Sample records for coesite

  1. First natural occurrence of coesite (United States)

    Chao, E.C.T.; Shoemaker, E.M.; Madsen, B.M.


    Coesite, the high-pressure polymorph of SiO2, hitherto known only as a synthetic compound, is identified as an abundant mineral in sheared Coconino sandstone at Meteor Crater, Arizona. This natural occurrence has important bearing on the recognition of meteorite impact craters in quartz-bearing geologic formations.

  2. Kinetics of the coesite to quartz transformation (United States)

    Mosenfelder, J.L.; Bohlen, S.R.


    The survival of coesite in ultrahigh-pressure (UHP) rocks has important implications for the exhumation of subducted crustal rocks. We have conducted experiments to study the mechanism and rate of the coesite ??? quartz transformation using polycrystalline coesite aggregates, fabricated by devitrifying silica glass cylinders containing 2850H/106 Si at 1000??C and 3.6 GPa for 24h. Conditions were adjusted following synthesis to transform the samples at 700-1000??C at pressures 190-410 MPa below the quartz-coesite equilibrium boundary. Reaction proceeds via grain-boundary nucleation and interface-controlled growth, with characteristic reaction textures remarkably similar to those seen in natural UHP rocks. We infer that the experimental reaction mechanism is identical to that in nature, a prerequisite for reliable extrapolation of the rate data. Growth rates obtained by direct measurement differ by up to two orders of magnitude from those estimated by fitting a rate equation to the transformation-time data. Fitting the rates to Turnbull's equation for growth therefore yields two distinct sets of parameters with similar activation energies (242 or 269 kJ/mol) but significantly different pre-exponential constants. Extrapolation based on either set of growth rates suggests that coesite should not be preserved on geologic time scales if it reaches the quartz stability field at temperatures above 375-400??C. The survival of coesite has previously been linked to its inclusion in strong phases, such as garnet, that can sustain a high internal pressure during decompression. Other factors that may play a crucial role in preservation are low fluid availability - possibly even less than that of our nominally "dry" experiments - and the development of transformation stress, which inhibits nucleation and growth. These issues are discussed in the context of our experiments as well as recent observations from natural rocks. ?? 1997 Elsevier Science B.V.

  3. Coesite inclusions in diamonds of Yakutia (United States)

    Bardukhinov, L. D.; Spetsius, Z. V.; Monkhorov, R. V.


    The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol'skaya-Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol'shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.

  4. Coesite from Wabar crater, near Al Hadida, Arabia (United States)

    Chao, E.C.T.; Fahey, J.J.; Littler, J.


    The third natural occurrence of coesite, the high pressure polymorph of silica, is found at the Wabar meteorite crater, Arabia. The Wabar crater is about 300 feet in diameter and about 40 feet deep. It is the smallest of three craters where coesite has been found.

  5. Multiple pathways in pressure-induced phase transition of coesite (United States)

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro


    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  6. Interface-mediated amorphization of coesite by 200 keV electron irradiation

    International Nuclear Information System (INIS)

    Gong, W.L.; Wang, L.M.; Ewing, R.C.; Xie, H.S.


    Electron-induced amorphization of coesite was studied as a function of irradiation temperature by in situ transmission electron microscopy at an incident energy of 200 keV. Electron-induced amorphization of coesite is induced by an ionization mechanism and is mainly dominated by an interface-mediated, heterogeneous nucleation-and-growth controlled process. Amorphous domains nucleate at surfaces, crystalline-amorphous (c-a) interfaces, and grain boundaries. This is the same process as the interface-mediated vitrification of coesite by isothermal annealing above the thermodynamic melting temperature (875 K), but below the glass transition temperature (1480 K). The interface-mediated amorphization of coesite by electron irradiation is morphologically similar to interface-mediated thermodynamic melting. copyright 1997 American Institute of Physics

  7. Synthesis of coesite nanocrystals from ethane bridged periodic mesoporous organosilica at low temperature and extreme pressure. (United States)

    Liang, Zhili; Mohanty, Paritosh; Fei, Yingwei; Landskron, Kai


    Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.

  8. On the Preservation of Intergranular Coesite in UHP Eclogite at Yangkou Bay, Sulu belt of eastern China (United States)

    Wang, L.; Wang, S.; Brown, M.


    In contrast to coesite that occurs as inclusions in zircon and rock-forming minerals, intergranular coesite is preserved in UHP eclogite at Yangkou in the Sulu belt. The survival of intergranular coesite is intriguing because the eclogite experienced phengite growth and partial melting during exhumation. The coesite eclogite occurs as rootless isoclinal fold noses within quartz-rich schist which contains 10-20 vol% phengite, whereas phengite is absent from coesite eclogite in the fold noses. To evaluate the factors that control preservation of intergranular coesite, four samples representative of different stages along the retrograde P-T path were selected for study. For each sample we determined the number of intergranular coesite grains per cm2 and the OH content of garnet and omphacite. As the number of coesite grains decreases, the bulk rock OH content increases from transformation to quartz of intergranular coesite outside of the fold noses. The fluid is inferred to have been a supercritical fluid probably residual from prograde dehydration but also derived by dissolution of nominally anhydrous minerals. Post-metamorphic-peak deformation combined with fluid percolation along sheared fold limbs induced phengite growth during initial exhumation and then facilitated partial melting. In contrast, fold hinges in competent layers are unfavourable sites for fluid penetration. At Yangkou, the intergranular coesite is preserved in the fold noses where it was protected from both penetrative deformation and fluid ingress. Therefore, the fold noses maintained a relatively dry environment that allowed preservation of the intergranular coesite. Thus, deformation partitioning and strain localization impose local controls on fluid distribution and migration in UHP eclogite. This study informs our understanding of variations in fluid regime during exhumation of deeply subducted continental crust.

  9. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions (United States)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.


    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each

  10. Quartz-coesite-stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa (United States)

    Spray, John G.; Boonsue, Suporn


    Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of 30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast-matrix or shock vein margin-matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault ( 1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid-liquid interfaces and as anhedral crystals in the matrix. (5) With

  11. Ionic network analysis of tectosilicates: the example of coesite at variable pressure. (United States)

    Reifenberg, Melina; Thomas, Noel W


    The method of ionic network analysis [Thomas (2017). Acta Cryst. B73, 74-86] is extended to tectosilicates through the example of coesite, the high-pressure polymorph of SiO 2 . The structural refinements of Černok et al. [Z. Kristallogr. (2014), 229, 761-773] are taken as the starting point for applying the method. Its purpose is to predict the unit-cell parameters and atomic coordinates at (p-T-X) values in-between those of diffraction experiments. The essential development step for tectosilicates is to define a pseudocubic parameterization of the O 4 cages of the SiO 4 tetrahedra. The six parameters a PC , b PC , c PC , α PC , β PC and γ PC allow a full quantification of the tetrahedral structure, i.e. distortion and enclosed volume. Structural predictions for coesite require that two separate quasi-planar networks are defined, one for the silicon ions and the other for the O 4 cage midpoints. A set of parametric curves is used to describe the evolution with pressure of these networks and the pseudocubic parameters. These are derived by fitting to the crystallographic data. Application of the method to monoclinic feldspars and to quartz and cristobalite is discussed. Further, a novel two-parameter quantification of the degree of tetrahedral distortion is described. At pressures in excess of ca 20.45 GPa it is not possible to find a self-consistent solution to the parametric curves for coesite, pointing to the likelihood of a phase transition.

  12. Friction measurements in piston-cylinder apparatus using quartz-coesite reversible transition (United States)

    Akella, J.


    The value of friction determined by monitoring piston displacement as a function of nominal pressure on compression and decompression cycles at 1273 K is compared with the friction value obtained by reversing the quartz-coesite transition at 1273 and 1073 K in a talc-glass-alsimag cell (Akella and Kennedy, 1971) and a low-friction salt cell (Mirwald et al., 1975). Quenching runs at 1273 K gave double values of friction of 0.25 GPa for the talc-glass-alsimag cell and 0.03 GPa for the salt cell. The piston-displacement technique gave somewhat higher values. Use of piston-displacement hysteresis loops in evaluating the actual pressure on a sample may lead to overestimates for decompression runs and underestimates for compression runs.

  13. Tracking silica in Earth's upper mantle using new sound velocity data for coesite to 5.8 GPa and 1073 K: Tracking Silica in Earth's Upper Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Liebermann, Robert C. [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; Zou, Yongtao [Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun China; Li, Ying [Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration, Beijing China; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Li, Baosheng [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Mineral Physics Institute, Stony Brook University, Stony Brook New York USA


    The compressional and shear wave velocities for coesite have been measured simultaneously up to 5.8 GPa and 1073 K by ultrasonic interferometry for the first time. The shear wave velocity decreases with pressure along all isotherms. The resulting contrasts between coesite and stishovite reach ~34% and ~45% for P and S wave velocities, respectively, and ~64% and ~75% for their impedance at mantle conditions. The large velocity and impedance contrasts across coesite-stishovite transition imply that to generate the velocity and impedance contrasts observed at the X-discontinuity, only a small amount of silica would be required. The velocity jump dependences on silica, d(lnVP)/d(SiO2) = 0.38 (wt %)-1 and d(lnVS)/d(SiO2) = 0.52 (wt %)-1, are utilized to place constraints on the amount of silica in the upper mantle and provide a geophysical approach to track mantle eclogite materials and ancient subducted oceanic slabs.

  14. Stresses and pressures at the quartz-coesite transition in shear experiments (United States)

    Richter, B.; Stunitz, H.; Heilbronner, R.


    Experiments on quartz (qtz) gouge were performed in a Griggs-type deformation apparatus at displacement rates of ~1.3 x 10-5 mms-1 or ~1.3 x 10-4 mms-1, at Pc= 1.0 GPa or 1.5 GPa and T = 600°C to 800°C. The starting material is a natural hydrothermally grown single crystal that was crushed to a powder with grain size d reaction from coe to qtz is observed. It appears therefore that the pressure that defines the QCT is not Pc or Pm, but σ1.

  15. Adiabats of quartz, coesite, olivine, and magnesium oxide to 50 kbar and 1000 K, and the adiabatic gradient in the Earth's mantle (United States)

    Boehler, R.


    The adiabats of olivine, magnesium oxide, and quartz were measured up to 50kbar and 1000 K. An end-loaded piston-cylinder apparatus with an in situ pressure gauge and a very fine thermocouple was used to measure (∂T/∂P)s during adiabatic compression. A power law between (∂T/∂P)s and compression yields values of the power n = -∂ ln (∂T/∂P)s/∂ ln ρ that agree with previous results from salts, metals, and fluids. Assuming constant values for n, the adiabtic gradient for an olivine upper mantle and a magnesium oxide lower mantle was calculated. The results agree well with some previous theoretical estimates. The volume dependence of the Grüneisen parameter γ was calculated from the thermodynamic equation ∂ ln γ/∂ ln ρ = ∂B/∂P - n, where B is the isothermal bulk modulus. γ is found to a good approximation to be proportional to volume. Table 6 is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-002; $1.00. Payment must accompany order.

  16. Petrology, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China), July 1 2002

    NARCIS (Netherlands)

    Fu, B.; Zheng, Y.-F.; Touret, J.L.R.


    In addition to the Triassic Hong'an low-T-high-P eclogite and the Xinxian coesite-bearing kyanite-glaucophane eclogite, Silurian coesite-free amphibole eclogites occur in the Sujiahe region, NW Dabie Shan of central China. A comprehensive study of petrology, Nd-Sr, O-H isotopes and fluid inclusions

  17. Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, Milo D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  18. Crystallization of biogenic hydrous amorphous silica (United States)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.


    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high

  19. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China (United States)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.


    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  20. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite (United States)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.


    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  1. Is the HP-UHP Hong'an-Dabie-Sulu orogen a piercing point for offset on the Tan-Lu fault? (United States)

    Leech, Mary L.; Webb, Laura E.


    The Tan-Lu fault is a major strike-slip fault in eastern China that appears to offset the high-grade rocks of the Hong'an-Dabie-Sulu orogen left-laterally ˜540 km. We evaluate models for the collision between the South and North China blocks, published radiometric dates recording HP-UHP metamorphism and exhumation in the Hong'an-Dabie and Sulu terranes, and the timing of sinistral motion on the Tan-Lu fault to evaluate whether UHP rocks provide a piercing point for offset on the Tan-Lu fault. UHP metamorphism in Hong'an-Dabie was concurrent with Sulu based on U-Pb dating of coesite-bearing domains of zircon at 244 ± 5-226 ± 2 Ma for Hong'an-Dabie and 243 ± 4-225 ± 2 Ma for Sulu. Retrograde metamorphism began c. 220 Ma for both Hong'an-Dabie and Sulu, but retrograde zircon growth ended c. 214 Ma in Hong'an-Dabie and continued until c. 202 Ma in Sulu based on U-Pb dating of zircon domains external to coesite-bearing domains. Structures in Sulu are rotated 25° counter-clockwise from, but are broadly similar to, Hong'an-Dabie suggesting the two areas have a common Triassic orogenic history that pre-dates motion on the Tan-Lu fault, and that is consistent with paleomagnetic studies. We constructed a pre-Cretaceous restoration of the Hong'an-Dabie-Sulu belt that moves the Sulu terrane south, aligning the suture and the eclogite-facies isograd, and rotates Sulu c. 25° clockwise to re-align structures with Hong'an-Dabie. Our restoration is supported by published data and shows that the Hong'an-Dabie-Sulu orogen is a piercing point for post-collisional offset on the Tan-Lu fault and that these regions shared a common subduction-exhumation history. The Tan-Lu fault did not play a significant role in the Hong'an-Dabie-Sulu collision and likely developed later, in the Early Cretaceous.

  2. Timing of metamorphism and exhumation in the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: New constraints from complementary CA-ID-TIMS and LA-MC-ICP-MS geochronology (United States)

    Butler, J. P.; Jamieson, R. A.; Dunning, G. R.; Pecha, M. E.; Robinson, P.; Steenkamp, H. M.


    We present the results of a combined CA-ID-TIMS and LA-MC-ICP-MS U-Pb geochronology study of zircon and associated rutile and titanite from the Nordøyane ultra-high-pressure (UHP) domain in the Western Gneiss Region (WGR) of Norway. The dated samples include 4 eclogite bodies, 2 host-rock migmatites, and 2 cross-cutting pegmatites and leucosomes, all from the island of Harøya. Zircon from a coesite eclogite yielded an age of ca. 413 Ma, interpreted as the time of UHP metamorphism in this sample. Zircon data from the other eclogite bodies yielded metamorphic ages of ca. 413 Ma, 407 Ma, and 406 Ma; zircon trace-element data associated with 413 Ma and 407 Ma ages are consistent with eclogite-facies crystallization. In all of the eclogites, U-Pb dates from zircon cores, interpreted as the times of protolith crystallization, range from ca. 1680-1586 Ma, consistent with Gothian ages from orthogneisses in Nordøyane and elsewhere in the WGR. A zircon core age of ca. 943 Ma from one sample agrees with Sveconorwegian ages of felsic gneisses and pegmatites in the western part of the area. Migmatites hosting the eclogite bodies yielded zircon core ages of ca. 1657-1591 Ma and rim ages of ca. 395-392 Ma, interpreted as the times of Gothian protolith formation and Scandian partial melt crystallization, respectively. Pegmatite in an eclogite boudin neck yielded a crystallization age of ca. 388 Ma, interpreted as the time of melt crystallization. Rutile and titanite from 3 samples (an eclogite and two migmatites) yielded concordant ID-TIMS ages of 378-376 Ma. The results are similar to existing U-Pb data from other Nordøyane eclogites (415-405 Ma). In combination with previous pressure-temperature data from the coesite eclogite, these ages indicate that peak metamorphic conditions of 3 GPa/760 °C were reached ca. 413 Ma, followed by decompression to 1 GPa/810 °C by ca. 397 Ma and cooling below ca. 600 °C by ca. 375 Ma. The results are compatible with protracted UHP

  3. Reduced sediment melting at 7.5-12 GPa: phase relations, geochemical signals and diamond nucleation (United States)

    Brey, G. P.; Girnis, A. V.; Bulatov, V. K.; Höfer, H. E.; Gerdes, A.; Woodland, A. B.


    Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5-12 GPa and 800-1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325-394, 1998) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO2 and 7 wt% H2O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite-siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at 10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000-1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich ( 1). Aragonite and Fe-Mg carbonate have very different REE partition coefficients ( D Mst-Sd/L ~ 0.01 and D Arg/L ~ 1). Nb, Ta, Zr and Hf are strongly incompatible in both carbonates. The bearthite/melt partition coefficients are very high for LREE (>10) and decrease to ~1 for HREE. All HFSE are strongly incompatible in bearthite. In contrast, Ta, Nb, Zr and Hf are moderately to strongly compatible in ZrSiO4 and TiO2 phases. Based on the obtained partition coefficients, the composition of a mobile phase derived by sediment melting in deep subduction zones was calculated. This phase is strongly enriched in

  4. Calibration of a belt apparatus to 1800°C and 6 GPa (United States)

    Brey, G. P.; Weber, R.; Nickel, K. G.


    A belt type solid media high-pressure apparatus has been calibrated to the same accuracy as piston-cylinder apparatuses. This was achieved by ensuring high reproducibility of pressures and temperatures and by calibrating the system with well-established, internally consistent phase transitions. We have used the melting of silver (Mirwald and Kennedy, 1979), the quartz-coesite transition (Mirwald and Masonne, 1980), and the graphite-diamond boundary (Kennedy and Kennedy, 1976). High reproducibility of experimental conditions can be achieved by machining the various components of the furnace assembly very accurately and by using components which do not contaminate the thermocouple and have 99-100% theoretical density (in our case single-crystal MgO and natural polycrystalline CaF2). It is essential that the gasket material has well-defined mechanical properties: its friction behavior must be reproducible in each experiment so that the ram pressure always acts on the pressure vessel and the sample in the same way. Factory-processed pyrophyllite fulfills this requirement. With all precautions taken and on the basis of the reactions cited above, we claim an accuracy of ±7°C and ±(1% nominal pressure+0.05 GPa). This corresponds to the accuracy given by Mirwald et al. (1975) for a low-friction cell for a piston-cylinder apparatus. Our belt apparatus is used routinely to achieve pressures up to 6 GPa and temperatures up to 1800°C.

  5. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith (United States)

    Seto, Yusuke; Miyake, Akira; Sekine, Toshimori; Tomeoka, Kazushige; Matsumoto, Megumi; Kobayashi, Takamichi


    Moganite, a monoclinic SiO2 phase, has been discovered in a lunar meteorite. Silica micrograins occur as nanocrystalline aggregates of mostly moganite and occasionally coesite and stishovite in the KREEP (high potassium, rare-earth element, and phosphorus)–like gabbroic-basaltic breccia NWA 2727, although these grains are seemingly absent in other lunar meteorites. We interpret the origin of these grains as follows: alkaline water delivery to the Moon via carbonaceous chondrite collisions, fluid capture during impact-induced brecciation, moganite precipitation from the captured H2O at pH 9.5 to 10.5 and 363 to 399 K on the sunlit surface, and meteorite launch from the Moon caused by an impact at 8 to 22 GPa and >673 K. On the subsurface, this captured H2O may still remain as ice at estimated bulk content of >0.6 weight %. This indicates the possibility of the presence of abundant available water resources underneath local sites of the host bodies within the Procellarum KREEP and South Pole Aitken terranes. PMID:29732406

  6. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Yudhicara Yudhicara


    Full Text Available DOI:10.17014/ijog.2.2.91-99A tsunami landslide which caused hundreds casualties and lots of damage took place on Lembata Island in 1979. In order to understand the characteristics of the landslide mechanism, a field survey was conducted in 2013 which sampled both the origin soil and landslide material, and the water from hotspring around the landslide site. The physical properties of the soil obtained show that the original soil has dominantly coarser grain than the landslide material (80.5% coarser grain compared to 11.8% coarse grain respectively which indicates that the soil has become finer and softer. Hot spring analysis indicated that the mineral content of the water was 99.48% SO4. This shows that magmatism processes are involved which caused the soil to become acidic and may have fragilised the system. Results of X-ray Diffraction Mineralogy Analysis (XRD show that the original soil is composed of minerals of cristobalite, quartz, and albite, while the landslide material consists of clay minerals such as quartz, saponite, chabazite, silicon oxide, and coesite which are typical minerals in a hydrothermal environment. Based on these results, it can be concluded that the area was influenced by an active geothermal system that could be the main source mechanism behind this disastrous event. 

  7. A New Multiphase Equation of State for SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Maerzke, Katie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gammel, J. Tinka [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    SiO2 is found as α-quartz at ambient conditions. Under shock compression, it transforms into a much higher density stishovite-like phase around 20 GPa, then into a liquid phase above 100 GPa. The SESAME library contains older equations of state for α-quartz, polycrystalline quartz, and fused quartz. These equations of state model the material as a single phase; i.e., there is no high pressure phase transition. Somewhat more recently (in 1992), Jon Boettger published equations of state for α-quartz, coesite, and stishovite, along with a phase transition model to mix them. However, we do not have a multiphase EOS that captures the phase transitions in this material. Others are working on a high-accuracy model for very high pressure SiO2, since liquid quartz is used as an impedance matching standard above 100 GPa; however, we are focused on the 10-50 GPa range. This intermediate pressure range is most relevant for modeling the decomposition products of silicone polymers such as Sylgard 184 and SX358.

  8. Mineralogical characterization of a meteorite impact in Carancas, Puno

    International Nuclear Information System (INIS)

    Ceron Loayza, Maria L.; Bravo Cabrejos, Jorge A.


    We report the results of the study of a meteorite that impacted an inhabited zone in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by X ray diffractometry, transmission Moessbauer spectroscopy (at room temperature and at 4,2 K), and by energy dispersive X ray fluorescence reveal the presence in the meteorite simple of magnetic sites assigned to the Fe-Ni and troilite (Fe,S) phases, and of 3 paramagnetic doublets, two of them assigned to Fe 2+ , one associated to olivine and the other to pyroxene, and the third one due to a site occupied by Fe 3+ , which can be associated to oxides in a superparamagnetic state and/or by an Fe hydroxide. The soil samples from the crater reveal a composition that consists mainly of quartz, albite and impactites such as coesite and stishovite (SiO 2 ). The occurrence of these phases with a high content of SiO 2 in the crater soils strengthens the hypothesis of their origin induced by impact; we observe also the presence of the Fe oxide hematite, of aluminum silicates such as illite and montmorillonite, and an unassigned phase of Fe 3+ . In general, the results obtained by these techniques complement each other rather well and allow the verification of the origin of the studied simples. (author).

  9. The relationship between mantle pH and the deep nitrogen cycle (United States)

    Mikhail, Sami; Barry, Peter H.; Sverjensky, Dimitri A.


    Nitrogen is distributed throughout all terrestrial geological reservoirs (i.e., the crust, mantle, and core), which are in a constant state of disequilibrium due to metabolic factors at Earth's surface, chemical weathering, diffusion, and deep N fluxes imposed by plate tectonics. However, the behavior of nitrogen during subduction is the subject of ongoing debate. There is a general consensus that during the crystallization of minerals from melts, monatomic nitrogen behaves like argon (highly incompatible) and ammonium behaves like potassium and rubidium (which are relatively less incompatible). Therefore, the behavior of nitrogen is fundamentally underpinned by its chemical speciation. In aqueous fluids, the controlling factor which determines if nitrogen is molecular (N2) or ammonic (inclusive of both NH4+ and NH30) is oxygen fugacity, whereas pH designates if ammonic nitrogen is NH4+ or NH30. Therefore, to address the speciation of nitrogen at high pressures and temperatures, one must also consider pH at the respective pressure-temperature conditions. To accomplish this goal we have used the Deep Earth Water Model (DEW) to calculate the activities of aqueous nitrogen from 1-5 GPa and 600-1000 °C in equilibrium with a model eclogite-facies mineral assemblage of jadeite + kyanite + quartz/coesite (metasediment), jadeite + pyrope + talc + quartz/coesite (metamorphosed mafic rocks), and carbonaceous eclogite (metamorphosed mafic rocks + elemental carbon). We then compare these data with previously published data for the speciation of aqueous nitrogen across these respective P-T conditions in equilibrium with a model peridotite mineral assemblage (Mikhail and Sverjensky, 2014). In addition, we have carried out full aqueous speciation and solubility calculations for the more complex fluids in equilibrium with jadeite + pyrope + kyanite + diamond, and for fluids in equilibrium with forsterite + enstatite + pyrope + diamond. Our results show that the pH of the fluid is

  10. Partial melting of UHP calc-gneiss from the Dabie Mountains (United States)

    Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin


    Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.

  11. Quartz exsolution topotaxy in clinopyroxene from the UHP eclogite of Weihai, China (United States)

    Xu, Haijun; Zhang, Junfeng; Zong, Keqing; Liu, Liang


    Abundant oriented silica precipitates of α-quartz (4.0 ± 1.0 vol.%), in part coexisting with calcic amphiboles (topotactic relationships with their host clinopyroxenes. Three types of crystallographic topotactic relationship have been identified between quartz and host clinopyroxene: (1) 52% quartz precipitates share the same orientation for the c-axes with [0001]qz//[001]cpx; (2) 34% quartz precipitates share the same orientation for the a-axes with [11 2 bar0]qz//[001]cpx; and (3) 11% quartz precipitates share the same orientation for the s-planes with (11 2 bar1)qz//(100)cpx. Other quartz axes and planes disperse in large or small girdles around the shared axes or planes. Many quartz rods/needles are elongated parallel to the [001]cpx with the long axes of quartz being either [0001]qz or [11 2 bar0]qz. Amphibole precipitates have also a strong crystallographic relationship with host clinopyroxene, i.e., (100)amp//(100)cpx, [010]amp//[010]cpx, and [001]amp//[001]cpx. These results provide quantitative microstructural evidence supporting an exsolution origin for oriented quartz needles/rods in clinopyroxene and demonstrate that the exsolution of quartz from clinopyroxene occurred within the stability field of α-quartz rather than coesite. The oriented precipitates of α-quartz, in part coexisting with calcic amphiboles, in host clinopyroxene are probably promoted by supercritical fluid or partial melting during the early exhumation of eclogites. Our results suggest that oriented quartz precipitates in clinopyroxene cannot be used as an indisputable UHP-indicator.

  12. A Well Water Reverse Osmosis Desalination Unit Diagnosis

    International Nuclear Information System (INIS)

    Elfil, H.; Hila, M.; Hannachi, A.; Yeza, A.


    In this present work the diagnosis results of a reverse osmosis desalination unit are reported. Since 1997, the desalination unit was supplying a 1200 bed hotel. The feed water was driven from a well situated 300 m away form the sea. The water has an approximate salinity of 6gg.L -1 . The unit was producing 600 m 3 per day of desalinated water with a Total Dissolved Salts (TDS) of nearly 400 mg.L -1 . The desalination unit has two stages with 67 pour cent and 42 pour cent yields respectively giving an average yield of 81 pour cent. The behavior of all water streams with respect to aggressiveness and scaling tendency was assessed. The 2nd stage reject water was shown to exhibit a very high scaling behavior with an instantaneous precipitation in the absence of feed water chemical treatment. The analyses have shown that the produced water was very aggressive. The second stage module autopsy has revealed a sharp decrease of the membrane performances because of mineral as well as organic fooling buildup. The inorganic scale was essentially made of coesite and calcite and kaolinite clay. The presence of silica and clay could be attributed to an inadequate filtration pre-treatment process that was not able to retain all the suspended matter in the feed water. Whereas the presence calcite crystals at the membrane surface, reveals that the chemical inhibition performed at the pre-treatment process without adjusting the water pH was not able to prevent calcium carbonate precipitation. A periodic acid wash of the 2nd stage membranes is then necessary to guarantee this stage desired objectives.

  13. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. (United States)

    Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui


    The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of H2O on Upper Mantle Phase Transitions in MgSiO3: is the Seismic X-discontinuity an Indicator of Mantle Water Content

    Energy Technology Data Exchange (ETDEWEB)

    S Jacobsen; Z Liu; T Boffa Ballaran; E Littlefield; L Ehm; R Hemley


    The mantle X-discontinuity, usually assigned to positive seismic velocity reflectors in the 260-330 km depth range, has proved difficult to explain in terms of a single mineralogical phase transformation in part because of its depth variability. The coesite to stishovite transition of SiO{sub 2} matches deeper X-discontinuity depths but requires 5-10% free silica in the mantle to match observed impedance contrast. The orthoenstatite (OEn) to high-pressure clinoenstatite (HPCen) transformation of MgSiO{sub 3} also broadly coincides with depths of the X but requires chemically depleted and orthoenstatite-rich lithology at 300 km depth in order to match observed seismic impedance contrast. On the basis of high-pressure infrared spectroscopy, X-ray diffraction, and Raman spectroscopy, we show that 1300 ppm variation of H{sub 2}O content in MgSiO{sub 3} can displace the transition of low-pressure clinoenstatite (LPCen) to HPCen by up to 2 GPa, similar to previous quench experiments on the OEn to HPCen phase transition, where about 30-45 km (1.0-1.5 GPa) of deflection could occur per 0.1 wt% H{sub 2}O. If the mantle X-discontinuity results from pyroxene transitions in a depleted harzburgite layer, because of the strong influence of minor amounts of water on the transformation boundary, the depth of the mantle X-discontinuity could serve as a potentially sensitive indicator of water content in the uppermantle.

  15. Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya (United States)

    Jonnalagadda, Mallika K.; Karmalkar, Nitin R.; Duraiswami, Raymond A.; Harshe, Shivani; Gain, Sarah; Griffin, William L.


    The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.

  16. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuebing; Chen, Ting; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook, New York 11794 (United States); Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Kung, Jennifer [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Tony; Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)


    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  17. Dehydration and melting experiments constrain the fate of subducted sediments (United States)

    Johnson, Marie C.; Plank, Terry


    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  18. Analysis of the structural stability of the smectite submitted to high pressures and temperatures; Analise da estabilidade estrutural da esmectita sob altas pressoes e altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Alabarse, Frederico Gil


    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  19. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA) (United States)

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich


    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  20. Analysis of the structural stability of the smectite submitted to high pressures and temperatures

    International Nuclear Information System (INIS)

    Alabarse, Frederico Gil


    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  1. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China (United States)

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.


    Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.

  2. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    International Nuclear Information System (INIS)

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin


    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus

  3. Synthetic receiver function profiles through the upper mantle and the transition zone for upwelling scenarios (United States)

    Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian


    We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures

  4. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant


    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  5. Introduction to the structures and processes of subduction zones (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu


    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn

  6. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust (United States)

    Tomkins, Andrew G.; Evans, Katy A.


    Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (∼450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate

  7. Minor elements, HREE and d18O distribution in UHP garnets from the Dora-Maira massif (western Alps) (United States)

    Brunet, F.; Chazot, G.; Vielzeuf, D.; Chopin, C.


    The spatial distribution of minor elements, HREE and δ18O in garnet can be used as a probe of the availability and mobility of those elements and isotopes at the time of crystal growth, provided that the initial record was not significantly modified by intracrystalline diffusion and that growth took place under nearly constant pressure and temperature conditions. Garnets from three different Dora-Maira rock-types have been studied, (1) nearly pure pyrope (GT1) from the magnesian coesite-bearing quartzites, (2) almandine/pyrope dominant garnets (GT2) from jadeite-quartzite veins which crosscut the Mg-quartzite body, (3) almandine/grossular dominant garnets (GT3) from the country-rock gneiss, sampled in the vicinity of the quartzites. In GT1, minor elements are mainly Fe, Na and P. Na and P are incorporated according to a Na^+ + P5+ = Me2+ + Si4+ substitution with P_2O_5 contents up to 2000 to 2500 ppm. HREE concentrations obtained by LA-ICP-MS, vary by 2 orders of magnitude from core to rim. The δ18O ratio (Cameca 1270, Nancy), around 5 ppm (SMOW), is constant within error throughout the analysed crystals. In GT2, the situation is different since HREE concentrations appear remarkably constant within a given crystal and from one crystal to the other. In contrast with GT1, Na in GT2 is partly charge-balanced by yttrium incorporation. The δ18O ratio in GT2 of around 7 ppm is close to that encountered in GT3 (gneiss) between 7 and 8 ppm. In GT3, phosphorus content is close to detection limit (P_2O_5 below 300 ppm). HREE concentrations are highly variable from one crystal to the other and unfortunately, the size of garnet crystals does not allow profiling. Although δ18O ratio in garnet is imposed by the bulk-rock isotopic composition, HREE distribution is dominated by element availability through the fluid composition and/or absence/presence of accessory phases. The decrease in HREE and P concentration from GT1 cores to rims suggest that these elements are

  8. Serpentinite-driven Exhumation of the UHP Lago di Cignana Unit in the Fossil Alpine Plate Interface (United States)

    Scambelluri, M.; Gilio, M.; Angiboust, S.; Godard, M.; Pettke, T.


    The Lago di Cignana Unit (LCU) is a coesite- [1] and diamond-bearing [2] slice of oceanic-derived eclogites and metasediments recording Alpine UHP metamorphism at 600 °C-3.2 GPa (~110 km depth) [3]. The LCU is tectonically sandwiched between the eclogitic Zermatt-Saas Zone (ZSZ; 540 °C-3.2 GPa) [4] and the blueschist Combin Zone (400 °C-0.9 GPa) [5] along a tectonic structure joining HP units recording a ~1.2 GPa (40 km) pressure difference. So far, the ZSZ has been attributed to normal HP conditions and the mechanism driving exhumation and accretion of the LCU in its present structural position is not fully understood.We performed petrography and bulk-rock trace element analyses of rocks from LCU and ZSZ serpentinites. We observed that, while serpentinites in the core of the ZSZ show normal subduction zone trace elements and REE's patterns, the Ol+Ti-chu+Chl veins and host serpentinites enveloping the LCU are strongly enriched in sediment-derived fluid-mobile elements (U, Th, Nb, Ta, Ce, Y, As, Sb) and REE's: their patterns well match those of the closely associated LCU-UHP rocks.The presence of extremely enriched Ol+Ti-chu+Chl veins in the serpentinites at direct contact with the UHP Lago di Cignana Unit suggests that fluid exchange between serpentinite and LCU crustal rocks occurred at peak metamorphic conditions. Their coupling therefore occurred during subduction burial and/or peak UHP conditions. As such, the buoyancy force originating from the relatively light serpentinites fuelled the exhumation of the Lago di Cignana Unit. In this contest, the tectonic contact between the Zermatt-Saas Zone and the Combin Zone evolved into a true tectonic plate interface surface.1. Reinecke (1998). Lithos 42(3), 147-189; 2. Frezzotti et al. (2011). Nat. Geosci. 4(10), 703-706; 3. Groppo et al. (2009). J. Metam. Geol. 27(3), 207-231; 4. Angiboust et al. (2009). Terra Nova 21(3), 171-180; 5. Reddy et al. (1999). J. Metam. Geol. 17, 573-590.

  9. A petro-structural review of the Zermatt-Saas Fee zone (United States)

    Schenker, Filippo Luca; Markus Schmalholz, Stefan; Baumgartner, Lukas


    The Zermatt-Saas Fee zone (ZSZ) is an imbricate of fragments of blueschist- to eclogite-facies metabasalts and metagabbros, serpentinites and mélange zones containing blocks of the above mentioned rocks. The ZSZ is usually interpreted as a fragment of oceanic crust belonging to the Piemont-Ligurian (Tethyan) Ocean that was accreted into the Alpine nappe pile. In the last decades the discovery of several Ultra-High Pressure (UHP, >2.7 GPa at 550-600 °C from coesite bearing eclogites and diamond-bearing fluid inclusions in garnet) localities lead to the interpretation of deep subduction (> 100 km) of the ZSZ in the Eocene, and subsequent uplift from mantle depth with high exhumation rates (e.g. Amato et al., 1999). However, these high pressures are in apparent contrast to the regional metamorphic conditions that reflect pressures peaking at < 2 GPa for 550-600°C (blueschist and eclogite mineral assemblages in mafic rocks). These latter metamorphic conditions do not need anomalous high burial histories and exhumation velocities higher than the plate velocities. The magnitude and distribution of pressure in the tectonic units of the ZSZ are important for constraining dynamic models for the evolution of the ZSZ and the Western Alps. Before entering into dynamic models, we propose a petro-structural overview where the published petrological data on pressure and temperature are critically reviewed, and positioned on a geological map and cross section in order to integrate them into the proper structural and tectonic framework. The questions we seek to answer are: How is the pressure distributed within the main tectonic units and within the entire ZSZ? Do we observe sharp or gradual pressure gradients within the ZSZ? Can the UHP conditions be averaged/extended to the entire ZSZ? If not, do they correspond to conditions of observable subunits, or do they reflect anomalies in the pressure field? Answering these questions is fundamental to better understand the

  10. Geochemistry of Gneisses from Dabie Complex and Tongbai Complex in Qinling-Tongbai-Dabie Orogenic Belt: Implications for Location of Yangtze-Sino-Korean Suture

    Institute of Scientific and Technical Information of China (English)


    The Dabie complex (DC) and the Tongbai complex (TBC) are separately distributed in the middle and eastern parts of the Qinling-Tongbai-Dabie orogenic belt. In this study, the Dabie complex can be divided into two units: one is the complex with no high pressure and ultrahigh pressure metamorphic rocks (DC1), and the other is the complex containing coesite-bearing eclogite lenses or boudins (DC2). Gneisses are predominant in the TBC, DC1 and DC2. Major and trace element data of gneisses in the TBC, DC1 and DC2 show them to be the orthogneisses. The gneisses in the DC1 have higher incompatible element contents and higher ratios of w(K2O)/w(Na2O) and w(La)n/w(Yb)n than those in the DC2. However, no obvious differences arise in other element contents and the ratios of w(La)/w( Nb), w(Nb)/w(Th), w(Nb)/w(Hf), w(Ba)/w(La), w(Sm)/w(Nd) and w(Th)/w(U) between the gneisses in the DC2 and those in the DC1. These observations suggest that the protoliths of the gneisses in the DC2 have affinities to those in the DC1. The difference between the DC1 and DC2 gneisses in incompat- ible element contents could reflect the difference in their partial melting extent. The TBC gneisses are geochemically similar to the DC1 gneisses, suggesting that the TBC and DC1 gneisses are the same lithologic unit in the Qinling-Tongbai-Dabie orogenic belt and that they have experienced similar formations and evolution histories. In the Qinling-Tongbai area, the TBC is part of the northern blocks of the Yangtze craton. Given the similarity of geochemical characteristics, the rock assemblage and the ages between the TBC and DC1 gneisses, we can infer that the Dabie complex also belongs to the northern blocks of the Yangtze craton. In terms of the distribution of eciogites and metamorphic facies, we propose that the collisionai suture in the Dabie area is distributed along the Xiaotian-Mozitan fault, at the contact with the Shang-Dan-Tongbai fault to the west.

  11. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong


    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  12. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: Implications for deep carbon cycle (United States)

    Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas


    Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.

  13. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies (United States)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas


    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  14. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu


    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on

  15. The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume? (United States)

    Korolev, N. M.; Kopylova, M.; Bussweiler, Y.; Pearson, D. G.; Gurney, J.; Davidson, J.


    The mantle beneath the Cullinan kimberlite (formerly known as "Premier") is a unique occurrence of diamondiferous cratonic mantle where diamonds were generated contemporaneously and shortly following a mantle upwelling that led to the formation of a Large Igneous Province that produced the world's largest igneous intrusion - the 2056 Ma Bushveld Igneous Complex (BIC). We studied 332 diamond inclusions from 202 Cullinan diamonds to investigate mantle thermal effects imposed by the formation of the BIC. The overwhelming majority of diamonds come from three parageneses: (1) lithospheric eclogitic (69%), (2) lithospheric peridotitic (21%), and (3) sublithospheric mafic (9%). The lithospheric eclogitic paragenesis is represented by clinopyroxene, garnet, coesite and kyanite. Main minerals of the lithospheric peridotitic paragenesis are forsterite, enstatite, Cr-pyrope, Cr-augite and spinel; the sublithospheric mafic association includes majorite, CaSiO3 phases and omphacite. Diamond formation conditions were calculated using an Al-in-olivine thermometer, a garnet-clinopyroxene thermometer, as well as majorite and Raman barometers. The Cullinan diamonds may be unique on the global stage in recording a cold geotherm of 40 mW/m2 in cratonic lithosphere that was in contact with underlying convecting mantle at temperatures of 1450-1550 °C. The studied Cullinan diamonds contain a high proportion of inclusions equilibrated at temperatures exceeding the ambient 1327 °C adiabat, i.e. 54% of eclogitic diamonds and 41% of peridotitic diamonds. By contrast, ≤ 1% of peridotitic diamond inclusions globally yield equally high temperatures. We propose that the Cullinan diamond inclusions recorded transient, slow-dissipating thermal perturbations associated with the plume-related formation of the 2 Ga Bushveld igneous province. The presence of inclusions in diamond from the mantle transition zone at 300-650 km supports this view. Cullinan xenoliths indicative of the thermal state of

  16. Structural and mineralogical studies of the Tso Morari Dome: Insight into the deformation kinematics of the eclogitic gneiss, Ladakh Himalaya, India (United States)

    Dutta, D.; Mukherjee, S.


    Coesite-bearing eclogites from the Tso Morari Dome (TMD) and the Kaghan valley (Pakistan) are two examples from the Himalayan orogen that attained UHP conditions within 5 Ma, by subducting the frontal part of the advancing Indian plate through a subduction channel, and subsequently extruded rapidly ( 17 mm yr-1). This study focuses on the deformation of the gneissic rock that hosts the UHP eclogites. 25 rock samples were collected from two transects viz. (A) Sumdo-Karzok and (B) Sumdo-Debring. Preliminary thin-section studies reveal differences in microstructural characters between the rocks of A and B. Although dynamically recrystallised quartz grains are present in all these samples, grain boundary migration recyrstallisation ( 530-650 °C) are better preserved in the rocks of A. Similarly, intra-granular fractures in both quartz and feldspars, the latter being dominant, are more prominent in the samples along A. Chessboard extinction patterns (> 700 °C) in quartz, micro-faults in plagioclase grains and undulatory extinction in micas are also present. Samples close to the Zildat shear zone (ZSZ; N margin of the TMD) exhibit medium-sized, lenticular quartzo-feldspathic grains. Their abundance wanes away from the fault possibly due to decreasing deformation intensity. XRD studies reveal a decline in the ratio of modal percentage K-feldspar to that of muscovite towards the N margin: the fall being more gradual along B. Biotites are less abundant ( 14 % towards the ZSZ. Previous workers reported similar increase in micaceous minerals in ductile- and brittle shear zones from other terrains, and suggested higher fluid activity as the key factor. Subduction of the Indian continental crust and subsequent exhumation, along the subduction channel, followed Coutte- and Poiseuille flows, respectively. Hence, rocks near the ZSZ should exhibit opposing shear senses, which we encounter both at micro- and meso-scales. Besides, Google Earth images show geomorphologic features

  17. A modeling of the structure and favorable H-docking sites and defects for the high-pressure silica polymorph stishovite (United States)

    Gibbs, G. V.; Cox, D. F.; Ross, N. L.

    Employing first-principles methods, the docking sites for H were determined and H, Al, and vacancy defects were modeled with an infinite periodic array of super unit cells each consisting of 27 contiguous symmetry nonequivalent unit cells of the crystal structure of stishovite. A geometry optimization of the super-cell structure reproduces the observed bulk structure within the experimental error when P1 translational symmetry was assumed and an array of infinite extent was generated. A mapping of the valence electrons for the structure displays mushroom-shaped isosurfaces on the O atom, one on each side of the plane of the OSi3 triangle in the nonbonded region. An H atom, placed in a cell near the center of the super cell, was found to dock upon geometry optimization at a distance of 1.69 Å from the O atom with the OH vector oriented nearly perpendicular to the plane of the triangle such that the OH vector makes a angle of 91° with respect to [001]. However, an optimization of a super cell with an Al atom replacing Si and an H atom placed nearby in a centrally located cell resulted in an OH distance of 1.02 Å with the OH vector oriented perpendicular to [001] as observed in infrared studies. The geometry-optimized position of the H atom was found to be in close agreement with that (0.44, 0.12, 0.0) determined in an earlier study of the theoretical electron density distribution. The docking of the H atom at this site was found to be 330 kJ mol-1 more stable than a docking of the atom just off the shared OO edge of the octahedra as determined for rutile. A geometry optimization of a super cell with a missing Si generated a vacant octahedra that is 20% larger than that of the SiO6 octahedra. The valence electron density distribution displayed by the two-coordinate O atoms that coordinate the vacant octahedral site is very similar to those displayed by the bent SiOSi angles in coesite. The internal distortions induced by the defect were found to diminish rather

  18. Carbonatitic liquids and COH fluids from epidote-dolomite eclogites at 3.7 - 4.6 GPa: new perspectives on carbon transfer at subduction zones (United States)

    Poli, S.


    Current knowledge on the solidus temperature for carbonate-bearing rocks suggests that carbonatitic liquids should not form in a subducted oceanic lithosphere, unless anomalous thermal relaxation occurs. For a mildly warm subduction path, COH-bearing basaltic eclogites are expected to loose all H2O component at epidote breakdown, located at approx. 2.8-3.0 GPa. Above this pressure limit, the solidus is that of a carbonated basaltic eclogite which shows a minimum temperature of 1020 °C at 4.0-4.5 GPa (Dasgupta et al. 2004). However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of An-rich plagioclase. It has been shown that epidote disappearance with pressure depend on the normative anorthite content of the bulk composition considered (Poli et al. 2009); we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. Notably, this applies to epidosite rocks formed in hydrothermal environments at oceanic settings, then recovered in high-pressure and ultra-high pressure terrains. New experimental data from 3.7 to 4.6 GPa, 750°C to 1000 °C are intended to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component (An37 and An45). Experiments are performed in piston cylinder and multianvil machines apparatus, using both single and, buffered, double capsule techniques. Garnet, clinopyroxene and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid saturated conditions, epidote coexists with kyanite, dolomite and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, kyanite is found at 4.2 GPa, 850 °C. At 900 °C, fluid-rich conditions, a silicate fluid/melt of granitoid composition, a carbonatitic melt and Na-carbonate are observed. Close to

  19. The lower-temperature-pressure stability of pyrope in the presence of quartz in the system MgO-Al2O3-SiO2 (United States)

    Cheng, N.; Jenkins, D. M.


    of coesite are being done using a multi-anvil press to extend these results to the lower T range reported for many UHP terranes. Minor extrapolation of the present data to lower T puts the absolute minimum depth for pyrope-quartzites in Dora Maira at 95 km (3.0 GPa) at 800°C; even greater depths are expected for the reaction of pyrope + quartz + H2O to talc-bearing assemblages.

  20. Fractional ultrabasic-basic evolution of upper-mantle magmatism: Evidence from xenoliths in kimberlites, inclusions in diamonds and experiments (United States)

    Litvin, Yuriy; Kuzyura, Anastasia


    Ultrabasic peridotites and pyroxenites together with basic eclogites are the upper-mantle in situ rocks among xenoliths in kimberlites. Occasionally their diamond-bearing varieties have revealed within the xenoliths. Therewith the compositions of rock-forming minerals demonstrate features characteristic for primary diamond-included minerals of peridotite and eclogite parageneses (the elevated contents of Cr-component in peridotitic garnets and Na-jadeitic component in eclogitic clinopyroxenes). High-pressure experimental study of melting equilibria on the multicomponent peridotie-pyroxenite system olivine Ol - orthopyroxene Opx - clinopyroxene Cpx - garnet Grt showed that Opx disappeared in the peritectic reaction Opx+L→Cpx (Litvin, 1991). As a result, the invariant peritectic equilibrium Ol+Opx+Cpx+Grt+L of the ultrabasic system was found to transform into the univariant cotectic assemblage Ol+Cpx+Grt+L. Further experimental investigation showed that olivine reacts with jadeitic component (Jd) with formation of garnet at higher 4.5 GPa (Gasparik, Litvin, 1997). Study of melting relations in the multicomponent system Ol - Cpx - Jd permits to discover the peritectic point Ol+Omph+Grt+L (where Omph - omphacitic clinopyroxene) at concentration 3-4 wt.% Jd-component in the system. The reactionary loss of Opx and Ol makes it possible to transform the 4-phase garnet lherzolite ultrabasic association into the bimineral eclogite assemblage. The regime of fractional Ol, Cpx and Grt crystallization must be accompanied by increasing content of jadeitic component in residual melts that causes the complete "garnetization of olivine". In the subsequent evolution, the melts would have to fractionate for basic SiO2-saturated compositions responsible for petrogenesis of eclogite varieties marked with accessory corundum Crn, kyanite Ky and coesite Coe. Both the peritectic mechanisms occur in regime of fractional crystallization. The sequence of the upper-mantle fractional

  1. Synthesis of lithium silicates generators of tritium by a modified method of combustion; Sintesis de silicatos de litio generadores de tritio por un metodo modificado de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, D


    -ray diffraction (XRD), Infrared spectroscopy (I S), semiquantitative elemental analysis (EDS) and Thermal gravimetric analysis (TGA). It was found that the molar ratios more adequate of LiOH : H{sub 2}SiO{sub 3} : CH{sub 4}N{sub 2}O to produce Li{sub 2}SiO{sub 3} were: 3:1:3 and 3:1:6. The present carbonates in the powders prepared were eliminated in the second series by heating of the mixture to higher temperatures (650 C), or for washed of the same distilled water. The urea in excess produced coesite (SiO{sub 2}) as main product in the ceramics. Presently work was obtained, in accordance with the results, a sample of lithium silicate (Li{sub 2}SiO{sub 3}) not polluted with any type of compound that it contained coal. (Author)

  2. The internal structure of eclogite-facies ophiolite complexes: Implications from the Austroalpine outliers within the Zermatt-Saas Zone, Western Alps (United States)

    Weber, Sebastian; Martinez, Raul


    -pressure indications. By contrast, the peak conditions derived from the ophiolites of the Zermatt-Saas Zone are uniform, and close to or inside the coesite stability field. These results further underline that the oceanic lithosphere, which experienced its geodynamic evolution as a relatively coherent unit, may contain slices of continental rocks, which in turn show differences in the metamorphic evolution compared to the surrounding ophiolites. Faßmer, K., Obermüller, G., Nagel, T.J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R.O.C., Münker, C. (2015): Coherent vs. non-coherent subduction of ophiolite complexes - new insights from the Zermatt-Saas Zone in the Western Alps. GeoBerlin 2015, Berlin, Germany. Skora, S., Mahlen, N. J., Johnson, C. M., Baumgartner, L. P., Lapen, T. J., Beard, B. L., Szilvagyi, E. T., 2015. Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. Journal of Metamorphic Geology, 33, 711-734. Weber, S., Sandmann, S., Fonseca, R. O. C., Froitzheim, N., Mu¨ nker, C., Bucher, K., 2015. Dating the beginning of Piemonte-Liguria Ocean subduction: Lu-Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas Zone, Switzerland). Swiss Journal of Geosciences, 108, 183-199.

  3. Synthesis of lithium silicates generators of tritium by a modified method of combustion

    International Nuclear Information System (INIS)

    Cruz G, D.


    analysis (TGA). It was found that the molar ratios more adequate of LiOH : H 2 SiO 3 : CH 4 N 2 O to produce Li 2 SiO 3 were: 3:1:3 and 3:1:6. The present carbonates in the powders prepared were eliminated in the second series by heating of the mixture to higher temperatures (650 C), or for washed of the same distilled water. The urea in excess produced coesite (SiO 2 ) as main product in the ceramics. Presently work was obtained, in accordance with the results, a sample of lithium silicate (Li 2 SiO 3 ) not polluted with any type of compound that it contained coal. (Author)

  4. Velocities of Subducted Sediments and Continents (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.


    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  5. Saturation curve of SiO2 component in rutile-type GeO2: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    International Nuclear Information System (INIS)

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami


    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO 2 component in the rutile-structured phase of GeO 2 (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO 2 in TiO 2 shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a

  6. Is the X-discontinuity really related to the presence of eclogite bodies in the mantle? (United States)

    Woodland, Alan; Knapp, Nadia; Klimm, Kevin


    A local seismic feature observed at ~300 km depth is referred to as the X-discontinuity (X-disc, e.g. Revenaugh & Jordan 1991). Several petrological explanations have been proposed for this discontinuity, but Pushcharovsky & Pushcharovsky (2012) attribute it to the formation of stishovite in eclogitic bodies, based upon the suggestion of Williams & Revenaugh (2005). If this link between the X-disc and the presence of eclogite is valid, it could have important geodynamic implications. In their model, stishovite appears in the eclogitic assemblage either through the transformation of previously existing free coesite or by exsolution of "excess" SiO2 from Ca-Eskola-bearing clinopyroxene (Ca0.50.5Si2O6). Essential to this model is if the amount of free SiO2 is enough to produce the observed seismic impedance contrast or not. To test whether exsolution of stishovite from Ca-Eskola-bearing clinopyroxene is a feasible mechanism, we have undertaken high-pressure experiments to determine the maximum Ca-Eskola component that can be incorporated in clinopyroxene over a range of P-T conditions, both shallower and deeper than that corresponding to the position of the X-disc. One series of experiments were performed in the simplified CaO-MgO-Al2O3-SiO2±Na2O system and one with 3 "natural" analog eclogite compositions (K2O-Na2O-CaO-MgO-FeO-Al2O3-SiO2). For the CMAS-experiments, all samples have the typical eclogitic assemblage of clinopyroxene + garnet ± SiO2 ± kyanite. With increasing pressure, the amount of garnet increases at the expense of clinopyroxene. Maximizing the Ca-Eskola content of clinopyroxene requires coexistence with a free SiO2 phase and an elevated Al2O3 content, but not necessarily the presence of kyanite. Ca-Eskola contents of ~20 mol % are obtained at 4 GPa, but decrease steadily with increasing pressure so that ˜ 4 mol % is present at pressures corresponding to the depth of the X-disc. Experiments in natural analog eclogite compositions produced even

  7. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides (United States)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.


    Continental Collision Zones. In: Ultrahigh Pressure Metamorphism, 25 Years After The Discovery Of Coesite And Diamond. London. Doi:10.1016/B978-0-12-385144-4.00015-1

  8. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China (United States)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming


    Qinling Island-arc Terrane and the Northern China Block caused by closing of the Early Paleozoic back-arc basin. Additionally, the studies of the metamorphism show that there are two zones of high / ultra-high pressure metamorphic rocks outcropping along the both side of the Northern Qingling island-arc terrane. On the north, it is characterized by eclogite and coesite outcropping in the Guanpo area, and the metamorphic zircon U-Pb age of 507±38 Ma and 509±12 Ma by means of SHRIM (Yang et al., 2002). Meanwhile, there also exist some high pressure basic granulite (Liu et al., 1995) and felsic granulite (Liu et al., 1996) distributing in the Xigou fault on the south margin of the Northern Qingling island-arc terrane. Zircon U-Pb ages of 485±3.3 Ma by means of LA-ICP-MS method (Chen et al., 2004) and 518±12 Ma by means of SHRIM (Liu et al., 2003) constrain the time of the metamorphism. All these metamorphic data suggest the Northern Qingling island-arc terrane had been evolved into a deep subduction event during 485-518 Ma. Based on all above evidences, we infer a new model about the tectonics and evolutionary history of the Norhtern Qinling Terrane. It is emphasized that the Early Paleozoic tectonics between the North China and Southern China Blocks had existed an ocean, island-arc and back-arc basin, and evolved into four stages of evolutionary stages: 1) initial spreading along the Shangdan zone during 516-523 Ma; 2) maturated ocean along the Shangdan zone during 516-471 Ma; 3) subduction along the south side of the Northern Qinling Terrane and formation of the Back-arc basin along the north side of the Northern Qinling Terrane during518-514; 4) closing of the back-arc basin, collision between the Northern Qingling island-arc terrane and the Northern China Block, and deep subduction of the Northern Qingling island-arc terrane during 518-485Ma. This work was supported by NSFC (40772140 & 40972140)