link accounts for pointing errors and both types of detection techniques (i.e. heterodyne detection as well as intensity modulation/direct detection (IM/DD)). With this model, a new exact closed-form expression is derived for the outage probability of the end-To-end signal-To-noise ratio of these systems in terms of the Meijer\\'s G function and the Fox\\'s H functions under fixed amplify-and-forward relay scheme. All new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.

  6. On the capacity of cognitive radio under limited channel state information

    KAUST Repository

    Rezki, Zouheir

    2010-09-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics of the secondary transmitter-primary receiver link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show that the interference constraint is harmful at high-power regime, whereas at lowpower regime, it has a marginal impact and no-interference performance may be achieved. © 2010 IEEE.

  7. Experimental Investigation of Subject-Specific On-Body Radio Propagation Channels for Body-Centric Wireless Communications

    Directory of Open Access Journals (Sweden)

    Mohammad Monirujjaman Khan

    2014-01-01

    Full Text Available In this paper, subject-specific narrowband (2.45 GHz and ultra-wideband (3–10.6 GHz on-body radio propagation studies in wireless body area networks (WBANs were performed by characterizing the path loss for eight different human subjects of different shapes and sizes. The body shapes and sizes of the test subjects used in this study are characterised as thin, medium build, fatty, shorter, average height and taller. Experimental investigation was made in an indoor environment using a pair of printed monopoles (for the narrowband case and a pair of tapered slot antennas (for the ultra-wideband (UWB case. Results demonstrated that, due to the different sizes, heights and shapes of the test subjects, the path loss exponent value varies up to maximum of 0.85 for the narrowband on-body case, whereas a maximum variation of the path loss exponent value of 1.15 is noticed for the UWB case. In addition, the subject-specific behaviour of the on-body radio propagation channels was compared between narrowband and UWB systems, and it was deduced that the on-body radio channels are subject-specific for both narrowband and UWB system cases, when the same antennas (same characteristics are used. The effect of the human body shape and size variations on the eight different on-body radio channels is also studied for both the narrowband and UWB cases.

  8. Extended Delivery Time Analysis for Secondary Packet Transmission With Adaptive Modulation Under Interweave Cognitive Implementation

    KAUST Repository

    Wang, Wen-Jing; Usman, Muneer; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2017-01-01

    Cognitive radio communication can opportunistically access underutilized spectrum for emerging wireless applications. With interweave cognitive implementation, a secondary user (SU) transmits only if primary user does not occupy the channel

  9. Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Niu Zhisheng

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  10. On Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels

    KAUST Repository

    Lei, Hongjiang; Zhang, Huan; Ansari, Imran Shafique; Ren, Zhi; Pan, Gaofeng; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed (i.n.i.d) Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information (CSI) of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.

  11. On Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels

    KAUST Repository

    Lei, Hongjiang

    2017-10-02

    In this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed (i.n.i.d) Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information (CSI) of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.

  12. Decision making by superimposing information from parallel cognitive channels

    Science.gov (United States)

    Aityan, Sergey K.

    1993-08-01

    A theory of decision making with perception through parallel information channels is presented. Decision making is considered a parallel competitive process. Every channel can provide confirmation or rejection of a decision concept. Different channels provide different impact on the specific concepts caused by the goals and individual cognitive features. All concepts are divided into semantic clusters due to the goals and the system defaults. The clusters can be alternative or complimentary. The 'winner-take-all' concept nodes firing takes place within the alternative cluster. Concepts can be independently activated in the complimentary cluster. A cognitive channel affects a decision concept by sending an activating or inhibitory signal. The complimentary clusters serve for building up complex concepts by superimposing activation received from various channels. The decision making is provided by the alternative clusters. Every active concept in the alternative cluster tends to suppress the competitive concepts in the cluster by sending inhibitory signals to the other nodes of the cluster. The model accounts for a time delay in signal transmission between the nodes and explains decreasing of the reaction time if information is confirmed by different channels and increasing of the reaction time if deceiving information received from the channels.

  13. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  14. Modeling and analysis of voice and data in cognitive radio networks

    CERN Document Server

    Gunawardena, Subodha

    2014-01-01

    This Springer Brief investigates the voice and elastic/interactive data service support over cognitive radio networks (CRNs), in terms of their delay requirements. The increased demand for wireless communication conflicts with the scarcity of the radio spectrum, but CRNS allow for more efficient use of the networks. The authors review packet level delay requirements of the voice service and session level delay requirements of the elastic/interactive data services, particularly constant-rate and on-o? voice tra?c capacities in CRNs with centralized and distributed network coordination. Some gen

  15. Energy efficiency and SINR maximization beamformers for cognitive radio utilizing sensing information

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    communication using adaptive beamforming schemes combined with the sensing information to achieve an optimal energy efficient system. The proposed schemes maximize the energy efficiency and SINR metrics subject to cognitive radio and quality of service

  16. On the throughput of cognitive radio MIMO systems assisted with UAV relays

    KAUST Repository

    Sboui, Lokman

    2017-07-20

    We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same UAV relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. We propose a special linear precoding scheme to enable the SU to exploit the PU free eigenmodes. We, also, present the expression of the power maximizing both primary and secondary rates under power budget, relay power, and interference constraints. In the numerical results, we evaluate the PU and SU rates of proposed scheme with respect to various problem parameters. We also highlight the effect of the UAV altitude on the SU and PU rates. Finally, we show that the relay matrix variation affects both rates that reach their peaks at different values of the matrix.

  17. Système multiprocesseur à base de réseau sur puce destiné au traitement de la radio logicielle et la radio cognitive

    OpenAIRE

    Taj , Muhammad Imran

    2011-01-01

    Software Defined Radio (SDR) and Cognitive Radio (CR) are entering mainstream. These high performance and high adaptability requiring devices with agile frequency operations hold promise to :1. address the inconsistency between hardware and software advancements, 2. real time mode switching from one radio configuration to another and3. efficient spectrum management in under-utilized spectrum bands. Framed within this statement, in this thesis we have implemented a SDR waveform on 16 Processin...

  18. Achievable Rate of Spectrum Sharing Cognitive Radio Multiple-Antenna Channels

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    to communicate with a common receiver. The proposed scheme exploits, at the same time, the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. At the common receiver, we adopt a Successive

  19. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  20. Securing Collaborative Spectrum Sensing against Untrustworthy Secondary Users in Cognitive Radio Networks

    Science.gov (United States)

    Wang, Wenkai; Li, Husheng; Sun, Yan(Lindsay); Han, Zhu

    2009-12-01

    Cognitive radio is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In cognitive radio networks, collaborative spectrum sensing is considered as an effective method to improve the performance of primary user detection. For current collaborative spectrum sensing schemes, secondary users are usually assumed to report their sensing information honestly. However, compromised nodes can send false sensing information to mislead the system. In this paper, we study the detection of untrustworthy secondary users in cognitive radio networks. We first analyze the case when there is only one compromised node in collaborative spectrum sensing schemes. Then we investigate the scenario that there are multiple compromised nodes. Defense schemes are proposed to detect malicious nodes according to their reporting histories. We calculate the suspicious level of all nodes based on their reports. The reports from nodes with high suspicious levels will be excluded in decision-making. Compared with existing defense methods, the proposed scheme can effectively differentiate malicious nodes and honest nodes. As a result, it can significantly improve the performance of collaborative sensing. For example, when there are 10 secondary users, with the primary user detection rate being equal to 0.99, one malicious user can make the false alarm rate [InlineEquation not available: see fulltext.] increase to 72%. The proposed scheme can reduce it to 5%. Two malicious users can make [InlineEquation not available: see fulltext.] increase to 85% and the proposed scheme reduces it to 8%.

  1. Energy efficiency and SINR maximization beamformers for cognitive radio utilizing sensing information

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-06-01

    In this paper we consider a cognitive radio multi-input multi-output environment in which we adapt our beamformer to maximize both energy efficiency and signal to interference plus noise ratio (SINR) metrics. Our design considers an underlaying communication using adaptive beamforming schemes combined with the sensing information to achieve an optimal energy efficient system. The proposed schemes maximize the energy efficiency and SINR metrics subject to cognitive radio and quality of service constraints. Since the optimization of energy efficiency problem is not a convex problem, we transform it into a standard semi-definite programming (SDP) form to guarantee a global optimal solution. Analytical solution is provided for one scheme, while the other scheme is left in a standard SDP form. Selected numerical results are used to quantify the impact of the sensing information on the proposed schemes compared to the benchmark ones.

  2. On Secure Underlay MIMO Cognitive Radio Networks with Energy Harvesting and Transmit Antenna Selection

    KAUST Repository

    Lei, Hongjiang

    2017-03-20

    In this paper, we consider an underlay multipleinput- multiple-output (MIMO) cognitive radio network (CRN) including a pair of primary nodes, a couple of secondary nodes, and an eavesdropper, where the secondary transmitter is powered by the renewable energy harvested from the primary transmitter in order to improve both energy efficiency and spectral efficiency. Based on whether the channel state information (CSI) of wiretap links are available or not, the secrecy outage performance of the optimal antenna selection (OAS) scheme and suboptimal antenna selection (SAS) scheme for underlay MIMO CRN with energy harvesting are investigated and compared with traditional space-time transmission scheme. The closed-form expressions for exact and asymptotic secrecy outage probability are derived. Monte-Carlo simulations are conducted to testify the accuracy of the analytical results. The analysis illustrates that OAS scheme outperforms SAS scheme. Furthermore, the asymptotic result shows that no matter which scheme is considered, the OAS and SAS schemes can achieve the same secrecy diversity order.

  3. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  4. On the throughput of cognitive radio MIMO systems assisted with UAV relays

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi

  5. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  6. The Analysis of Closed-form Solution for Energy Detector Dynamic Threshold Adaptation in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    R. Bozovic

    2017-12-01

    Full Text Available Spectrum sensing is the most important process in cognitive radio in order to ensure interference avoidance to primary users. For optimal performance of cognitive radio, it is substantial to monitor and promptly react to dynamic changes in its operating environment. In this paper, energy detector based spectrum sensing is considered. Under the assumption that detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal, as well as primary user signal power. A closed-form solution for optimal decision threshold in dynamic electromagnetic environment is proposed and analyzed.

  7. VLSI Technology for Cognitive Radio

    Science.gov (United States)

    VIJAYALAKSHMI, B.; SIDDAIAH, P.

    2017-08-01

    One of the most challenging tasks of cognitive radio is the efficiency in the spectrum sensing scheme to overcome the spectrum scarcity problem. The popular and widely used spectrum sensing technique is the energy detection scheme as it is very simple and doesn’t require any previous information related to the signal. We propose one such approach which is an optimised spectrum sensing scheme with reduced filter structure. The optimisation is done in terms of area and power performance of the spectrum. The simulations of the VLSI structure of the optimised flexible spectrum is done using verilog coding by using the XILINX ISE software. Our method produces performance with 13% reduction in area and 66% reduction in power consumption in comparison to the flexible spectrum sensing scheme. All the results are tabulated and comparisons are made. A new scheme for optimised and effective spectrum sensing opens up with our model.

  8. Stochastic geometry model for multi-channel fog radio access networks

    KAUST Repository

    Emara, Mostafa

    2017-06-29

    Cache-enabled base station (BS) densification, denoted as a fog radio access network (F-RAN), is foreseen as a key component of 5G cellular networks. F-RAN enables storing popular files at the network edge (i.e., BS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. The hitting probability, which is the probability of successfully transmitting popular files request from the network edge, is a fundamental key performance indicator (KPI) for F-RAN. This paper develops a scheduling aware mathematical framework, based on stochastic geometry, to characterize the hitting probability of F-RAN in a multi-channel environment. To this end, we assess and compare the performance of two caching distribution schemes, namely, uniform caching and Zipf caching. The numerical results show that the commonly used single channel environment leads to pessimistic assessment for the hitting probability of F-RAN. Furthermore, the numerical results manifest the superiority of the Zipf caching scheme and quantify the hitting probability gains in terms of the number of channels and cache size.

  9. Primary user localisation and uplink resource allocation in orthogonal frequency division multiple access cognitive radio systems

    KAUST Repository

    Nam, Haewoon; Saeed, Nasir; Ben Ghorbel, Mahdi; Alouini, Mohamed-Slim

    2015-01-01

    In cognitive radio networks, secondary users (SUs) can share spectrum with primary users (PUs) under the condition that no interference is caused to the PUs. To evaluate the interference imposed to the PUs, the cognitive systems discussed

  10. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  11. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2017-04-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  12. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  13. Robust Weighted Sum Harvested Energy Maximization for SWIPT Cognitive Radio Networks Based on Particle Swarm Optimization.

    Science.gov (United States)

    Tuan, Pham Viet; Koo, Insoo

    2017-10-06

    In this paper, we consider multiuser simultaneous wireless information and power transfer (SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and the interference threshold of each PU. For the perfect channel state information (CSI), the optimal beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast convergence and better performance as compared to the other baseline schemes.

  14. Software architecture design for a dynamic spectrum allocation-enabled cognitive radio testbed

    DEFF Research Database (Denmark)

    Tonelli, Oscar; Berardinelli, Gilberto; Cattoni, Andrea Fabio

    2011-01-01

    The evolution of wireless communications is bringing into reality the dense deployment of femto and local area cells, which represents a challenging scenario for proving the effectiveness of Cognitive Radio (CR) frameworks. In particular the Dynamic Spectrum Allocation (DSA) paradigm aims at solv...

  15. Broadcast design in cognitive radio ad hoc networks

    CERN Document Server

    Song, Yi

    2014-01-01

    This SpringerBrief investigates the special challenges of broadcast design in cognitive radio (CR) ad hoc networks. It introduces two broadcast protocols in CR ad hoc networks: a quality-of-service based broadcast protocol under blind information and a fully-distributed broadcast protocol with collision avoidance. A novel unified analytical model is also presented to analyze the performance of the broadcast protocols. This is the first book dedicated to the unique broadcast design challenges in CR ad hoc networks. The authors also discuss the recent research on the performance analysis of broa

  16. Adaptation of the Electra Radio to Support Multiple Receive Channels

    Science.gov (United States)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  17. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.

    2015-02-13

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  18. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia

    2015-01-01

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  19. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman

    2011-09-01

    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  20. CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

    KAUST Repository

    Alqerm, Ismail

    2013-07-01

    With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating principle is based on building an integrated hardware and software architecture that configures the radio to meet application requirements within the constraints of spectrum policy regulations. However, such an architecture must be able to cope with radio environment heterogeneity. In this paper, we propose a cognitive resource management architecture, called CogWnet, that allocates channels, re-configures radio transmission parameters to meet QoS requirements, ensures reliability, and mitigates interference. The architecture consists of three main layers: Communication Layer, which includes generic interfaces to facilitate the communication between the cognitive architecture and TCP/IP stack layers; Decision-Making Layer, which classifies the stack layers input parameters and runs decision-making optimization algorithms to output optimal transmission parameters; and Policy Layer to enforce policy regulations on the selected part of the spectrum. The efficiency of CogWnet is demonstrated through a testbed implementation and evaluation.

  1. Security management based on trust determination in cognitive radio networks

    Science.gov (United States)

    Li, Jianwu; Feng, Zebing; Wei, Zhiqing; Feng, Zhiyong; Zhang, Ping

    2014-12-01

    Security has played a major role in cognitive radio networks. Numerous researches have mainly focused on attacking detection based on source localization and detection probability. However, few of them took the penalty of attackers into consideration and neglected how to implement effective punitive measures against attackers. To address this issue, this article proposes a novel penalty mechanism based on cognitive trust value. The main feature of this mechanism has been realized by six functions: authentication, interactive, configuration, trust value collection, storage and update, and punishment. Data fusion center (FC) and cluster heads (CHs) have been put forward as a hierarchical architecture to manage trust value of cognitive users. Misbehaving users would be punished by FC by declining their trust value; thus, guaranteeing network security via distinguishing attack users is of great necessity. Simulation results verify the rationality and effectiveness of our proposed mechanism.

  2. Overlay Cognitive Radios With Channel-Aware Adaptive Link Selection and Buffer-Aided Relaying

    KAUST Repository

    Shaqfeh, Mohammad

    2015-08-01

    The aim of this work is to maximize the long-term average achievable rate region of a primary and a secondary source-destination pairs operating in an overlay setup over block-fading channels. To achieve this objective, we propose an opportunistic strategy to grant channel access to the primary and secondary sources based on the channel conditions in order to exploit the available multiple-link diversity gains in the system. The secondary source has causal knowledge of the primary messages and it acts as a relay of the primary source in return for getting access to the channel. To maximize the gains of relaying, the relay and destination are equipped with buffers to enable the use of channel-aware adaptive link selection. We propose and optimize different link selection policies and characterize their expected achievable rates. Also, we provide several numerical results to demonstrate the evident mutual benefits of buffer-aided cooperation and adaptive link selection to the primary and the secondary source-destination pairs. © 1972-2012 IEEE.

  3. Overlay Cognitive Radios With Channel-Aware Adaptive Link Selection and Buffer-Aided Relaying

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2015-01-01

    The aim of this work is to maximize the long-term average achievable rate region of a primary and a secondary source-destination pairs operating in an overlay setup over block-fading channels. To achieve this objective, we propose an opportunistic strategy to grant channel access to the primary and secondary sources based on the channel conditions in order to exploit the available multiple-link diversity gains in the system. The secondary source has causal knowledge of the primary messages and it acts as a relay of the primary source in return for getting access to the channel. To maximize the gains of relaying, the relay and destination are equipped with buffers to enable the use of channel-aware adaptive link selection. We propose and optimize different link selection policies and characterize their expected achievable rates. Also, we provide several numerical results to demonstrate the evident mutual benefits of buffer-aided cooperation and adaptive link selection to the primary and the secondary source-destination pairs. © 1972-2012 IEEE.

  4. Secure Cooperative Spectrum Sensing via a Novel User-Classification Scheme in Cognitive Radios for Future Communication Technologies

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2015-05-01

    Full Text Available Future communication networks would be required to deliver data on a far greater scale than is known to us today, thus mandating the maximal utilization of the available radio spectrum using cognitive radios. In this paper, we have proposed a novel cooperative spectrum sensing approach for cognitive radios. In cooperative spectrum sensing, the fusion center relies on reports of the cognitive users to make a global decision. The global decision is obtained by assigning weights to the reports received from cognitive users. Computation of such weights requires prior information of the probability of detection and the probability of false alarms, which are not readily available in real scenarios. Further, the cognitive users are divided into reliable and unreliable categories based on their weighted energy by using some empirical threshold. In this paper, we propose a method to classify the cognitive users into reliable, neutral and unreliable categories without using any pre-defined or empirically-obtained threshold. Moreover, the computation of weights does not require the detection, or false alarm probabilities, or an estimate of these probabilities. Reliable cognitive users are assigned the highest weights; neutral cognitive users are assigned medium weights (less than the reliable and higher than the unreliable cognitive users’ weights; and unreliable users are assigned the least weights. We show the performance improvement of our proposed method through simulations by comparing it with the conventional cooperative spectrum sensing scheme through different metrics, like receiver operating characteristic (ROC curve and mean square error. For clarity, we also show the effect of malicious users on detection probability and false alarm probability individually through simulations.

  5. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shelly Salim

    2016-06-01

    Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  6. EFFICIENT SPECTRUM UTILIZATION IN COGNITIVE RADIO THROUGH REINFORCEMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2013-09-01

    Full Text Available Machine learning schemes can be employed in cognitive radio systems to intelligently locate the spectrum holes with some knowledge about the operating environment. In this paper, we formulate a variation of Actor Critic Learning algorithm known as Continuous Actor Critic Learning Automaton (CACLA and compare this scheme with Actor Critic Learning scheme and existing Q–learning scheme. Simulation results show that our CACLA scheme has lesser execution time and achieves higher throughput compared to other two schemes.

  7. Radio resource allocation over fading channels under statistical delay constraints

    CERN Document Server

    Le-Ngoc, Tho

    2017-01-01

    This SpringerBrief presents radio resource allocation schemes for buffer-aided communications systems over fading channels under statistical delay constraints in terms of upper-bounded average delay or delay-outage probability. This Brief starts by considering a source-destination communications link with data arriving at the source transmission buffer. The first scenario, the joint optimal data admission control and power allocation problem for throughput maximization is considered, where the source is assumed to have a maximum power and an average delay constraints. The second scenario, optimal power allocation problems for energy harvesting (EH) communications systems under average delay or delay-outage constraints are explored, where the EH source harvests random amounts of energy from renewable energy sources, and stores the harvested energy in a battery during data transmission. Online resource allocation algorithms are developed when the statistical knowledge of the random channel fading, data arrivals...

  8. On achieving network throughput demand in cognitive radio-based home area networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.; Abdullah, M.S.; Janssen, G.J.M.; Van der Veen, A.J.

    2015-01-01

    The growing number of wireless devices for in-house use is causing a more intense use of the spectrum to satisfy the required quality-of-service such as throughput. This has contributed to spectrum scarcity and interference problems particularly in home area networks (HAN). Cognitive radio (CR) has

  9. Decode and Zero-Forcing Forward Relaying with Relay Selection in Cognitive Radio Systems

    KAUST Repository

    Park, Kihong; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we investigate a cognitive radio (CR) relay network with multiple relay nodes that help forwarding the signal of CR users. Best relay selection is considered to take advantage of its low complexity of implementation. When the primary

  10. A Subcarrier-Pair Based Resource Allocation Scheme Using Proportional Fairness for Cooperative OFDM-Based Cognitive Radio Networks

    Science.gov (United States)

    Ma, Yongtao; Zhou, Liuji; Liu, Kaihua

    2013-01-01

    The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586

  11. Cognitive radio based sensor network in smart grid: Architectures, applications and communication technologies

    CSIR Research Space (South Africa)

    Ogbodo, EU

    2017-09-01

    Full Text Available The cognitive radio-based sensor network (CRSN) is envisioned as a strong driver in the development of modern power system smart grids (SGs). This can address the spectrum limitation in the sensor nodes due to interference cause by other wireless...

  12. A relative rate utility based distributed power allocation algorithm for Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Øien, G.E.; Lundheim, L.

    2012-01-01

    In an underlay Cognitive Radio Network, multiple secondary users coexist geographically and spectrally with multiple primary users under a constraint on the maximum received interference power at the primary receivers. Given such a setting, one may ask "how to achieve maximum utility benefit...

  13. On Secure Underlay MIMO Cognitive Radio Networks with Energy Harvesting and Transmit Antenna Selection

    KAUST Repository

    Lei, Hongjiang; Xu, Ming; Ansari, Imran Shafique; Pan, Gaofeng; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we consider an underlay multipleinput- multiple-output (MIMO) cognitive radio network (CRN) including a pair of primary nodes, a couple of secondary nodes, and an eavesdropper, where the secondary transmitter is powered

  14. A Thresholding-Based Antenna Switching in SWIPT-Enabled MIMO Cognitive Radio Networks with Co-Channel Interference

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider the simultaneous wireless power and information transfer (SWIPT) for spectrum sharing (SS) in cognitive radio (CR) networks with a multiple antenna SWIPT-Enabled secondary receiver (SR). The SR harvests the energy from the signals sent from the secondary transmitter (ST) and the interfering signals sent from the primary transmitter (PT). Moreover, the ST uses the antenna switching (AS) technique which selects a subset of the antennas to decode the information and the rest to harvest the energy. The antenna selection is performed via a thresholding strategy inspired from the maximum ratio combining (MRC) technique with an output threshold (OT-MRC). The thresholding-based antenna selection strategy is proposed in two ways: one is prioritizing the information data and the other is prioritizing the harvested energy. For the two proposed selection schemes, we study the probability mass function of the selected antennas, the average harvested energy, and the data transmission outage probability. Through the analytic expressions and the simulation results, we show that there is a tradeoff between the outage probability and the harvested energy for both schemes. We see also that the preference of one scheme on the other is also affected by this energy-data trade off.

  15. A Thresholding-Based Antenna Switching in SWIPT-Enabled MIMO Cognitive Radio Networks with Co-Channel Interference

    KAUST Repository

    Benkhelifa, Fatma

    2016-10-23

    In this paper, we consider the simultaneous wireless power and information transfer (SWIPT) for spectrum sharing (SS) in cognitive radio (CR) networks with a multiple antenna SWIPT-Enabled secondary receiver (SR). The SR harvests the energy from the signals sent from the secondary transmitter (ST) and the interfering signals sent from the primary transmitter (PT). Moreover, the ST uses the antenna switching (AS) technique which selects a subset of the antennas to decode the information and the rest to harvest the energy. The antenna selection is performed via a thresholding strategy inspired from the maximum ratio combining (MRC) technique with an output threshold (OT-MRC). The thresholding-based antenna selection strategy is proposed in two ways: one is prioritizing the information data and the other is prioritizing the harvested energy. For the two proposed selection schemes, we study the probability mass function of the selected antennas, the average harvested energy, and the data transmission outage probability. Through the analytic expressions and the simulation results, we show that there is a tradeoff between the outage probability and the harvested energy for both schemes. We see also that the preference of one scheme on the other is also affected by this energy-data trade off.

  16. A genetic algorithm for multiple relay selection in two-way relaying cognitive radio networks

    KAUST Repository

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we investigate a multiple relay selection scheme for two-way relaying cognitive radio networks where primary users and secondary users operate on the same frequency band. More specifically, cooperative relays using Amplifyand- Forward

  17. The white space opportunity in Southern Africa: measurements with Meraka cognitive radio platform

    CSIR Research Space (South Africa)

    Masonta, MT

    2011-11-01

    Full Text Available space is available and how can it be used opportunistically and dynamically without causing harmful interference to licensed users? In this paper, we present work that is currently ongoing in our research lab with regard to the use of cognitive radio...

  18. Concurrent communication and sensing in cognitive radio devices: challenges and an enabling solution

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Tatomirescu, Alexandru

    2014-01-01

    Cognitive Radios (CRs) need to continuously monitor the availability of unoccupied spectrum. Prior work on spectrum sensing mainly focused on time-slotted schemes where sensing and communication take place on different time periods in the same frequency. This however leads to a) limited CR...

  19. Cognitive Spectrum Efficient Multiple Access Technique using Relay Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to increase the coverage of cellular systems by relay channels, relay stations and collaborate...

  20. Performance Analysis of Secondary Link with Cross-Layer Design and Cooperative Relay in Cognitive Radio Networks

    KAUST Repository

    Ma, Hao

    2012-06-01

    In this thesis, we investigate two different system infrastructures in underlay cognitive radio network, in which two popular techniques, cross-layer design and cooperative communication, are considered, respectively. In particular, we introduce the Aggressive Adaptive Modulation and Coding (A-AMC) into the cross-layer design and achieve the optimal boundary points in closed form to choose the AMC and A-AMC transmission modes by taking into account the Channel State Information (CSI) from the secondary transmitter to both the primary receiver and the secondary receiver. What’s more, for the cooperative communication design, we consider three different relay selection schemes: Partial Relay Selection, Opportunistic Relay Selection and Threshold Relay Selection. The Probability Density Functions (PDFs) of the Signal-to- Noise Ratio (SNR) in each hop for different selection schemes are provided, and then the exact closed-form expressions for the end-to-end packet loss rate in the secondary link considering the cooperation of the Decode-and-Forward (DF) relay for different relay selection schemes are derived.

  1. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  2. Cognitive radio policy and regulation techno-economic studies to facilitate dynamic spectrum access

    CERN Document Server

    Holland, Oliver

    2014-01-01

    This book offers a timely reflection on how the proliferation of advanced wireless communications technologies, particularly cognitive radio (CR) can be enabled by thoroughly-considered policy and appropriate regulation. It looks at the prospects of CR from the divergent standpoints of technological development and economic market reality. The book provides a broad survey of various techno-economic and policy aspects of CR development, and provides the reader with an understanding of the complexities involved as well as a toolbox of possible solutions to enable the evolutionary leap towards successful implementation of disruptive CR technology or indeed any other novel wireless technologies. Cognitive Radio Policy and Regulation showcases the original ideas and concepts introduced into the field of CR and dynamic spectrum access policy over nearly four years of work within COST Action IC0905 TERRA, a think-tank with participants from more than 20 countries. The book’s subject matter includes: • deploymen...

  3. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  4. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  5. Energy efficiency for cloud-radio access networks with imperfect channel state information

    KAUST Repository

    Al-Oquibi, Bayan

    2016-12-24

    The advent of smartphones and tablets over the past several years has resulted in a drastic increase of global carbon footprint, due to the explosive growth of data traffic. Improving energy efficiency (EE) becomes, therefore, a crucial design metric in next generation wireless systems (5G). Cloud radio access network (C-RAN), a promising 5G network architecture, provides an efficient framework for improving the EE performance, by means of coordinating the transmission across the network. This paper considers a C-RAN system formed by several clusters of remote radio heads (RRHs), each serving a predetermined set of mobile users (MUs), and assumes imperfect channel state information (CSI). The network performance becomes therefore a function of the intra-cluster and inter-cluster interference, as well as the channel estimation error. The paper optimizes the transmit power of each RRH in order to maximize the network global EE subject to MU service rate requirements and RRHs maximum power constraints. The paper proposes solving the optimization problem using a heuristic algorithm based on techniques from optimization theory via a two-stage iterative solution. Simulation results show that the proposed power allocation algorithm provides an appreciable performance improvement as compared to the conventional systems with maximum power transmission strategy. They further highlight the convergence of the proposed algorithm for different networks scenarios.

  6. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  7. Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    Science.gov (United States)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  8. Distributed Schemes for Crowdsourcing-Based Sensing Task Assignment in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-01-01

    Full Text Available Spectrum sensing is an important issue in cognitive radio networks. The unlicensed users can access the licensed wireless spectrum only when the licensed wireless spectrum is sensed to be idle. Since mobile terminals such as smartphones and tablets are popular among people, spectrum sensing can be assigned to these mobile intelligent terminals, which is called crowdsourcing method. Based on the crowdsourcing method, this paper studies the distributed scheme to assign spectrum sensing task to mobile terminals such as smartphones and tablets. Considering the fact that mobile terminals’ positions may influence the sensing results, a precise sensing effect function is designed for the crowdsourcing-based sensing task assignment. We aim to maximize the sensing effect function and cast this optimization problem to address crowdsensing task assignment in cognitive radio networks. This problem is difficult to be solved because the complexity of this problem increases exponentially with the growth in mobile terminals. To assign crowdsensing task, we propose four distributed algorithms with different transition probabilities and use a Markov chain to analyze the approximation gap of our proposed schemes. Simulation results evaluate the average performance of our proposed algorithms and validate the algorithm’s convergence.

  9. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2015-02-01

    Cooperation among cognitive radio users improves the spectrum sensing performance by combining local decisions measured over independent sensing channels, allowing reduction of miss-detection and false alarm probabilities. While most of the works in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false-alarm probabilities are derived for a general scheme of imperfect reporting channels under non necessarily identical sensing and reporting channels. Numerical simulations show that imperfect reporting channels should be considered to optimize the cooperative sensing in terms of consumed energy and probability of error.

  10. Cross-layer combining of information-guided transmission withnetwork coding relaying for multiuser cognitive radio systems

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia

    2013-01-01

    For a cognitive radio relaying network, we propose a cross-layer design by combining information-guided transmission at the physical layer and network coding at the network layer. With this design, a common relay is exploited to help

  11. Market-driven spectrum sharing in cognitive radio

    CERN Document Server

    Yi, Changyan

    2016-01-01

    This brief focuses on the current research on mechanism design for dynamic spectrum sharing in cognitive radio (CR) networks. Along with a review of CR architectures and characteristics, this brief presents the motivations, significances and unique challenges of implementing algorithmic mechanism design for encouraging both primary spectrum owners and secondary spectrum users to participate in dynamic spectrum sharing. The brief then focuses on recent advances in mechanism design in CR networks. With an emphasis on dealing with the uncertain spectrum availabilities, mechanisms based on spectrum recall, two-stage spectrum sharing and online spectrum allocation are introduced with the support of theoretic analyses and numerical illustrations. The brief concludes with a discussion of potential research directions and interests, which will motivate further studies on mechanism design for wireless communications. This brief is concise and approachable for researchers, professionals and advanced-level students in w...

  12. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou

    2012-06-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing and is subject to long-term energy constraint. We formulate the interaction between primary user and large number of secondary users as an hierarchical mean field game. In contrast to the classical large-scale approaches based on stochastic geometry, percolation theory and large random matrices, the proposed mean field framework allows one to describe the evolution of the density distribution and the associated performance metrics using coupled partial differential equations. We provide explicit formulas and algorithmic power management for both primary and secondary users. A complete characterization of the optimal distribution of energy and probability of success is given.

  13. Cross-layer combining of adaptive modulation and truncated ARQ under cognitive radio resource requirements

    KAUST Repository

    Yang, Yuli; Ma, Hao; Aï ssa, Sonia

    2012-01-01

    In addressing the issue of taking full advantage of the shared spectrum under imposed limitations in a cognitive radio (CR) network, we exploit a cross-layer design for the communications of secondary users (SUs), which combines adaptive modulation and coding (AMC) at the physical layer with truncated automatic repeat request (ARQ) protocol at the data link layer. To achieve high spectral efficiency (SE) while maintaining a target packet loss probability (PLP), switching among different transmission modes is performed to match the time-varying propagation conditions pertaining to the secondary link. Herein, by minimizing the SU's packet error rate (PER) with each transmission mode subject to the spectrum-sharing constraints, we obtain the optimal power allocation at the secondary transmitter (ST) and then derive the probability density function (pdf) of the received SNR at the secondary receiver (SR). Based on these statistics, the SU's packet loss rate and average SE are obtained in closed form, considering transmissions over block-fading channels with different distributions. Our results quantify the relation between the performance of a secondary link exploiting the cross-layer-designed adaptive transmission and the interference inflicted on the primary user (PU) in CR networks. © 1967-2012 IEEE.

  14. Rank-Constrained Beamforming for MIMO Cognitive Interference Channel

    Directory of Open Access Journals (Sweden)

    Duoying Zhang

    2016-01-01

    Full Text Available This paper considers the spectrum sharing multiple-input multiple-output (MIMO cognitive interference channel, in which multiple primary users (PUs coexist with multiple secondary users (SUs. Interference alignment (IA approach is introduced that guarantees that secondary users access the licensed spectrum without causing harmful interference to the PUs. A rank-constrained beamforming design is proposed where the rank of the interferences and the desired signals is concerned. The standard interferences metric for the primary link, that is, interference temperature, is investigated and redesigned. The work provides a further improvement that optimizes the dimension of the interferences in the cognitive interference channel, instead of the power of the interference leakage. Due to the nonconvexity of the rank, the developed optimization problems are further approximated as convex form and are solved via choosing the transmitter precoder and receiver subspace iteratively. Numerical results show that the proposed designs can improve the achievable degree of freedom (DoF of the primary links and provide the considerable sum rate for both secondary and primary transmissions under the rank constraints.

  15. An Underlay Communication Channel for 5G Cognitive Mesh Networks: Packet Design, Implementation, Analysis, and Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid; Taylor Sibbett; Daryl Leon Wasden; Brandon F Lo; Lloyd Landon; David Couch; Hussein Moradi; Behrouz Farhang-Boroujeny

    2016-04-01

    This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellular and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.

  16. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment

    Directory of Open Access Journals (Sweden)

    Fausto Granda

    2017-06-01

    Full Text Available Vehicular ad hoc Networks (VANETs enable vehicles to communicate with each other as well as with roadside units (RSUs. Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V, not much work has been done for vehicle-to-infrastructure (V2I using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs radio-planning in the urban V2I deployment in terms of coverage.

  17. Game theoretic wireless resource allocation for H.264 MGS video transmission over cognitive radio networks

    Science.gov (United States)

    Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2015-03-01

    We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.

  18. A low complexity algorithm for multiple relay selection in two-way relaying Cognitive Radio networks

    KAUST Repository

    Alsharoa, Ahmad M.

    2013-06-01

    In this paper, a multiple relay selection scheme for two-way relaying cognitive radio network is investigated. We consider a cooperative Cognitive Radio (CR) system with spectrum sharing scenario using Amplify-and-Forward (AF) protocol, where licensed users and unlicensed users operate on the same frequency band. The main objective is to maximize the sum rate of the unlicensed users allowed to share the spectrum with the licensed users by respecting a tolerated interference threshold. A practical low complexity heuristic approach is proposed to solve our formulated optimization problem. Selected numerical results show that the proposed algorithm reaches a performance close to the performance of the optimal multiple relay selection scheme either with discrete or continuous power distributions while providing a considerable saving in terms of computational complexity. In addition, these results show that our proposed scheme significantly outperforms the single relay selection scheme. © 2013 IEEE.

  19. Achievable capacity of a spectrum sharing system over hyper fading channels

    KAUST Repository

    Ekin, Sabit

    2009-11-01

    Cognitive radio with spectrum sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, achievable capacity gain of spectrum sharing systems over dynamic fading environments is studied. For the analysis, a theoretical fading model called hyper fading model that is suitable to the dynamic nature of cognitive radio channel is proposed. Closed-form expression of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users in spectrum sharing systems are derived. In addition, the capacity gains achievable with spectrum sharing systems in high and low power regions are obtained. Numerical simulations are performed to study the effects of different fading figures, average powers, interference temperature, and number of secondary users on the achievable capacity.

  20. Spectrum Handoffs Based on Preemptive Repeat Priority Queue in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Xiaolong Yang

    2016-07-01

    Full Text Available Cognitive radio can significantly improve the spectrum efficiency, and spectrum handoff is considered as an important functionality to guarantee the quality of service (QoS of primary users (PUs and the continuity of data transmission of secondary users (SUs. In this paper, we propose an analytical framework based on a preemptive repeat identical (PRI M/G/1 queuing network model to characterize spectrum handoff behaviors with general service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections. Then, we derive the close-expression of the extended data delivery and the system sojourn time in both staying and changing scenarios. In addition, based on analysis of spectrum handoff behaviors resulting from multiple interruptions caused by the appearance of the primary connections, we investigate the traffic-adaptive policy, by which the considered SU will optimally adjust its handoff spectrum policy. Moreover, we investigate the admissible region and provide the reference for designing the admission control rule for the arriving secondary connection requests. Finally, simulation results verify that our proposed analytical framework is reasonable and can provide the reference for executing the optimal spectrum handoff strategy and designing the admission control rule for the SU in cognitive radio networks.

  1. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  2. Acute single channel EEG predictors of cognitive function after stroke.

    Directory of Open Access Journals (Sweden)

    Anna Aminov

    Full Text Available Early and accurate identification of factors that predict post-stroke cognitive outcome is important to set realistic targets for rehabilitation and to guide patients and their families accordingly. However, behavioral measures of cognition are difficult to obtain in the acute phase of recovery due to clinical factors (e.g. fatigue and functional barriers (e.g. language deficits. The aim of the current study was to test whether single channel wireless EEG data obtained acutely following stroke could predict longer-term cognitive function.Resting state Relative Power (RP of delta, theta, alpha, beta, delta/alpha ratio (DAR, and delta/theta ratio (DTR were obtained from a single electrode over FP1 in 24 participants within 72 hours of a first-ever stroke. The Montreal Cognitive Assessment (MoCA was administered at 90-days post-stroke. Correlation and regression analyses were completed to identify relationships between 90-day cognitive function and electrophysiological data, neurological status, and demographic characteristics at admission.Four acute qEEG indices demonstrated moderate to high correlations with 90-day MoCA scores: DTR (r = -0.57, p = 0.01, RP theta (r = 0.50, p = 0.01, RP delta (r = -0.47, p = 0.02, and DAR (r = -0.45, p = 0.03. Acute DTR (b = -0.36, p < 0.05 and stroke severity on admission (b = -0.63, p < 0.01 were the best linear combination of predictors of MoCA scores 90-days post-stroke, accounting for 75% of variance.Data generated by a single pre-frontal electrode support the prognostic value of acute DAR, and identify DTR as a potential marker of post-stroke cognitive outcome. Use of single channel recording in an acute clinical setting may provide an efficient and valid predictor of cognitive function after stroke.

  3. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  4. Cognitive Radio Cloud Networks: Assured Access In The Future Electromagnetic Operating Environment

    Science.gov (United States)

    2017-04-04

    Simon Haykin further refined the definition to include learning: “Cognitive radio is an intelligent wireless communication system that is aware of... Definition pulled from US Army informational portal http://www.army.mil/aps/06/maindocument/infopapers/J- 28.html. 2 Gallagher, How to blow $6 billion on...the internet divided by the population. 15 Kende, Global Internet Report, 44. 16 Google and Facebook have both publically stated an intent to bring

  5. Decentralized SINR Balancing in Cognitive Radio Networks

    KAUST Repository

    Dhifallah, Oussama Najeeb

    2016-07-07

    This paper considers the downlink of a cognitive radio (CR) network formed by multiple primary and secondary transmitters, where each multi-antenna transmitter serves a pre-known set of single-antenna users. The paper assumes that the secondary and primary transmitters can transmit simultaneously their data over the same frequency bands, so as to achieve a high system spectrum efficiency. The paper considers the downlink balancing problem of maximizing the minimum signal-to-interference-plus noise ratio (SINR) of the secondary transmitters subject to both total power constraint of the secondary transmitters, and maximum interference constraint at each primary user due to secondary transmissions. The paper proposes solving the problem using the alternating direction method of multipliers (ADMM), which leads to a distributed implementation through limited information exchange across the coupled secondary transmitters. The paper additionally proposes a solution that guarantees feasibility at each iteration. Simulation results demonstrate that the proposed solution converges to the centralized solution in a reasonable number of iterations.

  6. Application of a Channel Estimation Algorithm to Spectrum Sensing in a Cognitive Radio Context

    Directory of Open Access Journals (Sweden)

    Vincent Savaux

    2014-01-01

    Full Text Available This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM context, allowing an opportunistic user to detect a vacant spectrum resource in a licensed band. The proposed method is based on an iterative algorithm used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is performed by means of the minimum mean square error criterion. The main advantage of the proposed algorithm is its capability to perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is robust against a channel uncertainty.

  7. Learning Frameworks for Cooperative Spectrum Sensing and Energy-Efficient Data Protection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Vinh Quang Do

    2018-05-01

    Full Text Available This paper studies learning frameworks for energy-efficient data communications in an energy-harvesting cognitive radio network in which secondary users (SUs harvest energy from solar power while opportunistically accessing a licensed channel for data transmission. The SUs perform spectrum sensing individually, and send local decisions about the presence of the primary user (PU on the channel to a fusion center (FC. We first design a new cooperative spectrum-sensing technique based on a convolutional neural network in which the FC uses historical sensing data to train the network for classification problem. The system is assumed to operate in a time-slotted manner. At the beginning of each time slot, the FC uses the current local decisions as input for the trained network to decide whether the PU is active or not in that time slot. In addition, legitimate transmissions can be vulnerable to a hidden eavesdropper, which always passively listens to the communication. Therefore, we further propose a transfer learning actor–critic algorithm for an SU to decide its operation mode to increase the security level under the constraint of limited energy. In this approach, the SU directly interacts with the environment to learn its dynamics (i.e., an arrival of harvested energy; then, the SU can either stay idle to save energy or transmit to the FC secured data that are encrypted using a suitable private-key encryption method to maximize the long-term effective security level of the network. We finally present numerical simulation results under various configurations to evaluate our proposed schemes.

  8. Distributed optimization of a multisubchannel Ad Hoc cognitive radio network

    KAUST Repository

    Leith, Alex

    2012-05-01

    In this paper, we study the distributed-duality-based optimization of a multisubchannel ad hoc cognitive radio network (CRN) that coexists with a multicell primary radio network (PRN). For radio resource allocation in multiuser orthogonal frequency-division multiplexing (MU-OFDM) systems, the orthogonal-access-based exclusive subchannel assignment (ESA) technique has been a popular method, but it is suboptimal in ad hoc networks, because nonorthogonal access between multiple secondary-user links by using shared subchannel assignment (SSA) can bring a higher weighted sum rate. We utilize the Lagrangian dual composition tool and design low-complexity near-optimal SSA resource allocation methods, assuming practical discrete-rate modulation and that the CRN-to-PRN interference constraint has to strictly be satisfied. However, available SSA methods for CRNs are either suboptimal or involve high complexity and suffer from slow convergence. To address this problem, we design fast-convergence SSA duality schemes and introduce several novel methods to increase the speed of convergence and to satisfy various system constraints with low complexity. For practical implementation in ad hoc CRNs, we design distributed-duality schemes that involve only a small number of CRN local information exchanges for dual update. The effects of many system parameters are presented through simulation results, which show that the near-optimal SSA duality scheme can perform significantly better than the suboptimal ESA duality and SSA-iterative waterfilling schemes and that the performance loss of the distributed schemes is small, compared with their centralized counterparts. © 2012 IEEE.

  9. Cross-layer combining of adaptive modulation and truncated ARQ under cognitive radio resource requirements

    KAUST Repository

    Yang, Yuli

    2012-11-01

    In addressing the issue of taking full advantage of the shared spectrum under imposed limitations in a cognitive radio (CR) network, we exploit a cross-layer design for the communications of secondary users (SUs), which combines adaptive modulation and coding (AMC) at the physical layer with truncated automatic repeat request (ARQ) protocol at the data link layer. To achieve high spectral efficiency (SE) while maintaining a target packet loss probability (PLP), switching among different transmission modes is performed to match the time-varying propagation conditions pertaining to the secondary link. Herein, by minimizing the SU\\'s packet error rate (PER) with each transmission mode subject to the spectrum-sharing constraints, we obtain the optimal power allocation at the secondary transmitter (ST) and then derive the probability density function (pdf) of the received SNR at the secondary receiver (SR). Based on these statistics, the SU\\'s packet loss rate and average SE are obtained in closed form, considering transmissions over block-fading channels with different distributions. Our results quantify the relation between the performance of a secondary link exploiting the cross-layer-designed adaptive transmission and the interference inflicted on the primary user (PU) in CR networks. © 1967-2012 IEEE.

  10. Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access

    KAUST Repository

    Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.

    2012-01-01

    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.

  11. Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.

  12. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto; Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints

  13. Blind Recognition of Binary BCH Codes for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-01-01

    Full Text Available A novel algorithm of blind recognition of Bose-Chaudhuri-Hocquenghem (BCH codes is proposed to solve the problem of Adaptive Coding and Modulation (ACM in cognitive radio systems. The recognition algorithm is based on soft decision situations. The code length is firstly estimated by comparing the Log-Likelihood Ratios (LLRs of the syndromes, which are obtained according to the minimum binary parity check matrixes of different primitive polynomials. After that, by comparing the LLRs of different minimum polynomials, the code roots and generator polynomial are reconstructed. When comparing with some previous approaches, our algorithm yields better performance even on very low Signal-Noise-Ratios (SNRs with lower calculation complexity. Simulation results show the efficiency of the proposed algorithm.

  14. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.

    2014-12-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In our framework, we propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as an amplify-and-forward two-way relays, they are used to support PUs to achieve their target data rates over the remaining bandwidth. More specifically, CUs acts as relays for the PUs and gain some spectrum as long as they respect a specific power budget and primary quality-of-service constraints. In this context, we first derive closed-form expressions for optimal transmit power allocated to PUs and CUs in order to maximize the cognitive objective. Then, we employ a strong optimization tool based on particle swarm optimization algorithm to find the optimal relay amplification gains and optimal cognitive released bandwidths as well. Our numerical results illustrate the performance of our proposed algorithm for different utility metrics and analyze the impact of some system parameters on the achieved performance.

  15. The use of Twitter´s Bio in radio programmes. From the profile´s presentation to the transmedia radio

    Directory of Open Access Journals (Sweden)

    Teresa PIÑEIRO OTERO

    2014-06-01

    Full Text Available The jump of conventional radio programs into social media has evolved in new spaces and interaction forms between radio broadcasters and radio listeners. Particularly, twitter community acquires a new dimension due to its public (non privacy status and shareability. From a transmedia perspective, this microblogging platform makes possible to the radio programs offering rich content (access to the tweets of radio show hosts or / and main collaborators, radio channel’s info... to the radio listeners. Although radio listeners can access those profiles on their own, or following real-time references of the program, it’s getting bigger the way radio show hosts use their profiles on twitter to improve synergies between multiple digital channels in order to increase the community engagement. Present article aims to analyze profile twitter bios of the bigger audience Spanish radio programs, in order to determine flow synergies between channels of the radio (brands and radio show hosts on twitter

  16. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2018-01-01

    Cognitive radio attracts researchers' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system

  17. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma

    2017-12-04

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  18. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  19. SINR balancing in the downlink of cognitive radio networks with imperfect channel knowledge

    KAUST Repository

    Hanif, Muhammad Fainan; Smith, Peter J.; Alouini, Mohamed-Slim

    2010-01-01

    an acceptable threshold with uncertain channel state information available at the CR base-station (BS). We optimize the beamforming vectors at the CR BS so that the worst user SINR is maximized and transmit power constraints at the CR BS and interference

  20. Resource Allocation for OFDMA-Based Cognitive Radio Networks with Application to H.264 Scalable Video Transmission

    Directory of Open Access Journals (Sweden)

    Coon JustinP

    2011-01-01

    Full Text Available Resource allocation schemes for orthogonal frequency division multiple access- (OFDMA- based cognitive radio (CR networks that impose minimum and maximum rate constraints are considered. To demonstrate the practical application of such systems, we consider the transmission of scalable video sequences. An integer programming (IP formulation of the problem is presented, which provides the optimal solution when solved using common discrete programming methods. Due to the computational complexity involved in such an approach and its unsuitability for dynamic cognitive radio environments, we propose to use the method of lift-and-project to obtain a stronger formulation for the resource allocation problem such that the integrality gap between the integer program and its linear relaxation is reduced. A simple branching operation is then performed that eliminates any noninteger values at the output of the linear program solvers. Simulation results demonstrate that this simple technique results in solutions very close to the optimum.

  1. Is a Multi-Hop Relay Scheme Gainful in an IEEE 802.22-Based Cognitive Radio System?

    Science.gov (United States)

    Shin, Jungchae; Lee, Dong-Kyu; Cho, Ho-Shin

    In this paper, we formulate a plan to operate multi-hop relays in IEEE 802.22-based cognitive radio (CR) systems and evaluate system performance to consider the propriety of a multi-hop relay scheme in CR systems. A centralized radio resource management and a simple deployment of relay stations (RSs) are assessed to make relay operations feasible under CR conditions. Simulation results show that the proposed multi-hop relay scheme significantly increases system throughput compared to a no-relay CR system as the incumbent user (IU) traffic gets heavier. Furthermore, the optimal number of hops can be determined given the traffic conditions.

  2. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  3. Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva

    Directory of Open Access Journals (Sweden)

    César Hernández

    2015-07-01

    Full Text Available This paper proposed a hybrid algorithm for spectrum allocation in cognitive radio networks based on two algorithms, analytical hierarchical process (AHP and multi-criteria optimization and compromise solution (VIKOR, for improving the performance of mobility spectrum of secondary users in cognitive radio networks. To evaluate the level of performance of the proposed algorithm, a comparative analysis between the proposed AHP-VIKOR, Grey Relational Analysis (GRA and a random allocation of spectrum (Random algorithm, is performed. The first two algorithms work with the same decision criteria: probability of channel availability, estimated time availability, signal-to-interference-plus-noise ratio and bandwidth. Unlike related work, benchmarking was validated through a trace of real spectral occupation data, captured in the GSM frequency band, which models the actual behavior of licensed users. For performance evaluation five metric were used, handoff failed average cumulative number, handoff average cumulative number, average bandwidth, delay and throughput average cumulative. The results of the comparative analysis with the other two algorithms show that the AHP-VIKOR algorithm proposed provides the best performance in spectral mobility.

  4. Extended Delivery Time Analysis for Secondary Packet Transmission With Adaptive Modulation Under Interweave Cognitive Implementation

    KAUST Repository

    Wang, Wen-Jing

    2017-05-02

    Cognitive radio communication can opportunistically access underutilized spectrum for emerging wireless applications. With interweave cognitive implementation, a secondary user (SU) transmits only if primary user does not occupy the channel and waits for transmission otherwise. Therefore, secondary packet transmission involves both transmission periods and waiting periods. The resulting extended delivery time (EDT) is critical to the throughput analysis of secondary system. In this paper, we study the EDT of secondary packet transmission with adaptive modulation under interweave implementation to facilitate the delay analysis of such cognitive radio system. In particular, we propose an analytical framework to derive the probability density functions of EDT considering random-length SU transmission and waiting periods. We also present selected numerical results to illustrate the mathematical formulations and to verify our analytical approach.

  5. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  6. Outage performance of cognitive radio systems with Improper Gaussian signaling

    KAUST Repository

    Amin, Osama

    2015-06-14

    Improper Gaussian signaling has proved its ability to improve the achievable rate of the systems that suffer from interference compared with proper Gaussian signaling. In this paper, we first study impact of improper Gaussian signaling on the performance of the cognitive radio system by analyzing the outage probability of both the primary user (PU) and the secondary user (SU). We derive exact expression of the SU outage probability and upper and lower bounds for the PU outage probability. Then, we design the SU signal by adjusting its transmitted power and the circularity coefficient to minimize the SU outage probability while maintaining a certain PU quality-of-service. Finally, we evaluate the proposed bounds and adaptive algorithms by numerical results.

  7. Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing

    Science.gov (United States)

    Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu

    Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.

  8. Cross-layer combining of information-guided transmission withnetwork coding relaying for multiuser cognitive radio systems

    KAUST Repository

    Yang, Yuli

    2013-02-01

    For a cognitive radio relaying network, we propose a cross-layer design by combining information-guided transmission at the physical layer and network coding at the network layer. With this design, a common relay is exploited to help the communications between multiple secondary source-destination pairs, which allows for a more efficient use of the radio resources, and moreover, generates less interference to primary licensees in the network. Considering the spectrum-sharing constraints on the relay and secondary sources, the achievable data rate of the proposed cross-layer design is derived and evaluated. Numerical results on average capacity and uniform capacity in the network under study substantiate the efficiency of our proposed design. © 2013 IEEE.

  9. Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2007-01-01

    Full Text Available We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson at 2 difficulty levels (low/high demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.

  10. A blind matching algorithm for cognitive radio networks

    KAUST Repository

    Hamza, Doha R.

    2016-08-15

    We consider a cognitive radio network where secondary users (SUs) are allowed access time to the spectrum belonging to the primary users (PUs) provided that they relay primary messages. PUs and SUs negotiate over allocations of the secondary power that will be used to relay PU data. We formulate the problem as a generalized assignment market to find an epsilon pairwise stable matching. We propose a distributed blind matching algorithm (BLMA) to produce the pairwise-stable matching plus the associated power allocations. We stipulate a limited information exchange in the network so that agents only calculate their own utilities but no information is available about the utilities of any other users in the network. We establish convergence to epsilon pairwise stable matchings in finite time. Finally we show that our algorithm exhibits a limited degradation in PU utility when compared with the Pareto optimal results attained using perfect information assumptions. © 2016 IEEE.

  11. Multicarrier Spread Spectrum Modulation Schemes and Efficient FFT Algorithms for Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Mohandass Sundararajan

    2014-07-01

    Full Text Available Spread spectrum (SS and multicarrier modulation (MCM techniques are recognized as potential candidates for the design of underlay and interweave cognitive radio (CR systems, respectively. Direct Sequence Code Division Multiple Access (DS-CDMA is a spread spectrum technique generally used in underlay CR systems. Orthogonal Frequency Division Multiplexing (OFDM is the basic MCM technique, primarily used in interweave CR systems. There are other MCM schemes derived from OFDM technique, like Non-Contiguous OFDM, Spread OFDM, and OFDM-OQAM, which are more suitable for CR systems. Multicarrier Spread Spectrum Modulation (MCSSM schemes like MC-CDMA, MC-DS-CDMA and SS-MC-CDMA, combine DS-CDMA and OFDM techniques in order to improve the CR system performance and adaptability. This article gives a detailed survey of the various spread spectrum and multicarrier modulation schemes proposed in the literature. Fast Fourier Transform (FFT plays a vital role in all the multicarrier modulation techniques. The FFT part of the modem can be used for spectrum sensing. The performance of the FFT operator plays a crucial role in the overall performance of the system. Since the cognitive radio is an adaptive system, the FFT operator must also be adaptive for various input/output values, in order to save energy and time taken for execution. This article also includes the various efficient FFT algorithms proposed in the literature, which are suitable for CR systems.

  12. A Cognitive Radio based Solution to Coexistence of FH and OFDM Signals Implemented on USRP N210 Platform

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2017-06-01

    Full Text Available A new concept development and practical implementation of an OFDM based secondary cognitive link are presented in this paper. Coexistence of a secondary user employing Orthogonal Frequency Division Multiplexing (OFDM and a primary user employing Frequency Hopping (FH is achieved. Secondary and primary links are realized using Universal Software Radio Peripheral (USRP N210 platforms. Cognitive features of spectrum sensing and changing transmission parameters are implemented. Some experimental results are presented.

  13. Co-channel and Adjacent Channel Interference Measurement of UMTS and GSM/EDGE Systems in 900 MHz Radio Band

    Directory of Open Access Journals (Sweden)

    S. Hanus

    2008-09-01

    Full Text Available This paper is concerned with inter-system and intra-system interference measurements of 2.5G and 3G mobile communication systems. The both systems UMTS and GSM/EDGE are assumed to operate in a common radio band of 900 MHz. The main system parameters are briefly introduced as well as the measurement scenario. Several simulations and key measurements were performed. Important results are described and commented along with a graphical representation, namely bit error ratio (BER dependence on carrier to noise ratio (CNR in the presence of additive white Gaussian noise (AWGN, the measurement of adjacent channel interference ratio of each system, the coexistence of both systems in same band and the impact of a carrier offset on BER.

  14. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    A discussion of the hydrodynamics of jets formed by discrete portions of materials ejected from the parent galaxy through a channel, and reflected back to it as a result of an encounter with the material accumulated at the end of the channel, is the basis of the present descriptive hypothesis for a class of jets in extended radio sources. The model encompasses the view of extended radio sources as the multiple ejection of plasmoids through a channel, as well as the formation of retrojets through the interaction of a plasmon with the dense relic material at the end of a channel, and the collimation of plasmon material in channels. 14 references

  15. Performance Evaluation of Relay Selection Schemes in Beacon-Assisted Dual-Hop Cognitive Radio Wireless Sensor Networks under Impact of Hardware Noises.

    Science.gov (United States)

    Hieu, Tran Dinh; Duy, Tran Trung; Dung, Le The; Choi, Seong Gon

    2018-06-05

    To solve the problem of energy constraints and spectrum scarcity for cognitive radio wireless sensor networks (CR-WSNs), an underlay decode-and-forward relaying scheme is considered, where the energy constrained secondary source and relay nodes are capable of harvesting energy from a multi-antenna power beacon (PB) and using that harvested energy to forward the source information to the destination. Based on the time switching receiver architecture, three relaying protocols, namely, hybrid partial relay selection (H-PRS), conventional opportunistic relay selection (C-ORS), and best opportunistic relay selection (B-ORS) protocols are considered to enhance the end-to-end performance under the joint impact of maximal interference constraint and transceiver hardware impairments. For performance evaluation and comparison, we derive the exact and asymptotic closed-form expressions of outage probability (OP) and throughput (TP) to provide significant insights into the impact of our proposed protocols on the system performance over Rayleigh fading channel. Finally, simulation results validate the theoretical results.

  16. Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks

    Energy Technology Data Exchange (ETDEWEB)

    Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin; Luiz A. DaSilva; Allen B. MacKenzie

    2011-03-01

    In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate the effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.

  17. Heterogeneous Network Convergence with Artificial Mapping for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Hang QIN

    2013-04-01

    Full Text Available The artificial mapping scheme is proposed in this paper for adaptive network collaboration of cognitive radio networks. The superiority of the DHT-based overlay for its link state aggregation property, which establishes global convergence for link state aggregation message among a scalable number of nodes, is considered in the analysis. In addition, the fuzzy logic inference can better handle uncertainty, fuzziness, and incomplete information in node convergence report, which is developed as a novel approach to aggregate wireless node control with affordable message overload. The Artificial Mapping Tree (AMT for the new convergence scheme is verified by the simulation and experimental results. The moderately increased network throughput for convergence validation is demonstrated with the proactive spectrum coordination.

  18. Cross-layer combining of power control and adaptive modulation with truncated ARQ for cognitive radios

    Institute of Scientific and Technical Information of China (English)

    CHENG Shi-lun; YANG Zhen

    2008-01-01

    To maximize throughput and to satisfy users' requirements in cognitive radios, a cross-layer optimization problem combining adaptive modulation and power control at the physical layer and truncated automatic repeat request at the medium access control layer is proposed. Simulation results show the combination of power control, adaptive modulation, and truncated automatic repeat request can regulate transmitter powers and increase the total throughput effectively.

  19. Cognitive Aware Interference Mitigation Scheme for LTE Femtocells

    KAUST Repository

    Alqerm, Ismail

    2015-04-21

    Femto-cells deployment in today’s cellular networks came into practice to fulfill the increasing demand for data services. However, interference to other femto and macro-cells users remains an unresolved challenge. In this paper, we propose an interference mitigation scheme to control the cross-tier interference caused by femto-cells to the macro users and the co-tier interference among femtocells. Cognitive radio spectrum sensing capability is utilized to determine the non-occupied channels or the ones that cause minimal interference to the macro users. An awareness based channel allocation scheme is developed with the assistance of the graph-coloring algorithm to assign channels to the femto-cells base stations with power optimization, minimal interference, maximum throughput, and maximum spectrum efficiency. In addition, the scheme exploits negotiation capability to match traffic load and QoS with the channel capacity, and to maintain efficient utilization of the available channels.

  20. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  1. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  2. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Vincent Le Nir

    2009-01-01

    Full Text Available A cognitive radio system needs accurate knowledge of the radio spectrum it operates in. Blind modulation recognition techniques have been proposed to discriminate between single-carrier and multicarrier modulations and to estimate their parameters. Some powerful techniques use autocorrelation- and cyclic autocorrelation-based features of the transmitted signal applying to OFDM signals using a Cyclic Prefix time guard interval (CP-OFDM. In this paper, we propose a blind parameter estimation technique based on a power autocorrelation feature applying to OFDM signals using a Zero Padding time guard interval (ZP-OFDM which in particular excludes the use of the autocorrelation- and cyclic autocorrelation-based techniques. The proposed technique leads to an efficient estimation of the symbol duration and zero padding duration in frequency selective channels, and is insensitive to receiver phase and frequency offsets. Simulation results are given for WiMAX and WiMedia signals using realistic Stanford University Interim (SUI and Ultra-Wideband (UWB IEEE 802.15.4a channel models, respectively.

  3. Spectrum scanning and reserve channel methods for link maintenance in cognitive radio systems

    OpenAIRE

    Subramani, S; Armour, SMD; Kaleshi, D; Fan, Z

    2008-01-01

    Underutilization of the limited spectrum sparked the need for dynamic spectrum access and flexible spectrum policies. Accurate estimation of spectrum occupancy is an essential step for spectrum access in distributed networks. This paper analyzes a bidirectional and dual scanning method that scans multiple spectrum bands to find a suitable free-channel. Moreover, secondary users' access to available spectrum could be interrupted by the arrival of primary spectrum users, forcing the well-behave...

  4. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  5. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  6. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  7. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  8. Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    OpenAIRE

    Dharia, Sameera; Rabbitt, Richard D.

    2011-01-01

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential a...

  9. Simultaneous wireless information and power transfer for spectrum sharing in cognitive radio communication systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-07-26

    In this paper, we consider the simultaneous wireless information and power transfer for the spectrum sharing (SS) in cognitive radio (CR) systems with a multi-antenna energy harvesting (EH) primary receiver (PR). The PR uses the antenna switching (AS) technique that assigns a subset of the PR\\'s antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR\\'s antennas to decode the information data. In this context, the primary network allows the secondary network to use the spectrum as long as the interference induced by the secondary transmitter (ST)\\'s signals is beneficial for the energy harvesting process at the PR side. The objective of this work is to show that the spectrum sharing is beneficial for both the SR and PR sides and leads to a win-win situation. To illustrate the incentive of the spectrum sharing cognitive system, we evaluate the mutual outage probability (MOP) introduced in [1] which declares an outage event if the PR or the secondary receiver (SR) is in an outage. Through the simulation results, we show that the performance of our system in terms of the MOP is always better than the performance of the system in the absence of ST and improves as the ST-PR interference increases. © 2016 IEEE.

  10. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    KAUST Repository

    Alsharoa, Ahmad; Ghazzai, Hakim; Yaacoub, Elias; Alouini, Mohamed-Slim; Kamal, Ahmed

    2015-01-01

    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  11. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    KAUST Repository

    Alsharoa, Ahmad

    2015-10-08

    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  12. A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids

    Directory of Open Access Journals (Sweden)

    Saeed Ahmed

    2017-01-01

    Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.

  13. Cognitive Aware Interference Mitigation Scheme for OFDMA Femtocells

    KAUST Repository

    Alqerm, Ismail

    2015-04-09

    Femto-cells deployment in today’s cellular networks came into practice to fulfill the increasing demand for data services. It also extends the coverage in the indoor areas. However, interference to other femto and macro-cells users remains an unresolved challenge. In this paper, we propose an interference mitigation scheme to control the cross-tier interference caused by femto-cells to the macro users and the co-tier interference among femtocells. Cognitive radio spectrum sensing capability is utilized to determine the non-occupied channels or the ones that cause minimal interference to the macro users. An awareness based channel allocation scheme is developed with the assistance of the graph-coloring algorithm to assign channels to the femto-cells base stations with power optimization, minimal interference, maximum throughput, and maximum spectrum efficiency. In addition, the scheme exploits negotiation capability to match traffic load and QoS with the channel, and to maintain efficient utilization of the available channels.

  14. Radio Data System-Platform for traffic and travel information services

    Directory of Open Access Journals (Sweden)

    Claudiu Dan BARCA

    2017-03-01

    Full Text Available In the current National and European context where the public information is simultaneously spread on multiple channels and especially through mass-media channels, the text messaging services from public radio channels proved to be very useful and efficient for this purpose. Over the years, the use of a warning system like Radio Data System (RDS, at a global level shown, through text message or sound alarms is useful for the drivers to know the traffic, as well as for being aware of any emergency situations (fires, floods, earth-quakes. In this paper we present the characteristics of an RDS system with the Alert feature, as well as the study of radio covering of four from the Romanian National Radio News network's broadcasting points.

  15. Performance Evaluation of TDMA Medium Access Control Protocol in Cognitive Wireless Networks

    Directory of Open Access Journals (Sweden)

    Muhammed Enes Bayrakdar

    2017-02-01

    Full Text Available Cognitive radio paradigm has been revealed as a new communication technology that shares channels in wireless networks. Channel assignment is a crucial issue in the field of cognitive wireless networks because of the spectrum scarcity. In this work, we have evaluated the performance of TDMA medium access control protocol. In our simulation scenarios, primary users and secondary users utilize TDMA as a medium access control protocol. We have designed a network environment in Riverbed simulation software that consists of primary users, secondary users, and base stations. In our system model, secondary users sense the spectrum and inform the base station about empty channels. Then, the base station decides accordingly which secondary user may utilize the empty channel. Energy detection technique is employed as a spectrum sensing technique because it is the best when information about signal of primary user is acquired. Besides, different number of users is selected in simulation scenarios in order to obtain accurate delay and throughput results. Comparing analytical model with simulation results, we have shown that performance analysis of our system model is consistent and accurate.

  16. Genetic variation in Hyperpolarization-activated cyclic nucleotide-gated (HCN channels and its relationship with neuroticism, cognition and risk of depression

    Directory of Open Access Journals (Sweden)

    Andrew Mark Mcintosh

    2012-07-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are encoded by four genes (HCN1-4 and, through activation by cyclic AMP (cAMP, represent a point of convergence for several psychosis risk genes. On the basis of positive preliminary data, we sought to test whether genetic variation in HCN1-4 conferred risk of depression or cognitive impairment in the Generation Scotland: Scottish Family Health Study. HCN1, HCN2, HCN3 and HCN4 were genotyped for 43 haplotype-tagging SNPs and tested for association with DSM-IV depression, neuroticism and a battery of cognitive tests assessing cognitive ability, memory, verbal fluency and psychomotor performance. No association was found between any HCN channel gene SNP and risk of depression, neuroticism or on any cognitive measure. The current study does not support a genetic role for HCN channels in conferring risk of depression or cognitive impairment in human subjects within the Scottish population.

  17. Radio Channel Sounding Using a Circular Horn Antenna Array in the Horizontal Plane in the 2.3 GHz Band

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Sakata, Tsutomu; Ogawa, Koichi

    2012-01-01

    This paper presents results from an outdoor radio propagation experiment at 2.35 GHz using a channel sounder and a spherical horn antenna array. The propagation test was performed in Aalborg city in Denmark. Comparing the ray-tracing results and the results obtained with the proposed method...... on the measured data shows a good match in both the spatial and time domains....

  18. MMSE-based algorithm for joint signal detection, channel and noise variance estimation for OFDM systems

    CERN Document Server

    Savaux, Vincent

    2014-01-01

    This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is pr

  19. An Energy Efficient Cognitive Radio System with Quantized Soft Sensing and Duration Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2015-03-09

    In this paper, an energy efficient cognitive radio system is proposed. The proposed design optimizes the secondary user transmission power and the sensing duration combined with soft-sensing information to minimize the energy per goodbit. Due to the non-convex nature of the problem we prove its pseudo-convexity to guarantee the optimal solution. Furthermore, a quantization scheme, that discretize the softsensing information, is proposed and analyzed to reduce the overload of the continuously adapted power. Numerical results show that our proposed system outperforms the benchmark systems. The impact of the quantization levels and other system parameters is evaluated in the numerical results.

  20. Performance analysis of Cognitive Pilot Channel in wireless Heterogeneous networks

    OpenAIRE

    Hussein, Tahseen Ali

    2009-01-01

    This thesis aims to investigate and analyze the performance of the Cognitive Pilot Channel (CPC) in heterogeneous network. The thesis uses simulation to simulate the environment and the scenarios and by using this simulation, the analysis is done. First task this thesis carrying is the validation the simulation results with the numerical results. This is done by introducing a single cell scenario and validates the results out of this scenario with the numerical calculation. Ana...

  1. Estimation of Distribution Algorithm for Resource Allocation in Green Cooperative Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Alagan Anpalagan

    2013-04-01

    Full Text Available Due to the rapid increase in the usage and demand of wireless sensor networks (WSN, the limited frequency spectrum available for WSN applications will be extremely crowded in the near future. More sensor devices also mean more recharging/replacement of batteries, which will cause significant impact on the global carbon footprint. In this paper, we propose a relay-assisted cognitive radio sensor network (CRSN that allocates communication resources in an environmentally friendly manner. We use shared band amplify and forward relaying for cooperative communication in the proposed CRSN. We present a multi-objective optimization architecture for resource allocation in a green cooperative cognitive radio sensor network (GC-CRSN. The proposed multi-objective framework jointly performs relay assignment and power allocation in GC-CRSN, while optimizing two conflicting objectives. The first objective is to maximize the total throughput, and the second objective is to minimize the total transmission power of CRSN. The proposed relay assignment and power allocation problem is a non-convex mixed-integer non-linear optimization problem (NC-MINLP, which is generally non-deterministic polynomial-time (NP-hard. We introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic includes an estimation-of-distribution algorithm (EDA for performing power allocation and iterative greedy schemes for constraint satisfaction and relay assignment. We analyze the throughput and power consumption tradeoff in GC-CRSN. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results.

  2. Robust distributed cognitive relay beamforming

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2012-05-01

    In this paper, we present a distributed relay beamformer design for a cognitive radio network in which a cognitive (or secondary) transmit node communicates with a secondary receive node assisted by a set of cognitive non-regenerative relays. The secondary nodes share the spectrum with a licensed primary user (PU) node, and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. The proposed robust cognitive relay beamformer design seeks to minimize the total relay transmit power while ensuring that the transceiver signal-to-interference- plus-noise ratio and PU interference constraints are satisfied. The proposed design takes into account a parameter of the error in the channel state information (CSI) to render the performance of the beamformer robust in the presence of imperfect CSI. Though the original problem is non-convex, we show that the proposed design can be reformulated as a tractable convex optimization problem that can be solved efficiently. Numerical results are provided and illustrate the performance of the proposed designs for different network operating conditions and parameters. © 2012 IEEE.

  3. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios

    Science.gov (United States)

    2010-03-08

    ... petition could not through the exercise of due diligence have learned of the facts in question prior to... to a wide variety of radio services, including safety-of-life services--the Commission holds the...

  4. Software defined radios from smart(er) to cognitive

    CERN Document Server

    Pollin, Sofie; Van der Perre, Liesbet

    2011-01-01

    Software Defined Radios presents a systematic approach to dealing with the complexity of wireless systems with varying standards. The text aims to enable smart operation of radios with impressive efficiency gains, without hampering the quality of service.

  5. Spectrum Utilisation and Management in Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Patil, Kishor P.

    have confirmed this by showing that the considerable amount of radio spectrum is underutilized. Dynamic Spectrum Access (DSA) and the spectrum refarming are the two viable solutions for the problem of spectrum scarcity. In DSA, unlicensed user opportunistically uses the vacant licensed spectrum...... of licensed spectrum provides efficient use of spectrum. Spectrum refarming means the recovery of spectrum from its existing users for the purpose of re-assignment, either for new uses, or for the introduction of new spectrally efficient technologies. Spectrum refarming is a spectrum management tool that can......In recent years, the demand for radio spectrum for wireless communication is growing due to increase in number of users and popularity of data and multimedia services. This has been observed in the recent auctions completed word wide for the vestige of radio spectrum. The radio spectrum has been...

  6. Designing for cooperation at a Radio Station

    DEFF Research Database (Denmark)

    Kensing, F.; Simonsen, Jesper; Bødker, Keld

    1997-01-01

    We address computer support for work and its coordination in one of the radio channels of the Danish Broadcasting Corporation. Based upon ethnographically inspired analysis and participatory design techniques, we propose design solutions now implemented or under implementation. We focus on cooper......We address computer support for work and its coordination in one of the radio channels of the Danish Broadcasting Corporation. Based upon ethnographically inspired analysis and participatory design techniques, we propose design solutions now implemented or under implementation. We focus...

  7. Optimal Energy-Efficient Sensing and Power Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Xia Wu

    2014-01-01

    Full Text Available We consider a joint optimization of sensing parameter and power allocation for an energy-efficient cognitive radio network (CRN in which the primary user (PU is protected. The optimization problem to maximize the energy efficiency of CRN is formulated as a function of two variables, which are sensing time and transmit power, subject to the average interference power to the PU and the target detection probability. During the optimizing process, the quality of service parameter (the minimum rate acceptable to secondary users (SUs has also been taken into consideration. The optimal solutions are analyzed and an algorithm combined with fractional programming that maximizes the energy efficiency for CRN is presented. Numerical results show that the performance improvement is achieved by the joint optimization of sensing time and power allocation.

  8. Interference Neutralization vs Clean Relaying in Cognitive Radio Networks with Secrecy

    Directory of Open Access Journals (Sweden)

    Pin-Hsun Lin

    2015-08-01

    Full Text Available In this paper we study cognitive radio networks with secrecy constraints on the primary transmission. In particular we consider several transmission schemes for the secondary transmitter, namely interference neutralization (IN and cooperative jamming with and without clean relaying (CR. We derive and analyze the achievable secondary rate performance of the schemes. Furthermore we thoroughly investigate the advantages and shortcomings of these schemes through numerical simulations in a geometric model where we highlight the impact of the users’ locations and show the important difference in all schemes depending on the topology. Our results show that the secondary transmitter can successfully adapt its transmission scheme (and parameters, i.e., either IN or CR, depending on its location to maximize its rate while insuring perfect secrecy of the primary transmission.

  9. Transmit Antenna Selection for Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad

    2016-03-28

    Cognitive radio (CR) technology addresses the problem of spectrum under-utilization. In underlay CR mode, the secondary users are allowed to communicate provided that their transmission is not detrimental to primary user communication. Transmit antenna selection is one of the low-complexity methods to increase the capacity of wireless communication systems. In this article, we propose and analyze the performance benefit of a transmit antenna selection scheme for underlay secondary system that ensures the instantaneous interference caused by the secondary transmitter to the primary receiver is below a predetermined level. Closed-form expressions of the secondary link outage probability, higher order amount of fading, and ergodic capacity are derived for the proposed scheme. Monte-carlo simulations are also carried out to confirm various mathematical results presented in this article.

  10. A propagation-measurement-based evaluation of channel characteristics and models pertinent to the expansion of mobile radio systems to frequencies beyond 2 GHz

    NARCIS (Netherlands)

    Bultitude, R.J.C.; Schenk, T.C.W.; Op de Kamp, N.A.A.; Adnani, N.

    2007-01-01

    64This paper concerns the measurement-based comparison of urban microcellular mobile radio channel characteristics at 1.9 GHz and a higher frequency, i.e., 5.8 GHz, where future wireless systems could operate. Characteristics that are reported include transmission loss, root-mean-square delay

  11. Relay selection and resource allocation for two-way DF-AF cognitive radio networks

    KAUST Repository

    Alsharoa, Ahmad M.; Bader, Faouzi; Alouini, Mohamed-Slim

    2013-01-01

    In this letter, the problem of relay selection and optimal resource allocation for two-way relaying cognitive radio networks using half duplex amplify-and-forward and decode-and-forward protocols is investigated. The primary and secondary users are assumed to access the spectrum simultaneously, in a way that the interference introduced to the primary users should be below a certain tolerated limit. Dual decomposition and subgradient methods are used to find the optimal power allocation. A suboptimal approach based on a genetic algorithm is also presented. Simulation results show that the proposed suboptimal algorithm offers a performance close to the optimal performance with a considerable complexity saving. © 2013 IEEE.

  12. Relay selection and resource allocation for two-way DF-AF cognitive radio networks

    KAUST Repository

    Alsharoa, Ahmad M.

    2013-08-01

    In this letter, the problem of relay selection and optimal resource allocation for two-way relaying cognitive radio networks using half duplex amplify-and-forward and decode-and-forward protocols is investigated. The primary and secondary users are assumed to access the spectrum simultaneously, in a way that the interference introduced to the primary users should be below a certain tolerated limit. Dual decomposition and subgradient methods are used to find the optimal power allocation. A suboptimal approach based on a genetic algorithm is also presented. Simulation results show that the proposed suboptimal algorithm offers a performance close to the optimal performance with a considerable complexity saving. © 2013 IEEE.

  13. Dynamic spectrum management in green cognitive radio cellular networks

    KAUST Repository

    Sboui, Lokman

    2018-02-15

    In this paper, we propose a new cellular network operation scheme fulfilling the 5G requirements related to spectrum management and green communications. We focus on cognitive radio cellular networks in which both the primary network (PN) and the secondary network (SN) are maximizing their operational profits. The PN and the SN are required to respect a CO emissions threshold by switching off one or more lightly loaded base stations (BSs). In addition, the PN accepts to cooperate with the SN by leasing its spectrum in the cells where the PN is turned off. In return, the corresponding SN BSs host the PN users and impose extra roaming fees to the PN. We propose a low-complexity algorithm that maximizes the profit per CO emissions metric while switching on/off the BSs. In the simulations, we show that our proposed algorithm achieves performances close to the exhaustive search method. In addition, we find that the roaming price is a key parameter that affects both PN and SN profits.

  14. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user's transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  15. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user\\'s transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  16. Outage analysis for underlay relay-assisted cognitive networks

    KAUST Repository

    Tourki, Kamel; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2012-01-01

    Cooperative relay technology was recently introduced into cognitive radio networks in order to enhance network capacity, scalability, and reliability of end-to-end communication. In this paper, we investigate an underlay cognitive network where the quality of service of the secondary link is maintained by triggering an opportunistic regenerative relaying once it falls under an unacceptable level. We first provide the exact cumulative density function (CDF) of received signal-to-noise (SNR) over each hop with co-located relays. Then, the CDFs are used to determine very accurate closed-form expression for the outage probability for a transmission rate R. We validate our analysis by showing that simulation results coincide with our analytical results in Rayleigh fading channels. © 2012 IEEE.

  17. Outage analysis for underlay relay-assisted cognitive networks

    KAUST Repository

    Tourki, Kamel

    2012-12-01

    Cooperative relay technology was recently introduced into cognitive radio networks in order to enhance network capacity, scalability, and reliability of end-to-end communication. In this paper, we investigate an underlay cognitive network where the quality of service of the secondary link is maintained by triggering an opportunistic regenerative relaying once it falls under an unacceptable level. We first provide the exact cumulative density function (CDF) of received signal-to-noise (SNR) over each hop with co-located relays. Then, the CDFs are used to determine very accurate closed-form expression for the outage probability for a transmission rate R. We validate our analysis by showing that simulation results coincide with our analytical results in Rayleigh fading channels. © 2012 IEEE.

  18. Wireless Cognitive Networks Technologies and Protocols

    OpenAIRE

    Loscri , Valeria; Maskooki , Arash; Mitton , Nathalie; Vegni , Anna Maria

    2015-01-01

    International audience; Software Defined Radio and Cognitive Radio applied to Wireless Sensor Networks and Body Area Networks represent an intriguing and really recent paradigm, which represents an objective of study of several researchers. In order to make this technology effective, it is necessary to consider an analytical model of communication capacity, energy consumption and congestion, to effectively exploit the Software Defined Radio and Cognitive Radio in this type of systems. This ch...

  19. Modeling and performance analysis of cooperative communications in cognitive radio networks

    KAUST Repository

    Khabazian, Mehdi

    2011-09-01

    In this paper, we study the performance of a network comprised of a primary user and a secondary user with the latter having cognitive radio capabilities. The secondary node uses the empty slots of the primary user to transmit its own traffic as well as to relay the primary\\'s traffic in a cooperative fashion. Taking a queuing theory approach, we find the probability generating functions of the numbers of packets in the queues of the primary and secondary users. Subsequently, we determine a number of performance measures such as the average queues\\' lengths, average packet transmission delays and secondary user\\'s queue surcharge due to cooperation. The numerical results along with the simulations show the importance of controlling the number of primary user packets admitted by the secondary user for cooperation and its impacts on the other performance measures. © 2011 IEEE.

  20. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    The author proposes a description of only a certain class of jets in extended radio sources by discussing hydrodynamics of jets formed by discrete portions of material ejected from the parent galaxy through a channel and reflected back into it as a result of an encounter with the material accumulated at the end of the channel. The picture presented here combines some older ideas with recent ones. The older ideas consist of modeling of extended radio sources in terms of multiple ejection of plasmons through a channel ploughed by the first few plasmons in the ambient medium with a resupply of energy in plasmons through the conversion of bulk kinetic energy into relativistic electron energy through instability driven turbulence. The recent ideas concern the formation of retro-jets as the result of interaction of a plasmon with the dense relic material at the end of a channel and the collimation of plasmon material in channels. (Auth.)

  1. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  2. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Science.gov (United States)

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  3. The digital sport radio.

    Directory of Open Access Journals (Sweden)

    Hilario José ROMERO BEJARANO

    2014-07-01

    Full Text Available Radio has been immersed in recent years in a phase of technological integration and business of multimedia, as well as diversification of systems and channels for broadcasting. In addition, Internet has been consolidated as the platform of digital radio that more has evolved as a result of its continued expansion. However, the merger radio-Internet must be understood as a new form of communication, and not solely as a new complementary medium. In this context, it is of great interest to analyze that transformations in the way of reception, contents, languages, programs and schedules, has brought with it for the radio that integration. To this end is taken as main reference the sports areas, a key aspect and broadly representative of the current broadcasting landscape.

  4. Radio frequency sensing measurements and methods for location classification in wireless networks

    Science.gov (United States)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces

  5. Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Sana Ullah Jan

    2018-03-01

    Full Text Available A framework of spectrum sensing with a multi-class hypothesis is proposed to maximize the achievable throughput in cognitive radio networks. The energy range of a sensing signal under the hypothesis that the primary user is absent (in a conventional two-class hypothesis is further divided into quantized regions, whereas the hypothesis that the primary user is present is conserved. The non-radio frequency energy harvesting-equiped secondary user transmits, when the primary user is absent, with transmission power based on the hypothesis result (the energy level of the sensed signal and the residual energy in the battery: the lower the energy of the received signal, the higher the transmission power, and vice versa. Conversely, the lower is the residual energy in the node, the lower is the transmission power. This technique increases the throughput of a secondary link by providing a higher number of transmission events, compared to the conventional two-class hypothesis. Furthermore, transmission with low power for higher energy levels in the sensed signal reduces the probability of interference with primary users if, for instance, detection was missed. The familiar machine learning algorithm known as a support vector machine (SVM is used in a one-versus-rest approach to classify the input signal into predefined classes. The input signal to the SVM is composed of three statistical features extracted from the sensed signal and a number ranging from 0 to 100 representing the percentage of residual energy in the node’s battery. To increase the generalization of the classifier, k-fold cross-validation is utilized in the training phase. The experimental results show that an SVM with the given features performs satisfactorily for all kernels, but an SVM with a polynomial kernel outperforms linear and radial-basis function kernels in terms of accuracy. Furthermore, the proposed multi-class hypothesis achieves higher throughput compared to the

  6. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2013-01-01

    between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information

  7. Cognitive networks applications and deployments

    CERN Document Server

    Lloret Mauri, Jaime; Rawat, Danda B; Perez, Javier Manuel Aguiar

    2014-01-01

    INTRODUCTIONEfficient Spectrum Management: Challenges and Solutions; Tarek M. Salem, Sherine M. Abdel-Kader, Salah M. Abdel-MaGeid, and Mohamed ZakiA Survey on Joint Routing and Dynamic spectrum Access in Cognitive Radio Networks; Xianzhong Xie, Helin Yang, and Athanasios V. VasilakosNeighbor Discovery for Cognitive Radio Networks; Athar Ali Khan, Mubashir Husain Rehmani, and Yasir SaleemSPECTRUM SENSINGTime-Domain Cognitive Sensor Networking; Stefano Busanelli, Gianluigi Ferrari, Alessandro Colazzo, and Jean-Michel DricotSpectrum Sensing in Cognitive Wireless Networks; Danda B. Rawat and Chan

  8. 76 FR 67397 - Radio Broadcasting Services; Llano, Texas

    Science.gov (United States)

    2011-11-01

    ...] Radio Broadcasting Services; Llano, Texas AGENCY: Federal Communications Commission. ACTION: Proposed... substituting Channel 242C3 for vacant Channel 293C3, at Llano, Texas. The proposal is part of a contingently... required for the allotment of Channel 242C3 at Llano, Texas, because the proposed allotment is located...

  9. Strategies for improvement of spectrum capacity for WiMax cellular systems by Cognitive Radio Technology supported by Relay Stations

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase...... the coverage of cellular systems by relay stations will be presented as well.   ...

  10. Underlay Cognitive Radio Systems with Improper Gaussian Signaling: Outage Performance Analysis

    KAUST Repository

    Amin, Osama

    2016-03-29

    Improper Gaussian signaling has the ability over proper (conventional) Gaussian signaling to improve the achievable rate of systems that suffer from interference. In this paper, we study the impact of using improper Gaussian signaling on the performance limits of the underlay cognitive radio system by analyzing the achievable outage probability of both the primary user (PU) and secondary user (SU). We derive the exact outage probability expression of the SU and construct upper and lower bounds of the PU outage probability which results in formulating an approximate expression of the PU outage probability. This allows us to design the SU signal by adjusting its transmitted power and the circularity coefficient to minimize the SU outage probability while maintaining a certain PU quality-of-service. Finally, we evaluate the derived expressions for both the SU and the PU and the corresponding adaptive algorithms by numerical results.

  11. Underlay Cognitive Radio Systems with Improper Gaussian Signaling: Outage Performance Analysis

    KAUST Repository

    Amin, Osama; Abediseid, Walid; Alouini, Mohamed-Slim

    2016-01-01

    Improper Gaussian signaling has the ability over proper (conventional) Gaussian signaling to improve the achievable rate of systems that suffer from interference. In this paper, we study the impact of using improper Gaussian signaling on the performance limits of the underlay cognitive radio system by analyzing the achievable outage probability of both the primary user (PU) and secondary user (SU). We derive the exact outage probability expression of the SU and construct upper and lower bounds of the PU outage probability which results in formulating an approximate expression of the PU outage probability. This allows us to design the SU signal by adjusting its transmitted power and the circularity coefficient to minimize the SU outage probability while maintaining a certain PU quality-of-service. Finally, we evaluate the derived expressions for both the SU and the PU and the corresponding adaptive algorithms by numerical results.

  12. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  13. Extending the Scope of the Resource Admission Control Subsystem (RACS) in IP multimedia subsystem using cognitive radios

    CSIR Research Space (South Africa)

    Muwonge, BK

    2008-04-01

    Full Text Available is greatly increased, and resource reservation and QoS management by the RACS is also greatly increased. Index Terms—Traffic Engineering; Cross Layer; Cognitive Radio, IP Multimedia Subsystem (IMS) I. INTRODUCTION HE IP Multimedia Subsystem (IMS...) is seen as the answer to the much talked-about convergence of data and telecommunication services. The original IMS design was by the 3rd Generation Partnership Project (3GPP) for delivering IP Multimedia services to end users, using telecommunication...

  14. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2015-02-01

    Full Text Available One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs, mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  15. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  16. The Optimization of the Data Packet Length in Adaptive Radio Networks

    Directory of Open Access Journals (Sweden)

    Anatolii P. Voiter

    2017-10-01

    Full Text Available Background. Development of methods and means of the adaptive management of the radio networks bandwidth with competitive access to the radio channel. Objective. The aim of the paper is to determine the packet length effect on the effective radio networks transmission rate with taking into account the parameters, formats, and procedures of the physical and link levels at using the MAC protocol with a rigid strategy of competitive access to the radio channel. Methods. The goal is achieved by creating and analyzing the mathematical model of the effective transmission rate in radio networks. The model is described by the equation for the effective transmission rate, which is the function of both the probability of the conflict-free transmission of the MAC protocol and the coefficient of the data packet size deviation from the optimal for LLC protocol. Results. It is proved that there is the optimal deviation of the data packet length for each MAC protocol traffic intensity value, which provides the most effective transfer rate. This makes the possibility for adaptive management of the radio bandwidth by applying a pre-calculated deviation of the data packet size in dependence on the traffic intensity. Conclusions. The proposed mathematical model is the tool for calculation of both the radio bandwidth network capacity and the optimal deviation of the data packet length at adaptive management of competitive access to a radio channel with a rigid strategy at conditions of the significant fluctuation in traffic intensity.

  17. A Collaborative Approach for Monitoring Nodes Behavior during Spectrum Sensing to Mitigate Multiple Attacks in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Mahmoud Khasawneh

    2017-01-01

    Full Text Available Spectrum sensing is the first step to overcome the spectrum scarcity problem in Cognitive Radio Networks (CRNs wherein all unutilized subbands in the radio environment are explored for better spectrum utilization. Adversary nodes can threaten these spectrum sensing results by launching passive and active attacks that prevent legitimate nodes from using the spectrum efficiently. Securing the spectrum sensing process has become an important issue in CRNs in order to ensure reliable and secure spectrum sensing and fair management of resources. In this paper, a novel collaborative approach during spectrum sensing process is proposed. It monitors the behavior of sensing nodes and identifies the malicious and misbehaving sensing nodes. The proposed approach measures the node’s sensing reliability using a value called belief level. All the sensing nodes are grouped into a specific number of clusters. In each cluster, a sensing node is selected as a cluster head that is responsible for collecting sensing-reputation reports from different cognitive nodes about each node in the same cluster. The cluster head analyzes information to monitor and judge the nodes’ behavior. By simulating the proposed approach, we showed its importance and its efficiency for achieving better spectrum security by mitigating multiple passive and active attacks.

  18. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  19. Enabling multimode wireless access networks using remote radio heads

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2012-01-01

    and management plane. Switching between wireless standards becomes easily feasible through firmware upgrading. Finally, real-time configuration of radio functionalities, such as transmit power, receiver gain, carrier frequency, channel bandwidth and others result in a modular software defined radio platform...

  20. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    Science.gov (United States)

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  1. Feedback information transmission and scheduling in a radio access network

    OpenAIRE

    Wunder, Gerhard; Schreck, Jan

    2012-01-01

    A concept for a mobile transceiver apparatus 100 for communicating with a base station transceiver in a mobile communication system, the base station transceiver 200 using multiple antennas for transmitting radio signals to the mobile transceiver apparatus 100. The mobile transceiver apparatus 100 comprises means for estimating 120 a radio channel between the base station transceiver 200 and the mobile transceiver apparatus 100 based on a reference signal to obtain a channel estimate. The mob...

  2. Hard Decision Fusion based Cooperative Spectrum Sensing in Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    N. Armi N.M. Saad

    2013-09-01

    Full Text Available Cooperative spectrum sensing was proposed to combat fading, noise uncertainty, shadowing, and even hidden node problem due to primary users (PUs activity that is not spatially localized. It improves the probability of detection by collaborating to detect PUs signal in cognitive radio (CR system as well. This paper studies cooperative spectrum sensing and signal detection in CR system by implementing hard decision combining in data fusion centre. Through computer simulation, we evaluate the performances of cooperative spectrum sensing and signal detection by employing OR and AND rules as decision combining. Energy detector is used to observe the presence of primary user (PU signal. Those results are compared to non-cooperative signal detection for evaluation. They show that cooperative technique has better performance than non-cooperative. Moreover, signal to noise ratio (SNR with greater than or equal 10 dB and 15 collaborated users in CR system has optimal value for probability of detection.

  3. Adapting cognitive radio technology for low-power wireless personal area network devices

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg; Rohde, John

    2011-01-01

    The application of wireless personal area network (WPAN) and simple point-to-point wireless communication devices has increased drastically both in private household and in our workspaces in general over the last decade. Combined with the fact that the total number of wireless devices...... and associated standards present in the wireless environment is experiencing an extreme growth, the frequency spectrum scarcity is exposed as a severe challenge. Setting up efficient and reliable wireless WPAN links can be challenging even today. This is especially true because of the intensive use...... discusses the challenges associated with the implementation of highly reliable low-power WPAN networks for the future and the adaption of Cognitive Radio technology as a potential solution. A brief status on the maturity of CR technology will be presented as an integral part of this discussion....

  4. [Cognitive Function and Calcium. Structures and functions of Ca2+-permeable channels].

    Science.gov (United States)

    Kaneko, Shuji

    2015-02-01

    Calcium is essential for living organisms where the increase in intracellular Ca2+ concentration functions as a second messenger for many cellular processes including synaptic transmission and neural plasticity. The cytosolic concentration of Ca2+ is finely controlled by many Ca2+-permeable ion channels and transporters. The comprehensive view of their expression, function, and regulation will advance our understanding of neural and cognitive functions of Ca2+, which leads to the future drug discovery.

  5. Joint duplex mode selection, channel allocation, and power control for full-duplex cognitive femtocell networks

    Directory of Open Access Journals (Sweden)

    Mingjie Feng

    2015-02-01

    Full Text Available In this paper, we aim to maximize the sum rate of a full-duplex cognitive femtocell network (FDCFN as well as guaranteeing the quality of service (QoS of users in the form of a required signal to interference plus noise ratios (SINR. We first consider the case of a pair of channels, and develop optimum-achieving power control solutions. Then, for the case of multiple channels, we formulate joint duplex model selection, power control, and channel allocation as a mixed integer nonlinear problem (MINLP, and propose an iterative framework to solve it. The proposed iterative framework consists of a duplex mode selection scheme, a near-optimal distributed power control algorithm, and a greedy channel allocation algorithm. We prove the convergence of the proposed iterative framework as well as a lower bound for the greedy channel allocation algorithm. Numerical results show that the proposed schemes effectively improve the sum rate of FDCFNs.

  6. Outage analysis for underlay cognitive networks using incremental regenerative relaying

    KAUST Repository

    Tourki, Kamel

    2013-02-01

    Cooperative relay technology has recently been introduced into cognitive radio (CR) networks to enhance the network capacity, scalability, and reliability of end-to-end communication. In this paper, we investigate an underlay cognitive network where the quality of service (QoS) of the secondary link is maintained by triggering an opportunistic regenerative relaying once it falls under an unacceptable level. Analysis is conducted for two schemes, referred to as the channel-state information (CSI)-based and fault-tolerant schemes, respectively, where different amounts of CSI were considered. We first provide the exact cumulative distribution function (cdf) of the received signal-to-noise ratio (SNR) over each hop with colocated relays. Then, the cdf\\'s are used to determine a very accurate closed-form expression for the outage probability for a transmission rate $R$. In a high-SNR region, a floor of the secondary outage probability occurs, and we derive its corresponding expression. We validate our analysis by showing that the simulation results coincide with our analytical results in Rayleigh fading channels. © 1967-2012 IEEE.

  7. Reconfigurable, Cognitive Software Defined Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI is actively developing Software Defined Radio platforms that can adaptively switch between different modes of operation by modifying both transmit waveforms and...

  8. Reconfigurable, Cognitive Software Defined Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation Inc, (IAI) is currently developing a software defined radio (SDR) platform that can adaptively switch between different modes of operation for...

  9. Capacity limits of spectrum-sharing systems over hyper-fading channels

    KAUST Repository

    Ekin, Sabit

    2011-01-20

    Cognitive radio (CR) with spectrum-sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum-sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper-fading model that is suitable to the dynamic nature of CR channel is proposed. Closed-form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users (SUs) in spectrum-sharing systems are derived. In addition, the capacity gains achievable with spectrum-sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base-station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. © 2011 John Wiley & Sons, Ltd.

  10. Capacity limits of spectrum-sharing systems over hyper-fading channels

    KAUST Repository

    Ekin, Sabit; Yilmaz, Ferkan; Ç elebi, Hasari Burak; Qaraqe, Khalid A.; Alouini, Mohamed-Slim; Serpedin, Erchin

    2011-01-01

    Cognitive radio (CR) with spectrum-sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum-sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper-fading model that is suitable to the dynamic nature of CR channel is proposed. Closed-form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users (SUs) in spectrum-sharing systems are derived. In addition, the capacity gains achievable with spectrum-sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base-station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. © 2011 John Wiley & Sons, Ltd.

  11. Cognitive virtual network operator games

    CERN Document Server

    Duan, Lingjie; Shou, Biying

    2014-01-01

    This SpringerBrief provides an overview of cognitive mobile virtual network operator's (C-MVNO) decisions under investment flexibility, supply uncertainty, and market competition in cognitive radio networks. This is a new research area at the nexus of cognitive radio engineering and microeconomics. The authors focus on an operator's joint spectrum investment and service pricing decisions. The readers will learn how to tradeoff the two flexible investment choices (dynamic spectrum leasing and spectrum sensing) under supply uncertainty. Furthermore, if there is more than one operator, we present

  12. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail

    2018-03-19

    Cognitive radio attracts researchers\\' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system parameters\\' adaptation using optimization and machine learning techniques. However, these techniques have strengths and weaknesses depending on the experienced network scenario that make one more appropriate than others. In this paper, we propose a novel design for the cognitive system called supervised cognitive system (SCS), which aims to perform radio parameters adaptation with the most appropriate CE learning technique for the encountered network scenario. To realize SCS, it is required to evaluate the performance of different CEs in different network scenarios and according to certain performance objectives. In addition, the ability to select the most appropriate CE learning technique for adaptation in the current network scenario is also a priority in our design. Therefore, SCS investigates the relationship between learning and performance improvement and it employs online learning to classify scenarios and select the most appropriate CE learning technique. The testbed implementation and evaluation results in terms of goodput, packet error rate, and spectral efficiency show that the proposed SCS achieves more than 50% in performance gain compared to the best standalone CE.

  13. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  14. Asynchronous Channel-Hopping Scheme under Jamming Attacks

    Directory of Open Access Journals (Sweden)

    Yongchul Kim

    2018-01-01

    Full Text Available Cognitive radio networks (CRNs are considered an attractive technology to mitigate inefficiency in the usage of licensed spectrum. CRNs allow the secondary users (SUs to access the unused licensed spectrum and use a blind rendezvous process to establish communication links between SUs. In particular, quorum-based channel-hopping (CH schemes have been studied recently to provide guaranteed blind rendezvous in decentralized CRNs without using global time synchronization. However, these schemes remain vulnerable to jamming attacks. In this paper, we first analyze the limitations of quorum-based rendezvous schemes called asynchronous channel hopping (ACH. Then, we introduce a novel sequence sensing jamming attack (SSJA model in which a sophisticated jammer can dramatically reduce the rendezvous success rates of ACH schemes. In addition, we propose a fast and robust asynchronous rendezvous scheme (FRARS that can significantly enhance robustness under jamming attacks. Our numerical results demonstrate that the performance of the proposed scheme vastly outperforms the ACH scheme when there are security concerns about a sequence sensing jammer.

  15. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  16. Zero-Forcing and Minimum Mean-Square Error Multiuser Detection in Generalized Multicarrier DS-CDMA Systems for Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Lie-Liang Yang

    2008-01-01

    Full Text Available In wireless communications, multicarrier direct-sequence code-division multiple access (MC DS-CDMA constitutes one of the highly flexible multiple access schemes. MC DS-CDMA employs a high number of degrees-of-freedom, which are beneficial to design and reconfiguration for communications in dynamic communications environments, such as in the cognitive radios. In this contribution, we consider the multiuser detection (MUD in MC DS-CDMA, which motivates lowcomplexity, high flexibility, and robustness so that the MUD schemes are suitable for deployment in dynamic communications environments. Specifically, a range of low-complexity MUDs are derived based on the zero-forcing (ZF, minimum mean-square error (MMSE, and interference cancellation (IC principles. The bit-error rate (BER performance of the MC DS-CDMA aided by the proposed MUDs is investigated by simulation approaches. Our study shows that, in addition to the advantages provided by a general ZF, MMSE, or IC-assisted MUD, the proposed MUD schemes can be implemented using modular structures, where most modules are independent of each other. Due to the independent modular structure, in the proposed MUDs one module may be reconfigured without yielding impact on the others. Therefore, the MC DS-CDMA, in conjunction with the proposed MUDs, constitutes one of the promising multiple access schemes for communications in the dynamic communications environments such as in the cognitive radios.

  17. Zero-Forcing and Minimum Mean-Square Error Multiuser Detection in Generalized Multicarrier DS-CDMA Systems for Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Wang Li-Chun

    2008-01-01

    Full Text Available Abstract In wireless communications, multicarrier direct-sequence code-division multiple access (MC DS-CDMA constitutes one of the highly flexible multiple access schemes. MC DS-CDMA employs a high number of degrees-of-freedom, which are beneficial to design and reconfiguration for communications in dynamic communications environments, such as in the cognitive radios. In this contribution, we consider the multiuser detection (MUD in MC DS-CDMA, which motivates lowcomplexity, high flexibility, and robustness so that the MUD schemes are suitable for deployment in dynamic communications environments. Specifically, a range of low-complexity MUDs are derived based on the zero-forcing (ZF, minimum mean-square error (MMSE, and interference cancellation (IC principles. The bit-error rate (BER performance of the MC DS-CDMA aided by the proposed MUDs is investigated by simulation approaches. Our study shows that, in addition to the advantages provided by a general ZF, MMSE, or IC-assisted MUD, the proposed MUD schemes can be implemented using modular structures, where most modules are independent of each other. Due to the independent modular structure, in the proposed MUDs one module may be reconfigured without yielding impact on the others. Therefore, the MC DS-CDMA, in conjunction with the proposed MUDs, constitutes one of the promising multiple access schemes for communications in the dynamic communications environments such as in the cognitive radios.

  18. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  19. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  20. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Directory of Open Access Journals (Sweden)

    Sameera Dharia

    2011-02-01

    Full Text Available Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR K(+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+ addition to the external bath. Cu(2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K(+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  1. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  2. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2017-01-01

    of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes

  3. Achievable Rate of a Cognitive MIMO Multiple Access Channel With Multi-Secondary Users

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We study the secondary sum-rate of an underlay cognitive multiple access channel consisting of a primary user and multiple secondary users (SUs) communicating with a common destination. We propose a particular linear precoding and SU selection scheme that maximize the cognitive sum-rate. This scheme is based on space alignment strategy allowing SUs to share the spectrum without interfering with each other. We derive the optimal power allocation for each selected SU after applying perfect or imperfect successive interference cancellation. Numerical results show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. In addition, it achieves almost the same performance as an exhaustive search selection, mainly in low and high power ranges. © 1997-2012 IEEE.

  4. Achievable Rate of a Cognitive MIMO Multiple Access Channel With Multi-Secondary Users

    KAUST Repository

    Sboui, Lokman

    2015-03-01

    We study the secondary sum-rate of an underlay cognitive multiple access channel consisting of a primary user and multiple secondary users (SUs) communicating with a common destination. We propose a particular linear precoding and SU selection scheme that maximize the cognitive sum-rate. This scheme is based on space alignment strategy allowing SUs to share the spectrum without interfering with each other. We derive the optimal power allocation for each selected SU after applying perfect or imperfect successive interference cancellation. Numerical results show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. In addition, it achieves almost the same performance as an exhaustive search selection, mainly in low and high power ranges. © 1997-2012 IEEE.

  5. Performance analysis of correlated multi-channels in cognitive radio sensor network based smart grid

    CSIR Research Space (South Africa)

    Ogbodo, EU

    2017-09-01

    Full Text Available €  (7) Where = 1 − 1 √𝑀 ; = 3 𝑀−1 ;𝑠𝑖 = 2𝑠𝑖𝑛𝑖𝜋/4𝑛; M is the constellation order which may be 4, 16, 32, etc.; n is the number of iteration. We can then derive MGF based average error probability by simply...-QAM under correlated fading channels distribution conditions such that the signals are received at the various sensor nodes. We consider a dual-branch single-input multiple- output (SIMO) system. The received signal at the receiver can be modelled as: 𝑊𝑖(ð...

  6. A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2015-11-01

    Full Text Available In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users’ fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism—HJ-DQPSO based on Hooke Jeeves (HJ and Quantum Particle Swarm Optimization (QPSO algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.

  7. Effectiveness of radio spokesperson's gender, vocal pitch and accent and the use of music in radio advertising

    Directory of Open Access Journals (Sweden)

    Josefa D. Martín-Santana

    2015-07-01

    Full Text Available The aim of this study is to analyze how certain voice features of radio spokespersons and background music influence the advertising effectiveness of a radio spot from the cognitive, affective and conative perspectives. We used a 2 × 2 × 2 × 2 experimental design in 16 different radio programs in which an ad hoc radio spot was inserted during advertising block. This ad changed according to combinations of spokesperson's gender (male–female, vocal pitch (low–high and accent (local–standard. In addition to these independent factors, the effect of background music in advertisements was also tested and compared with those that only had words. 987 regular radio listeners comprised the sample that was exposed to the radio program we created. Based on the differences in the levels of effectiveness in the tested voice features, our results suggest that the choice of the voice in radio advertising is one of the most important decisions an advertiser faces. Furthermore, the findings show that the inclusion of music does not always imply greater effectiveness.

  8. Cognitive networked sensing and big data

    CERN Document Server

    Qiu, Robert

    2013-01-01

    Wireless Distributed Computing and Cognitive Sensing defines high-dimensional data processing in the context of wireless distributed computing and cognitive sensing. This book presents the challenges that are unique to this area such as synchronization caused by the high mobility of the nodes. The author will discuss the integration of software defined radio implementation and testbed development. The book will also bridge new research results and contextual reviews. Also the author provides an examination of large cognitive radio network; hardware testbed; distributed sensing; and distributed

  9. Using TV Receiver Information to Increase Cognitive White Space Spectrum

    OpenAIRE

    Ellingsæter, Brage; Bezabih, Hemdan; Noll, Josef; Maseng, Torleiv

    2012-01-01

    In this paper we investigate the usage of cognitive radio devices within the service area of TV broadcast stations. Until now the main approach for a cognitive radio to operate in the TV bands has been to register TV broadcast stations locations and thus protecting the broadcast stations service area. Through information about TV receivers location, we show that a cognitive radio should be able to operate within this service area without causing harmful interference to the TV receivers as def...

  10. Cognitive interference modeling with applications in power and admission control

    KAUST Repository

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Alouini, Mohamed-Slim; Ø ien, Geir Egil

    2012-01-01

    One of the key design challenges in a cognitive radio network is controlling the interference generated at coexisting primary receivers. In order to design efficient cognitive radio systems and to minimize their unwanted consequences

  11. 77 FR 2242 - Radio Broadcasting Services; Pike Road, AL

    Science.gov (United States)

    2012-01-17

    ...] Radio Broadcasting Services; Pike Road, AL AGENCY: Federal Communications Commission. ACTION: Proposed... Corporation, Inc., proposing the allotment of Channel 228A at Pike Road, Alabama, as its second local service. A staff engineering analysis indicates that Channel 228A can be allotted to Pike Road consistent...

  12. 77 FR 64792 - Radio Broadcasting Services; Pike Road, AL

    Science.gov (United States)

    2012-10-23

    ...] Radio Broadcasting Services; Pike Road, AL AGENCY: Federal Communications Commission. ACTION: Proposed... Corporation, Inc., proposing the allotment of Channel 228A at Pike Road, Alabama, as the community's second local service. A staff engineering analysis indicates that Channel 228A can be allotted to Pike Road...

  13. 47 CFR 101.1405 - Channeling plan.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Channeling plan. 101.1405 Section 101.1405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... Channeling plan. Each license shall have one spectrum block of 500 megahertz per geographic area that can be...

  14. A comparative study of cognitive radio platforms

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available -life deployments of CR systems, the research community is now focusing on the development of CR platforms. With different software defined radio (SDR) packages and hardware available, it is confusing to decide which one to build or use. The objective of this paper...

  15. Power allocation, bit loading and sub-carrier bandwidth sizing for OFDM-based cognitive radio

    Directory of Open Access Journals (Sweden)

    Desai Uday

    2011-01-01

    Full Text Available Abstract The function of the Radio Resource Management module of a Cognitive Radio (CR system is to evaluate the available resources and assign them to meet the Quality of Service (QoS objectives of the Secondary User (SU, within some constraints on factors which limit the performance of the Primary User (PU. While interference mitigation to the PU spectral band from the SU's transmission has received a lot of attention in recent literature; the novelty of our work is in considering a more realistic and effective approach of dividing the PU into sub-bands, and ensuring that the interference to each of them is below a specified threshold. With this objective, and within a power budget, we execute the tasks of power allocation, bit loading and sizing the sub-carrier bandwidth for an orthogonal frequency division multiplexing (OFDM-based SU. After extensively analyzing the solution form of the optimization problems posed for the resource allocation, we suggest iterative algorithms to meet the aforementioned objectives. The algorithm for sub-carrier bandwidth sizing is novel, and not previously presented in literature. A multiple SU scenario is also considered, which entails assigning sub-carriers to the users, besides the resource allocation. Simulation results are provided, for both single and multi-user cases, which indicate the effectiveness of the proposed algorithms in a CR environment.

  16. Bio-inspired energy and channel management in distributed wireless multi-radio networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2014-06-01

    Full Text Available In the recent past, research in the next generation wireless heterogeneous broadband networks has favoured the design of multi-radio interface over the single radio interface architectures in order to support desirable features such as a self...

  17. A genetic algorithm for multiple relay selection in two-way relaying cognitive radio networks

    KAUST Repository

    Alsharoa, Ahmad M.

    2013-09-01

    In this paper, we investigate a multiple relay selection scheme for two-way relaying cognitive radio networks where primary users and secondary users operate on the same frequency band. More specifically, cooperative relays using Amplifyand- Forward (AF) protocol are optimally selected to maximize the sum rate of the secondary users without degrading the Quality of Service (QoS) of the primary users by respecting a tolerated interference threshold. A strong optimization tool based on genetic algorithm is employed to solve our formulated optimization problem where discrete relay power levels are considered. Our simulation results show that the practical heuristic approach achieves almost the same performance of the optimal multiple relay selection scheme either with discrete or continuous power distributions. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  18. Analysis of Traffic Parameter Estimation and Its Impacts on Wireless Channel

    Institute of Scientific and Technical Information of China (English)

    徐玉滨; 沙学军; 强蔚

    2004-01-01

    Wide band or broadband access was paid much attention with the development of radio transmission technique. The wireless access control procedure play an important role in this type of system and efficiency of control algorithm has a great impact on throughput of channel resource. Based on wide band network control model and the characteristics of radio channel, this paper proposed a channel traffic estimation method and then performed a dynamic parameter control procedure and give detail analysis on estimation error and its impact on channel throughput and delay performance. Computation and simulation of system performance show a positive solution on system design.

  19. Precoder Design and Power Allocation for MIMO Cognitive Radio Two-Way Relaying Systems

    KAUST Repository

    Sboui, Lokman

    2016-08-11

    In this paper, we study a multiple-antenna two-way relaying (TWR) cognitive radio (CR) system. A space alignment (SA) technique is adopted by the secondary users (SUs) to avoid interference with the primary users (PUs). We derive the optimal power allocation that maximizes the TWR achievable SU sum- rate while respecting the total power budget and the relay power constraints. We also analyze the case in which the relay is able to optimize its gain matrix structure to enhance the SU sum-rate. In the numerical results, we quantify the sum-rate gain of using the SA in the TWR CR and we show that the SU sum-rate is very limited when the relay power is low or the PU power and its resulting interference are high. In addition, we optimize the relay gain using an iterative algorithm and compare between different relay matrix structures.

  20. Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Le The Dung

    2017-03-01

    Full Text Available This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs. Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA and uniform circular array (UCA antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs.

  1. Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hasan A. A. Al-Rawi

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users (or secondary users, SUs to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs. Reinforcement learning (RL is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

  2. Design of multiplier-less sharp non-uniform cosine modulated filter banks for efficient channelizers in software defined radio

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2016-03-01

    Full Text Available Forthcoming software defined radios require filter banks which satisfy stringent specifications efficiently with low implementation complexity. Cosine modulated filter banks (CMFB have simple and efficient design procedure. The different wireless standards have different channel spacing or bandwidths and hence demand non-uniform decomposition of subbands. The non-uniform CMFB can be obtained from a uniform CMFB in a simple and efficient approach by merging the adjacent channels of the uniform CMFB. Very narrow transition width filters with low complexity can be achieved using frequency response masking (FRM filter as prototype filter. The complexity is further reduced by the multiplier-less realization of filter banks in which the least number of signed power of two (SPT terms is achieved by representing the filter coefficients using canonic signed digit (CSD representation and then optimizing using suitable modified meta-heuristic algorithms. Hybrid meta-heuristic algorithms are used in this paper. A hybrid algorithm combines the qualities of two meta-heuristic algorithms and results in improved performances with low implementation complexity. Highly frequency selective filter banks characterized by small passband ripple, narrow transition width and high stopband attenuation with non-uniform decomposition of subbands can be designed with least the implementation complexity, using this approach. A digital channelizer can be designed for SDR implementations, using the proposed approach. In this paper, the non-uniform CMFB is designed for various existing wireless standards.

  3. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios

    Directory of Open Access Journals (Sweden)

    Golsa Ghiaasi

    2018-01-01

    Full Text Available This paper proposes and discusses the architecture for a real-time vehicular channel emulator capable of reproducing the input/output behavior of nonstationary time-variant radio propagation channels in safety-relevant vehicular scenarios. The vehicular channel emulator architecture aims at a hardware implementation which requires minimal hardware complexity for emulating channels with the varying delay-Doppler characteristics of safety-relevant vehicular scenarios. The varying delay-Doppler characteristics require real-time updates to the multipath propagation model for each local stationarity region. The vehicular channel emulator is used for benchmarking the packet error performance of commercial off-the-shelf (COTS vehicular IEEE 802.11p modems and a fully software-defined radio-based IEEE 802.11p modem stack. The packet error ratio (PER estimated from temporal averaging over a single virtual drive and the packet error probability (PEP estimated from ensemble averaging over repeated virtual drives are evaluated and compared for the same vehicular scenario. The proposed architecture is realized as a virtual instrument on National Instruments™ LabVIEW. The National Instrument universal software radio peripheral with reconfigurable input-output (USRP-Rio 2953R is used as the software-defined radio platform for implementation; however, the results and considerations reported are of general purpose and can be applied to other platforms. Finally, we discuss the PER performance of the modem for two categories of vehicular channel models: a vehicular nonstationary channel model derived for urban single lane street crossing scenario of the DRIVEWAY’09 measurement campaign and the stationary ETSI models.

  4. A Cross-Layer Approach in Sensing and Resource Allocation for Multimedia Transmission over Cognitive UWB Networks

    Directory of Open Access Journals (Sweden)

    Lo ACC

    2010-01-01

    Full Text Available We propose an MAC centric cross-layer approach to address the problem of multimedia transmission over cognitive Ultra Wideband (C-UWB networks. Several fundamental design issues, which are related to application (APP, medium access control (MAC, and physical (PHY layer, are discussed. Although substantial research has been carried out in the PHY layer perspective of cognitive radio system, this paper attempts to extend the existing research paradigm to MAC and APP layers, which can be considered as premature at this time. This paper proposed a cross-layer design that is aware of (a UWB wireless channel conditions, (b time slot allocations at the MAC layer, and (c MPEG-4 video at the APP layer. Two cooperative sensing mechanisms, namely, AND and OR, are analyzed in terms of probability of detection ( , probability of false alarm ( , and the required sensing period. Then, the impact of sensing scheduling to the MPEG-4 video transmission over wireless cognitive UWB networks is observed. In addition, we also proposed the packet reception rate- (PRR- based resource allocation scheme that is aware of the channel condition, target PRR, and queue status.

  5. Performance Analysis of Simple Channel Feedback Schemes for a Practical OFDMA System

    DEFF Research Database (Denmark)

    Pedersen, Klaus, I.; Kolding, Troels; Kovacs, Istvan

    2009-01-01

    In this paper, we evaluate the tradeoff between the amount of uplink channel feedback information and the orthogonal frequency-division multiple access (OFDMA) downlink performance with opportunistic frequency-domain packet scheduling. Three candidate channel feedback schemes are investigated......, including practical aspects, such as the effects of terminal measurement errors, bandwidth measurement granularity, quantization, and uplink signaling delays. The performance is evaluated by means of system-level simulations with detailed modeling of various radio resource-management algorithms, etc. Our...... results show that the optimal tradeoff between the channel feedback and the downlink OFDMA system performance depends on the radio channel frequency coherence bandwidth. We conclude that the so-called average best-M scheme is the most attractive channel feedback solution, where only the average channel...

  6. A Survey of the DVB-T Spectrum: Opportunities for Cognitive Mobile Users

    OpenAIRE

    Csurgai-Horváth, László; Rieger, István; Kertész, József

    2016-01-01

    Cognitive radio (CR) systems are designed to utilize the available radio spectrum in an efficient and intelligent manner. Terrestrial Digital Video Broadcasting (DVB-T) frequency bands are one of the future candidates for cognitive radio applications especially because after digital television transition the TV white spaces (TVWS) became available for radio communication. This paper deals with the survey of the DVB-T spectrum; wideband measurements were performed on mobile platform in order t...

  7. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  8. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  9. DSP-Enabled Radio Astronomy: Towards IIIZW35 Reconquest

    Directory of Open Access Journals (Sweden)

    Alain Lecacheux

    2005-09-01

    Full Text Available In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio frequency interferences (RFI. The impact of these RFIs on power spectral measurement ranges from total saturation to subtle distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875 kHz to 14 MHz, high spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency blanking with a robust threshold detector. This receiver has been used to reobserve the IIIWZ35 astronomical source which has been scrambled by a strong satellite RFI for several years.

  10. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    Science.gov (United States)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  11. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    2010-01-01

    Full Text Available In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP, which can be solved by standard linear programming (LP method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  12. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.

    2013-12-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  13. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2013-01-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  14. Cognitive interference modeling with applications in power and admission control

    KAUST Repository

    Mahmood, Nurul Huda

    2012-10-01

    One of the key design challenges in a cognitive radio network is controlling the interference generated at coexisting primary receivers. In order to design efficient cognitive radio systems and to minimize their unwanted consequences, it is therefore necessary to effectively control the secondary interference at the primary receivers. In this paper, a generalized framework for the interference analysis of a cognitive radio network where the different secondary transmitters may transmit with different powers and transmission probabilities, is presented and various applications of this interference model are demonstrated. The findings of the analytical performance analyses are confirmed through selected computer-based Monte-Carlo simulations. © 2012 IEEE.

  15. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Sangil Choi

    2016-12-01

    Full Text Available Wireless mesh networks (WMNs have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM. In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  16. High-Level Design Space and Flexibility Exploration for Adaptive, Energy-Efficient WCDMA Channel Estimation Architectures

    Directory of Open Access Journals (Sweden)

    Zoltán Endre Rákossy

    2012-01-01

    Full Text Available Due to the fast changing wireless communication standards coupled with strict performance constraints, the demand for flexible yet high-performance architectures is increasing. To tackle the flexibility requirement, software-defined radio (SDR is emerging as an obvious solution, where the underlying hardware implementation is tuned via software layers to the varied standards depending on power-performance and quality requirements leading to adaptable, cognitive radio. In this paper, we conduct a case study for representatives of two complexity classes of WCDMA channel estimation algorithms and explore the effect of flexibility on energy efficiency using different implementation options. Furthermore, we propose new design guidelines for both highly specialized architectures and highly flexible architectures using high-level synthesis, to enable the required performance and flexibility to support multiple applications. Our experiments with various design points show that the resulting architectures meet the performance constraints of WCDMA and a wide range of options are offered for tuning such architectures depending on power/performance/area constraints of SDR.

  17. Optimal resource allocation solutions for heterogeneous cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Babatunde Awoyemi

    2017-05-01

    Full Text Available Cognitive radio networks (CRN are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others among their numerous users. ‘Resource allocation (RA in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored, i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.

  18. 76 FR 44279 - Radio Broadcasting Services; Clinchco, VA, and Coal Run, KY

    Science.gov (United States)

    2011-07-25

    ...] Radio Broadcasting Services; Clinchco, VA, and Coal Run, KY AGENCY: Federal Communications Commission... Station WPKE-FM, Coal Run Kentucky, from Channel 276A to Channel 221C3. DATES: Effective August 1, 2011... 221C3 at Coal Run, Kentucky, are 37-23-57 NL and 82-23-42 WL, and for Channel 276A at Clinchco, Virginia...

  19. Effects of Television and Radio on Speaking and Writing Skills of ...

    African Journals Online (AJOL)

    Nekky Umera

    The broadcast media, to which the television and radio belong, is identified ... This brings about a generation of children and learners who are unable to express .... video and radio courses and materials for English as a foreign or second ... The social learning theory (recently changed to social cognitive theory) was.

  20. 47 CFR 73.603 - Numerical designation of television channels.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Numerical designation of television channels... SERVICES RADIO BROADCAST SERVICES Television Broadcast Stations § 73.603 Numerical designation of television channels. (a) Channel No. Frequency band (MHz) 2 54-60 3 60-66 4 66-72 5 76-82 6 82-88 7 174-180 8...