WorldWideScience

Sample records for code-based seismic structural

  1. Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base

    Science.gov (United States)

    Savage, B.; Snoke, J. A.

    2017-12-01

    The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years

  2. Seismic behaviour of geotechnical structures

    Directory of Open Access Journals (Sweden)

    F. Vinale

    2002-06-01

    Full Text Available This paper deals with some fundamental considerations regarding the behaviour of geotechnical structures under seismic loading. First a complete definition of the earthquake disaster risk is provided, followed by the importance of performing site-specific hazard analysis. Then some suggestions are provided in regard to adequate assessment of soil parameters, a crucial point to properly analyze the seismic behaviour of geotechnical structures. The core of the paper is centered on a critical review of the analysis methods available for studying geotechnical structures under seismic loadings. All of the available methods can be classified into three main classes, including the pseudo-static, pseudo-dynamic and dynamic approaches, each of which is reviewed for applicability. A more advanced analysis procedure, suitable for a so-called performance-based design approach, is also described in the paper. Finally, the seismic behaviour of the El Infiernillo Dam was investigated. It was shown that coupled elastoplastic dynamic analyses disclose some of the important features of dam behaviour under seismic loading, confirmed by comparing analytical computation and experimental measurements on the dam body during and after a past earthquake.

  3. Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.; Anderson, C.A.

    1984-01-01

    The Seismic Category I Structures Program currently being carried out at the Los Alamos National Laboratory is sponsored by the Mechanical/Structural Engineering Branch, Division of Engineering Technology of the Nuclear Regulatory Commission (NRC). This project is part of a program designed to increase confidence in the assessment of Category I nuclear power plant structural behavior beyond the design limit. The program involves the design, construction, and testing of heavily reinforced concrete models of auxiliary buildings, fuel-handling buildings, etc., but doe not include the reactor containment building. The overall goal of the program is to supply to the Nuclear Regulatory Commission experimental information and a validated procedure to establish the sensitivity of the dynamic response of these structures to earthquakes of magnitude beyond the design basis earthquake

  4. Seismic Structure of Southern African Cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Artemieva, Irina; Levander, Alan

    2014-01-01

    functions and finite-frequency tomography based on data from the South Africa Seismic Experiment (SASE). Combining the two methods provides high vertical and lateral resolution. The main results obtained are (1) the presence of a highly heterogeneous crustal structure, in terms of thickness, composition (as......Cratons are extremely stable continental crustal areas above thick depleted lithosphere. These regions have remained largely unchanged for more than 2.5 Ga. This study presents a new seismic model of the seismic structure of the crust and lithospheric mantle constrained by seismic receiver...

  5. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  6. Sensitivity of seismically isolated structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Hoan, Khac Pham

    2009-01-01

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  7. Sensitivity of seismically isolated structures

    Energy Technology Data Exchange (ETDEWEB)

    Politopoulos, I. [CEA Saclay, DEN DANS DM2S, 91 - Gif sur Yvette (France); Hoan, Khac Pham

    2009-07-15

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  8. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  9. Development of 3D CFD code based on structured non-orthogonal grids

    International Nuclear Information System (INIS)

    Vaidya, Abhijeet Mohan; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Most of the nuclear industry problems involve complex geometries. Solution of flow and heat transfer over complex geometries is a very important requirement for designing new reactor systems. Hence development of a general purpose three dimensional (3D) CFD code is undertaken. For handling complex shape of computational domain, implementation on structured non-orthogonal coordinates is being done. The code is validated by comparing its results for 3D inclined lid driven cavity at different inclination angles and Reynolds numbers with OpenFOAM results. This paper contains formulation and validation of the new code developed. (author)

  10. TECHNICAL NOTES SEISMIC SOIL-STRUCTURE INTERACTION ...

    African Journals Online (AJOL)

    dell

    SEISMIC SOIL-STRUCTURE INTERACTION AS A POTENTIAL TOOL FOR. ECONOMICAL ... ground motion at the interface with the rock. The soil can .... half space have an elastic modulus of E and a mass density of ρ . .... The trial solution to.

  11. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  12. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    with given yield displacement and capacity curve shape. For the 8-story case study building, deformation checking is the governing limit state. A conventional code-based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS-based approach was employed......The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...... to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high-seismicity and high-importance midrise building, a stiffer system with higher...

  13. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  14. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  15. Seismic activity and deep conductivity structure\

    Czech Academy of Sciences Publication Activity Database

    Kováčiková, Světlana; Logvinov, I. M.; Nazarevych, A.; Nazarevych, L.; Pek, Josef; Tarasov, V.; Kalenda, Pavel

    2016-01-01

    Roč. 60, č. 2 (2016), s. 280-296 ISSN 0039-3169 Institutional support: RVO:67985530 ; RVO:67985891 Keywords : seismic ity * conductivity structure * Earth´s crust * Eastern Carpathians Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016

  16. Seismic fragility of a reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurmann, Davide [Axpo Power AG, Baden (Switzerland); Proske, Dirk [Axpo Power AG, Doettingen (Switzerland); Cervenka, Jan [Cervenka Consulting, Prague (Czech Republic)

    2013-05-15

    Structures can be exposed to seismic loading. For structures of major importance, extreme seismic loadings have to be considered. The proof of safety for such loadings requires sophisticated analysis. This paper introduces an analysis method which of course still includes simplifications, but yields to a far more realistic estimation of the seismic load bearing capacity of reinforced concrete structures compared to common methods. It is based on the development of pushover curves and the application of time-histories for the dynamic model to a representative harmonic oscillator. Dynamic parameters of the oscillator, such as modal mass and damping are computed using a soil-structure-interaction analysis. Based on the pushover-curve nonlinear force-deformation-capacities are applied to the oscillator including hysteresis behaviour characteristics. The oscillator is then exposed to time-histories of several earthquakes. Based on this computation the ductility is computed. The ductility can be scaled based upon the scaling of the time-histories. Since both, the uncertainty of the earthquake by using different timehistories and the uncertainty of the structure by using characteristic and mean material values, are considered, the uncertainty of the structure under seismic loading can be explicitly represented by a fragility. (orig.)

  17. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1995-01-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  18. Seismic safety of building structures of NPP Kozloduy III

    International Nuclear Information System (INIS)

    Varbanov, G.I.; Kostov, M.K.; Stefanov, D.D.; Kaneva, A.D.

    2005-01-01

    In the proposed paper is presented a general summary of the analyses carried out to evaluate the dynamic behavior and to assess the seismic safety of some safety related building structures of NPP Kozloduy. The design seismic loads for the site of Kozloduy NPP has been reevaluated and increased during and after the construction of investigated Units 5 and 6. Deterministic and probabilistic approaches are applied to assess the seismic vulnerability of the investigated structures, taking into account the newly defined seismic excitations. The presented results show sufficient seismic safety for the studied critical structures and good efficiency of the seismic upgrading. The applicability of the investigated structures at sites with some higher seismic activities is discussed. The presented study is dealing mainly with the civil structures of the Reactor building, Turbine hall, Diesel Generator Station and Water Intake Structure. (authors)

  19. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  20. seismic refraction investigation of the subsurface structure

    African Journals Online (AJOL)

    DR. AMINU

    employed for exploration include magnetic, electrical and gravitational methods, which depends on the earth's natural fields. Others are seismic and electromagnetic methods, which depends on the introduction of artificial energy in thereof. The seismic refraction method uses the seismic energy that returns to the surface of ...

  1. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described, with special emphasis on a 'unified approach' for the digital generation of artificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) statistical analysis of the structural responses

  2. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described with special emphasis on a 'unified approach' for the digital generation of anificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) Statistical analysis of the structural responses. (Auth.)

  3. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  4. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  5. Seismic qualification of civil engineering structures - Temelin NPP

    International Nuclear Information System (INIS)

    Schererova, K.; Holub, I.; Stepan, J.; Maly, J.

    2004-01-01

    Basic information is presented about the input data and methodology used for evaluation of Temelin NPP civil structures. The existing conditions as listed in POSAR report for the two reactor units are considered. The original design of the power plant assumed a lower level of locality seismic hazard, as followed from seismological surveys that where then available. Later the seismic assessment was updated while fully respecting IAEA recommendations and using a minimum value of acceleration in the horizontal direction PGAHOR = 0.1 g at free field level for SL-2. In relation to the new seismic project, new qualification of the structures, components and systems classed as seismic resistance category 1 was carried out. Since the Czech Republic has no specific technical standards for seismic resistance evaluation of nuclear power plants, a detailed methodology was elaborated, comprising principles of seismic resistance evaluation based on IAEA guides and on common practice in countries with advanced nuclear power engineering. (P.A.)

  6. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  7. The Lithosphere in Italy: Structure and Seismicity

    International Nuclear Information System (INIS)

    Brandmayr, Enrico; Blagoeva Raykova, Reneta; Zuri, Marco; Romanelli, Fabio; Doglioni, Carlo; Panza, Giuliano Francesco

    2010-07-01

    We propose a structural model for the lithosphere-asthenosphere system for the Italic region by means of the S-wave velocity (V S ) distribution with depth. To obtain the velocity structure the following methods are used in the sequence: frequency-time analysis (FTAN); 2D tomography (plotted on a grid 1 o x 1 o ); non-linear inversion; smoothing optimization method. The 3D V S structure (and its uncertainties) of the study region is assembled as a juxtaposition of the selected representative cellular models. The distribution of seismicity and heat flow is used as an independent constraint for the definition of the crustal and lithospheric thickness. The moment tensor inversion of recent damaging earthquakes which occurred in the Italic region is performed through a powerful non-linear technique and it is related to the different rheologic-mechanic properties of the crust and uppermost mantle. The obtained picture of the lithosphere-asthenosphere system for the Italic region confirms a mantle extremely vertically stratified and laterally strongly heterogeneous. The lateral variability in the mantle is interpreted in terms of subduction zones, slab dehydration, inherited mantle chemical anisotropies, asthenospheric upwellings, and so on. The western Alps and the Dinarides have slabs with low dip, whereas the Apennines show a steeper subduction. No evidence for any type of mantle plume is observed. The asymmetric expansion of the Tyrrhenian Sea, which may be interpreted as related to a relative eastward mantle flow with respect to the overlying lithosphere, is confirmed. (author)

  8. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  9. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  10. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  11. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  12. Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

    Directory of Open Access Journals (Sweden)

    S. Bahram Beheshti Aval

    2016-12-01

    Full Text Available Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

  13. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  14. Shallow lunar structure determined from the passive seismic experiment

    International Nuclear Information System (INIS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Lammlein, D.; Latham, G.

    1975-01-01

    Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (Vsub(p) approximately equal to 100 ms -1 ), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extra-lunar components at the sites. (Auth.)

  15. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  16. Seismic analyses of structures. 1st draft

    International Nuclear Information System (INIS)

    David, M.

    1995-01-01

    The dynamic analysis presented in this paper refers to the seismic analysis of the main building of Paks NPP. The aim of the analysis was to determine the floor response spectra as response to seismic input. This analysis was performed by the 3-dimensional calculation model and the floor response spectra were determined for a number levels from the floor response time histories and no other adjustments were applied. The following results of seismic analysis are presented: 3-dimensional finite element model; basic assumptions of dynamic analyses; table of frequencies and included factors; modal masses for all modes; floor response spectra in all the selected nodes with figures of indicated nodes and important nodes of free vibration

  17. Seismic analyses of structures. 1st draft

    Energy Technology Data Exchange (ETDEWEB)

    David, M [David Consulting, Engineering and Design Office (Czech Republic)

    1995-07-01

    The dynamic analysis presented in this paper refers to the seismic analysis of the main building of Paks NPP. The aim of the analysis was to determine the floor response spectra as responseto seismic input. This analysis was performed by the 3-dimensional calculation model and the floor response spectra were determined for a number levels from the floor response time histories and no other adjustments were applied. The following results of seismic analysis are presented: 3-dimensional finite element model; basic assumptions of dynamic analyses; table of frequencies and included factors; modal masses for all modes; floor response spectra in all the selected nodes with figures of indicated nodes and important nodes of free vibration.

  18. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  19. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  20. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  1. Seismic Design Guidelines For Port Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Bernal, Alberto; Blazquez, Rafael

    In order to mitigate hazards and losses due to earthquakes, seismic design methodologies have been developed and implemented in design practice in many regions since the early twentieth century, often in the form of codes and standards. Most of these methodologies are based on a force-balance app...

  2. Structuring agreements for seismic group shoots

    International Nuclear Information System (INIS)

    Keeping, C.E.

    1999-01-01

    Sigma Explorations Inc. sells licenses to use Sigma owned seismic data. The company participates with exploration and production companies in the joint acquisition of semi-private participation surveys. This paper discusses three major types of seismic group shoots and the essential elements of the agreements that govern or should govern them. They are: (1) exploration and production company joint ventures, (2) publicly offered spec shoots, and (3) semi-private participation surveys. The key issue with the exploration and production company joint ventures is that the companies are owners of the seismic data in proportion to their contribution towards the cost of the program. Their use of the data should be restricted to those situations permitted by the other owners. These are not often well documented, and there is much concern in the industry as a result. The key issue with publicly offered spec shoots is that the seismic company ultimately owns the data and the client exploration and production company is a licensee and must behave as such. In most such cases the rights and responsibilities are well documented in formal agreements that are signed in advance of the program's beginning date

  3. Structural seismic upgrading of NPPs in Czech and Slovak republics

    Energy Technology Data Exchange (ETDEWEB)

    David, M [DAVID Consulting, Engineering and Design Office, Prague (Czech Republic)

    1997-03-01

    Several Nuclear Power Plants of the VVER type has been constructed during the past years in former Czechoslovak Republic. Some of them has been already put in operation and some of them are under construction. Nuclear Power Plants V1(2 units of VVER 440/230), V2(2 units of VVER 440/213) in Slovak and NPP Dukovany (4 units of VVER 440/213) in Czech republic are in operation. NPP Mochovce (4 units of VVER 440/213) in Slovak and NPP Temelin (4 units reduced now to 2 units VVER 1000) have been already almost completed, but still under construction. All above cited NPPs have not been either explicitly designed against earthquake or the design against earthquake or its input data must be upgraded to be compatible with present requirements. The upgrading of seismic input as well the seismic upgrading of all structures and technological equipments for so many NPPs has involved a lot of comprehensive work in Czech as well as in Slovak republics. The upgrading cannot be completed in a short time and as a rule the seismic upgrading has been usually performed in several steps, beginning with the most important arrangements against seismic hazard. The basic principles and requirements for seismic upgrading has been defined in accordance with the international and particularly with the IAEA recommendations. About the requirements for seismic upgrading of NPPs in Czech and Slovak republics will be reported in other contribution. This contribution is dealing with the problems of seismic upgrading of NNPs civil engineering structures. The aim of this contribution is to point out some specific problems connected firstly with very complicated concept of Versa structures and secondly with the difficult task to increase the structural capacity to the required seismic level. (J.P.N.)

  4. Structural seismic upgrading of NPPs in Czech and Slovak republics

    International Nuclear Information System (INIS)

    David, M.

    1997-01-01

    Several Nuclear Power Plants of the VVER type has been constructed during the past years in former Czechoslovak Republic. Some of them has been already put in operation and some of them are under construction. Nuclear Power Plants V1(2 units of VVER 440/230), V2(2 units of VVER 440/213) in Slovak and NPP Dukovany (4 units of VVER 440/213) in Czech republic are in operation. NPP Mochovce (4 units of VVER 440/213) in Slovak and NPP Temelin (4 units reduced now to 2 units VVER 1000) have been already almost completed, but still under construction. All above cited NPPs have not been either explicitly designed against earthquake or the design against earthquake or its input data must be upgraded to be compatible with present requirements. The upgrading of seismic input as well the seismic upgrading of all structures and technological equipments for so many NPPs has involved a lot of comprehensive work in Czech as well as in Slovak republics. The upgrading cannot be completed in a short time and as a rule the seismic upgrading has been usually performed in several steps, beginning with the most important arrangements against seismic hazard. The basic principles and requirements for seismic upgrading has been defined in accordance with the international and particularly with the IAEA recommendations. About the requirements for seismic upgrading of NPPs in Czech and Slovak republics will be reported in other contribution. This contribution is dealing with the problems of seismic upgrading of NNPs civil engineering structures. The aim of this contribution is to point out some specific problems connected firstly with very complicated concept of Versa structures and secondly with the difficult task to increase the structural capacity to the required seismic level. (J.P.N.)

  5. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  6. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  7. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  8. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians

    Science.gov (United States)

    Yang, X.; Gao, H.

    2017-12-01

    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  9. Seismic evaluation and strengthening of Bohunice nuclear power plant structures

    International Nuclear Information System (INIS)

    Shipp, J.G.; Short, S.A.; Grief, T.; Borov, V.; Kuzma, J.

    2001-01-01

    A seismic assessment and strengthening investigation is being performed for selected structures at the Bohunice V1 Nuclear Power Plant in Slovakia. Structures covered in this paper include the reactor building complex and the emergency generator station. The emergency generator station is emphasized in the paper as work is nearly complete while work on the reactor building complex is ongoing at this time. Seismic evaluation and strengthening work is being performed by a cooperative effort of Siemens and EQE along with local contractors. Seismic input is the interim Review Level Earthquake (horizontal peak ground acceleration of 0.3 g). The Bohunice V1 reactor building complex is a WWER 4401230 nuclear power plant that was originally built in the mid-1970s but had extensive seismic upgrades in 1991. Siemens has performed three dimensional dynamic analyses of the reactor building complex to develop seismic demand in structural elements. EQE is assessing seismic capacities of structural elements and developing strengthening schemes, where needed. Based on recent seismic response analyses for the interim Review Level Earthquake which account for soil-structure interaction in a rigorous manner, the 1991 seismic upgrade has been found to be inadequate in both member/connection strength and in providing complete load paths to the foundation. Additional strengthening is being developed. The emergency generator station was built in the 1970s and is a two-story unreinforced brick masonry (URM) shear wall building above grade with a one story reinforced concrete shear wall basement below grade. Seismic analyses and testing of the URM walls has been performed to assess the need for building strengthening. Required structural strengthening for in-plane forces consists of revised and additional vertical steel framing and connections, stiffening of horizontal roof bracing, and steel connections between the roof and supporting walls and pointing of two interior transverse URM

  10. Seismic performance for vertical geometric irregularity frame structures

    Science.gov (United States)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  11. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  12. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  13. A seismic monitoring system for response and failure of structures with intentionally reduced seismic strength

    International Nuclear Information System (INIS)

    Takanashi, Koichi; Ohi, Kenichi

    1988-01-01

    A group of steel and reinforced concrete scaled structures with intentionally reduced seismic strength to 1/3 to 1/2 were constructed in 1983 for long term observation in order to collect precise data of earthquake response and grasp failure mechanisms during earthquakes. A monitoring system was installed in the structures as well as in the surrounding soil. Some reliable data have been successfully recorded since then, which can be available for verification of analytical models. (author)

  14. The Crustal Structure and Seismicity of Eastern Venezuela

    Science.gov (United States)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  15. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  16. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  17. Long Term Seismic Observation in Mariana by OBSs : Double Seismic Zone and Upper Mantle Structure

    Science.gov (United States)

    Shiobara, H.; Sugioka, H.; Mochizuki, K.; Oki, S.; Kanazawa, T.; Fukao, Y.; Suyehiro, K.

    2005-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) had been performed from June 2003 until April 2004, which is a part of the MARGINS program funded by the NSF. Prior to this observation, a pilot long-term seismic array observation was conducted in the same area by using 10 LTOBSs from Oct. 2001 until Feb. 2003. At that time, 8 LTOBSs were recovered but one had no data. Recently, 2 LTOBSs, had troubles in the releasing, were recovered by the manned submersible (Shinkai 6500, Jamstec) for the research of the malfunction in July 2005. By using all 9 LTOBS's data, those are about 11 months long, hypocenter determination was performed and more than 3000 local events were found. Even with the 1D velocity structure based on the iasp91 model, double seismic zones and a systematic shift of epicenters between the PDE and this study were observed. To investigate the detail of hypocenter distribution and the 3D velocity structure, the DD inversion (tomoDD: Zhang and Thurber, 2003) was applied for this data set with the 1D structure initial model except for the crust, which has been surveyed by using a dense airgun-OBS system (Takahashi et al., 2003). The result of relocated hypocenters shows clear double seismic zones until about 200 km depth, a high activity area around the fore-arc serpentine sea-mount, the Big Blue, and a lined focuses along the current ridge axis in the back-arc basin, and the result of the tomography shows a image of subducting slab and a low-Vs region below the same sea-mount mentioned. The wedge mantle structure was not clearly resolved due to the inadequate source-receiver coverage, which will be done in the recent experiment.

  18. Nonlinear seismic analysis of a thick-walled concrete canyon structure

    International Nuclear Information System (INIS)

    Winkel, B.V.; Wagenblast, G.R.

    1989-01-01

    Conventional linear seismic analyses of a thick-walled lightly reinforced concrete structure were found to grossly underestimate its seismic capacity. Reasonable estimates of the seismic capacity were obtained by performing approximate nonlinear spectrum analyses along with static collapse evaluations. A nonlinear time history analyses is planned as the final verification of seismic adequacy

  19. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  20. Asymptotic Structure of the Seismic Radiation from an Explosive Column

    Directory of Open Access Journals (Sweden)

    Marco Rosales-Vera

    2018-01-01

    Full Text Available We study the structure of the seismic radiation in the far field produced by an explosive column. Using an asymptotic solution for the far field of vibration (Heelan’s solution, we find analytical expressions to the peak particle velocity (PPV diagrams. These results are extended to the case of a charge with finite velocity of detonation.

  1. Structural evaluation of the 2736Z Building for seismic loads

    International Nuclear Information System (INIS)

    Giller, R.A.

    1994-01-01

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements

  2. Seismic Evaluation of A Historical Structure In Kastamonu - Turkey

    Science.gov (United States)

    Pınar, USTA; Işıl ÇARHOĞLU, Asuman; EVCİ, Ahmet

    2018-01-01

    The Kastomonu province is a seismically active zone. the city has many historical buildings made of stone-masonry. In case of any probable future earthquakes, existing buildings may suffer substantial or heavy damages. In the present study, one of the historical traditional house located in Kastamonu were structurally investigated through probabilistic seismic risk assessment methodology. In the study, the building was modeled by using the Finite Element Modeling (FEM) software, SAP2000. Time history analyses were carried out using 10 different ground motion data on the FEM models. Displacements were interpreted, and the results were displayed graphically and discussed.

  3. Seismic fragility of reinforced concrete structures in nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1985-01-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions

  4. Development of Seismic Safety Assessment Technology for Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.B.; Suh, Y.P.; Lee, J.R. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This final report is made based on the research results of seismic analysis and seismic margin assessment field, carried out during 3rd stage ('01.4.1{approx}'02.3.31) under financial support of MOST(Ministry of Science and Technology). The objective of this research is to develop the soil - structure interaction analysis technique with high reliability, the main research subjects, performed during 3rd stage are as follows. 1) Preparation of user's guide manual for SSI analysis with high accuracy. 2) Sensitivity analysis of effective shear strain and seismic input motion. 3) Database construction of Hualien earthquake recorded data. (author). 21 refs., 27 figs., 2 tabs.

  5. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  6. Assessing seismic adequacy of existing nuclear power plant structures

    International Nuclear Information System (INIS)

    Belyaev, V.; Vinogradov, V.; Privalov, S.; Shishenin, V.

    2003-01-01

    Nowadays Russia's specialists perform a huge amount of works to revaluate the NPP safety. These works are certain to include refinement of NPP safety assessment under the effects of specific dynamic loads, earthquake effects included. It should be noted, that a number of Russian NPPs now in operation had been designed either with no account of these loads, or under the requirements which are underestimated as compared with the modern requirements on the external load composition and rate. Revaluation of NPP seismic safety is based on the results of the works taken under orderly sequence on assessment of (1) seismic input and ground effects; (2) structure response and state; (3) equipment and pipelines response and state. The paper considers the methods of NPP structures response and state assessment. Therewith we assume that ground motion predicted behavior at the construction basement has been preset for the SSE and OBE conditions and the effects of soil-structure interaction, including the situation of possible soft soil liquefaction. Necessity to determine both the reaction of a construction and its state as a whole as well as its elements reaction, to evaluate their bearing capacity and destruction zones formation makes it necessary to make up a detailed structural model, which is usually a finite element one. Since seismic revaluation is to be performed for the existing structures, characteristics of which can substantially differ from the design ones, revealing the actual state of this structures becomes critical. If the real values of physical and mechanical properties of the structure materials, connections of elements etc. are used as initial data in a structural model this permits to increase the design assessment credibility and reliability substantially. The paper analyzes the results of determining these initial assessments while inspecting several Russian NPPs on the basis of a 'combined' method. This method is realized at two consecutive stages. The

  7. Analysis of seismic effects on reinforced concrete structures

    International Nuclear Information System (INIS)

    Tai, A.A.

    1981-12-01

    An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr

  8. Seismic analysis of rack structures for fuel cycle facilities

    International Nuclear Information System (INIS)

    Mochio, Takashi; Morooka, Akihiko; Ito, Takashi.

    1987-01-01

    A concept of remote maintenance using in large remote cell and rack system structure, which is now under development at high active liquid waste vitrification facility of PNC and West Germany reprocessing plant WA-350, has been adopted to reduce the radiation exposure and increase the operating efficiency. The operation of a highly efficient remote maintenance system sometimes requires the rack structures to be fairly flexible, because of the large number of loose connections and/or gapped supports and the low number of rack frames. This means that there is a possibility of severe damage occurring due to large amplitude responses during a strong earthquake. Therefore, it is very important to estimate the earthquake-resistance capacity of rack structures, including process equipment, to earthquake excitation. This paper presents an outline of a new computer code ''FRACK'' to analyze the nonlinear seismic response of a rack structure developed as a first stage in the rack system seismic research program. (author)

  9. Wind/seismic comparison for upgrading existing structures

    International Nuclear Information System (INIS)

    Giller, R.A.

    1989-01-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluated for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations

  10. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  11. Seismic and Restoration Assessment of Monumental Masonry Structures

    Directory of Open Access Journals (Sweden)

    Panagiotis G. Asteris

    2017-08-01

    Full Text Available Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  12. Seismic and Restoration Assessment of Monumental Masonry Structures

    Science.gov (United States)

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  13. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  14. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  15. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  16. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

    1987-01-01

    The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

  17. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    Joshi, J.R.

    2000-01-01

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  18. Validation of seismic soil-structure interaction

    International Nuclear Information System (INIS)

    Finn, Liam W.D.; Ledbetter, R.H.; Beratan, L.L.

    1988-01-01

    Simulated earthquake tests were conducted on centrifuged model structures embedded in dry and saturated sand foundations. Accelerations and pore water pressures were recorded at many locations during the test. Model responses were analyzed using the program TARA-3 which incorporates a procedure for nonlinear dynamic effective stress analysis. Computed and measured responses agreed quite closely. (author)

  19. Validation of seismic soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Liam W.D. [Department of Civil Engineering, University of British Columbia, Vancouver (Canada); Ledbetter, R H [USAE Waterways Experiment Station, Vicksburg (United States); Beratan, L L [U.S. Nuclear Regulatory Commission, Office of Research, Washington, DC (United States)

    1988-07-01

    Simulated earthquake tests were conducted on centrifuged model structures embedded in dry and saturated sand foundations. Accelerations and pore water pressures were recorded at many locations during the test. Model responses were analyzed using the program TARA-3 which incorporates a procedure for nonlinear dynamic effective stress analysis. Computed and measured responses agreed quite closely. (author)

  20. Seismic Strengthening of Carpentry Joints in Traditional Timber Structures

    International Nuclear Information System (INIS)

    Parisi, Maria A.; Cordie, Cinzia; Piazza, Maurizio

    2008-01-01

    The static and dynamic behavior of timber structures largely depends on their connections. In traditional timber construction, elements are usually connected with carpentry joints based on contact pressure and friction, often with only minor reinforcement generically intended to avoid disassembling. In current practice, interventions for the upgrading of carpentry joints are mainly based on empirical knowledge according to tradition. Often they produce a general strengthening of the connection, but are not specific for the case of seismic action. Strengthening on heuristic bases may be only partially effective or possibly disproportioned. The behavior of the carpentry joints most used in roof structures is examined. The birdsmouth joint, connecting rafters to the tie beam, has been studied first, characterizing its behavior numerically and experimentally in monotonic and cyclic conditions. Other forms of the rafter-to-tie connection, the double notch joint and the case of parallel rafters, are discussed. Some general criteria for the seismic strengthening of these joints are presented

  1. Seismic Strengthening of Carpentry Joints in Traditional Timber Structures

    Science.gov (United States)

    Parisi, Maria A.; Cordié, Cinzia; Piazza, Maurizio

    2008-07-01

    The static and dynamic behavior of timber structures largely depends on their connections. In traditional timber construction, elements are usually connected with carpentry joints based on contact pressure and friction, often with only minor reinforcement generically intended to avoid disassembling. In current practice, interventions for the upgrading of carpentry joints are mainly based on empirical knowledge according to tradition. Often they produce a general strengthening of the connection, but are not specific for the case of seismic action. Strengthening on heuristic bases may be only partially effective or possibly disproportioned. The behavior of the carpentry joints most used in roof structures is examined. The birdsmouth joint, connecting rafters to the tie beam, has been studied first, characterizing its behavior numerically and experimentally in monotonic and cyclic conditions. Other forms of the rafter-to-tie connection, the double notch joint and the case of parallel rafters, are discussed. Some general criteria for the seismic strengthening of these joints are presented.

  2. Seismic Base Isolators For A Silo Supporting Structure

    Directory of Open Access Journals (Sweden)

    Bîtcă Daniel

    2015-05-01

    Full Text Available A 3000 tones capacity silo, located in a seismic area with ground acceleration ag = 0,20g and TC =1,0s, was designed in a classical solution The supporting structure has an octagonal shape in planview, and columns with “Maltese cross sections”. The main lateral resisting system is made up of centric bracings with cross-section class I.

  3. Response of sliding structures to seismic excitation: bibliographical study

    International Nuclear Information System (INIS)

    Sarh, K.; Duval, C.

    1992-11-01

    Calculation of the seismic response of structures on sliding supports involves the dual problem of ''non-linear'' and ''random'' dynamic behaviour. After a review of the non-linearities common in dynamics, slipping is compared with a hysteresis phenomenon. Simple examples are then used to present the Fokker-Planck equation and the equivalent linearization method. Finally, the methods for modification of the excitation spectrum intended for the engineering calculations are recalled. (authors). 21 figs., 23 refs

  4. Latest results from the Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Bennett, J.G.; Dove, R.C.; Dunwoody, W.E.; Farrar, C.

    1985-01-01

    With the use of scale models, the Seismic Category I Structures Program has demonstrated consistent results for measured values of stiffness at working loads. Furthermore, the values are well below the theoretical stiffnesses calculated from an uncracked strength-of-materials approach. The scale model structures, which are also models of each other, have demonstrated scalability between models. The current effort is to demonstrate that the use of microconcrete and other modeling effects do not introduce significant distortions that could drastically change conclusions regarding prototype behavior for these very stiff, shear dominated structures. 3 refs., 3 figs., 1 tab

  5. Seismic reliability assessment methodology for CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Stephens, M.J.; Nessim, M.A.; Hong, H.P.

    1995-05-01

    A study was undertaken to develop a reliability-based methodology for the assessment of existing CANDU concrete containment structures with respect to seismic loading. The focus of the study was on defining appropriate specified values and partial safety factors for earthquake loading and resistance parameters. Key issues addressed in the work were the identification of an approach to select design earthquake spectra that satisfy consistent safety levels, and the use of structure-specific data in the evaluation of structural resistance. (author). 23 refs., 9 tabs., 15 figs

  6. Seismic stability of a standalone glove box structure

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, A., E-mail: anupams@barc.gov.in [Bhabha Atomic Research Centre, Mumbai (India); Reddy, G.R. [Bhabha Atomic Research Centre, Mumbai (India); Ghosh, S. [Indian Institute of Technology Bombay, Mumbai (India); Ghosh, A.K.; Kumar, Arun [Bhabha Atomic Research Centre, Mumbai (India)

    2014-09-15

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  7. Seismic stability of a standalone glove box structure

    International Nuclear Information System (INIS)

    Saraswat, A.; Reddy, G.R.; Ghosh, S.; Ghosh, A.K.; Kumar, Arun

    2014-01-01

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  8. ASSESSMENT OF SEISMIC ANALYSIS METHODOLOGIES FOR DEEPLY EMBEDDED NPP STRUCTURES

    International Nuclear Information System (INIS)

    XU, J.; MILLER, C.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H. NRC.

    2005-01-01

    Several of the new generation nuclear power plant designs have structural configurations which are proposed to be deeply embedded. Since current seismic analysis methodologies have been applied to shallow embedded structures (e.g., ASCE 4 suggest that simple formulations may be used to model embedment effect when the depth of embedment is less than 30% of its foundation radius), the US Nuclear Regulatory Commission is sponsoring a program at the Brookhaven National Laboratory with the objective of investigating the extent to which procedures acceptable for shallow embedment depths are adequate for larger embedment depths. This paper presents the results of a study comparing the response spectra obtained from two of the more popular analysis methods for structural configurations varying from shallow embedment to complete embedment. A typical safety related structure embedded in a soil profile representative of a typical nuclear power plant site was utilized in the study and the depths of burial (DOB) considered range from 25-100% the height of the structure. Included in the paper are: (1) the description of a simplified analysis and a detailed approach for the SSI analyses of a structure with various DOB, (2) the comparison of the analysis results for the different DOBs between the two methods, and (3) the performance assessment of the analysis methodologies for SSI analyses of deeply embedded structures. The resulting assessment from this study has indicated that simplified methods may be capable of capturing the seismic response for much deeper embedded structures than would be normally allowed by the standard practice

  9. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  10. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  11. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  12. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  13. Effect of interconnectivity of structures against seismic load

    International Nuclear Information System (INIS)

    Bhuvaneshwari, P.; Elangovan, S.

    2003-01-01

    Since years world had experienced number of earthquakes and in India, zones have been modified according to the severity of earthquake and all this have made designers and engineers to concentrate rigorously to bring down the effect of damage to structures. Since the response of the structures to seismic force mainly depends on the distribution of mass, stiffness and damping characteristics an attempt is being made to compare and study the response by improving these characteristics in a simple building frame with and without infill. This in turn gives an idea of interconnecting the adjacent buildings of nuclear island to reduce the hazard to a minimum. (author)

  14. Psychological Structuring of citizen's willingness for seismic reinforcement of houses *

    OpenAIRE

    Kawarasaki, Yuta; Morita, Eri; Takezaki, Mayu; Nakagawa, Yoshinori; Nasu, Seigo

    2008-01-01

    The Japanese Islands are said to have entered at the seismic activity term from the time of the Kobe earthquake (1995). And it is said that the big earthquake from Hokkaido to Kyushu occurs in the probability of 90% within 50 years. When such a big earthquake occurs, collapse of a structure is one of main causes of bringing about serious damage. The Building Standard Law was improved in the past earthquake, and the building structure which is less than a Building Standard Law act has the very...

  15. Seismic fragility analysis of structural components for HFBR facilities

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1992-01-01

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations

  16. The influence of construction measurement and structure storey on seismic performance of masonry structure

    Science.gov (United States)

    Sun, Baitao; Zhao, Hexian; Yan, Peilei

    2017-08-01

    The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.

  17. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  18. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  19. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  20. Seismic response Analyses of Hanaro in-chimney bracket structures

    International Nuclear Information System (INIS)

    Lee, Jae Han; Ryu, J.S.; Cho, Y.G.; Lee, H.Y.; Kim, J.B.

    1999-05-01

    The in-chimney bracket will be installed in the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the effects on the capsules and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response anlayses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE (0.1 g) and SSE (0.2 g) are performed. The maximum horizontal displacements of the flow tubes are within the minimum half gaps between close flow tubes, it is expected that these displacement will not produce any contact between neighbor flow tubes. The stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. So, any damage on structural integrity is not expected when an in-chimney bracket is installed to upper part of the reactor chimney. (author). 12 refs., 24 tabs., 37 figs

  1. Structural Analysis of Cabinet Support under Static and Seismic Loads

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Lee, Sangjin; Oh, Jinho

    2014-01-01

    The cabinet support consists of frames including steel channels and steel square tubes. Four tap holes for screw bolts are located on the support frame of a steel channel to fix the cabinet on the support. The channels and square tubes are assembled by welded joints. The cabinet supports are installed on the outer walls of the reactor concrete island. The KEPIC code, MNF, is used for the design of the cabinet support. In this work, the structural integrity of the cabinet support is analyzed under consideration of static and seismic loads. A 3-D finite element model of the cabinet support was developed. The structural integrity of the cabinet support under postulated service loading conditions was evaluated through a static analysis, modal analysis, and response spectrum analysis. From the structural analysis results, it was concluded that the structural integrity of the cabinet support is guaranteed

  2. Endurance time method for Seismic analysis and design of structures

    International Nuclear Information System (INIS)

    Estekanchi, H.E.; Vafai, A.; Sadeghazar, M.

    2004-01-01

    In this paper, a new method for performance based earthquake analysis and design has been introduced. In this method, the structure is subjected to accelerograms that impose increasing dynamic demand on the structure with time. Specified damage indexes are monitored up to the collapse level or other performance limit that defines the endurance limit point for the structure. Also, a method for generating standard intensifying accelerograms has been described. Three accelerograms have been generated using this method. Furthermore, the concept of Endurance Time has been described by applying these accelerograms to single and multi degree of freedom linear systems. The application of this method for analysis of complex nonlinear systems has been explained. Endurance Time method provides a uniform approach to seismic analysis and design of complex structures that can be applied in numerical and experimental investigations

  3. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    One of the most common hypotheses made for soil-structure interaction analyses is that the earthquake input motion is identical at all points beneath the structure. Several papers have recently shown that this assumption may be overly conservative and that the effect of wave passage is extremely important. These studies typically employ a relatively simple model, namely, the basemat is represented by a rectangular rigid foundation resting on top of the soil and connected to the soil by a continuously distributed set of soil springs. The seismic input is applied at the base of the soil springs and is assumed to be traveling at a constant wave velocity across the site. It ispossible to improve on the soil/structure model by use of finite element methods; however, little is known about how to model the input seismic energy and typically a simple travelling wave is used. In this paper, the author examines the available data to determine: (i) the appropriate wave velocity to use, and (ii) if the currently availble analytic models are adequate. (Auth.)

  4. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-03-01

    It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used

  5. Structural interpretation of seismic data and inherent uncertainties

    Science.gov (United States)

    Bond, Clare

    2013-04-01

    associated further interpretation and analysis of the techniques and strategies employed. This resource will be of use to undergraduate, post-graduate, industry and academic professionals seeking to improve their seismic interpretation skills, develop reasoning strategies for dealing with incomplete datasets, and for assessing the uncertainty in these interpretations. Bond, C.E. et al. (2012). 'What makes an expert effective at interpreting seismic images?' Geology, 40, 75-78. Bond, C. E. et al. (2011). 'When there isn't a right answer: interpretation and reasoning, key skills for 21st century geoscience'. International Journal of Science Education, 33, 629-652. Bond, C. E. et al. (2008). 'Structural models: Optimizing risk analysis by understanding conceptual uncertainty'. First Break, 26, 65-71. Bond, C. E. et al., (2007). 'What do you think this is?: "Conceptual uncertainty" In geoscience interpretation'. GSA Today, 17, 4-10.

  6. Probing the internal structure of the asteriod Didymoon with a passive seismic investigation

    Science.gov (United States)

    Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.

    2017-09-01

    Understanding the internal structure of an asteroid has important implications for interpreting its evolutionary history, for understanding its continuing geological evolution, and also for asteroid deflection and in-situ space resource utilisation. Given the strong evidence that asteroids are seismically active, an in-situ passive seismic experiment could provide information about the asteroid surface and interior properties. Here, we discuss the natural seismic activity that may be present on Didymoon, the secondary component of asteroid (65803) Didymos. Our analysis of the tidal stresses in Didymoon shows that tidal quakes are likely to occur if the secondary has an eccentric orbit. Failure occurs most easily at the asteroid poles and close to the surface for both homogeneous and layered internal structures. Simulations of seismic wave propagation in Didymoon show that the seismic moment of even small meteoroid impacts can generate clearly observable body and surface waves if the asteroid's internal structure is homogeneous. The presence of a regolith layer over a consolidated core can result in the seismic energy becoming trapped in the regolith due to the strong impedance contrast at the regolith-core boundary. The inclusion of macro-porosity (voids) further complexifies the wavefield due to increased scattering. The most prominent seismic waves are always found to be those traveling along the surface of the asteroid and those focusing in the antipodal point of the seismic source. We find also that the waveforms and ground acceleration spectra allow discrimination between the different internal structure models. Although the science return of a passive seismic experiment would be enhanced by having multiple seismic stations, one single seismic station can already vastly improve our knowledge about the seismic environment and sub-surface structure of an asteroid. We describe several seismic measurement techniques that could be applied in order to study the

  7. Vulnerability and floor spectra of seismically isolated structures

    International Nuclear Information System (INIS)

    Pham, K.H.

    2010-09-01

    This thesis was motivated by issues that arise regarding the use of the method of seismic isolation in the nuclear industry. Despite the research conducted during the last decades in the field of seismic isolation, many questions about the behavior of isolated structures remain. These questions concern, on the one hand, the vulnerability of these structures, due to an excursion (unexpected) in the post-linear domain, and on the other hand, phenomena that can lead to a significant excitation of none isolated modes. Furthermore, unlike previous work studying the seismic behavior of buildings, an important part of this thesis is devoted to the behavior of equipment through the study of floor spectra. Firstly, the probability of failure, in the case of nonlinear response of the superstructure, was studied with simple models, for different laws of nonlinear behavior and different types of support. Then, the effects of heavy damping were investigated and the mechanism of amplification of the response of non-isolated modes has been explained. To resolve the amplification problem of none isolated modes, the mixed isolated systems, combining passive isolation with semi-active devices, have been considered. The numerical analyses confirm the effectiveness of this approach. Finally, a series of shaking table tests on a simple model with two degrees of freedom was conducted. The model is equipped with a magneto-rheological damper which is controlled as a semi-active device. The comparison of the experimental results with those of numerical simulations shows that the models developed are able to represent satisfactorily the essential physical phenomena. (author)

  8. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  9. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    Science.gov (United States)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more

  10. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  11. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  12. The Seismic Category I Structures Program results for FY 1987

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E.; Baker, W.E.

    1990-10-01

    The accomplishments of the Seismic Category I Structures Program for FY 1987 are summarized. These accomplishments include the quasi-static load cycle testing of large shear wall elements, an extensive analysis of previous data to determine if equivalent linear analytical models can predict the response of damaged shear wall structures, and code committee activities. In addition, previous testing and results that led to the FY 1987 program plan are discussed and all previous data relating to shear wall stiffness are summarized. Because separate reports have already summarized the experimental and analytical work in FY 1987, this report will briefly highlight this work and the appropriate reports will be references for a more detailed discussion. 12 refs., 23 figs., 18 tabs

  13. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  14. Seismic analysis of a large LMFBR with fluid-structure interactions

    International Nuclear Information System (INIS)

    Ma, D.C.

    1985-01-01

    The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs

  15. International activities concerning seismic effects on underground structures

    International Nuclear Information System (INIS)

    Hakala, W.W.

    1982-01-01

    At the 5th Annual Meeting of the ITA in Atlanta, Georgia, on June 15-17, 1979, the General Assembly approved the formation of the Working Group Seismic Effects on Underground Structures. The objectives of this Working Group are to: (1) collect data on earthquake damage to underground facilities throughout the world; (2) collect information on aseismic design procedures used within the various countries; and (3) synthesize the information and disseminate the results to the member nations of ITA. William W. Hakala of the US was designated the Animateur of the Working Group. The Working Group decided on the following sequential course of action to achieve the stated objectives: (1) continue to develop a bibliograhy on damages to underground structures by dynamic forces. This will be an ongoing activity of the Working Group; (2) each country is to develop a summary of case histories of earthquake damage to underground structures. These case histories will be discussed at the next meeting of the Working Group in order to identify those parameters that permit or prevent such damage; (3) the state-of-the-art paper on earthquake damage to underground opening being prepared in the US (John A. Blume and Associates, Engineers) is presently being printed and will then be distributed to the membership for comment. This report will form the basis for the activities described below; (4) the above activities should lead to a textbook - like document that provides a design philosophy for underground structures subjected to seismic forces; (5) the work tasks will suggest needed research to solve the identified problems. At each Working Group meeting the member nation delegates will provide a summary of research progress in their countries. These research needs will be documented, reviewed, revised, and disseminated on an annual basis

  16. Seismic performance of geosynthetic-soil retaining wall structures

    Science.gov (United States)

    Zarnani, Saman

    Vertical inclusions of expanded polystyrene (EPS) placed behind rigid retaining walls were investigated as geofoam seismic buffers to reduce earthquake-induced loads. A numerical model was developed using the program FLAC and the model validated against 1-g shaking table test results of EPS geofoam seismic buffer models. Two constitutive models for the component materials were examined: elastic-perfectly plastic with Mohr-Coulomb (M-C) failure criterion and non-linear hysteresis damping model with equivalent linear method (ELM) approach. It was judged that the M-C model was sufficiently accurate for practical purposes. The mechanical property of interest to attenuate dynamic loads using a seismic buffer was the buffer stiffness defined as K = E/t (E = buffer elastic modulus, t = buffer thickness). For the range of parameters investigated in this study, K ≤50 MN/m3 was observed to be the practical range for the optimal design of these systems. Parametric numerical analyses were performed to generate design charts that can be used for the preliminary design of these systems. A new high capacity shaking table facility was constructed at RMC that can be used to study the seismic performance of earth structures. Reduced-scale models of geosynthetic reinforced soil (GRS) walls were built on this shaking table and then subjected to simulated earthquake loading conditions. In some shaking table tests, combined use of EPS geofoam and horizontal geosynthetic reinforcement layers was investigated. Numerical models were developed using program FLAC together with ELM and M-C constitutive models. Physical and numerical results were compared against predicted values using analysis methods found in the journal literature and in current North American design guidelines. The comparison shows that current Mononobe-Okabe (M-O) based analysis methods could not consistently satisfactorily predict measured reinforcement connection load distributions at all elevations under both static

  17. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  18. Measuring Modularity in Open Source Code Bases

    Directory of Open Access Journals (Sweden)

    Roberto Milev

    2009-03-01

    Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.

  19. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  20. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  1. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  2. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  3. A review of procedures available to seismically requalify operating nuclear plant structures, equipment and distribution systems

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    It is well known that the loads and procedures used to seismically qualify nuclear power plant structures and components have changed dramatically during the past 15 to 20 years. In this paper, the various methods available to seismically qualify or requalify structures and components in operating nuclear power plants are identified and the advantages and disadvantages of each briefly summarized. (orig.)

  4. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  5. A sensitivity study of seismic structure-soil-structure interaction problems for nuclear power plants

    International Nuclear Information System (INIS)

    Matthees, W.; Magiera, G.

    1982-01-01

    A sensitivity study for the interaction effects of adjacent structures of nuclear power plants caused by horizontal seismic excitation has been performed. The key structural and soil parameters for linear and for nonlinear behaviour were varied within their applicable bandwidth. It has been shown that the interaction phenomena can contribute to the response of structures to such a large extent that it cannot be disregarded. (orig.)

  6. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  7. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  8. Seismic response analysis with liquid-structure interaction

    International Nuclear Information System (INIS)

    Thomas, R.G.; Harrop, L.P.

    1983-06-01

    A linear transient finite element stress analysis of a water filled tank has been carried out using the proprietary computer code ANSYS. The containment structure was represented as rigidly fixed to ground. The flexibility of the tank wall was modelled together with the hydrostatic and hydrodynamic effects of the water contents and attached concentrated masses. The foundations were considered to be laid in solid rock, and no soil-structure interaction effects were included. The seismic input was a ground response spectrum conservatively representing both the Temblor and Parkfield modified time history records. It was found that the response of the structure was greatest at the front end (furthest from the point at which the tank is connected to a rigid internal structure), and that this was dominated by the fundamental mode. Higher modes are important at the back end. Buckling at the front end of the tank has been identified as a potential failure mechanism, and attention has also been called to the tensile capacity of the wall to base junction in this region. The requirement for a proper criterion against which to assess the margin against plastic collapse in a safe shutdown analysis has been noted. In certain regions the structure does not shake-down under the repeated reversed cyclic loading, and the need for an assessment of the implications of this for fatigue resistance has been indicated. (author)

  9. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  10. Seismic capacities of existing nuclear power plant structures

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.; Narver, R.B.

    1983-01-01

    The paper presents a discussion of the more important conservatisms and some of the results obtained when this methodology has been applied to various nuclear plants. Results are shown for both BWR and PWR plants, on both rock and soil sites, and for plants and soil sites, and for plants that were designed in the late 1960s to plants that have yet to load fuel. Safe shutdown earthquake design levels of 0.1 g to 0.25 g were used for these plants. Overall median structural factors of safety for the lowest significant seismic failure capacity at each plant ranged from 3.5 to 8.5. The lowest containment-related failure capacity at each plant ranged from 4.6 to 31. The types of failure corresponding to each safety factor are also tabulated. (orig./HP)

  11. Comparisons of seismic and electromagnetic structures of the MELT area

    Science.gov (United States)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in

  12. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  13. Seismic Responses of an Added-Story Frame Structure with Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Xuansheng Cheng

    2014-01-01

    Full Text Available The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element software SAP2000. Calculation results show that, after adding the layers, the structure becomes flexible and the shear in the bottom layer decreases. However, the interlaminar shear of the other layers increases. The seismic response of the added layers is very significant and exhibits obvious whiplash effect. The interstory displacement angles of some layers do not meet the requirements. The seismic response of the structure decreases after the adoption of viscous dampers; thereby seismic requirements are satisfied.

  14. Importance of modeling beam-column joints for seismic safety of reinforced concrete structures

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Eligehausen, R.; Hofmann, J.

    2011-01-01

    Almost all structures, except the containment building, in a NPP can be classified as reinforced concrete (RC) framed structures. In case of such structures subjected to seismic loads, beam-column joints are recognized as the critical and vulnerable zone. During an earthquake, the global behavior of the structure is highly governed by the behavior of the joints. If the joints behave in a ductile manner, the global behavior generally will be ductile, whereas if the joints behave in a brittle fashion then the structure will display a brittle behavior. The joints of old and non-seismically detailed structures are more vulnerable and behave poorly under the earthquakes compared to the joints of new and seismically detailed structures. Modeling of these joint regions is very important for correct assessment of the seismic performance of the structures. In this paper, it is shown with the help of a recently developed joint model that not modeling the inelastic behavior of the joints can lead to significantly misleading and unsafe results in terms of the performance assessment of the structures under seismic loads. Comparison of analytical and experimental results is shown for two structures, tested under lateral monotonic seismic pushover loads. It is displayed that the model can predict the inelastic seismic response of structures considering joint distortion with high accuracy by little extra effort in modeling. (author)

  15. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Vp/Vs ratio) structures in high seismic potential zones is an important task which can lead to reduce seismic hazard for a future large earthquake.

  16. Quasi-static structural optimization under the seismic loads

    International Nuclear Information System (INIS)

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  17. Seismic reassessment of the structures of the Tihange 1 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Renard, J D [TRACTEBEL, Brussels (Belgium)

    1993-07-01

    This paper describes the assumptions and methods which were used for the initial seismic design of the first nuclear unit built at Tihange. After the description of the criteria and methods which were used for the seismic reassessment of this plant ten years after completion, it reports the special assumptions and the results of some special analyses that had to be made to justify the seismic safety of the structures of the plant.

  18. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  19. Historic timber skeleton structures and the local seismic culture

    Science.gov (United States)

    Bostenaru, M.

    2009-04-01

    This presentation deals with the employment of timber skeleton structure and the local seismic culture. After the 1755 earthquake in the reconstruction of Lisbon a type of building with timber skeleton and masonry infill called "gaiola pombalina" was promoted, since this was designed to better resists earthquakes. "Gaiola" means cage, and it was also named after the Marques de Pombal who introduced it in the reconstruction following the earthquake. The „gaiola pombalina" presents a timber skeleton with Saint Andrew crosses in the interior walls with masonry infill and thick masonry load bearing walls loosing in thickness to the upper floors in the exterior walls. The masonry can fall out during earthquakes but the building remains staying given the interior timber skeleton. The type of buildings with timber structure and (masonry) infill behaved well in earthquakes in various parts of the earth, like Nepal (the dhaji dewary type), Pakistan, Turkey (the himiş type after the 1999 earthquake) [both latter types were researched by Langenbach, www.conservationtech.com and www.traditional-is-modern.net] and also in Germany after the 1356 earthquake (the Southern German subtype of Fachwerk). Also in Italy a subtype called "casa baraccata" was promoted in a construction code to a similar time (following the 1783 earthquake in Southern Italy, see Tobriner 1983) as that of the "gaiola pombalina", the time of the Baroque, when town planning acquired another status. Unlike at the "gaiola pombalina" the "casa baraccata" the timber skeleton is at the exterior walls. For this reason this type of buildings is considered to be an expression of the local seismic culture. However, this type of buildings is common also for areas where seismic risk is not an issue, like half-timbered in England and the northern subtype of Fachwerk in Northern Germany, and in some high seismic risk regions with mountains and timber resources like Romania is not spread. Given these premises the author

  20. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  1. 3D Seismic Imaging over a Potential Collapse Structure

    Science.gov (United States)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  2. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    Science.gov (United States)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  3. Frequency-dependent springs in the seismic analysis of structures

    International Nuclear Information System (INIS)

    Tyapin, A.G.

    2005-01-01

    This paper presents a two-step algorithm for the seismic analysis of structure resting on the rigid embedded basement. Frequency-domain analysis of SSI is carried out on the second step for a platform model with special 'soil spring' which is complex, frequency-dependent, wave-dependent and non-balanced. Theory is presented to obtain the parameters of the soil spring on the first step of the analysis, performed without structure (only geometry of the basement is used) using well-known SASSI code (Lysmer et al, 1981) or in some other ways. On the second step in the SASSI analysis the soil spring is included in the model as a special finite element. Thus, the first step enables to save the computer resources on structure, the second step-to save resources on soil. Soil spring is the most general form for a SSI linear analysis: conventional springs and dashpots can be easily represented in such a format. Thus, the presented approach enables to study the impact of various factors (such as the embedment depth and soil-structure separation, the off-diagonal stiffness, various formulas for stiffness and damping, etc.) on the soil spring parameters. These parameters can be studied separately from the structure itself. As an example, the study of the horizontal soil mesh size is presented. Lumped soil spring may be used on the second step to obtain structural response spectra. To get stresses complex stiffness may be distributed over the basement slab and embedded walls. The proposed approach may be considered to be the alternative to the impedance method (see ASCE4-98). (authors)

  4. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  5. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Joe, Yang Hee; Cho, Sung Gook

    2003-01-01

    This paper briefly introduces an improved method for evaluating seismic fragilities of components of nuclear power plants in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. For the purpose of evaluating the effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures, several cases of comparative studies have been performed. The study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities. (author)

  6. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  7. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  8. Mitigation of seismic action on engineering structure by innovative SERB - CITON Solution

    International Nuclear Information System (INIS)

    Serban, V.; Panait, A.; Androne, M.; Ciocan, G. A.

    2009-01-01

    The paper presents the advantage of the SERB-CITON innovative solution for increasing the seismic resistance of engineering structures as compared with other solutions for seismic protection of buildings. SERB devices (telescopic and isolation) used in an innovative solution to control, limit and damp the seismic building movement, have a capsulated structure and are capable to overtake large compression and tension loads with controlled deflection and large damping. The great difference in the building behavior during an earthquake results from the fact that a building (along with its foundation ground) make-up an oscillating system which represents a built-up of kinetic and potential energy of repeated seismic movement oscillations. The oscillating system may or not overtake and built-up the seismic energy from each soil oscillation, as a function of the location of the important Eigen vibration periods of the building within the spectral component of the seismic action. The main problem that needs to be solved by the seismic design of buildings consists in the transfer of a minimum amount of seismic energy from the ground to the building and in doing so for the transferred energy should not build-up in the building-ground oscillating system. The paper presents the classical, modern and innovative solution for mitigation of seismic actions. (authors)

  9. Seismic soil-structure interaction of foundations with large piles

    International Nuclear Information System (INIS)

    Zeevaert, L.

    1996-01-01

    In seismic regions with soft soil deposits subjected to ground surface subsidence, there is the necessity to support the weight of constructions on large diameter piles or piers hearing on deep firm strata. To justify the action of these elements working under flexo compression and shear, it is necessary to perform calculations of soil pile interaction from a practical engineering point of view and estimate the order of magnitude of the forces and displacements to which these elements will be subjected during the seismic action assigned to the foundation. In this paper we defined a pier as a large diameter pile constructed on site. Furthermore, in the seismic analysis it is necessary to evaluate the seismic pore water pressure to learn on the effective seismic soil stresses close to the ground surface. (author)

  10. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Cho, Sung Gook; Joe, Yang Hee

    2005-01-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities

  11. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)]. E-mail: sgcho@incheon.ac.kr; Joe, Yang Hee [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)

    2005-08-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.

  12. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  13. An experimental investigation for scalability of the seismic response of microconcrete model nuclear power plant structures

    International Nuclear Information System (INIS)

    Bennett, J.G.; Dove, R.C.; Dunwoody, W.E.; Farrar, C.R.

    1987-01-01

    The paper reports the results from tests including reduced stiffnesses found in the prototype and 1/4 scale model, implications of the test results on the validity of past tests, and implications of these results from the 1986 tests on the seismic behavior of actual Seismic Category I Structures and their attached equipment. (orig./HP)

  14. Scope and status of Russian contribution for analysis methods for seismically isolated nuclear structure

    International Nuclear Information System (INIS)

    Beliayev, V.S.; Vinogradov, V.V.; Guskov, V.D.

    1993-01-01

    In the last few years, we can see in Russia the amplification of interest to problems of seismic isolation for potentially dangerous objects as the most effective way to alleviate the possible damage. This material comprises the data which characterize the level of theoretical design and experimental studying of seismic isolation systems of NPP components and structures. (author)

  15. PBMR phase 1 study: Seismic and structural design consideration - An overview of principles

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1997-01-01

    This paper briefly reviews the principles involved in the planning and design of the proposed facility to cater for seismic and structural loads. The conceptual layout is discussed, as well as the different load characteristics and scenarios. An outline is given of model used to estimate the seismic loads, whereafter the different analytical models are discussed. (author)

  16. Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Peizhen Li

    2017-12-01

    Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.

  17. New Frontiers on Seismic Modeling of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Salvatore Caddemi

    2017-07-01

    Full Text Available An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and efficient numerical tools, whose complexity and computational demand should be suitable for practical purposes. For these reasons, the formulation and the validation of simplified numerical strategies represent a very important issue in masonry computational research. In this paper, an innovative macroelement approach, developed by the authors in the last decade, is presented. The proposed macroelement formulation is based on different, plane and spatial, macroelements for the simulation of both the in-plane and out-of-plane behavior of masonry structures also in presence of masonry elements with curved geometry. The mechanical response of the adopted macroelement is governed by non-linear zero-thickness interfaces, whose calibration follows a straightforward fiber discretization, and the non-linear internal shear deformability is ruled by equivalence with a corresponding geometrically consistent homogenized medium. The approach can be considered as “parsimonious” since the kinematics of the adopted elements is controlled by very few degrees of freedom, if compared to a corresponding discretization performed by using non-linear finite element method strategies. This innovative discrete element strategy has been implemented in two user-oriented software codes 3DMacro (Caliò et al., 2012b and HiStrA (Historical Structures Analysis (Caliò et al., 2015, which simplify the modeling of buildings and historical structures by means of several wizard generation tools and input/output facilities. The proposed approach, that represents a powerful tool for the

  18. Validation of seismic soil structure interaction (SSI) methodology for a UK PWR nuclear power station

    International Nuclear Information System (INIS)

    Llambias, J.M.

    1993-01-01

    The seismic loading information for use in the seismic design of equipment and minor structures within a nuclear power plant is determined from a dynamic response analysis of the building in which they are located. This dynamic response analysis needs to capture the global response of both the building structure and adjacent soil and is commonly referred to as a soil structure interaction (SSI) analysis. NNC have developed a simple and cost effective methodology for the seismic SSI analysis of buildings in a PWR nuclear power station at a UK soft site. This paper outlines the NNC methodology and describes the approach adopted for its validation

  19. Seismic Responses of an Added-Story Frame Structure with Viscous Dampers

    OpenAIRE

    Cheng, Xuansheng; Jia, Chuansheng; Zhang, Yue

    2014-01-01

    The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element...

  20. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  1. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  2. A workflow for sub-/seismic structure and deformation quantification of 3-D reflection seismic data sets across different scales

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, C.M.; Lohr, T.; Oncken, O. [GFZ Potsdam (Germany); Tanner, D.C. [Goettingen Univ. (Germany). GZG; Endres, H. [RWTH Aachen (Germany)]|[TEEC, Isernhagen (Germany); Trappe, H.; Kukla, P. [TEEC, Isernhagen (Germany)

    2007-09-13

    The evolution of a sedimentary basin is mostly affected by deformation. Large-scale, subsurface deformation is typically identified by seismic data, sub-seismic small-scale fractures by well data. Between these two methods, we lack a deeper understanding of how deformation scales. We analysed a 3-D reflection seismic data set in the North German Basin, in order to determine the magnitude and distribution of deformation and its accumulation in space and time. A five-step approach is introduced for quantitative deformation and fracture prediction. An increased resolution of subtle tectonic lineaments is achieved by coherency processing, allowing to unravel the kinematics in the North German Basin from structural interpretation. Extensional events during basin initiation and later inversion are evident. 3-D retrodeformation shows major-strain magnitudes between 0-20% up to 1.3 km away from a fault trace, and variable deviations of associated extensional fractures. Good correlation of FMI data, strain distribution from retro-deformation and from geostatistic tools (see also Trappe et al., this volume) allows the validation of the results and makes the prediction of small-scale faults/fractures possible. The temporal component will be gained in the future by analogue models. The suggested workflow is applicable to reflection seismic surveys and yields in great detail both the tectonic history of a region as well as predictions for hydrocarbon plays or deep groundwater or geothermal reservoirs. (orig.)

  3. Seismic Performance of a Corroded Reinforce Concrete Frame Structure Using Pushover Method

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-01-01

    Full Text Available SAP2000 software was used to build the finite element model of a six-storey-three-span reinforced concrete (RC frame structure. The numerical simulation of the seismic performance of the RC frame structure incorporating different levels of rebar corrosion was conducted using pushover analysis method. The degradation characteristics of the seismic performance of the corroded structure under severe earthquake were also analyzed. The results show that the seismic performance of the RC frame decreased significantly due to corrosion of the longitudinal rebars. And the interstory drift ratios increase dramatically with the increasing of the corrosion rate. At the same time, the formation and development of plastic hinges (beam hinges or column hinges will accelerate, which leads to a more aggravated deformation of the structure under rare earthquake action, resulting in a negative effect to the seismic bearing capacity of the structure.

  4. Seismicity Characterization and Velocity Structure of Northeast Russia

    National Research Council Canada - National Science Library

    Mackey, Kevin G; Fujita, Kazuya

    2005-01-01

    A seismicity catalog and associated list of phases for many events has been compiled for northeast Russia using published and unpublished data from the regional networks operating in eastern Russia...

  5. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  6. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr

    2014-10-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.

  7. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    International Nuclear Information System (INIS)

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  8. A Framework for Reverse Engineering Large C++ Code Bases

    NARCIS (Netherlands)

    Telea, Alexandru; Byelas, Heorhiy; Voinea, Lucian

    2009-01-01

    When assessing the quality and maintainability of large C++ code bases, tools are needed for extracting several facts from the source code, such as: architecture, structure, code smells, and quality metrics. Moreover, these facts should be presented in such ways so that one can correlate them and

  9. A Framework for Reverse Engineering Large C++ Code Bases

    NARCIS (Netherlands)

    Telea, Alexandru; Byelas, Heorhiy; Voinea, Lucian

    2008-01-01

    When assessing the quality and maintainability of large C++ code bases, tools are needed for extracting several facts from the source code, such as: architecture, structure, code smells, and quality metrics. Moreover, these facts should be presented in such ways so that one can correlate them and

  10. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    Science.gov (United States)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  11. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    International Nuclear Information System (INIS)

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-01-01

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings

  12. Impact of coastal morphology, structure and seismicity on the tsunami surge

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Subrahmanyam, V.; Murty, G.P.S.; Rao, K.M.

    coastal regions are concerned, detailed geophysical surveys on the coastal morphology, structure and coastal seismicity are very essential in order to understand the relationship between tsunami run-up heights, inundation extent and the shelf...

  13. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Neprochnov, Y.P.; Rao, D.G.; Grinko, B.N.

    Seismic reflection and refraction, gravity, and bathymetric data across and along the central part of the Ninetyeast Ridge were analyzed to determine the crustal structure of the ridge and to understand its tectonics. The ridge in the study area...

  14. Seismic evaluation of K basin bridge cranes (HOI-320 ampersand HOI-418) and supporting structure

    International Nuclear Information System (INIS)

    Winkel, B.V.; Kanjilad, S.K.

    1996-03-01

    The Safety Class 1 100-K fuel storage basins are vulnerable to impact damage if a bridge crane were to fall during a seismic event. The pupose of this report is to address the adequacy of the K Basin bridge cranes to resist a seismic-induced fall. The approach used to demonstrate adequacy against falling, was to evaluate the crane structural components relative to requirements specified in ASME NOG-1, Rules for Construction of Overhead and Gantry Cranes. Additionally, wheel lift-off and the adequacy of the crane supporting structure, are addressed. Seismic adequacy of the mechanical hoist equipment is not addressed in this report

  15. Simplified seismic analysis applied to structures systems and components with limited radioactive inventories

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1989-01-01

    This paper presents a review of the current status of simplified methods of seismic design and analysis applicable to nuclear facility structures, systems and components important to public health and safety. In particular, the International Atomic Energy Agency, IAEA TEC DOC 348 procedure for structures and the Bounding Spectra Concept for equipment as being developed by Seismic Qualification Utility Group and the Electric Power Research Institute will be discussed in some detail

  16. Seismic strengthening of nuclear power plants V1-V2 structures in Slovak Republic

    International Nuclear Information System (INIS)

    David, M.

    1993-01-01

    The structural upgrading of main buildings of Bohunice NPP units V1 and V2 is described in this presentation. Design criteria for structural upgrading are included. Since the seismic upgrading of the existing NPP is usually very complicated and expensive task, designer is obliged to find the optimal solution between the economics and reliability of the upgrading. The assistance of IAEA missions during the process of Bohunice seismic upgrading is considered very fruitful

  17. Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine

    International Nuclear Information System (INIS)

    Khatibinia, Mohsen; Javad Fadaee, Mohammad; Salajegheh, Javad; Salajegheh, Eysa

    2013-01-01

    An efficient metamodeling framework in conjunction with the Monte-Carlo Simulation (MCS) is introduced to reduce the computational cost in seismic reliability assessment of existing RC structures. In order to achieve this purpose, the metamodel is designed by combining weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, called wavelet weighted least squares support vector machine (WWLS-SVM). In this study, the seismic reliability assessment of existing RC structures with consideration of soil–structure interaction (SSI) effects is investigated in accordance with Performance-Based Design (PBD). This study aims to incorporate the acceptable performance levels of PBD into reliability theory for comparing the obtained annual probability of non-performance with the target values for each performance level. The MCS method as the most reliable method is utilized to estimate the annual probability of failure associated with a given performance level in this study. In WWLS-SVM-based MCS, the structural seismic responses are accurately predicted by WWLS-SVM for reducing the computational cost. To show the efficiency and robustness of the proposed metamodel, two RC structures are studied. Numerical results demonstrate the efficiency and computational advantages of the proposed metamodel for the seismic reliability assessment of structures. Furthermore, the consideration of the SSI effects in the seismic reliability assessment of existing RC structures is compared to the fixed base model. It shows which SSI has the significant influence on the seismic reliability assessment of structures.

  18. Soil-structure interaction analysis of large scale seismic test model at Hualien in Taiwan

    International Nuclear Information System (INIS)

    Jang, J. B.; Ser, Y. P.; Lee, J. L.

    2001-01-01

    The issue of SSI in seismic analysis and design of NPPs is getting important, as it may be inevitable to build NPPs at sites with soft foundation due to ever-increasing difficulty in acquiring new construction sites for NPPs. And, the improvement of seismic analysis technique including soil-structure interaction analysis essential to achieve reasonable seismic design for structures and equipments, etc. of NPPs. Therefore, among the existing SSI analysis programs, the most prevalent SASSI is verified through the comparison numerical analysis results with recorded response results of Hualien project in this study. As a result, SASSI accurately estimated the recorded response results for the fundamental frequency and peak acceleration of structure and was proved to be reliable and useful for the seismic analysis and design of NPPs

  19. Structural Identification And Seismic Analysis Of An Existing Masonry Building

    International Nuclear Information System (INIS)

    Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara; Vignoli, Andrea

    2008-01-01

    The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings

  20. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  1. Seismic velocity structure in the lower crust beneath the seismic belt in the San-in district, Southwest Japan

    Science.gov (United States)

    Tsuda, H.; Iio, Y.; Shibutani, T.

    2017-12-01

    In the San-in district in Southwest Japan, a linear distribution of the epicenters of microearthquakes is seen along the coast of the Japan Sea (Fig. 1). The linear distribution is known as the seismic belt in the San-in district. Large earthquakes also occurred in the seismic belt. What localizes the earthquake distribution in the San-in district which is located far from the plate boundary? We thought that the model proposed by Iio et al. (2002, 2004) could answer this question. The model is as follows. Viscosity is low in a part of the lower crust, which is called `weak zone'. Stress and strain are concentrated in the upper crust right above the weak zone, due to concentrated deformation in the weak zone, and thus earthquakes occur there. To verify whether the weak zone exists in the lower crust beneath the seismic belt, we estimated the seismic velocity structure there by travel-time tomography. We used the tomography program, FMTOMO (Rawlinson et al., 2006). For the model space, we set the latitude range of 33°-36°N, the longitude range of 131°-136°E (Fig. 1), and the depth range of 0-81 km. The grid intervals are 0.1°×0.1°×7 km. We used arrival times picked by Japan Meteorological Agency (JMA) for earthquakes that occurred in the study area. In addition, we used arrival times manually picked at stations in and around the San-in district for earthquakes that occurred within the Philippine Sea Slab, because they are not included in the JMA data. Since the seismic waves from those earthquakes to the stations in the San-in district pass through the lower crust beneath the San-in district, we expect that these data can improve the resolution there. We revealed that low velocity anomalies exist in the lower crust beneath the seismic belt (Fig. 1). It is inferred that the region of low velocity anomalies is characterized by low viscosity, since velocities of rocks decrease with temperature and/or water content. Therefore, the results of this study support

  2. Underground structure characterization using motor vehicles as passive seismic sources

    Science.gov (United States)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  3. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  4. Investigation into the value of the seismic methods in delineating structure in southwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J H

    1948-12-31

    This paper constitutes the final report on a project that investigated the possibilities of seismic methods to delineate Palaeozoic structures in areas of hydrocarbon exploration in south-western Ontario. It begins with an introduction on the theory and practice of seismic reflection prospecting and the general Palaeozoic geology of the study area. It then describes the equipment used, preliminary investigations (alignment of instruments, velocity determinations), and field tests conducted over various hydrocarbon prospects. Finally, the feasibility of using seismic methods in the area is discussed along with reasons for difficulties experienced in the investigation.

  5. Seismic sensitivity study of a generic CANDU nuclear power plant: Soil-structure interaction

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Duff, C.G.

    1983-01-01

    The seismic sensitivity and capability study for a generic CANDU Plant is part of an overall development program of design standardization. The purpose of this paper is to investigate the sensitivities of structural responses and floor response spectra (FRS) to variations of structural and soil parameters. In the seismic design standardization, a wide range of soil conditions is considered and the envelopes of the resulting site spectra (soil-structure interaction effect) are then used for the design of the generic plant. The nuclear island structures considered herein have different relative stiffness and one of them has two layout/structure schemes: one is relatively flexible and the other is moderately stiff. In the preliminary phase of the seismic sensitivity study presented hereby, the soil-structure interaction seismic analysis is based on the half-space modelling (soil-spring lumped-mass) method and the response spectrum method for the seismic responses. Distinct patterns and sensitivity of the site spectrum analysis for structure schemes of different relative stiffness and for different structural elevations are observed and discussed. (orig.)

  6. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor

    2014-09-01

    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  7. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  8. Seismic characterisation of subsurface structural features of parts of ...

    African Journals Online (AJOL)

    A total of thirty-four migrated 2D seismic reflection lines and two composite well logs have been interpreted with a view to unravel the subsurface geological ... The interpretation procedure includes horizon identification, fault mapping, timing of horizons at selected shot points, posting of times, time-depth conversion and ...

  9. Seismic verification methods for structures and equipment of VVER-type and RBMK-type NPPs (summary of experiences)

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    The main verification methods for structures and equipment of already existing VVER-type and RBMK-type NPPs are briefly described. The following aspects are discussed: fundamental seismic safety assessment principles for VVER/RBMK-type NPPs (seismic safety assessment procedure, typical work plan for seismic safety assessment of existing NPPs, SMA (HCLPF) calculations, modified GIP (GIP-VVER) procedure, similarity of VVER/RBMK equipment to that included in the SQUG databases and seismic interactions

  10. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    Science.gov (United States)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere

  11. The utility of petroleum seismic exploration data in delineating structural features within salt anticlines

    Science.gov (United States)

    Stockton, S.L.; Balch, Alfred H.

    1978-01-01

    The Salt Valley anticline, in the Paradox Basin of southeastern Utah, is under investigation for use as a location for storage of solid nuclear waste. Delineation of thin, nonsalt interbeds within the upper reaches of the salt body is extremely important because the nature and character of any such fluid- or gas-saturated horizons would be critical to the mode of emplacement of wastes into the structure. Analysis of 50 km of conventional seismic-reflection data, in the vicinity of the anticline, indicates that mapping of thin beds at shallow depths may well be possible using a specially designed adaptation of state-of-the-art seismic oil-exploration procedures. Computer ray-trace modeling of thin beds in salt reveals that the frequency and spatial resolution required to map the details of interbeds at shallow depths (less than 750 m) may be on the order of 500 Hz, with surface-spread lengths of less than 350 m. Consideration should be given to the burial of sources and receivers in order to attenuate surface noise and to record the desired high frequencies. Correlation of the seismic-reflection data with available well data and surface geology reveals the complex, structurally initiated diapir, whose upward flow was maintained by rapid contemporaneous deposition of continental clastic sediments on its flanks. Severe collapse faulting near the crests of these structures has distorted the seismic response. Evidence exists, however, that intrasalt thin beds of anhydrite, dolomite, and black shale are mappable on seismic record sections either as short, discontinuous reflected events or as amplitude anomalies that result from focusing of the reflected seismic energy by the thin beds; computer modeling of the folded interbeds confirms both of these as possible causes of seismic response from within the salt diapir. Prediction of the seismic signatures of the interbeds can be made from computer-model studies. Petroleum seismic-reflection data are unsatisfactory for

  12. Experience of a Brazilian A/E in seismic analysis of nuclear structures components

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Leal, M.R.L.V.; Bevilacqua, L.

    1980-01-01

    The experience of Promon Engenharia S.A., a Brazilian A/E which participated in the civil and mechanical engineering projects of the first Nuclear Power Plant in Brazil, is presented. In these projects the aspects of input for seismic analysis, seismic analysis in nuclear structures founded on piles, dynamic analysis for airplane crash, and piping analysis had to be faced for the first time in the country. The solution of these problems and some case examples are presented. (Author) [pt

  13. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Bhaumik, Lopamudra; Raychowdhury, Prishati

    2013-01-01

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S a (T 1 )is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure

  14. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  15. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  16. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licensing reviews of nuclear power plant structures. The documentation of the Seismic Module of CARES consists of three volumes. This report represents Volume 3 of the volume documentation of the Seismic Module of CARES. It presents three sample problems typically encountered in the Soil-Structure Interaction analyses. 14 refs., 36 figs., 2 tabs

  17. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  18. Effect of gravity loading on inelastic seismic response of reinforced concrete structures

    International Nuclear Information System (INIS)

    Chowdhury, Rajib; Reddy, G. Rami; Roy, Raghupati; Dutta, Sekhar Chandra

    2003-01-01

    The effect of gravity loading is not considered in inelastic seismic response to avoid complexity and to reduce the number of influencing parameters. However, the possibility of considerable effect of this factor is indicated in many studies on inelastic seismic behaviour of structures. Hence, it is necessary to study the nature and extent of this effect on inelastic seismic behaviour of structures. The present paper attempts to fulfill this objective by studying the variation of energy dissipation due to presence of various level of axial load. The study is further extended to see the effect of axial force due to gravity loading on the ductility demand of hysteretic energy demand arising in structural elements of a simple one storey structures. The study shows that the presence of axial force may increase the energy dissipation capacity of structure leading to a reduction in ductility demand. (author)

  19. Development of seismic damage assessment system for nuclear power plant structures in Korea

    International Nuclear Information System (INIS)

    Hyun, Chang-Hun; Lee, Sung-Kyu; Choi, Kang-Ryoung; Koh, Hyun-Moo; Cho, HoHyun

    2003-01-01

    A seismic damage assessment system that analyses in real-time the actual seismic resistance capacity and the damage level of power plant structures has been developed. The system consists of three parts: a 3-D inelastic seismic analysis, a damage assessment using a damage index based on the previous 3-D analysis, and a 3-D graphic representation. PSC containment structures are modelled by finite shell elements using layered method and analysis is performed by means of time history inelastic seismic analysis method, which takes into account material nonlinearities. HHT-α, one kind of direct integration method, is adopted for the seismic analysis. Two damage indices at finite element and structural levels are applied for the seismic damage assessment. 3-D graphical representation of dynamic responses and damage index expedites procedure for evaluating the damage level. The developed system is now being installed at the Earthquake Monitoring Center of KINS (Korea Institute of Nuclear Safety) to support site inspections after an earthquake occurrence, and decisions about effective emergency measures, repair and operations of the plant. (author)

  20. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  1. Relating seismicity to the velocity structure of the San Andreas Fault near Parkfield, CA

    Science.gov (United States)

    Lippoldt, Rachel; Porritt, Robert W.; Sammis, Charles G.

    2017-06-01

    The central section of the San Andreas Fault (SAF) displays a range of seismic phenomena including normal earthquakes, low-frequency earthquakes (LFE), repeating microearthquakes (REQ) and aseismic creep. Although many lines of evidence suggest that LFEs are tied to the presence of fluids, their geological setting is still poorly understood. Here, we map the seismic velocity structures associated with LFEs beneath the central SAF using surface wave tomography from ambient seismic noise to provide constraints on the physical conditions that control LFE occurrence. Fault perpendicular sections show that the SAF, as revealed by lateral contrasts in relative velocities, is contiguous to depths of 50 km and appears to be relatively localized at depths between about 15 and 30 km. This is consistent with the hypothesis that LFEs are shear-slip events on a deep extension of the SAF. We find that along strike variations in seismic behaviour correspond to changes in the seismic structure, which support proposed connections between fluids and seismicity. LFEs and REQs occur within low-velocity structures, suggesting that the presence of fluids, weaker minerals, or hydrous phase minerals may play an important role in the generation of slow-slip phenomena.

  2. Enhanced Structural Interpretation Using Multitrace Seismic Attribute For Oligo-Miocene Target at Madura Strait Offshore

    Science.gov (United States)

    Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta

    2018-03-01

    Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.

  3. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  4. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    National Research Council Canada - National Science Library

    Ren, Yong; Zhang, Wei; Yang, Ting; Shen, Yang; Yang, Xiaoping

    2008-01-01

    To improve seismic calibration for nuclear explosion monitoring, we use 3D sensitivity kernels of finite-frequency body and surface waves to develop models of the crustal and mantle structures beneath eastern Eurasia...

  5. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Energy Technology Data Exchange (ETDEWEB)

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  6. Recent progress and application on seismic isolation energy dissipation and control for structures in China

    Science.gov (United States)

    Zhou, Fulin; Tan, Ping

    2018-01-01

    China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.

  7. Probabilistic Assessment of Structural Seismic Damage for Buildings in Mid-America

    International Nuclear Information System (INIS)

    Bai, Jong-Wha; Hueste, Mary Beth D.; Gardoni, Paolo

    2008-01-01

    This paper provides an approach to conduct a probabilistic assessment of structural damage due to seismic events with an application to typical building structures in Mid-America. The developed methodology includes modified damage state classifications based on the ATC-13 and ATC-38 damage states and the ATC-38 database of building damage. Damage factors are assigned to each damage state to quantify structural damage as a percentage of structural replacement cost. To account for the inherent uncertainties, these factors are expressed as random variables with a Beta distribution. A set of fragility curves, quantifying the structural vulnerability of a building, is mapped onto the developed methodology to determine the expected structural damage. The total structural damage factor for a given seismic intensity is then calculated using a probabilistic approach. Prediction and confidence bands are also constructed to account for the prevailing uncertainties. The expected seismic structural damage is assessed for a typical building structure in the Mid-America region using the developed methodology. The developed methodology provides a transparent procedure, where the structural damage factors can be updated as additional seismic damage data becomes available

  8. Local seismic tomography in Belgium - implications for the geological structure.

    Science.gov (United States)

    Sichien, E.; Camelbeek, T.; Henriet, J.-P.

    2009-04-01

    We present the results of a local seismic tomography in Belgium using well-located local earthquakes registered by 37 stations of the permanent seismic network and by mobile stations installed by the Royal Observatory of Belgium. Previous studies did not offer a lot of information on the middle and lower crust. The seismic profiles shot in the region (Belcorp, Decorp, Ecors, …) all show an unreflective middle and lower crust. The gravimetric and magnetic data show the presence of a sharp transition between the Brabant Massive and the Ardennes allochtone, furthermore, a broad positive gravimetric anomaly, is interpreted as a Moho uplift underneath the Campine region. Our results confirm the sharp transition between the Brabant Massif (higher than expected velocities) and the Ardennes allochtone (lower than expected velocities). At 27 km of depth lower crust - upper mantle velocities (7.50 km/s) are found underneath the Campine region and the Eifelplume region, confirming the Moho uplifts to 28 km underneath these regions. At 13 km similar velocities (7.50 km/s) are seen underneath the Eifelplume, they correspond to a lower crust-upper mantle that trusted in the crust during the Variscan orogeny.

  9. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    Science.gov (United States)

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  10. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  11. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  12. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  13. Seismic soil-structure-equipment interaction analysis of unit 5/6, Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, M [Bulgarian Academy of Sciences, Central Laboratory for Seismic Mechanics and Earthquake Engineering, Sofia (Bulgaria)

    1995-07-01

    This research project is aimed to analyse problems of soil-structure-equipment interaction under seismic excitation in case of Kozloduy NPP. Reevaluation and upgrading of Kozloduy NPP has started after 1977 Vrancea earthquake. New Safe Shutdown Earthquake (SSE) level was defined, upgrading most of structural equipment was performed, seismic instrumentation was installed. New investigations were initiated after 1990 IAEA mission visited the site. A comprehensive site confirmation project was started with a subsequent structural and equipment reevaluation and upgrading. This work deals with Units 5 and 6 of WWER-1000 type only.

  14. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licensing reviews of nuclear power plant structures. The documentation of the Seismic Module of CARES consists of three volumes. This report is Volume 2 of the three volume documentation of the Seismic Module of CARES and represents the User's Manual. 14 refs

  15. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licencing reviews of nuclear power plant structures. The docomentation of the Seismic Module of CARES consists of three volumes. This report represents Volume 1 of the three volume documentation of the Seismic Module of CARES. It concentrates on the theoretical basis of the system and presents modeling assumptions and limitations as well as solution schemes and algorithms of CARES. 31 refs., 6 figs

  16. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  17. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  18. Evidence of Apulian crustal structures related to low energy seismicity (Murge, Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Del Gaudio, V.; Ripa, R. R.; Iurilli, V.; Moretti, M.; Pieri, P. [Bari Univ., Bari (Italy). Dipt. di Geologia e Geofisica; Festa, V. [Bari Univ., Bari (Italy). Dipt. Geomineralogico; Pierri, P. [Bari Univ., Bari (Italy). Osservatorio Sismologico; Calcagnile, G. [Bari Univ., Bari (Italy). Dipt. di Geologia e Geofisica; Bari Univ., Bari (Italy). Osservatorio Sismologico; Tropeano, M [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Scienze Geologiche

    2001-12-01

    The discovery of recent co-seismic sedimentary structures and the detection of low energy seismic activity in the Murgian plateau (Apulia, Southern Italy) motivated a more detailed examination of the tectonics in this part of the Apulian plate commonly believed to be aseismic. In particular, it was examined the north-western zone where a seismic sequence with maximum magnitude 3.2 and tensional focal mechanism occurred in 1991. The analysis of the existing gravimetric data, integrated by three new profiles carried out across the epicentral area, disclosed an anomaly possibly due to an old tensional tectonic structure located within the upper crust. Even though the depth and the age hypothesised for the anomaly source would exclude a direct causal connection with the observed seismicity, this structure could be a shallower expression of a tectonic structure extending down to the crystalline basement: it could represent a zone of relative weakness where the regional stress, due to the interactions between Apennines and Apulian plate, encounters conditions facilitating the release of seismic energy.

  19. Effect of soil-foundation-structure interaction on the seismic response of wind turbines

    Directory of Open Access Journals (Sweden)

    Sam Austin

    2017-09-01

    Full Text Available Soil-foundation-structure interaction can affect the seismic response of wind turbines. This paper studies the effects of soil-foundation-structure interaction on the seismic response of 65 kW, 1 MW, and 2 MW horizontal-axis wind turbines with truncated cone steel towers. Four types of foundations with frequency-based design were analyzed, including spread foundation, mono pile, pile group with cap, and anchored spread foundation. Soil is modeled both implicitly (subgrade reaction modulus and explicitly. The finite element model developed using the ANSYS program was first validated using experimental data. Numerical models are then analyzed in both frequency and time domains using the Block Lanczos and generalized HHT-α formulations. Recommendations were given to simplify the soil-foundation-structure interaction analysis of wind turbines subjected to seismic loading.

  20. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight

  1. The seismic fragility analysis for multi-story steel structure in CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, B.S.; Kang, S-K.

    1996-01-01

    The Wolsong Unit 2 is a CANDU-6 type plant and is being constructed in the Wolsong site, where Design Basis Earthquake (DBE) was determined to be 0.2g. A seismic PSA for Wolsong Unit 2 is being performed as one of the conditions for the Construction Permit. One of the issues in the seismic PSA is the availability of the seismically non-qualified systems, which are located in the Turbine Building(T/B). Thus, the seismic fragility analysis for the T/B was performed to estimate the operability of the systems. The design seismic loads for the building were based on a ground response spectrum scaled down from the DBE to horizontal peak ground acceleration (pga) of 0.05g. The seismic fragility analysis for the building was performed using a factor of the safety method. It is estimated that the most critical failure is that of masonry walls and its High Confidence and Low Probability of Failure (HCLPF) capacity is 0.13g. The critical failure mode of the structure is identified to be tensile yielding failure of grip angle, and its HCLPF capacity is 0.34g. (author)

  2. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  3. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  4. Nonlinear seismic analysis of reinforced concrete framed structures considering joint distortion

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Eligehausen, Rolf; Hofmann, J.

    2012-01-01

    Seismic behavior of a reinforced concrete framed structure can be assessed with various analytical tools that may broadly be classified as linear elastic procedures and non-linear or inelastic analysis procedures. Since the reinforced concrete structures generally go in the inelastic range due to seismic loading, it can be easily said that the inelastic procedures would predict the performance of the structures in a much better and realistic way than the linear elastic procedures. However, at the same time, the inelastic procedures are computationally much more demanding. Thus, a good balance between accuracy and computational effort is often sought for. To assess the seismic behaviour of reinforced concrete framed structures, various experimental procedures can be used. Pushover tests that consist of loading the structure monotonically till failure can be conducted on large scale structures and give information about the load carrying and deformational capacity of the structure along with sequence of failure modes but only in one direction. Static cyclic tests, where inertia effects are not included give the above mentioned information for to and fro loading direction along with the information on energy consumption. Shake table tests, which are closest to the real life earthquake tests provide almost all the information required to understand the seismic behaviour but the scale of such tests are usually limited by the capacity of the shaking table facility. In this work, practically usable and sufficiently accurate models are reported to realistically model the inelastic response of the structures. A new model to consider the inelastic behaviour of the joints of poorly detailed structures is developed and presented. A practical hysteretic rule based on the extension of Pivot hysteretic model is developed for members and beam-column joints and the same is also reported. The analytical models are validated against the experimental results using pushover analysis

  5. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  6. Optimal organization of structural analysis and site inspection for the seismic requalification of Paks NPP

    International Nuclear Information System (INIS)

    Contri, P.

    1996-01-01

    The analysis described in this report deals with a numerical procedure aimed for the assessment of a methodology for the optimal organization of data collection, in the context of seismic requalification of structures and components of existing nuclear power plants. The presented procedure has quite a general application and an example was chosen for the Paks NPP where seismic requalification is in progress. The assessment was carried out in reference to the following main tasks: structure and soil data analysis; numerical model generation; deterministic dynamic analysis description; reliability analysis framework discussion; transfer function calculation via response surface approach; and the sensitivity evaluation

  7. Application of the SASSI soil structure interaction method to CANDU 6 NPP seismic analysis

    International Nuclear Information System (INIS)

    Ricciuti, R.A.; Elgohary, M.; Usmani, S.A.

    1996-01-01

    The standard CANDU 6 NPP has been conservatively qualified for a Design Basis Earthquake (DBE) peak horizontal ground acceleration of 0.2 g. Currently there are potential opportunities for siting the CANDU 6 at higher seismicity sites. In order to be able to extend the use of a standardized design for sites with higher seismicity than the standard plant, various design options, including the use of the SASSI Soil Structure Interaction (SSI) analysis method, are being evaluated. This paper presents the results of a study to assess the potential benefits from utilization of the SASSI computer program and the use of more realistic damping ratios for the structures

  8. Practical issues in structuring seismic licensing and acquisition agreements

    International Nuclear Information System (INIS)

    Lawrence, M.A.

    1999-01-01

    Some issues facing the geophysical industry in the area of licensing and acquisition agreements are discussed, focusing on a very large business segment of the industry called 'non-exclusive' seismic data (commonly referred to as SPEC data). A historical perspective of the industry in the Gulf of Mexico is presented, highlighting some important aspects of data licenses. The benefits of licensing three-dimensional data to the exploration industry include: (1) economy of scale, (2) 3-D is more affordable, (3) reduced barriers to entry by independents, and (4) improved success rates and reduced risk. A list of 'SPEC' companies in the Gulf of Mexico is provided and the data licensing process is outlined. There are two basic types of seismic data use licenses. The first is for a single, one-time transaction, and the other (which is more prevalent), covers multiple use licenses contemplated over a period of time. This paper briefly outlined the meaning of some important terms usually found in a license agreement, among them ownership, rights of licensee, term, disclosure to third parties, and transfer. International 'SPEC' programs and the requirements for a successful 'SPEC' program are described. The requirements include: a stable host government, reliable, competitive system of concession offerings, long term scheduled offerings, clear, consistent, and acceptable concession terms to oil and gas companies, and consistent, fair and timely method of evaluating bids and awarding concessions. 001CA9901758

  9. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  10. Integrated software system for seismic evaluation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.L.

    1993-01-01

    The computer software CARES (Computer Analysis for Rapid Evaluation of Structures) was developed by the Brookhaven National Laboratory for the U.S. Nuclear Regulatory Commission. It represents an effort to utilize established numerical methodologies commonly employed by industry for structural safety evaluations of nuclear power plant facilities and incorporates them into an integrated computer software package operated on personal computers. CARES was developed with the objective of including all aspects of seismic performance evaluation of nuclear power structures. It can be used to evaluate the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants by various utilities. CARES has a modular format, each module performing a specific type of analysis. The seismic module integrates all the steps of a complete seismic analysis into a single package with many user-friendly features such as interactiveness and quick turnaround. Linear structural theory and pseudo-linear convolution theory are utilized as the bases for the development with a special emphasis on the nuclear regulatory requirements for structural safety of nuclear plants. The organization of the seismic module is arranged in eight options, each performing a specific step of the analysis with most of input/output interfacing processed by the general manager. Finally, CARES provides comprehensive post-processing capability for displaying results graphically or in tabular form so that direct comparisons can be easily made. (author)

  11. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  12. The impact of the structural features of the rock mass on seismicity in Polish coal mines

    Science.gov (United States)

    Patyńska, Renata

    2017-11-01

    The article presents seismic activity induced in the coal mines of the Upper Silesian Coal Basin (GZW) in relation to the locations of the occurrence of rockbursts. The comparison of these measurements with the structural features of the rock mass of coal mines indicates the possibility of estimating the so-called Unitary Energy Expenditure (UEE) in a specific time. The obtained values of UEE were compared with the distribution of seismic activity in GZW mines. The level of seismic activity in the analysed period changed and depended on the intensity of mining works and diverse mining and geological conditions. Five regions, where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Trough) which belong to various structural units of the Upper Silesia were analyzed. It was found out that rock bursts were recorded only in three regions: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Trough.

  13. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  14. Modeling the effects of structure on seismic anisotropy in the Chester gneiss dome, southeast Vermont

    Science.gov (United States)

    Saif, S.; Brownlee, S. J.

    2017-12-01

    Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.

  15. Heysham II/Torness power stations: Seismic qualification of core structures and boilers

    International Nuclear Information System (INIS)

    Shepherd, D.J.

    1990-01-01

    For the advanced gas cooled reactors at Heysham II and Torness the seismic qualification of the core and support structures and boilers posed special problems. In each case the response was highly non-linear due to impacting. Within the core itself there are many thousands of degrees of freedom each dominated by impacting during the seismic event and these impact forces are transmitted to the support structure. The boilers, although supported and located in the design case by linear systems, have their motion during the seismic event controlled by seismic restraints and other components which introduce substantial impacting during seismic excitation. For both these important components a substantial programme of testing was carried out to validate an analysis approach. This testing and correlation with analysis is described in detail for both components. In the case of the core the qualification was based upon a non-linear code AGRCORE which was specifically developed to handle the large number of impact degrees of freedom for this component. The implementation of this code is also described together with a brief summary of results. The boiler analysis was ultimately carried out using conventional finite difference codes and the implementation of these together with a summary of results is also presented. (author). 13 figs, 1 tab

  16. Seismic Structural Setting of Western Farallon Basin, Southern Gulf of California, Mexico.

    Science.gov (United States)

    Pinero-Lajas, D.; Gonzalez-Fernandez, A.; Lopez-Martinez, M.; Lonsdale, P.

    2007-05-01

    Data from a number of high resolution 2D multichannel seismic (MCS) lines were used to investigate the structure and stratigraphy of the western Farallon basin in the southern Gulf of California. A Generator-Injector air gun provided a clean seismic source shooting each 12 s at a velocity of 6 kts. Each signal was recorded during 6- 8 s, at a sampling interval of 1 ms, by a 600 m long digital streamer with 48 channels and a spacing of 12.5 m. The MCS system was installed aboard CICESE's (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada) 28 m research vessel Francisco de Ulloa. MCS data were conventionally processed, to obtain post- stack time-migrated seismic sections. The MCS seismic sections show a very detailed image of the sub-bottom structure up to 2-3 s two-way travel time (aprox. 2 km). We present detailed images of faulting based on the high resolution and quality of these data. Our results show distributed faulting with many active and inactive faults. Our study also constrains the depth to basement near the southern Baja California eastern coast. The acoustic basement appears as a continuous feature in the western part of the study area and can be correlated with some granite outcrops located in the southern Gulf of California islands. To the East, near the center of the Farallon basin, the acoustic basement changes, it is more discontinuous, and the seismic sections show a number of diffracted waves.

  17. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-15

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments.

  18. Report of the task group on the seismic behaviour of structures: status report

    International Nuclear Information System (INIS)

    1997-04-01

    In 1995, the CSNI Committee on the Safety of Nuclear Installations) approved a new mandate for PWG-3 and the new title 'Integrity of Components and Structures'. The PWG-3 is assisted by three task groups, one of which is addressing the problem of seismic behavior of structures. Ten topics were identified: engineering characterization of seismic input, site response, soil structure interaction, identification of functions and classification of systems, structures and components, structural response and capacity evaluation (including effects of aging and degradation), component and equipment response and capacity evaluation (including effects of aging and degradation), response and capacity evaluation of distribution systems (piping, cable trays, conduit, HVAC), load combination and acceptance criteria, uncertainties (PSA and margins), plant seismic instrumentation and trip. This report summarizes the seismic issues and activities in various member countries (Canada, Czech Republic, France, Hungary, Italy, Japan, Spain, Switzerland, United Kingdom, United States) and international organizations (IAEA), provides a summary of the important issues that are of collective interest to the group members, and recommends a future programme of work to address these issues

  19. Seismic performance evaluation of high natural frequency mechanical structure from the viewpoint of energy balance

    International Nuclear Information System (INIS)

    Minagawa, Keisuke; Fujita, Satoshi; Endo, Rokuro; Amemiya, Mitsuhiko

    2009-01-01

    In this study, vibration characteristics of mechanical structure having high natural frequency are investigated from the viewpoint of energy balance. Mechanical structures having high natural frequency in a nuclear power plant are generally designed statically and elastically. However it has been reported that fracture of ordinary piping is produced not by momentary large load but by cumulative fatigue damage. Therefore it is very important to grasp seismic performance dynamically by considering cyclic load. This paper deals with an investigation regarding seismic performance evaluation of high natural frequency mechanical structure. The energy balance equation that is one of valid methods for structural calculation is applied through the investigation. The main feature of the energy balance equation is that it explains accumulated information of motion. Therefore the energy balance equation is adequate for the investigation of the influence of cumulative load such as seismic response. In this paper, vibration experiment and simulation using sinusoidal waves and artificial seismic waves were examined in order to investigate relationship between natural frequency of structure and energy. As a result, we found that input energy decreases with an increase in the natural frequency. (author)

  20. Seismic analysis for safety related structures of 900MWe PWR NPP

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Nuclear Power Plant aseismic design becomes more and more important in China due to the fact that China is a country where earthquakes occur frequently and most of plants arc unavoidably located in seismic regions. Therefore, Chinese nuclear safety authority and organizations have worked out a series of regulations and codes related to NPP anti-seismic design taking account of local conditions. The author presents here an example of structural anti-seismic design of 90GM We PWR NPP which is comprised of: ground motion input, including the principles for ground motion determination and time history generation; soil and upper-structure modelling, presenting modeling procedures and typical models of safety related buildings such as Reactor Building, Nuclear Auxiliary Building and Fuel Building; soil-structure interaction analysis; and in-structure response analysis and floor response spectrum generation. With this example, the author intends to give an overview of Chinese practice in NPP structure anti-seismic design such as the main procedures to be followed and the codes and regulations to be respected. (author)

  1. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments

  2. The Influence of Infill Wall Topology and Seismic Characteristics on the Response and Damage Distribution in Frame Structures

    Directory of Open Access Journals (Sweden)

    Nikos Nanos

    2013-01-01

    Full Text Available This paper identifies the effects of infill wall existence and arrangement in the seismic response of frame structures utilising the global structural damage index after Park/Ang (GDIPA and the maximum interstorey drift ratio (MISDR to express structural seismic response. Five different infill wall topologies of a 10-storey frame structure have been selected and analysed presenting an improved damage distribution model for infill wall bearing frames, hence promoting the use of nonstructural elements as a means of improving frame structural seismic behaviour and highlighting important aspects of structural response, demonstrating the suitability of such element implementation beyond their intended architectural scope.

  3. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    International Nuclear Information System (INIS)

    Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter

    2008-01-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m 2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  4. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    Science.gov (United States)

    Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter

    2008-07-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  5. Structural uncertainty in seismic risk analysis. Seismic safety margins research program

    Energy Technology Data Exchange (ETDEWEB)

    Hasselman, T K; Simonian, S S [J.H. Wiggins Company (United States)

    1980-03-01

    This report documents the formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of the major structures and substructures of commercial nuclear power plants. The uncertainties are cast in the form of normalized random variables which represent the demonstrated ability to predict modal frequencies, damping and modal response amplitudes for broad generic types of structures (steel frame, reinforced concrete and prestressed concrete). Data based on observed differences between predicted and measured structural performance at the member, substructure, and/or major structural system levels are used to quantify uncertainties and thus form the data base for statistical analysis. Proper normalization enables data from non-nuclear structures, e.g., office buildings, to be included in the data base. Numerous alternative methods are defined within the general framework of this methodology. The report also documents the results of a data survey to identify, classify and evaluate available data for the required data base. A bibliography of 95 references is included. Deficiencies in the currently identified data base are exposed, and remedial measures suggested. Recommendations are made for implementation of the methodology. (author)

  6. Numerical Simulation Analysis of Seismic of Frame Structure on Hill Terrain

    Directory of Open Access Journals (Sweden)

    Weng Weisu

    2017-01-01

    Full Text Available In recent year, Wenchuan,Ya’an,Yushu and other areas in china occur a series of high earthquake, however areas of earthquake is similar as mountainous terrain, building structure of seismic increasingly aroused our concern, and the research that hill topography affected building structure seismic in shallow mountain. The research content mainly includes: through modelling was built by the ANSYS software, the cooperative effects of a ten layer of frame structure- hill system were calculation. First, simple comparative dynamic characteristics analysis of soil - structure interaction and the rigid foundation assumption conditions; Second, put Hill-Soil-Structure Interaction(referred to as HSSI and Soil - Structure - Interaction(referred to as SSI further analysis of the dynamic response, including: including structural modal analysis (vibration mode, cycle, the time history analysis (such as displacement, internal force and acceleration and so on. Through Hill-Soil-Structure Interaction research, taking each factor in consideration, giving structure seismic key technology measures about shallow mountain to provide reference for such structure theory research.

  7. Seismic analysis of the frame structure reformed by cutting off column and jacking based on stiffness ratio

    Science.gov (United States)

    Zhao, J. K.; Xu, X. S.

    2017-11-01

    The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.

  8. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    Science.gov (United States)

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  9. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  10. The subduction structure of the Northern Apennines: results from the RETREAT seismic deployment

    Czech Academy of Sciences Publication Activity Database

    Margheriti, L.; Pondrelli, S.; Piccinini, D.; Agostineti, N. P.; Giovani, L.; Salimbeni, S.; Lucente, F. P.; Amato, A.; Baccheschi, P.; Park, J.; Brandon, M.; Levin, V.; Plomerová, Jaroslava; Jedlička, Petr; Vecsey, Luděk; Babuška, Vladislav; Fiaschi, A.; Carpani, B.; Ulbricht, P.

    2006-01-01

    Roč. 49, č. 4-5 (2006), s. 1119-1131 ISSN 1593-5213 R&D Projects: GA AV ČR IAA3012405 Institutional research plan: CEZ:AV0Z30120515 Keywords : temporary seismological network * subduction geometry * upper mantle fabric * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.441, year: 2006

  11. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  12. Velocity structure and the role of fluids in the West Bohemia Seismic Zone

    Czech Academy of Sciences Publication Activity Database

    Alexandrakis, C.; Calò, M.; Bouchaala, F.; Vavryčuk, Václav

    2014-01-01

    Roč. 5, č. 2 (2014), s. 863-872 ISSN 1869-9510 R&D Projects: GA ČR(CZ) GAP210/12/1491 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : seismic tomography * Bohemia/Vogtland seismoactive region * WEBNET Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.270, year: 2014

  13. USE OF BOUNDING ANALYSES TO ESTIMATE THE PREFORMANCE OF A SEISMICALLY ISOLATED STRUCTURE

    Directory of Open Access Journals (Sweden)

    Gökhan ÖZDEMİR

    2017-03-01

    Full Text Available Current design approach for seismic isolated structures is to perform bounding analyses. These analyses provide an envelope for the response of the seismic isolated structure rather than focusing on the actual performance. In this study, the success of bounding analyses to estimate performance of a seismic isolated structure, in which the isolation is provided by means of lead rubber bearings (LRBs, is evaluated in a comparative manner. For this purpose, nonlinear response history analyses were performed under the effect of bidirectional ground motion excitations. In bounding analyses, non-deteriorating hysteretic representations were used to model the hysteretic behavior of LRBs. On the other hand, to estimate the actual performance of both the superstructure and isolator units, deteriorating hysteretic idealizations were employed. The deterioration in strength of LRBs was defined as a function of temperature rise in the lead core. The analyzed structure is an existing seismically isolated hospital building and analytically modeled in accordance with its reported design properties for both isolation units and superstructure. Results obtained from analyses where LRBs are idealized by both deteriorating and non-deteriorating hysteretic representations are used in the comparisons. The response quantities used in the comparisons are maximum isolator displacement, maximum isolator force, maximum absolute floor acceleration, and maximum relative story displacements. In an average sense, bounding analyses is found to provide conservative estimates for the selected response quantities and fulfills its intended purpose. However, it is revealed that there may be individual cases where bounding analyses fails to provide a safe envelope.

  14. Structure of the Gabon Margin from integrated seismic reflection and gravity data

    NARCIS (Netherlands)

    Dupre, S.; Cloetingh, S.A.P.L.; Bertotti, G.V.

    2011-01-01

    In the South Gabon Basin, deep multi-channel seismic reflection and gravity modeling analysis have shed light on key features of the structure of the margin. The thinned continental crust beneath the Gabon Margin appears to be composed of two distinct layers, separated by a clear, strong and more or

  15. Seismic analysis and structure capacity evaluation of the Belene nuclear power plant

    International Nuclear Information System (INIS)

    Johnson, J.J.; Hashimoto, P.S.; Campbell, R.D.; Baltus, R.S.

    1993-01-01

    The seismic analysis and structure capacity evaluation of the Belene Nuclear Power Plant, a two-unit WWER 1000, was performed. The principal objective of the study was to review the major aspects of the seismic design including ground motion specification, foundation concept and materials, and the Unit I main reactor building structure response and capacity. The main reactor building structure /foundation/soil were modeled and analyzed by a substructure approach to soil-structure interaction (SSI) analysis. The elements of the substructure approach, implemented in the family of computer programs CLASSI, are: Specification of the free-field ground motion; Modeling the soil profile; SSI parameters; Modeling the structure; SSI-response analyses. Each of these aspects is discussed. The Belene Unit 1 main reactor building structure was evaluated to verify the seismic design with respect to current western criteria. The structural capacity evaluation included criteria development, element load distribution analysis, structural element selection, and structural element capacity evaluation. Equipment and commodity design criteria were similarly reviewed and evaluated. Methodology results and recommendations are presented. (author)

  16. Seismic Vulnerability Assessment of a Shallow Two-Story Underground RC Box Structure

    Directory of Open Access Journals (Sweden)

    Jungwon Huh

    2017-07-01

    Full Text Available Tunnels, culverts, and subway stations are the main parts of an integrated infrastructure system. Most of them are constructed by the cut-and-cover method at shallow depths (mainly lower than 30 m of soil deposits, where large-scale seismic ground deformation can occur with lower stiffness and strength of the soil. Therefore, the transverse racking deformation (one of the major seismic ground deformation due to soil shear deformations should be included in the seismic design of underground structures using cost- and time-efficient methods that can achieve robustness of design and are easily understood by engineers. This paper aims to develop a simplified but comprehensive approach relating to vulnerability assessment in the form of fragility curves on a shallow two-story reinforced concrete underground box structure constructed in a highly-weathered soil. In addition, a comparison of the results of earthquakes per peak ground acceleration (PGA is conducted to determine the effective and appropriate number for cost- and time-benefit analysis. The ground response acceleration method for buried structures (GRAMBS is used to analyze the behavior of the structure subjected to transverse seismic loading under quasi-static conditions. Furthermore, the damage states that indicate the exceedance level of the structural strength capacity are described by the results of nonlinear static analyses (or so-called pushover analyses. The Latin hypercube sampling technique is employed to consider the uncertainties associated with the material properties and concrete cover owing to the variation in construction conditions. Finally, a large number of artificial ground shakings satisfying the design spectrum are generated in order to develop the seismic fragility curves based on the defined damage states. It is worth noting that the number of ground motions per PGA, which is equal to or larger than 20, is a reasonable value to perform a structural analysis that

  17. Evaluation of seismic behavior of a braced tubular steel structure by pseudodynamic testing

    International Nuclear Information System (INIS)

    Shiny, P.B.; Javadian-Gilani, A.S.; Mahin, S.A.

    1984-01-01

    The inelastic seismic behavior of an X-braced, tubular steel frame is studied experimentally by means of pseudodynamic testing. The pseudodynamic method, which utilizes a numerical algorithm in the on-line computer control of a test specimen, can realistically simulate the seismic response of a structural model. This paper presents a brief outline of the experimental procedure and the results of the tubular frame tests, including the global responses, the inelastic energy-dissipation capabilities, and the failure mechanism of the frame at various excitation levels. Correlation of these results with previous experimental studies illustrates the feasibility and accuracy of the new test method

  18. Seismic transmission tomography: determination of the elastic properties of building structures (some examples

    Directory of Open Access Journals (Sweden)

    E. Cardarelli

    2000-06-01

    Full Text Available This paper is a general review on seismic transmission tomography considering data acquisition and processing. Some questions on linear and non linear inversions are tackled, and advice given on the choice of the best damping factor. Taking into account prediction matrices we show that it is possible to point out the best distribution of sensors and shot points in terms of resolution and stability of system. Then two examples in which seismic tomography was used are described concerning the determination of elastic characteristics of building structures.

  19. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation

  20. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  1. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references

  2. Application of Nonlinear Seismic Soil-Structure Interaction Analysis for Identification of Seismic Margins at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Varma, Amit H.; Seo, Jungil; Coleman, Justin Leigh

    2015-01-01

    Seismic probabilistic risk assessment (SPRA) methods and approaches at nuclear power plants (NPP) were first developed in the 1970s and aspects of them have matured over time as they were applied and incrementally improved. SPRA provides information on risk and risk insights and allows for some accounting for uncertainty and variability. As a result, SPRA is now used as an important basis for risk-informed decision making for both new and operating NPPs in the US and in an increasing number of countries globally. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach contains large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). INL has an advanced SPRA research and development (R&D) activity that will identify areas in the calculation process that contain significant uncertainties. One current area of focus is the use of nonlinear soil-structure interaction (NLSSI) analysis methods to accurately capture: 1) nonlinear soil behavior and 2) gapping and sliding between the NPP and soil. The goal of this study is to compare numerical NLSSI analysis results with recorded earthquake ground motions at Fukushima Daichii (Great Tohuku Earthquake) and evaluate the sources of nonlinearity contributing to the observed reduction in peak acceleration. Comparisons are made using recorded data in the free-field (soil column with no structural influence) and recorded data on the NPP basemat (in-structure response). Results presented in this study should identify areas of focus for future R&D activities with the goal of minimizing uncertainty in SPRA calculations. This is not a validation activity since there are too many sources of uncertainty that a numerical analysis would need

  3. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Ghiocel, Dan M.; Wilson, Paul R.; Thomas, Gary G.; Stevenson, John D.

    1998-01-01

    The paper discusses methodological aspects involved in a probabilistic seismic soil-structure interaction (SSI) analysis for a Seismic Probabilistic Risk Assessment (SPRA) review. An example of an Eastern US nuclear power plant (NPP) is presented. The approach presented herein follows the current practice of the Individual Plant Examination for External Events (IPEEE) program in the US. The NPP is founded on a relatively soft soil deposit, and thus the SSI effects on seismic responses are significant. Probabilistic models used for the idealization of the seismic excitation and the surrounding soil deposit are described. Using a lognormal format, computed random variability effects were combined with those proposed in the SPRA methodology guidelines. Probabilistic floor response spectra and structural fragilities for different NPP buildings were computed. Structural capacities were determined following the current practice which assumes independent median safety factors for strength and inelastic absorption. Limitations of the IPEEE practice for performing SPRA are discussed and alternate procedures, more rigorous and simple to implement, are suggested

  4. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Neprochnov, Y.P.

    Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises...

  5. Beam model for seismic analysis of complex shear wall structure based on the strain energy equivalence

    International Nuclear Information System (INIS)

    Reddy, G.R.; Mahajan, S.C.; Suzuki, Kohei

    1997-01-01

    A nuclear reactor building structure consists of shear walls with complex geometry, beams and columns. The complexity of the structure is explained in the section Introduction. Seismic analysis of the complex reactor building structure using the continuum mechanics approach may produce good results but this method is very difficult to apply. Hence, the finite element approach is found to be an useful technique for solving the dynamic equations of the reactor building structure. In this approach, the model which uses finite elements such as brick, plate and shell elements may produce accurate results. However, this model also poses some difficulties which are explained in the section Modeling Techniques. Therefore, seismic analysis of complex structures is generally carried out using a lumped mass beam model. This model is preferred because of its simplicity and economy. Nevertheless, mathematical modeling of a shear wall structure as a beam requires specialized skill and a thorough understanding of the structure. For accurate seismic analysis, it is necessary to model more realistically the stiffness, mass and damping. In linear seismic analysis, modeling of the mass and damping may pose few problems compared to modeling the stiffness. When used to represent a complex structure, the stiffness of the beam is directly related to the shear wall section properties such as area, shear area and moment of inertia. Various beam models which are classified based on the method of stiffness evaluation are also explained under the section Modeling Techniques. In the section Case Studies the accuracy and simplicity of the beam models are explained. Among various beam models, the one which evaluates the stiffness using strain energy equivalence proves to be the simplest and most accurate method for modeling the complex shear wall structure. (author)

  6. An algorithm for seismic analysis of low-rise structural walls

    International Nuclear Information System (INIS)

    Jost, S.D.; Mo, Y.L.

    1991-01-01

    Although structures with elastic response are fairly well understood, structures with inelastic response are more difficult to analyze. Furthermore, in studies of inelastic response, attention has generally been paid to the flexural response of reinforced concrete structures with relatively little attention being given to shear response. In this paper, an algorithm is described for computing the shear force-deflection relationship for orthogonally reinforced concrete low-rise structural walls. In this situation, the inelastic response relationship forms hysteresis loops which depend on the cracking shear force and direction of wall movement in addition to the loading history, so an algorithm which accounts for the continually varying stiffness and energy absorbing characteristics of such walls is needed. This algorithm is used together with the linear step-by-step method for numerically solving differential equations to analyze low rise structural walls during a seismic disturbance. This combination forms a useful tool for predicting the seismic response of low-rise structural walls. Using this tool, two examples are analyzed: a single shearwall in which cracking occurs and a shearwall which interacts seismically with a steel structure. (orig.)

  7. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  8. Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures

    International Nuclear Information System (INIS)

    Liberatore, Laura; Tocci, Cesare; Masiani, Renato

    2008-01-01

    In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls

  9. Factors controlling strength of structures, and anticipated overstrength for seismic load conditions

    International Nuclear Information System (INIS)

    Singh, A.K.

    1985-01-01

    This paper discusses how the safe shutdown earthquake level, the ratio of operating basis earthquake to safe shutdown earthquake level, the shape of the earthquake spectra and the modeling of the structure affect the seismic overstrength of structures. The relationship between actual mean strength and the minimum specified strength of concrete and structural steel is also presented. The paper identifies which concrete and steel structures are generally sized for earthquake loads and which are generally sized for other factors, e.g., tornado missiles, loss of coolant accident pressure loads, equipment laydown loads and radiation shielding. The results of a study evaluating the mean ultimate capacity of a pressurized water reactor containment are presented to show that in terms of a ground motion, the seismic capacity may be four to five times the design safe shutdown earthquake level

  10. Seismic design technology for breeder reactor structures. Volume 2. Special topics in soil/structure interaction analyses

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes

  11. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar

    Science.gov (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  12. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  13. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  14. Structure in the lowermost mantle from seismic anisotropy

    Science.gov (United States)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2017-12-01

    Anisotropy is well established in D'' and places important constraints on the nature and dynamics of this elusive region. We present the results of a recent study probing anisotropy in D'', over a large area, using shear wave splitting on core-reflected ScS phases. Our dataset contains laterally continuous coverage beneath a large swath of east Asia - extending about 3000 km along the CMB - from south-east Asia to the north-east Pacific. The centre of this area represents a large down-welling core for subduction that has occurred over several super-continent cycles. In the centre of this region we observe a clear VSV}>V{SH fabric, in direct conflict with the prevailing view that fast, `cold', regions are associated with VSH}>V{SV fabric. Furthermore, systematic rotation of the fast axis traces out an apparent dome-like feature extending over thousands of km, albeit complicated by some short-scale variability. The dataset also samples regions where slab material may be actively impinging on the CMB; and a region corresponding to the edge of the Pacific LLSVP. We interpret our results in light of a combined computational geodynamic-petrofabric-seismic study designed to test the possibility that anisotropy is caused by the lattice preferred orientation of post-perovskite. We take into account the important finite-frequency effects of wave propagation in our synthetics by using the SPECFEM3D_GLOBE code; this can lead to drastically different results when compared to the less accurate ray theory.

  15. Soil-structure Interaction in the Seismic Response of Coupled Wall-frame Structures on Pile Foundations

    International Nuclear Information System (INIS)

    Carbonari, S.; Dezi, F.; Leoni, G.

    2008-01-01

    This paper presents a study on the seismic response of coupled wall-frame structures founded on piles. A complete soil-structure interaction analysis is carried out with reference to a case study. Three different soils and seven real accelerograms are considered. Local site response analyses are performed in order to evaluate the incoming free-field motion at different depths and the ground motion amplifications. A numerical model, accounting for the pile-soil-pile interaction and for material and radiation damping, is used to evaluate the impedance matrix and the foundation input motion. The domain decomposition technique is adopted to perform time-domain seismic analyses introducing Lumped Parameter Models to take into account the impedance of the soil-structure system. Applications show that the rocking phenomena affect the behaviour of the structure by changing the base shear distribution within the wall and the frame and by increasing the structural displacements

  16. Analytical solutions for the study of immersed unanchored structures under seismic loading

    International Nuclear Information System (INIS)

    Mege, Romain

    2011-01-01

    In the nuclear energy industry, most of the major components are anchored to the civil works using numerous types of supports devices. These anchorages are big issues of the nuclear plant design: the implantation of the components has to be fixed definitely, stress concentration in the surroundings of the anchorage, and for immersed structure, possible loss of the impermeability. Thereby, under certain safety regulations, some structures lay directly on the ground. This is the case for in air or underwater structure, such as fuel storage racks. This solution gives more flexibility in the use of the components and a decrease of the stress. However, one has to evaluate precisely the behavior of this sliding structure, and in particular, the cumulated sliding displacement during a seismic event in order to prevent any impact with other components. During a seismic event, the unanchored structure can slide, rotate and tilt. The aim of this paper is to present analytical solutions to estimate the sliding amplitudes of different simplified systems which represent a given dynamic behavior. These simplified models are: a sliding mass and a complex sliding structure defined by its eigenmodes. Each simplified system corresponds to a different set of assumptions made on the flexibility of the structure. Two analytical solutions are presented in this article: single sliding mass and a vertical sliding beam. In each model, the fluid-structure interaction between the immersed body and the pool is modeled as hydrodynamic masses. The sliding is represented by Coulomb friction. The seismic loading can be any 3D seismic accelerogram. The analytical solutions are obtained considering the different phases of the movement and the continuity between each phase. The results are then compared to the values computed with the commercial Finite Element package ANSYS TM . The analytical curves show a good fit of the computational results. (author)

  17. The study of elastio-plastic seismic analysis for rigid-frame structures

    OpenAIRE

    陳, 珉; 青木, 徹彦

    2000-01-01

    Elastic and elastio-plastic earthquake-resistant analysis of frame construction is mainly studied in this paper. In elastic stage, response and vibrated characteristics of symmetrical and unsymmetrical structure are investigated by comparing the results of plane and space analysis. The effect of approaching angle of seismic wave to vibrated characteristics of structure under different column/beam rate are discussed. In elastio-plastic stage, four kinds of plastic mode with different plastic p...

  18. Quasistatic Seismic Damage Indicators for RC Structures from Dissipating Energies in Tangential Subspaces

    Directory of Open Access Journals (Sweden)

    Wilfried B. Krätzig

    2014-01-01

    Full Text Available This paper applies recent research on structural damage description to earthquake-resistant design concepts. Based on the primary design aim of life safety, this work adopts the necessity of additional protection aims for property, installation, and equipment. This requires the definition of damage indicators, which are able to quantify the arising structural damage. As in present design, it applies nonlinear quasistatic (pushover concepts due to code provisions as simplified dynamic design tools. Substituting so nonlinear time-history analyses, seismic low-cycle fatigue of RC structures is approximated in similar manner. The treatment will be embedded into a finite element environment, and the tangential stiffness matrix KT in tangential subspaces then is identified as the most general entry for structural damage information. Its spectra of eigenvalues λi or natural frequencies ωi of the structure serve to derive damage indicators Di, applicable to quasistatic evaluation of seismic damage. Because det KT=0 denotes structural failure, such damage indicators range from virgin situation Di=0 to failure Di=1 and thus correspond with Fema proposals on performance-based seismic design. Finally, the developed concept is checked by reanalyses of two experimentally investigated RC frames.

  19. Seismic velocity and attenuation structures at the top 400 km of the inner core

    Science.gov (United States)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient

  20. Seismogenic structures of the central Apennines and its implication for seismic hazard

    Science.gov (United States)

    Zheng, Y.; Riaz, M. S.; Shan, B.

    2017-12-01

    The central Apennines belt is formed during the Miocene-to-Pliocene epoch under the environment where the Adriatic Plate collides with and plunges beneath the Eurasian Plate, eventually formed a fold and thrust belt. This active fold and thrust belt has experienced relatively frequent moderate-magnitude earthquakesover, as well as strong destructive earthquakes such as the 1997 Umbira-Marche sequence, the 2009 Mw 6.3 L'Aquila earthquake sequence, and three strong earthquakes occurred in 2016. Such high seismicity makes it one of the most active tectonic zones in the world. Moreover, most of these earthquakes are normal fault events with shallow depths, and most earthquakes occurred in the central Apennines are of lower seismic energy to moment ratio. What seismogenic structure causes such kind of seismic features? and how about the potential seismic hazard in the study region? In order to make in-depth understanding about the seismogenic structures in this reion, we collected seismic data from the INGV, Italy, to model the crustal structure, and to relocate the earthquakes. To improve the spatial resolution of the tomographic images, we collected travel times from 27627 earthquakes with M>1.7 recorded at 387 seismic stations. Double Difference Tomography (hereafter as DDT) is applied to build velocity structures and earthquake locations. Checkerboard test confirms that the spatial resolution between the depths range from 5 20km is better than 10km. The travel time residual is significantly decreased from 1208 ms to 70 ms after the inversion. Horizontal Vp images show that mostly earthquakes occurred in high anomalies zones, especially between 5 10km, whereas at the deeper depths, some of the earthquakes occurred in the low Vp anomalies. For Vs images, shallow earthquakes mainly occurred in low anomalies zone, at depths range of 10 15km, earthquakes are mainly concentrated in normal velocity or relatively lower anomalies zones. Moreover, mostly earthquakes occurred

  1. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    Science.gov (United States)

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  2. Study of attenuation structure for central Anatolia region, Turkey based on Keskin seismic array data

    Science.gov (United States)

    Semin, K. U.; Ozel, N. M.

    2011-12-01

    Central Anatolia is bounded in the north by the well-known north Anatolian fault system (NAFS) and on the south-southwest is bounded by the east Anatolian fault system (EAFS). The central area does not have major faults and acts as a single block moving westward. This region is not considered as seismically active as the NAFS or EAFS but the recent moderate-size Bala earthquakes (Ml=5.7, Ml= 5.5) on 20 and 27 December 2007 near the Tuz golu fault may be an indication of future seismic activity. In order to get a better picture of the crustal structure of this region we applied Coda Normalization method for the measurement of Qs-1 as a function of frequency for the frequencies 1.5, 3, 6, 8 Hz. 20 and 27 December 2007 Bala earthquakes (Ml magnitude 5.6 an 5.5) and their aftershocks recorded by the Keskin seismic array (International Monitoring System code BRTR) is analyzed in this study. Keskin seismic array has a small aperture circular design with 6 vertical short period and 1 broadband borehole seismometers. In addition, Multiple Lapse Time Window Analysis (MLTWA) method was applied to the data for the separation of intrinsic and scattering attenuation inm the region at the same frequencies. MLTWA method allowed a separation between the intrinsic attenuation and scattering attenuation. Preliminary results show a relatively low attenuation compared to western and eastern anatolia regions. This might be explained by the less seismicity in the region. A study of the regional and site attenuation of seismic waves of earthquakes in this area will contribute in predicting earthquake generated ground-motion and becomes vital in making decisions for earthquake regulations, building codes and to monitoring nuclear explosions.

  3. Prediction of Seismic Damage-Based Degradation in RC Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Gupta, Vinay K.; Nielsen, Søren R.K.

    Estimation of structural damage from known increase in the fundamental period of a structure after an earthquake or prediction of degradation of stiffness and strength for known damage requires reliable correlations between these response functionals. This study proposes a modified Clough-Johnsto...

  4. Seismic response analysis of an instrumented building structure

    Science.gov (United States)

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  5. Dynamic calculation of structures in seismic zones. 2. ed.

    International Nuclear Information System (INIS)

    Capra, Alain; Davidovici, Victor

    1982-01-01

    The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr

  6. Centrifuge modelling of seismic soil structure interaction effects

    International Nuclear Information System (INIS)

    Ghosh, B.; Madabhushi, S.P.G.

    2007-01-01

    Proper understanding of the role of unbounded soil in the evaluation of dynamic soil structure interaction (SSI) problem is very important for structures used in the nuclear industry. In this paper, the results from a series of dynamic centrifuge tests are reported. These tests were performed on different types of soil stratifications supporting a rigid containment structure. Test results indicate that accelerations transmitted to the structure's base are dependent on the stiffness degradation in the supporting soil. Steady build up of excess pore pressure leads to softening of the soil, which decreases the shear modulus and shear strength and subsequently changes the dynamic responses. It is also shown that the presence of the structure reduces the translational component of the input base motion and induces rocking of the structure. The test results are compared with some standard formulae used for evaluating interaction in the various building codes. It was concluded that the dynamic shear modulus values used should be representative of the site conditions and can vary dramatically due to softening. Damping values used are still very uncertain and contain many factors, which cannot be accounted in the experiments. It is emphasized that simplified design processes are important to gain an insight into the behaviour of the physical mechanism but for a complete understanding of the SSI effects sophisticated methods are necessary to account for non-linear behaviour of the soil material

  7. Centrifuge Testing and Seismic Response Analysis for Uplift Behavior of Spread Foundation Structures on Rock

    Directory of Open Access Journals (Sweden)

    Takuya Suzuki

    2016-09-01

    Full Text Available The uplift behavior of structures subjected to severe seismic motion has not been clarified. This paper presents experimental and analytical studies conducted for clarifying this problem of spread foundation structures on rock. First, centrifugal loading tests are conducted to determine the uplift behavior of these structures, and the uplift behavior of these structures is confirmed. Then, simulation analyses are performed using a three-dimensional FE model and the accuracy of these analyses is confirmed. A comparison between test and analyses results clarified the important analytical conditions required for maintaining analysis precision and the limit of analysis precision.

  8. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    Science.gov (United States)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments

  9. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  10. Comparison of seismic response of ordinary and base-isolated structures

    International Nuclear Information System (INIS)

    Kuroda, T.; Kobatake, M.; Seidensticker, R.W.; Chang, Y.W.

    1992-01-01

    Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages

  11. Analysis of Seismic Soil-Structure Interaction for a Nuclear Power Plant (HTR-10

    Directory of Open Access Journals (Sweden)

    Xiaoxin Wang

    2017-01-01

    Full Text Available The response of nuclear power plants (NPPs to seismic events is affected by soil-structure interactions (SSI. In the present paper, a finite element (FE model with transmitting boundaries is used to analyse the SSI effect on the response of NPP buildings subjected to vertically incident seismic excitation. Analysis parameters that affect the accuracy of the calculations, including the dimension of the domain and artificial boundary types, are investigated through a set of models. A numerical SSI analysis for the 10 MW High Temperature Gas Cooled Test Reactor (HTR-10 under seismic excitation was carried out using the developed model. The floor response spectra (FRS produced by the SSI analysis are compared with a fixed-base model to investigate the SSI effect on the dynamic response of the reactor building. The results show that the FRS at foundation level are reduced and those at higher floor levels are altered significantly when taking SSI into account. The peak frequencies of the FRS are reduced due to the SSI, whereas the acceleration at high floor levels is increased at a certain frequency range. The seismic response of the primary system components, however, is reduced by the analysed SSI for the HTR-10 on the current soil site.

  12. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar

    Science.gov (United States)

    Malloy, S.; Stamps, D. S.

    2017-12-01

    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  13. Phase space interrogation of the empirical response modes for seismically excited structures

    Science.gov (United States)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  14. Implementation of LT codes based on chaos

    International Nuclear Information System (INIS)

    Zhou Qian; Li Liang; Chen Zengqiang; Zhao Jiaxiang

    2008-01-01

    Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator. (general)

  15. Seismic Behaviour of Masonry Vault-Slab Structures

    International Nuclear Information System (INIS)

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-01-01

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed

  16. Use of controlled dynamic impacts on hierarchically structured seismically hazardous faults for seismically safe relaxation of shear stresses

    Science.gov (United States)

    Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.

    2017-12-01

    In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.

  17. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES

    International Nuclear Information System (INIS)

    XU, J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

    2007-01-01

    A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil

  18. Geological Structure, Seismic energy Release and Forecasting of Rockburst Occurrence

    Czech Academy of Sciences Publication Activity Database

    Rudajev, Vladimír; Číž, Radim; Lokajíček, Tomáš; Vilhelm, Jan

    2000-01-01

    Roč. 118, č. 16 (2000), s. 171-173 ISSN 1211-1910. [Czech - Polish - Slovak Symposium on Mining Geophysics /27./. Ramzová, 05.10.1999-07.10.1999] Institutional research plan: CEZ:AV0Z3046908 Keywords : seismoacustic emission * energy -frequency distribution * multichannel statistic extrapolation Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. Seismic response of structures by the response spectrum method

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1981-01-01

    The problems of the acceleration profile at the lower elevations of cantilever structures and the response of relatively rigid structures are explored. It is shown that the use of the conventional methods for the above problems provide very approximate results. An alternate combination of the modal responses is proposed that not only resolves the above problems but also provides better estimates of response for the complete range of structure frequencies. The procedure treats the relative and rigid body responses separately and then appropriately combines the two results. For the rigid range of frequencies (fundamental frequencies greater than about 2 Hz), the proposed procedure does not encounter any numerical difficulties because of the additive nature of the component responses; however, the application of the proposed procedure for very flexible structures causes accuracy problems since the rigid body effects tend to be subtractive from the flexural response of about equal magnitude. For this latter class of problems, the conventional approach of modal combination provides adequate results and avoids the above mentioned numerical difficulties. (orig.)

  20. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  1. an improved structural model for seismic analysis of tall frames

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. This paper proposed and examined an improved structural model ... The equation of motion of multI-storey building shown in fig. 2 can be ... The response of the nth mode at any time t of the MDOF system demands the solution of ...

  2. CARES-ESTSC, Seismic Structure Safety Analysis for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Heymsfield, E.; Yang, A.

    1999-01-01

    1 - Description of program or function: CARES, Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. CARES is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis. In this release, only the seismic module is implemented. This module defines the design seismic criteria at a given site, evaluates the free-field motion, and computes the structural response and floor response spectra including soil-structure interaction. The eight options in CARES currently are: a general manager for the seismic module, deconvolution analysis, structural data preparation for soil-structure interaction (SSI) analysis, input motion preparation for SSI analysis, SSI analysis, earthquake simulations/data, PSD (Power Spectral Density) related acceleration time history/spectra analysis, and plot generation. 2 - Method of solution: The seismic module works in the frequency domain. Earthquake motion simulation is based on the fundamental property that any periodic function can be expanded in a series of sinusoidal waves. The computer uses a random number generator to produce strings of phase angles with uniform distribution in the 0-2 pi range. Then, a linear correction procedure due to Scanlon and Sacks is employed to derive an adjusted array of amplitudes. The acceleration ensemble is subsequently modified by a deterministic intensity function composed of three segments: an initial buildup, a stationary duration, and exponential steady decay. A parabolic correction procedure outlined by Jennings and Housner is applied to the acceleration ensemble to bring the end velocity of the ground motion to zero. The soil-structure system is represented by a three-dimensional lumped parameter type model. The structural model is built up from three

  3. A regulatory view of the seismic assessment of existing nuclear structures in the United Kingdom

    International Nuclear Information System (INIS)

    Inkester, J.E.

    2001-01-01

    The paper describes the background to the seismic assessment of existing nuclear structures in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained. The licensees' processes of hazard appraisal and examination of the response of the structure are briefly summarized. Regulatory views on some of the criteria used to judge the adequacy of safety are discussed. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  4. Numerical Simulation for the Soil-Pile-Structure Interaction under Seismic Loading

    Directory of Open Access Journals (Sweden)

    Lifeng Luan

    2015-01-01

    Full Text Available Piles are widely used as reinforcement structures in geotechnical engineering designs. If the settlement of the soil is greater than the pile, the pile is pulled down by the soil, and negative friction force is produced. Previous studies have mainly focused on the interaction of pile-soil under static condition. However, many pile projects are located in earthquake-prone areas, which indicate the importance of determining the response of the pile-soil structure under seismic load. In this paper, the nonlinear, explicit, and finite difference program FLAC3D, which considers the mechanical behavior of soil-pile interaction, is used to establish an underconsolidated soil-pile mode. The response processes of the pile side friction force, the pile axial force, and the soil response under seismic load are also analyzed.

  5. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  6. Seismic response analysis of structural system subjected to multiple support excitation

    International Nuclear Information System (INIS)

    Wu, R.W.; Hussain, F.A.; Liu, L.K.

    1978-01-01

    In the seismic analysis of a multiply supported structural system subjected to nonuniform excitations at each support point, the single response spectrum, the time history, and the multiple response spectrum are the three commonly employed methods. In the present paper the three methods are developed, evaluated, and the limitations and advantages of each method assessed. A numerical example has been carried out for a typical piping system. Considerably smaller responses have been predicted by the time history method than that by the single response spectrum method. This is mainly due to the fact that the phase and amplitude relations between the support excitations are faithfully retained in the time history method. The multiple response spectrum prediction has been observed to compare favourably with the time history method prediction. Based on the present evaluation, the multiple response spectrum method is the most efficient method for seismic response analysis of structural systems subjected to multiple support excitation. (Auth.)

  7. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    Science.gov (United States)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  8. Application of Post-stack migration to seismic data associated with fault structures

    OpenAIRE

    Koduru Anitha; Mohanty P. R

    2015-01-01

    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, ...

  9. Seismic response analysis of reactor containment structures - axisymmetric model with modified ground motion

    International Nuclear Information System (INIS)

    Saha, S.; Dasgupta, A.; Basu, P.C.

    1993-01-01

    Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)

  10. Review of structure damping values for elastic seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Steele, L.K.; Johnson, J.J.; Mensing, R.W.

    1993-03-01

    Current US Nuclear Regulatory Commission guidance on structure damping values for elastic seismic design analysis of nuclear power plants are contained in Regulatory Guide 1.61 (R.G. 1.61). The objectives of the study described in this report are to investigate the adequacy of R.G1.61 structure damping values based on currently available data, and to recommend revisions to R.G. 1.61 as appropriate. Measured structure damping values, and associated structure, foundation, excitation, and input/response parameters, were collected and compiled. These data were analyzed to identify the parameters that significantly influence structure damping and to quantify structure damping in terms of these parameters. Based on this study, current R.G. 1.61 damping values for structure design are either adequate, or require only minor revision, depending on the structure material. More explicit guidance on structure damping values for seismic analysis to determine input to equipment has been prepared, along with other recommendations to improve the applicability of R.G. 1.61

  11. Seismic induced architectural damage to masonry structures at Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J. F., Jr.

    1966-06-01

    Selected masonry structures in Mercury, Nevada, were inspected for cracking before and after certain nuclear detonations and during periods of no significant nuclear activity. Detonations gave peak particle velocities whose magnitudes approached those experienced in Mississippi during the Salmon event. Findings include evidence that peak particle velocities of 0. 1 to 0. 3 cm/sec caused more cracking than normal; however, cracks at these low levels of motion are not more severe than those occurring naturally.

  12. Tests and calculation of the seismic behaviour of concrete structures

    International Nuclear Information System (INIS)

    Gauvain, J.; Hoffman, A.; Jeandidier, C.; Livolant, M.

    1979-01-01

    This paper deals with the frame type buildings, which are generally the most sensible to earthquakes. Its objectives are to describe the main phenomena governing the behaviour of such structures, when the earthquake level increases up to the structure collapse, to point out what type of calculation model shall be used to obtain good results and to give an estimation of the safety factors corresponding to the usual design practice. Extended experimental research on the behaviour of reinforced concrete beams and frames submitted to monotonic or cyclic loading has been done. These tests are very useful to build constitutive laws models, but as they do not reproduce the earthquake loads, they do not simulate directly what happens to the structure during an earthquake. For that reason, since 1966, dynamics tests were performed using vibration generators or shaking-tables. As an example of that type of test and of the corresponding results, we describe here with more details the tests made at the Saclay Center, on a shaking-table called VESUVE, on simple beams and frames

  13. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion

    Energy Technology Data Exchange (ETDEWEB)

    Harding, T.P.

    1985-04-01

    Negative and positive flower structures and positive inverted structures imply specific modes of formation, and their distinctive characteristics make them important criteria for the identification of certain structural styles. A negative flower structure from the Andaman Sea consists of a shallow synform bounded by upward-spreading strands of a wrench fault that have mostly normal separations. Paralleling monoclines and oblique, en echelon normal faults flank the divergent wrench fault. A positive flower structure from the Ardmore basin, Oklahoma, consists of a shallow antiform displaced by the upward diverging strands of a wrench fault that have mostly reverse separations. En echelon folds are present on either side of this convergent wrench fault. Positive structural inversion at the Rambutan oil field, South Sumatra basin, has formed a shallow anticlinorium and has partly uplifted the underlying graben. Deeper fault segments bounding the graben have retained their normal fault profiles, but at shallow levels some of these faults have reverse separations.

  14. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon

    2005-01-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses

  15. Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures

    Science.gov (United States)

    Lu, Lyan-Ywan; Lin, Tzu-Kang; Jheng, Rong-Jie; Wu, Hsin-Hsien

    2018-01-01

    A semi-active friction damper (SAFD) can be employed for the seismic protection of structural systems. The effectiveness of an SAFD in absorbing seismic energy is usually superior to that of its passive counterpart, since its slip force can be altered in real time according to structural response and excitation. Most existing SAFDs are controlled by adjusting the clamping force applied on the friction interface. Thus, the implementation of SAFDs in practice requires precision control of the clamping force, which is usually substantially larger than the slip force. This may increase the implementation complexity and cost of SAFDs. To avoid this problem, this study proposes a novel position-controlled SAFD, named the leverage-type controllable friction damper (LCFD). The LCFD system combines a traditional passive friction damper and a leverage mechanism with a movable central pivot. By simply controlling the pivot position, the damping force generated by the LCFD system can be adjusted in real time. In order to verify the feasibility of the proposed SAFD, a prototype LCFD was tested by using a shaking table. The test results demonstrate that the equivalent friction force and hysteresis loop of the LCFD can be regulated by controlling the pivot position. By considering 16 ground motions with two different intensities, the adaptive feature of the LCFD for seismic structural control is further demonstrated numerically.

  16. Seismic Response of Steel Braced Building Frame Considering Soil Structure Interaction (SSI): An Experimental Study

    Science.gov (United States)

    Hirave, Vivek; Kalyanshetti, Mahesh

    2018-02-01

    Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.

  17. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  18. Numerical Study on the Seismic Response of Structure with Consideration of the Behavior of Base Mat Uplift

    Directory of Open Access Journals (Sweden)

    Guo-Bo Wang

    2017-01-01

    Full Text Available The foundation might be separated from the supporting soil if the earthquake is big enough, which is known as base mat uplift. This paper proposed a simplified calculation model in which spring element is adopted to simulate the interaction between soil and structure. The load-deformation curve (F-D curve of the spring element can be designated to represent the base mat uplift, in which the pressure can be applied while tensile forces are not allowed. Key factors, such as seismic wave types, seismic wave excitation directions, seismic wave amplitudes, soil shear velocities, structure stiffness, and the ratio of structure height to width (H/B, were considered in the analysis. It is shown that (1 seismic wave type has significant influence on structure response due to different frequency components it contained; (2 the vertical input of seismic wave greatly affected structure response in vertical direction, while it has little impacts in horizontal direction; (3 base mat uplift is easier to take place in soil with higher shear velocity; (4 structure H/B value has complicated influence on base mat uplift. The outcome of this research is assumed to provide some references for the seismic design of the structure due to base mat uplift.

  19. Extremal inversion of lunar travel time data. [seismic velocity structure

    Science.gov (United States)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  20. Crustal structure of Australia from ambient seismic noise tomography

    Science.gov (United States)

    Saygin, Erdinc; Kennett, B. L. N.

    2012-01-01

    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  1. Modelling of internal structure in seismic analysis of a PHWR building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushawaha, H.S.; Ingle, R.K.; Subramanian, K.V.

    1991-01-01

    Seismic analysis of complex and large structures, consisting of thick shear walls, such as Reactor Building is very involved and time consuming. It is a standard practice to model the structure as a stick model to predict reasonably the dynamic behaviour of the structure. It is required to determine approximate equivalent sectional properties of Internal Structure for representation in the stick model. The restraint to warping can change the stress distribution thus affecting the centre of rigidity and torsional inertia, Hence, standard formulae does not hold good for determination of sectional properties of the Internal Structure. In this case the equivalent sectional properties for the Internal Structure are calculated using a Finite Element Model (FEM) of the Internal Structure and applying unit horizontal forces in each direction. A 3-D stick model is developed using the guidelines. Using the properties calculated by FEM and also by standard formulae, the responses of the 3-D stick model are compared. (J.P.N.)

  2. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    Science.gov (United States)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  3. Effective seismic acceleration measurements for low-cost Structural Health Monitoring

    Science.gov (United States)

    Pentaris, Fragkiskos; Makris, John P.

    2015-04-01

    There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  4. Structural geology of Central Switzerland - Results of seismic campaign in 2011 in cantons Nid- and Obwalden

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, A.; Genoni, O.; Haering, M.

    2013-07-01

    GVM (Gas Verbund Mittelland AG) commissioned in 2011 the acquisition of 113 km of 2D reflection seismic as a first step of an integrated exploration campaign for geothermal and hydrocarbon resources in the cantons Nid- and Obwalden (Switzerland]. One of the aims of the seismic campaign was to define the structure of the Helvetic nappes and its base, the internal build-up of the underlying Tertiary sediments and the autochthonous Mesozoic cover. The new data allow defining the internal tectonics of the Drusberg nappe and its base. The deformation style of the Drusberg nappe is characterized by imbrication and ramp anticlines. The base of the Helvetic nappe forms a relatively flat, wide and gently structured synform south of a line Schwendi - Alpnach - Stans. The base of the Helvetic nappes reaches a max. depth of approximately 1.8-2.0 km below the Sarner Aa valley. It is not possible to distinguish between south dipping Molasse and supposed North Helvetic Flysch. The autochthonous Mesozoic cover is less deformed. Few faults and folds may correlate with underlying Permo-Carboniferous troughs. The latter can be identified on the seismic sections by unconformities. (authors)

  5. Analyzing crack development pattern of masonry structure in seismic oscillation by digital photography

    Science.gov (United States)

    Zhang, Guojian; Yu, Chengxin; Ding, Xinhua

    2018-01-01

    In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.

  6. Major structural response methods used in the seismic safety margins research program

    International Nuclear Information System (INIS)

    Chou, C.K.; Lo, T.; Vagliente, V.

    1979-01-01

    In order to evaluate the conservatisms in present nuclear power plant seismic safety requirements, a probabilistic based systems model is being developed. This model will also be used to develop improved requirements. In Phase I of the Seismic Safety Margins Research Program (SSMRP), this methodology will be developed for a specific nuclear power plant and used to perform probabilistic sensitivity studies to gain engineering insights into seismic safety requirements. Random variables in the structural response analysis area, or parameters which cause uncertainty in the response, are discussed and classified into three categories; i.e., material properties, structural dynamic characteristics and related modeling techniques, and analytical methods. The sensitivity studies are grouped into two categories; deterministic and probabilistic. In a system analysis, transfer functions in simple form are needed since there are too many responses which have to be calculated in a Monte Carlo simulation to use the usual straightforward calculation approach. Therefore, the development of these simple transfer functions is one of the important tasks in SSMRP. Simplified as well as classical transfer functions are discussed

  7. Crustal structure of Shatsky Rise from joint refraction and reflection seismic tomography

    Science.gov (United States)

    Korenaga, J.; Sager, W. W.

    2011-12-01

    Shatsky Rise in the western Pacific is one of a few gigantic oceanic plateaus in the world, with a surface area of ˜ 4.8 ± 105~km2 (about the same size as California). In contrast to other large oceanic plateaus formed during the Cretaceous Quite Period, Shatsky Rise formed during the frequent reversals of magnetic polarity, allowing its tectonic environment to be resolved in detail. It was formed at a rapidly spreading ridge-ridge-ridge triple junction, so the effect of lithospheric lid on magma migration is expected to be minimal, thereby facilitating the petrological interpretation of its seismic structure in terms of parental mantle processes. In the summer of 2010, a seismic refraction survey combined with multichannel seismic profiling was conducted across Shatsky Rise. Twenty eight ocean-bottom seismometers were deployed along two crossing perpendicular lines, and all of the instruments were recovered successfully, yielding a large volume of high-quality wide-angle refraction and reflection data, with the source-receiver distance often exceeding 200~km. In this contribution, we present the P-wave velocity structure of the Shatsky Rise crust, which is constructed by joint refraction and reflection travel time tomography, and also discuss its implications for the origin of Shatsky Rise.

  8. Soil structure interaction model and variability of parameters in seismic analysis of nuclear island connected building

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Palekar, S.M.; Bavare, M.S.; Mapari, H.A.; Patel, S.C.; Pillai, C.S.

    2005-01-01

    This paper provides salient features of the Soil Structure Interaction analysis of Nuclear Island Connected Building (NICB). The dynamic analysis of NICB is performed on a full 3D model accounting for the probable variation in the stiffness of the founding medium. A range analyses was performed to establish the effect of variability of subgrade parameters on the results of seismic analyses of NICB. This paper presents details of various analyses with respect to the subgrade model, uncertainties in subgrade properties, results of seismic analyses and a study of effect of the variability of parameters on the results of these analyses. The results of this study indicate that the variability of soil parameters beyond a certain value of shear wave velocity does not influence the response and in fact the response marginally diminishes. (authors)

  9. The influence of para-seismic vibrations, induced by blasting works, on structures: a Case Study

    Science.gov (United States)

    Andrusikiewicz, Wacław

    2018-04-01

    Underground mining operations are often associated with the necessity to use explosives. Several hundreds of kilograms of explosives, subdivided into small charges suitable for a specific mining job, are used each time in a blasting operation. In many cases, mining engineers carry out remote central blasting works, which means that all the charges placed at faces are initiated from one control point (usually, a control room in the mine) at the same time. Such coordinated explosions generate para-seismic movements whose consequences can be felt on land surface, with subsequent effects identified in buildings and structures. This paper discusses briefly selected standards applicable to the harmful para-seismic impacts. The author presents the results of the research conducted with the intention to identify harmful effects of the basting works carried out in the "Kłodawa" Salt Mine.

  10. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation

  11. QC-LDPC code-based cryptography

    CERN Document Server

    Baldi, Marco

    2014-01-01

    This book describes the fundamentals of cryptographic primitives based on quasi-cyclic low-density parity-check (QC-LDPC) codes, with a special focus on the use of these codes in public-key cryptosystems derived from the McEliece and Niederreiter schemes. In the first part of the book, the main characteristics of QC-LDPC codes are reviewed, and several techniques for their design are presented, while tools for assessing the error correction performance of these codes are also described. Some families of QC-LDPC codes that are best suited for use in cryptography are also presented. The second part of the book focuses on the McEliece and Niederreiter cryptosystems, both in their original forms and in some subsequent variants. The applicability of QC-LDPC codes in these frameworks is investigated by means of theoretical analyses and numerical tools, in order to assess their benefits and drawbacks in terms of system efficiency and security. Several examples of QC-LDPC code-based public key cryptosystems are prese...

  12. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    Science.gov (United States)

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  13. The Seismic Reliability of Offshore Structures Based on Nonlinear Time History Analyses

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Karimiyani, Somayyeh; Ghafooripour, Amin; Jabbarzadeh, Mohammad Javad

    2008-01-01

    Regarding the past earthquakes damages to offshore structures, as vital structures in the oil and gas industries, it is important that their seismic design is performed by very high reliability. Accepting the Nonlinear Time History Analyses (NLTHA) as the most reliable seismic analysis method, in this paper an offshore platform of jacket type with the height of 304 feet, having a deck of 96 feet by 94 feet, and weighing 290 million pounds has been studied. At first, some Push-Over Analyses (POA) have been preformed to recognize the more critical members of the jacket, based on the range of their plastic deformations. Then NLTHA have been performed by using the 3-components accelerograms of 100 earthquakes, covering a wide range of frequency content, and normalized to three Peak Ground Acceleration (PGA) levels of 0.3 g, 0.65 g, and 1.0 g. By using the results of NLTHA the damage and rupture probabilities of critical member have been studied to assess the reliability of the jacket structure. Regarding that different structural members of the jacket have different effects on the stability of the platform, an ''importance factor'' has been considered for each critical member based on its location and orientation in the structure, and then the reliability of the whole structure has been obtained by combining the reliability of the critical members, each having its specific importance factor

  14. Evaluation of the Reduction of Seismic Response of Adjacent Structures Using Viscous Damper Joint

    Directory of Open Access Journals (Sweden)

    Hamed Karbalay Malek

    2017-09-01

    Full Text Available This study examines the effect of common viscose damper on the behavior of adjacent reinforced concrete structures. For this purpose, three reinforced concrete 3, 5 and 7 floors buildings with a regular plan were selected and were compared in two cases without and with viscous dampers at the seams. They are designed based on discussions of Buildings Regulations 2800 and the 6 and 9 issues of Iranian National Building Regulations. Those buildings face under accelerograms of Bam, Mangil and El Centro, and then they are analyzed with nonlinear modal time history. This Accelerograms before applying to the structures, they are scaled based on the 2800 Regulations. Those buildings were modeled by SAP2000 finite element modeling software. Linear behavior of structural components of the structure and the non-linear behavior viscous damper were modeled. Finally, the seismic response of buildings includes the base shear force, up to a maximum lateral acceleration of seismic classes and classes for both with and without the viscous damper have been extracted and compared. The results showed the reduction in relative lateral displacement, maximum acceleration and base cut applied to structure in the presence of viscous dampers between two structures. This decline is not even in the direction that the viscous damper is viewed as significant.

  15. Evaluation of structural fragilities for an IPEEE seismic probabilistic risk assessment study

    International Nuclear Information System (INIS)

    Ghiocel, D.M.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The paper presents the main issues and results of a structural fragility analysis for a Seismic Probabilistic Risk Assessment (SPRA) study of a nuclear power plant (NPP) in the Eastern US. The fragility evaluations were performed for the Reactor Building, Auxiliary Building, Intake Structure and Diesel Generator Building. The random seismic input is defined in terms of the Uniform Hazard Spectrum (UHS) earthquake on the NPP site anchored to a reference level of 0.40 g Zero Period Ground Acceleration (ZPGA). Because of the soft soil conditions new Soil-Structure Interaction (SSI) analyses were performed using the original finite element (stick) structural models and the complex frequency approach. The soil deposit randomness was described by the variations in both the low strain soil shear modules and in its dependence with the shear strain. The probabilistic SSI analyses were performed using digital simulation techniques. The critical failure modes for each structure are investigated and the fragility evaluations are discussed. Concluding remarks and recommendations for improving the quality of the structural fragility analyses are included

  16. Research and development on materials, structural strength and seismic integrity of FBR components

    International Nuclear Information System (INIS)

    Sumikawa, Masaharu; Kirihara, Seishin; Shigeta, Masayuki; Shimoyashiki, Shigehiro; Nishioka, Akio.

    1982-01-01

    For designing high temperature structures of FBRs, highly reliable design is required on the basis of safety requirement. At the same time, it is necessary to guarantee the soundness of structures over the total design life of plants. Since the high temperature equipments are operated in a creep temperature region and show nonlinear behaviour, nonlinear structural analysis is required. Hitachi Ltd., based on the concept of verifying the latest technology to reflect it to the design along with its adoption, has progressed various research and development by organizing a project team collecting specialists in the company, independently developing and modifying the nonlinear structural analysis and evaluation program, and establishing the organization through the introduction of a general purpose large scale computer. The research and development for materials include the development of the strength standards for high temperature structural materials and the improvement of the high temperature characteristics of JIS stainless steel SUS 321. In the R and D for high temperature strength, the test on the deforming behaviour of plates due to bending creep, the thermal shock test for steam generator tube plates and others were performed. In the R and D for seismic integrity, the vibration test of piping support structure and the development of detailed seismic property evaluation program are mentioned. (Wakatsuki, Y.)

  17. Modelling of stiffness and damping change in reinforced concrete structures under seismic actions

    International Nuclear Information System (INIS)

    Koenig, G.; Oetes, A.

    1985-01-01

    Restoring force and energy dissipation properties of ductile reinforced concrete structures during seismic excitation are investigated. Interpreting the results of earthquake simulation experiments with large scale reinforced concrete structural members mainly subjected to cyclic bending the various types of the force-deflection response and energy dissipation capability will be identified. Two alternative concepts are suggested for modelling: A rigorous model which considers the numerous deformation and dissipation mechanisms using a step by step algorithm for analysis and a simplified practical model which employs a modified spectrum analysis technique and a simple updating procedure for changing stiffness and damping properties of the members. (orig.)

  18. Probing The Structure North China To Better Understand Its Evolution, Natural Resources, And Seismic Hazards (Invited)

    Science.gov (United States)

    Keller, G. R.; Gao, R.; Qu, G.; Li, Q.; Liu, M.

    2010-12-01

    also recorded across the southern portion of this array. This profile crossed a region where the 3 main faults that pose the major hazard to the city are expressed at the surface. Some shots along this profile were also recorded by the 3-D array, and an earthquake occurred along the edge of the array during one of recording windows. Together, these data are producing an improved understanding of the structure of this area and will aid hazard assessments. These efforts are also being used a basis to conduct comparative studies to better understand seismic hazards in the central U.S. and the tectonic evolution of both regions.

  19. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    Science.gov (United States)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  20. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    Science.gov (United States)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys

  1. Study of structural change in volcanic and geothermal areas using seismic tomography

    Science.gov (United States)

    Mhana, Najwa; Foulger, Gillian; Julian, Bruce; peirce, Christine

    2014-05-01

    Long Valley caldera is a large silicic volcano. It has been in a state of volcanic and seismic unrest since 1978. Farther escalation of this unrest could pose a threat to the 5,000 residents and the tens of thousands of tourists who visit the area. We have studied the crustal structure beneath 28 km X 16 km area using seismic tomography. We performed tomographic inversions for the years 2009 and 2010 with a view to differencing it with the 1997 result to look for structural changes with time and whether repeat tomography is a capable of determining the changes in structure in volcanic and geothermal reservoirs. Thus, it might provide a useful tool to monitoring physical changes in volcanoes and exploited geothermal reservoirs. Up to 600 earthquakes, selected from the best-quality events, were used for the inversion. The inversions were performed using program simulps12 [Thurber, 1983]. Our initial results show that changes in both V p and V s were consistent with the migration of CO2 into the upper 2 km or so. Our ongoing work will also invert pairs of years simultaneously using a new program, tomo4d [Julian and Foulger, 2010]. This program inverts for the differences in structure between two epochs so it can provide a more reliable measure of structural change than simply differencing the results of individual years.

  2. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers

    International Nuclear Information System (INIS)

    Li, Hui; Wang, Jian

    2011-01-01

    This paper reports the results of an experimental study conducted to demonstrate the feasibility and capability of magnetorheological (MR) dampers commanded by a decentralized control algorithm for seismic control of nonlinear civil structures considering soil-structure interaction (SSI). A two-story reinforced concrete (RC) frame resting in a laminar soil container is employed as the test specimen, and two MR dampers equipped in the first story are used to mitigate the response of this frame subjected to various intensity seismic excitations. A hyperbolic tangent function is used to represent the hysteretic behavior of the MR damper and a decentralized control approach for commanding MR dampers is proposed and implemented in the shaking table tests. Only the response of the first story is feedback for control command calculation of the MR dampers. The results indicate that the MR damper can effectively reduce the response of the soil-structure system, even when the soil-structure system presents complex nonlinear hysteretic behavior. The robustness of the proposed decentralized control algorithm is validated through the shaking table tests on the soil-structure system with large uncertainty. The most interesting findings in this paper are that MR dampers not only mitigate the superstructure response, but also reduce the soil response, pile response and earth pressure on the pile foundation

  3. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  4. Seismic Evaluation of Structural Insulated Panels in Comparison with Wood-Frame Panels

    Directory of Open Access Journals (Sweden)

    Stefanie Terentiuk

    2014-07-01

    Full Text Available Structural Insulated Panel (SIP wall systems have been used in residential and light commercial buildings for the past sixty years. Lack of sufficient published research on racking load performance and limited understanding of the influence of fastener types on seismic response has been a deterrent in widespread use of the wall system in seismically active areas. This paper presents the results of a study involving a total of twenty one 2.4 m × 2.4 m shear walls tested under monotonic and cyclic loading. Four different 114 mm thick SIP panel configurations and one traditional wood frame wall were tested under monotonic loading according to ASTM E 564-06; and thirteen 114 mm thick SIP panels and three wood frame walls were tested under the CUREE loading protocol according to ASTM E 2126-11. Parameters such as fastener type; spline design; hold-down anchor location; and sheathing bearing were adjusted throughout the testing in order to determine their effects on the SIP’s performance. Performance parameters such as peak load and displacement; energy dissipation; allowable drift load capacity and seismic compatibility were determined for all of the specimens. Such parameters were then used to demonstrate the SIP walls’ compatibility with the wood frame walls and to determine the efficiency of the different SIP wall configuration and spline systems employed.

  5. Seismic Performance Evaluation of Concrete Gravity Dams with Penetrated Cracks Considering Fluid–Structure Interaction

    Directory of Open Access Journals (Sweden)

    A. Behshad

    2018-02-01

    Full Text Available In this paper, a comprehensive study on the seismic behavior of fractured concrete gravity dams during ground shakings is carried out considering dam–reservoir interaction effects. To gain the seismic behavior of the whole system, finite and boundary elements are employed to model the liquid region and the cracked structure, respectively. Formulation and different computational aspects of the suggested staggered hybrid approach are thoroughly argued. A computer code was developed in order to discuss the presented hybrid BE–DE technique and comparisons are made between the obtained results and those reported in the literature. To gain this goal, several problems of seismic excitations in frequency- and time-domains are presented employing the proposed approach, showing that the present results agree well with the results from other numerical procedures. The cracked Koyna Dam is scrutinized, considering the dynamic interaction between dam and reservoir with focus on the nonlinear behavior due to its top profile crack. The developed numerical model is rigorously validated by extensive comparisons with available results in the literature in which the dam–reservoir interaction were simplified by added masses. It can be concluded that there is significant disparity between the overturning and sliding response schemes of the nonlinear analysis and those of added mass technique.

  6. State of the art seismic analysis for CANDU reactor structure components using condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S A; Ibraham, A M; Hodgson, S [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The reactor structure assembly seismic analysis is a relatively complex process because of the intricate geometry with many different discontinuities, and due to the hydraulic attached mass which follows the structure during its vibration. In order to simulate reasonably accurate behaviour of the reactor structure assembly, detailed finite element models are generated and used for both modal and stress analysis. Guyan reduction condensation method was used in the analysis. The attached mass, which includes the fluid mass contained in the components plus the added mass which accounts for the inertia of the surrounding fluid entrained by the accelerating structure immersed in the fluid, was calculated and attached to the vibrating structures. The masses of the attached components, supported partly or totally by the assembly which includes piping, reactivity control units, end fittings, etc. are also considered in the analysis. (author). 4 refs., 6 tabs., 4 figs.

  7. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  8. Seismic Structure of Mantle Transition Zone beneath Northwest Pacific Subduction Zone and its Dynamic Implication

    Science.gov (United States)

    Li, J.; Guo, G.; WANG, X.; Chen, Q.

    2017-12-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we

  9. Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation

    Science.gov (United States)

    Deng, Wubing; Morozov, Igor B.

    2017-10-01

    The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the

  10. Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?

    Science.gov (United States)

    Cobden, L. J.

    2017-12-01

    Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.

  11. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    Science.gov (United States)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  12. Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania

    Science.gov (United States)

    Knapp, C. C.; Enciu, D. M.; Knapp, J. H.

    2007-12-01

    Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the

  13. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  14. Seismic response of the geologic structure underlying the Roman Colosseum and a 2-D resonance of a sediment valley

    OpenAIRE

    Mozco, P.; Rovelli, A.; Labak, P.; Malagnini, L.

    1995-01-01

    The seismic response of the geologic structure beneath the Colosseum is investigated using a two-dimensional modeling for a vertically incident plane SH wave. Computations indicate that the southern part of the Colosseum may be exposed to a seismic ground motion with significantly larger amplitudes, differential motion and longer duration than the northern part. because the southern part of the Colosseum is underlain by a sedimentfilled valley created by sedimentary filling of the former trib...

  15. Application of the random vibration approach in the seismic analysis of LMFBR structures

    International Nuclear Information System (INIS)

    Preumont, A.

    1988-01-01

    The first part discusses the general topic of the spectral analysis of linear multi-degree-of-freedom structure subjected to a stationary random field. Particular attention is given to structures with non-classical damping and hereditary characteristics. The method is implemented in the computer programme RANDOM. Next, the same concepts are applied to multi-supported structures subjected to a stationary seismic excitation. The method is implemented in the computer programme SEISME. Two related problems are dealt with in the next two chapters: (i) the relation between the input of the random vibration analysis and the traditional ground motion specification for seismic analysis (the Design Response Spectra) and (ii) the application of random vibration techniques to the direct generation of floor response spectra. Finally the problem of extracting information from costly time history analyses is addressed. This study has mainly been concerned with the methodology and the development of appropriate softwares. Some qualitative conclusions have been drawn regarding the expected benefit of the approach. They have been judged promising enough to motivate a benchmark exercise. Specifically, the random vibration approach will be compared to the current approximate methods (response spectrum) and time-history analyses (considered as representative of the true response) for a set of typical structures. The hope is that some of the flaws of the current approximate methods can be removed

  16. A theorical experimental comparison of the buckling caused by fluid structure interaction during a seismic load

    International Nuclear Information System (INIS)

    Aillaud, P.; Buland, P.; Combescure, A.; Queval, J.C.; Garuti, G.

    1983-08-01

    The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon we have performed theorical and experimental investigations on structures consisting of two shells separed by a thin fluid layer, and submitted to a seismic type of load. The objectives of these investigations are the following: study the coupling between buckling modes and vibrations modes and buckling of the effects of this coupling on the level of the pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea. The experiments are made on two types of structures: spherical and cylindrical shells. The load applied on the shells consists of a permanent pressure and of a dynamic pressure due to fluid structure interaction. The systeme is put on the vibrating table and excitation is vertical for the hemispherical case, and horizontal for the cylindrical cases. Six models of each type are tested, with sinusoidal excitation at resonance. The tests on the spherical shells are presented and compared with calculations. The correlation is good and the main results is, as predicted by numerical calculation, that if the sum of the permanent and oscillatory pressure is greater than the static buckling load, the shells buckle. This results validates the static methodology. The tests on the cylindrical tanks will be exploited by the end of the year and presented in this paper

  17. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  18. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  19. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  20. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  1. Study on the seismic response of reactor vessel of pool type LMFBR including fluid-structure interaction

    International Nuclear Information System (INIS)

    Tanimoto, K.; Ito, T.; Fujita, K.; Kurihara, C.; Sawada, Y.; Sakurai, A.

    1988-01-01

    The paper presents the seismic response of reactor vessel of pool type LMFBR with fluid-structure interaction. The reactor vessel has bottom support arrangement, the same core support system as Super-Phenix in France. Due to the bottom support arrangement, the level of core support is lower than that of the side support arrangement. So, in this reactor vessel, the displacement of the core top tends to increase because of the core's rocking. In this study, we investigated the vibration and seismic response characteristics of the reactor vessel. Therefore, the seismic experiments were carried out using one-eighth scale model and the seismic response including FSI and sloshing were investigated. From this study, the effect of liquid on the vibration characteristics and the seismic response characteristics of reactor vessel were clarified and sloshing characteristics were also clarified. It was confirmed that FEM analysis with FSI can reproduce the seismic behavior of the reactor vessel and is applicable to seismic design of the pool type LMFBR with bottom support arrangement. (author). 5 refs, 14 figs, 2 tabs

  2. Note on nonlinear seismic response of reinforced concrete structures with low initial periods

    International Nuclear Information System (INIS)

    Sozen, M.A.

    1985-01-01

    This note was prepared to illustrate by specific examples an opinion on the seismic response of reinforced concrete structures with low initial periods. The object is to point out what the writer considers to be important in relation to the behavior of such structures at levels of ground shaking higher than indicated by design criteria. Structures of concern are assumed to have low initial periods. A structure with a low initial period is assumed to have both of two attributes: (a) its flexural stiffness is high so that its total overall lateral deformation is not dominated by flexural deformation and (b) its calculated period is below the one at which the calculated response spectrum may be idealized to change from the nearly-constant acceleration to the nearly-constant velocity response range

  3. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  4. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to aid drilling decisions in the Tho Tinh structure, Nam Con Son basin, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W; Hayashida, N; Kusaka, H; Leaney, W; Nakanishi, S

    1996-10-01

    This paper reviews the problem of overpressure, a common reason for acquiring look-ahead VSPs, and the seismic trace inversion problem, a fundamental issue in look-ahead prediction. The essential components of intermediate VSPs were examined from acquisition through processing to inversion, and recently acquired real data were provided, which were indicative of the advances being made toward developing an exclusive high resolution VSP service. A simple interpretation method and an end product of predicted mud weight versus depth were also presented, which were obtained from the inverted acoustic impedance and empirical relations. Of paramount importance in predicting the depth to a target was the velocity function used below the intermediate TD. The use of empirical or assumed density functions was an obvious weak link in the procedure. The advent of real-time time-depth measurements from drill bit seismic allowed a continuously updated predicted target depth below the present bit depth. 8 refs., 7 figs.

  5. Structural algorithm to reservoir reconstruction using passive seismic data (synthetic example)

    Energy Technology Data Exchange (ETDEWEB)

    Smaglichenko, Tatyana A.; Volodin, Igor A.; Lukyanitsa, Andrei A.; Smaglichenko, Alexander V.; Sayankina, Maria K. [Oil and Gas Research Institute, Russian Academy of Science, Gubkina str.3, 119333, Moscow (Russian Federation); Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Leninskie gory, 1, str.52,Second Teaching Building.119991 Moscow (Russian Federation); Shmidt' s Institute of Physics of the Earth, Russian Academy of Science, Bolshaya Gruzinskaya str. 10, str.1, 123995 Moscow (Russian Federation); Oil and Gas Research Institute, Russian Academy of Science, Gubkina str.3, 119333, Moscow (Russian Federation)

    2012-09-26

    Using of passive seismic observations to detect a reservoir is a new direction of prospecting and exploration of hydrocarbons. In order to identify thin reservoir model we applied the modification of Gaussian elimination method in conditions of incomplete synthetic data. Because of the singularity of a matrix conventional method does not work. Therefore structural algorithm has been developed by analyzing the given model as a complex model. Numerical results demonstrate of its advantage compared with usual way of solution. We conclude that the gas reservoir is reconstructed by retrieving of the image of encasing shale beneath it.

  6. Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania

    Science.gov (United States)

    Hauser, F.; Raileanu, V.; Fielitz, W.; Dinu, C.; Landes, M.; Bala, A.; Prodehl, C.

    2007-02-01

    In order to study the lithospheric structure in Romania a 450 km long WNW-ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300-1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0-5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of

  7. Crustal structure in the Kiruna area, northern Sweden, based on seismic reflection profiling

    Science.gov (United States)

    Juhojuntti, Niklas; Bergman, Stefan; Olsson, Sverker

    2013-04-01

    Northernmost Sweden is currently one of the most active mining areas in Europe. In order to better understand the regional three-dimensional crustal structure and to support deep ore exploration, we have acquired a 74 km long seismic reflection profile in the Kiruna area. The upper crust in this area is largely composed of various supracrustal units, which are dominated by metabasalts, acidic metavolcanics and clastic metasedimentary rocks, resting on an Archaean metagranitoid complex. All of these units have been intruded by plutonic rocks, and to variable degrees folded, sheared and metamorphosed, during the Svecokarelian orogeny. The profile crosses several steep ductile shear zones, some of which extend for hundreds of kilometres along strike. Many of the lithological contacts and deformation zones are expected to be seismically reflective. The profile is located only a few kilometres from the world's largest underground iron-ore mine in Kiruna, and closer to the profile there are several known ore bodies, some of which are active exploration targets. For the seismic recording we used approximately 350 geophones in split-spread configuration, at a separation of 25 m. The main seismic source was the Vibsist system (an impact source), which normally was employed at every geophone station. We also fired explosive charges (8-16 kg) at a few locations distributed along the profile to image deeper structures, although at very low resolution. Wireless seismometers were placed along and to the side of the profile, mainly in order to achieve better velocity control and to study out-of-the-plane reflections. Some mining blasts in Kiruna were also recorded. The upper crust in the area is quite reflective, most clearly demonstrated by the dynamite shot records. Some of the reflections appear to originate from steeply dipping structures. The dynamite shot records show a set of reflections at 3-4 s twt, corresponding to a depth of roughly 10 km, the explanation for which is

  8. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  9. Soil–structure interaction analyses to locate nuclear power plant free-field seismic instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James J., E-mail: jasjjoh@aol.com [James J. Johnson and Associates, Alamo, CA (United States); Ake, Jon P. [US Nuclear Regulatory Commission, Washington, DC (United States); Maslenikov, Oleg R. [James J. Johnson and Associates, Alamo, CA (United States); Kenneally, Roger M. [Consultant, Seminole, FL (United States)

    2015-12-15

    Highlights: • Determine the location of seismic instrumentation so that recorded motion will be free-field motion. • Certified Designs of nuclear island for AP1000 and EPR; ABWR Reactor Building were analyzed. • Three site conditions and multiple recorded time histories were considered. • Instrumentation located 1-diameter from the edge of structure/foundation is adequate. • Acceptance criteria were probability of non-exceedance of response spectra values. - Abstract: The recorded earthquake ground motion at the nuclear power plant site is needed for several purposes. US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.12, Nuclear Power Plant Instrumentation for Earthquakes, NRC (1997a), describes acceptable instrumentation to meet the requirements in NRC's regulations pertaining to earthquake engineering criteria for nuclear power plants. The ground motion data recorded by the free-field seismic instrumentation are used to compare the actual earthquake motion at the site with the design input motion. The result of the comparison determines if the Operating Basis Earthquake ground motion (OBE) has been exceeded and plant shutdown is required per the guidance in NRC Regulatory Guide 1.166, Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Postearthquake Actions, NRC (1979b). The free-field is defined as a location on the ground surface or in the site soil column that is sufficiently distant from the site structures to be essentially unaffected by the vibration of the site structures.

  10. ON STRUCTURED AND DIFFUSE SEISMICITY, STIFFNESS OF EARTHQUAKE FOCI, AND NONLINEARITY OF MAGNITUDE RECURRENCE GRAPHS

    Directory of Open Access Journals (Sweden)

    Evgeny G. Bugaev

    2011-01-01

    Full Text Available Geological, geophysical and seismogeological studies are now conducted in a more detail and thus provide for determining seismic sources with higher accuracy, from the first meters to first dozens of meters [Waldhauser, Schaff, 2008]. It is now possible to consider uncertainty ellipses of earthquake hypocenters, that are recorded in the updated Earthquake Catalogue, as surfaces of earthquake focus generators. In our article, it is accepted that a maximum horizontal size of an uncertainty ellipse corresponds to an area of a focus generator, and seismic events are thus classified into two groups, earthquakes with nonstiff and stiff foci. Criteria of such a classification are two limits of elastic strain and brittle strain in case of uniaxial (3⋅10–5 or omnidirectional (10–6 compression. The criteria are established from results of analyses of parameters of seismic dislocations and earthquake foci with regard to studies of surface parameters and deformation parameters of fault zones. It is recommendable that the uniaxial compression criterion shall be applied to zones of interaction between tectonic plates, and the unilateral compression criterion shall be applied to low active (interplate areas. Sample cases demonstrate the use of data sets on nonstiff and stiff foci for separate evaluation of magnitude reoccurrence curves, analyses of structured and dissipated seismicity, review of the physical nature of nonlinearity of recurrence curves and conditions of preparation of strong earthquakes. Changes of parameters of the recurrence curves with changes of data collection square areas are considered. Reviewed are changes of parameters of the recurrence curves during preparation for the Japan major earthquake of 11 March 2011 prior to and after the major shock. It is emphasized that it is important to conduct even more detailed geological and geophysical studies and to improve precision and sensitivity of local seismological monitoring networks

  11. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage

    Science.gov (United States)

    Martelli, Alessandro

    2011-01-01

    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  12. Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera

    Science.gov (United States)

    Lloyd, Ryan; Biggs, Juliet; Wilks, Matthew; Nowacki, Andy; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias; Eysteinsson, Hjálmar

    2018-04-01

    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba-Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes.

  13. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  14. Investigation of soil structure in Uzungöl settlement area by Shallow Seismic Methods

    Directory of Open Access Journals (Sweden)

    Hakan Karslı

    2017-04-01

    Full Text Available This study was performed to relase the soil structure of Uzungöl district of Trabzon city, a vocational area, where had been formed by a historical landslide and lake deposits and to evaluate its geotechnical characters by using seismic methods which are noninvasive, rapidly applicable and provide substantial information about the structure of investigated ground in a short time. For this purpose, seismic refraction, active-passive surface waves and seismic reflections in 16 profiles were gathered on four sub-areas and and evaluated by current favorable numerical methods. Although it considerably varies between profiles, the depth of basement, depositional base of deposits, was averagely obtained as 13.5-15m at upper elevation and 25-50m at lower elevation of the study area. Dynamic elastic parameters and average shear wave velocity of the upper 30m (VS30 of soil in the area were calculated. The soil classification of study area was interpreted as locally Z1 and Z2 class for TEC, B and C class for EC-8 code, C and D class for NERHP. According to VS30 (394-530m/s, ground amplification and predominant vibration period of the study area are respectively obtained as 1.5-2.1 and 0.23-0.30sec. On the other hand, all deposits are characterized by stiffness-solid soil, excluding arable soil from surface to a few meters depth. In addition, the first meters of bedrock shows weathered character, but deeper parts are very compact and hard. Therefore, a scientific infrastructure has been formed to carry out the engineering projects to be planned for Uzungöl settletment safely and without damaging the environment.

  15. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    Science.gov (United States)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  16. A quick seismic assessment method for jacket type offshore structures by combining push-over and nonlinear time history analyses

    Energy Technology Data Exchange (ETDEWEB)

    Karimiyan, S.; Hosseini, M. [International Inst. of Earthquake Engineering and Seismology, Tehran (Iran, Islamic Republic of); Karimiyan, M. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Earthquake Eng. Dept., School of Engineering

    2010-07-01

    Several offshore structures are located in seismic regions. In order to upgrade their seismic behaviour, their seismic vulnerability must be evaluated. It is thought that the most reliable type of analysis for seismic evaluation is nonlinear time history analysis (NLTHA), however, it is known to be a very time consuming method. This paper presented a quick procedure by combining the push over analysis (POA) and the NLTHA. The paper discussed both methods in detail. In order to identify the more critical members of the structure, based on the range of their plastic deformations, some POA were first performed. The NLTHA was then performed, focusing on the critical members, to obtain their vulnerability with higher reliability. An offshore structure of jacket type, installed in the Lavan oil field in the Persian Gulf in 1970, was also considered in order to demonstrate the efficiency of the proposed method. It was concluded from the numerical results that combining POA and NLTHA was a quick and reliable seismic evaluation method. The results demonstrated that although the vulnerability of the jacket structure was not very high, the level of damage was not the same for different members, and was dependent on their location in the structure and also its geometric orientation and load bearing situation. 6 refs., 1 tab., 8 figs.

  17. Structural interpretation of seismic data of Abu Rudeis-Sidri area, Northern Central Gulf of Suez, Egypt

    Directory of Open Access Journals (Sweden)

    Hesham Shaker Zahra

    2016-12-01

    Full Text Available The 2D and 3D seismic data are interpreted to evaluate the subsurface geologic structures in the Abu Rudeis-Sidri area that occupy the northern central part of the Gulf of Suez. The 2D seismic data are used for determination of the structural configurations and the tectonic features which is analyzed through the study of interpretation with the available geologic data, in which the geo-seismic depth maps for the main interesting tops (Kareem, Nukhul, Matulla, Raha and Nubia Formations are represented. Such maps reflect that, the Miocene structure of Abu Rudeis-Sidri area is an asymmetrical NW-SE trending anticlinal feature dissected by a set of NW-SE fault system (clysmic. Added, the Pre-Miocene structure of the studied area is very complex, where the area is of NE dip and affected by severe faulting through varying stratigraphic levels.

  18. Semiactive Control Using MR Dampers of a Frame Structure under Seismic Excitation

    International Nuclear Information System (INIS)

    Gattulli, Vincenzo; Lepidi, Marco; Potenza, Francesco; Carneiro, Rubia

    2008-01-01

    The paper approaches the multifaceted task of semiactively controlling the seismic response of a prototypal building model, through interstorey bracings embedding magnetorheological dampers. The control strategy is based on a synthetic discrete model, purposely formulated in a reduced space of significant dynamic variables, and consistently updated to match the modal properties identified from the experimental response of the modeled physical structure. The occurrence of a known eccentricity in the mass distribution, breaking the structural symmetry, is also considered. The dissipative action of two magnetorheological dampers is governed by a clipped-optimal control strategy. The dampers are positioned in order to deliver two eccentric and independent forces, acting on the first-storey displacements. This set-up allows the mitigation of the three-dimensional motion arising when monodirectional ground motion is imposed on the non-symmetric structure. Numerical investigations on the model response to natural accelerograms are presented. The effectiveness of the control strategy is discussed through synthetic performance indexes

  19. Comparative study for methods to determine the seismic response of NPP structures

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1995-01-01

    There are many different important problem areas in evaluating the seismic response of structures. In this study the effort is concentrated on three of these areas. The first task is the mathematical formulation of earthquake excitation. The random vibration theory is taken as the tool in this task. The second area of interest in this study is the soil-structure interaction analysis. The approach of impedance functions is chosen and the focal point of interest is the significance of frequency dependent impedance functions. The third area of interest is the methods to determine the structural response. The following three methods were tested: the mode superposition time history method; the complex frequency response method; the response spectrum method. The comparison was made with the aid of MSC/NASTRAN code. The three methods gave for outer containment building response results which were in good agreement with each other. (author). 4 refs., 5 figs

  20. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression

    International Nuclear Information System (INIS)

    Carausu, A.

    1996-01-01

    A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)

  1. Incorporating Code-Based Software in an Introductory Statistics Course

    Science.gov (United States)

    Doehler, Kirsten; Taylor, Laura

    2015-01-01

    This article is based on the experiences of two statistics professors who have taught students to write and effectively utilize code-based software in a college-level introductory statistics course. Advantages of using software and code-based software in this context are discussed. Suggestions are made on how to ease students into using code with…

  2. Rubber bearing and bitumen infill support system for seismic protection of nuclear power plant structures

    International Nuclear Information System (INIS)

    Ahmed, K.M.

    1981-01-01

    The prestressed concrete pressure vessel (PCPV) for the AGR is of cylindrical type. The whole of the reactor primary circuit is contained within the PCPV vault and includes the reactor core and support structures, boilers and gas circulators. The PCPV is essentially free standing on its foundation raft. In order to transmit gravitational and seismic loads between the PCPV and the foundation raft, a support system is used which consists of concentric rings of neoprene pads and a thin annulus of bitumen infill. In order to assess the importance of both stiffness and damping of the PCPV support system on the overall AGR response, detailed parametric studies were carried out using time-history dynamic analysis in conjunction with the modal superposition technique. The effects of both stiffness and damping are compared in terms of the maximum dynamic response (maximum accelerations and maximum relative displacements) and also floor response spectra at various locations on the nuclear island. It is clearly apparent from these investigations that for an appropriate range of structures on the nuclear island (such as the PCPV and its internals), greater reduction in seismic loading can be achieved by proper selection of stiffnesses and damping of the PCPV support system without resorting to strengthening techniques. (orig./HP)

  3. The relationship of seismic velocity structure and surface fracture characteristics of basalt outcrops to rippability estimates

    International Nuclear Information System (INIS)

    Kay, S.E.; Dougherty, M.E.; Pelton, J.R.

    1994-01-01

    Seismic velocity has been shown in previous engineering studies to be related to the fracture characteristics and rippability of rock outcrops. However, common methods of measuring seismic velocity in outcrops do not take into account the many possible travel paths for wave propagation and the fact that velocity zones may exist within an outcrop. Presented here are the results of using raytracing inversion of first-arrival travel-time data to map P-velocity structure in basalt outcrops, and also the investigation of the relationship of the mapped velocities to observed surface fractures and hand-sample P-velocities. It is shown that basalt outcrops commonly consist of an irregular near-surface low-velocity zone underlain by higher velocity material; that velocity gradients can exist in outcrops; that hand-sample velocity measurements are typically higher than outcrop-scale measurements; and that the characteristics of surface fractures are empirically related to near-surface P-velocity. All of these findings are relevant to the estimated rippability of rock in geotechnical engineering. The data for this study are derived from eleven sites on basalt outcrops of the Troodos Ophiolite in Cyprus. The basalt types include pillow basalts, massive flows, and a pillow breccia. A commonly available raytracing inversion program (RAYINVR) was used to produce a velocity profile of each outcrop. Different velocity zones were detailed by inverting observed travel times to produce a model of outcrop velocity structure which produces rippability profiles for each outcrop. 16 refs., 9 figs

  4. Energy-Based Design Criterion of Dissipative Bracing Systems for the Seismic Retrofit of Frame Structures

    Directory of Open Access Journals (Sweden)

    Gloria Terenzi

    2018-02-01

    Full Text Available Direct sizing criteria represent useful tools in the design of dissipative bracing systems for the advanced seismic protection of existing frame structures, especially when incorporated dampers feature a markedly non-linear behaviour. An energy-based procedure is proposed herein to this aim, focusing attention on systems including fluid viscous devices. The procedure starts by assuming prefixed reduction factors of the most critical response parameters in current conditions, which are evaluated by means of a conventional elastic finite element analysis. Simple formulas relating the reduction factors to the equivalent viscous damping ratio of the dampers, ξeq, are proposed. These formulas allow calculating the ξeq values that guarantee the achievement of the target factors. Finally, the energy dissipation capacity of the devices is deduced from ξeq, finalizing their sizing process. A detailed description of the procedure is presented in the article, by distinguishing the cases where the prevailing structural deficiencies are represented by poor strength of the constituting members, from the cases having excessive horizontal displacements. A demonstrative application to the retrofit design of a reinforced concrete gym building is then offered to explicate the steps of the sizing criterion in practice, as well as to evaluate the enhancement of the seismic response capacities generated by the installation of the dissipative system.

  5. Application of Post-stack migration to seismic data associated with fault structures

    Science.gov (United States)

    Koduru, Anitha; Mohanty, P. R.

    2015-06-01

    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, synthetic time sections are generated corresponding to three models. Later, post stack migration schemes such as Gazdag(PS), Phase-shift with turning rays and reverse time migration (T-K) domain techniques are applied in order to judge the imaging accuracy, preservation of true amplitude and computational speed. All the three post stack time migrated sections delineate the structure with their throw.However, the reverse time migrations (T-K) clearly delineate the reflectors in restoring the throw properly with minimum computational time. In order to test the validity the numerical results, similar exercise has been undertaken using field seismic data of KG basin, India. The results indicates that the field migrated sections are imaged. But, the reverse time migration (T-K ) provides the best subsurface image with restoration of reflectors and collapse of diffracted events with least computational time. Gazdag (PS) and Phase-Shift with turning migrated section shows the reduction of amplitude whereas, the reverse time migration preserved the amplitude fully.

  6. High-resolution probing of inner core structure with seismic interferometry

    KAUST Repository

    Huang, Hsin-Hua

    2015-12-23

    © 2015. American Geophysical Union. All Rights Reserved. Increasing complexity of Earth\\'s inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  7. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  8. Effect of supporting structure stiffness on the drive train assembly of an induced draft cooling tower under seismic effects

    International Nuclear Information System (INIS)

    Raghavan, N.; Ramasubramanian, S.; Khan, K.

    2005-01-01

    In a nuclear power project an induced draft cooling tower, as a safety-related structure and part of the main cooling system, has to perform satisfactorily under designated seismic effects. While the structural elements can be designed by conventional methods to ensure adequate safety, the seismic qualification of the mechanical components poses a challenge. The paper describes a methodology adopted for the seismic qualification of a typical Drive Train Assembly for the axial flow fan of an induced draft cooling tower, to ensure the structural integrity and functional operability of the assembly during Operating Base Earthquake and Safe Shutdown Earthquake conditions. This is achieved by performing a detailed finite element analysis of the rotating equipment assembly consisting of the electric motor, gear box and fan along with the drive shaft between the motor and the gear box. The various components are modeled using beam elements, plate elements and spring elements to idealize the flexible connections and supports. The floor response spectra derived from a dynamic analysis of the overall structure under stipulated seismic acceleration spectra are the main excitation inputs into the system. The results validate the adequacy of gaps for movement and the strengths of the couplings and bolts to withstand the applied loads. The assumed modeling and analysis methodology are seen to be acceptable procedures for seismic qualification of important components of the cooling tower. (authors)

  9. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  10. Effect of soil-structure interaction on the seismic behaviour of pedestal-structure system in large dish antennas

    Directory of Open Access Journals (Sweden)

    Bahador Pourhatami

    2017-12-01

    Full Text Available Regarding the progressive improvement in the territory of Space Technology in all developed countries and consequently developing countries including Islamic Republic of Iran, the optimization of design and utilization of the communication equipment has been paid more attention today. For instance, considering recent highly innovative methods, specifically in communication field, developed for design, manufacturing and exploiting dish antenna for specific cases, cooperation of other science and technology experts, like civil engineers, is also necessary. In this way, more delicate design procedure in order to satisfy communication requirement, is achieved. So far, no specific investigation about aforementioned subject, especially the effect of soil-structure interaction (SSI in analysing the seismic behaviour of communication large dish antennas has been conducted in Iran. In this paper, with the aim of investigating the effect of SSI on seismic behavior of pedestal, first an acceptable range for antenna displacement – as the most important parameter in pedestal structure for antenna – in both operational and survival states, has been calculated numerically based on generic formula. Secondly, the modelling of the whole pedestal-structure system has been modelled subjected to the associated loads and other primary conditions. This procedure has been performed once without considering the SSI and once more with it. Comparison of the obtained results shows that considering the SSI would impress the output results with a difference rate more than 50% and 600% respectively at survival and operational condition.

  11. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  12. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  13. Simquake 3: Seismic interactions between building structures and rock-socketed foundations: Final report

    International Nuclear Information System (INIS)

    Howard, G.E.; Chitty, D.E.; Oleck, R.F.

    1988-04-01

    It has long been recognized that soil-structure interaction can significantly influence the earthquake response of massive structures such as nuclear power plant reactor buildings. The linear analysis methods that are widely used to model interaction phenomena can result in often unrecognized safety margins in design for earthquake excitation. Use of improved interaction models which capture nonlinear characteristics of interaction---such as energy dissipation and significant changes in stiffness---can provide realistic predictions of the earthquake loads imposed on nuclear power plant structures and equipment, supplying an improved basis for seismic design review. This report documents the results of a research effort investigating the soil-structure (or structure-media) interaction of reinforced concrete structures founded in backfilled rock sockets. The objectives of the research, which included field testing with semi-scale structural models, were: to examine the influence of the backfilled socket on structural dynamic response; and to develop an experimental data base for the benchmarking of computer simulation procedures

  14. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    Science.gov (United States)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  15. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region

    Science.gov (United States)

    Sun, A.; Zhao, L.; Chen, Q.

    2008-12-01

    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  16. Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure

    Science.gov (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna

    2014-12-01

    The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.

  17. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  18. Seismic structure of the crust and upper mantle in central-eastern Greenland

    DEFF Research Database (Denmark)

    Kraft, Helene Anja

    Geophysical and geological knowledge of the interior of Greenland is very limited. The lack of knowledge arises mainly due to the logistical challenges related to conducting geophysical fieldwork on the up to 3400 m thick ice sheet, which covers around 80% of the land area. This PhD thesis is based...... on the very first regional passive seismic study in central-Eastern Greenland, focusing on the area between Scoresby Sund and Summit. The study aims to image the structure of subsurface Greenland starting from the crust and down to the mantle transition zone. Furthermore, the thesis links these observations....... The receiver functions were jointly inverted for the velocity structure of the crust and delay times, and shapes of signals originating at the mantle transition zone discontinuities, P410s and P660s, were analysed. The crustal models show a deepening of the Moho from east to west from less than 20 km depth...

  19. A seismic tomography study of lithospheric structure under the Norwegian Caledonides

    DEFF Research Database (Denmark)

    Hejrani, Babak; Jacobsen, B. H.; Balling, N.

    2012-01-01

    A deep lithospheric transition between southern Norway and southern Sweden has been revealed in papers by Medhus et al. (2009,) and Medhus (2010). This lithospheric transition is crossing various tectonic units including the Caledonides.. We address the question of whether this transition continu...... (Hejrani et al., 2011) (optimizes 2D ray coverage under a crooked profile) is used to resolve the details of the transition boundaries in lithosphere structure across the mountains and its relation to the geological surface settings....... in this area. These results are compared the upper mantle structure obtained by Medhus (2010) and Hejrani et al. (2011) for Caledonian and shield units to the south in southern Norway and Sweden, where the lithospheric transition follows the eastern margin of the Oslo Graben. Crooked line seismic tomography...

  20. Validation of spectral methods for the seismic analysis of multi-supported structures

    International Nuclear Information System (INIS)

    Viola, B.

    1999-01-01

    There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)

  1. The effect of seismic motion characteristics on the inelastic response reduction of cylindrical shell structures

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Yamamoto, K.; Akiyama, H.

    1993-01-01

    Reactor vessels of FBR are cylindrical shell structures, whose critical failure mode during earthquakes is plastic buckling in shear or bending mode. In buckling prevention of the vessels, it is of primary importance to realistically evaluate the plastic response reduction effect in the pre-buckling stage. Though the authors have already proposed a empirical formula to estimate the response reduction effect, the formula depends only on the pre-buckling ductility factor in the evaluation for the purpose of easy design practice. In this study, the effect of seismic motion characteristics on the response reduction effect was investigated both experimentally and numerically, and a improved version of the empirical expression of the reduction factor was proposed. In this new method, the response reduction effect is evaluated by an initial acceleration amplification factor in addition to the ductility of structures. (author)

  2. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    Science.gov (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  3. Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity

    Science.gov (United States)

    Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.

    2017-12-01

    The continental crust in northwestern Namibiamainly was formed during to the Neoproterozoic assembly of Gondwana. The collision of old African and South American cratonic coressuch as the Congo, Kalahari and Rio de la Plata cratons led tothe development of the Pan-African Damara orogen. The fold systemconsists of an intracratonic branch in northern central Namibia (named Damara Belt), and two coast-parallel branches, the Kaoko Belt in northern Namibia and the Gariep Belt in the border region between Namibia and theRepublic of South Africa. During the Early Cretaceous opening of the South Atlantic ocean, the crust in NW Namibia was prominently affected by the Tristan da Cunha mantle plume, as evidenced by the emplacement of the Etendeka continental flood basalts.A local earthquake tomography was carried out in NW Namibia to investigateif and to what degree the deeper continental crust was modified by the magmaticactivity during rifting and the impingement of the Tristan da Cunhamantle plume. We analyzed data from 28 onshore stations of the temporaryWALPASS seismic network. Stations were covering the continental marginaround the landfall of the Walvis Ridge, parts of the Kaoko Belt and Damara Belt,and marginally the southwestern edges of the Congo craton.First arrivals of P and S waves were identified and travel times werepicked manually. 1D inversion was carried out with VELEST to derivestarting models and the initial seismicity distribution, and SIMUL2000was used for the subsequent 3D tomographic inversion. The resultingseismicity distribution mainly follows the structures of the Pan-Africanorogenic belts. The majority of events was localized in the upper crust,but additional seismicity was also found in the deeper crust.An anomaly of increased P velocities is revealed in the deep crust under the Etendekaflood basalt province. Increased P velocities can be explained by mafic and ultra-maficmaterial which intruded in the lower crust. The anomaly appears to be rather

  4. Intercomparison of analysis methods for seismically isolated nuclear structures. Papers and working materials presented at the 3. research coordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The Coordinated research program on Intercomparison of analysis methods for seismically isolated nuclear structures involved participants from Italy, Japan, Republic of Korea, Russia, United Kingdom, USA, EC. The purpose of the meeting was to review the progress on the finite element prediction of the force-deformation behaviour of seismic isolators and to discuss the first set of analytical results for the prediction of the response of base-oscillated structures to earthquake inputs. The intercomparison of predictions of bearing behaviour has identified important unexpected issues requiring deeper investigation

  5. Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics

    Science.gov (United States)

    Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte

    2016-04-01

    Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were

  6. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    Science.gov (United States)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  7. Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus

    International Nuclear Information System (INIS)

    Wibowo, Bagus Adi; Ngadmanto, Drajat; Daryono

    2015-01-01

    A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wave in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below

  8. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  9. Seismic refraction data constrain along-axis structure of the Mid-Cayman spreading center

    Science.gov (United States)

    Van Avendonk, H. J.; Hayman, N. W.; Harding, J.; Grevemeyer, I.; Peirce, C.; Dannowski, A.; Papenberg, C. A.

    2015-12-01

    The Mid-Cayman Spreading Center (MCSC) is an ultraslow (15 mm/yr) spreading ridge between the Caribbean and North American plates. From north to south the MCSC is just ~140 km long, as it is bounded to the north by the Oriente transform fault, and to the south by the Swan Islands and Walton fault systems. The neovolcanic zone is characterized by an axial valley with depths to 6000 m, and a few off-axis bathymetric highs that can be as shallow as 2000 m. The role of tectonic and magmatic processes in the creation of this bathymetric relief is not yet understood. In the 2015 CaySEIS experiment, a collaboration between German, US and UK scientists, we gathered ocean-bottom seismic refraction data along five lines across and parallel to the MCSC to determine its crustal structure. We here present the tomographic analysis of marine seismic refractions recorded along the spreading axis. The presence of thin crust here shows that the bathymetric relief of the MCSC is at least in part isostatically compensated. Much of the older ultraslow spread crust on the flanks of the MCSC may not have accreted along the deep axial valley, but it may instead have formed by exhumation of gabbros along extensional faults in the adjacent seafloor.

  10. Seismic and structural analysis of high density/consolidated spent fuel storage racks

    International Nuclear Information System (INIS)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B.; Harstead, G.A.; Kopecky, B.

    1995-01-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, ad the type of the seismic event. This paper presents several of the mathematical models usually used. The models include features to allow sliding and tipping of the racks and to represent the hydrodynamic coupling which can occur between fuel assemblies and rack cells, between adjacent racks, and between the racks and the reinforced concrete walls. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies

  11. Seismic analysis of offshore wind turbines on bottom-fixed support structures.

    Science.gov (United States)

    Alati, Natale; Failla, Giuseppe; Arena, Felice

    2015-02-28

    This study investigates the seismic response of a horizontal axis wind turbine on two bottom-fixed support structures for transitional water depths (30-60 m), a tripod and a jacket, both resting on pile foundations. Fully coupled, nonlinear time-domain simulations on full system models are carried out under combined wind-wave-earthquake loadings, for different load cases, considering fixed and flexible foundation models. It is shown that earthquake loading may cause a significant increase of stress resultant demands, even for moderate peak ground accelerations, and that fully coupled nonlinear time-domain simulations on full system models are essential to capture relevant information on the moment demand in the rotor blades, which cannot be predicted by analyses on simplified models allowed by existing standards. A comparison with some typical design load cases substantiates the need for an accurate seismic assessment in sites at risk from earthquakes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Experimental studies of the seismic response of structures incorporating base isolation systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Aiken, I.D.

    1989-01-01

    Whereas the concept of base isolating structures from the damaging effects of earthquake motions is not new, implementation of the technique is a relatively new occurrence. This has mainly been due to the need for several important developments in materials science and experimental and analytical modeling before base isolation could evolve into a practical approach for seismic design. One of these developments has been the ability to test large-scale isolation systems using simulated seismic loads. These tests have not only proven the performance and reliability of the isolation systems and hardware, but have enabled correlation studies to be undertaken which have confirmed the accuracy of analytical methods and the acceptability of current design procedures. The Earthquake Engineering Research Center (EERC) at the University of California at Berkeley has been an active participant in this work, and this paper reviews some of the achievements of the Center in the last few years. Component tests on single isolators are described. Tests on plain and high damping natural rubber bearings, lead-rubber bearings, sliding bearings, and bearings incorporating uplift resistance mechanisms have been performed. High-shear strain tests on large (up to full scale) elastomeric bearings have been conducted to determine the stability characteristics and limit states of the isolators

  13. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    Science.gov (United States)

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  14. Integration between well logging and seismic reflection techniques for structural a

    Directory of Open Access Journals (Sweden)

    Adel K. Mohamed

    2016-12-01

    Full Text Available Abu El Gharadig basin is located in the northern part of the Western Desert, Egypt. Geophysical investigation in the form of thirty (3D seismic lines and well logging data of five wells have been analyzed in the oil field BED-1 that is located in the northwestern part of Abu El Gharadig basin in the Western Desert of Egypt. The reflection sections have been used to shed more light on the tectonic setting of Late Jurassic–Early Cretaceous rocks. While the well logging data have been analyzed for delineating the petrophysical characteristics of the two main reservoirs, Bahariya and Kharita Formations. The constructed subsurface geologic cross sections, seismic sections, and the isochronous reflection maps indicate that the area is structurally controlled by tectonic trends affecting the current shape of Abu El Gharadig basin. Different types of faults are well represented in the area, particularly normal one. The analysis of the average and interval velocities versus depth has shown their effect by facies changes and/or fluid content. On the other hand, the derived petrophysical parameters of Bahariya and Kharita Formations vary from well to another and they have been affected by the gas effect and/or the presence of organic matter, complex lithology, clay content of dispersed habitat, and the pore volume.

  15. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of

  16. New insights into structural and stratigraphic aspects of central Northern Switzerland from the Nagra 2D reflection seismic campaign 2011/12

    International Nuclear Information System (INIS)

    Meier, B.

    2015-01-01

    In this article, some findings resulting from the interpretation of reprocessed and newly acquired 2D seismic data in the central Northern Switzerland are presented. The seismic examples illustrate the relationship between basement and cover-tectonics and offer a closer look at seismic-stratigraphic characteristics which can be observed in the Middle Jurassic sequence. The new 2D seismic data have closed an important data gaps between the Nagra siting regions 'Jura Ost' and Nördlich Lägern' proposed for radioactive waste disposal and allow clarification of the general structural framework and internal composition of the Permo-Carboniferous Through. Furthermore, the kinematic relationships between the basement and cover structures can be studied and the newly acquired seismic data have allowed detailed depositional structures and seismic facies changes within the Mid-Upper Dogger sequence to be recognized, particularly east and west of the lower Aare valley. (author)

  17. Tectonic characteristics and structural styles of a continental rifted basin: Revelation from deep seismic reflection profiles

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-09-01

    Full Text Available The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional (3-D seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone (CTZ which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized: (i the western multi-stage faults slope; (ii the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan sub-basin and other similar rifted basins of the Beibuwan Basin in South China Sea.

  18. Project investigation and analysis of soil-structure interaction effects in seismic response of NPPs EBO, EMO, Slovakia. Final report

    International Nuclear Information System (INIS)

    Juhasova, E.

    1999-01-01

    The work described in this report was devoted to investigation of expected seismic response of the structures of WWER-440/213 type NPPs, namely Mochovce and Bohunice. Special attention was devoted to the properties of subsoil materials and the transfer of seismic waves from the bedrock to the foundation structures. Theoretical background was elaborated and discussed for wave propagation of surface waves. Alternative procedure was derived for non-linear media accounting for complex modulus theory. Material characteristics of subsoils were investigated for both NPPs. The obtained results were used as a basis for forecasting and calculation of expected seismic response when the time history records from Paks explosion were used an input. It was pointed out that the used procedure, together with previous calculation of subsoil transfer characteristics completed well the comparison with experimental results

  19. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP

  20. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP.

  1. Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data

    Science.gov (United States)

    Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike

    2017-04-01

    The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part

  2. Deep crustal structure of the UAE-Oman mountain belt from seismic and gravity data

    Science.gov (United States)

    Pilia, S.; Tanveer, M.; Ali, M.; Watts, A. B.; Searle, M. P.; Keats, B. S.

    2016-12-01

    The UAE-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cenozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s, underlain by a thin layer of slower material (about 4.5 km/s). Furthermore, the velocity model reveals a Moho depth that rises from ca 30 km in the west to ca 20 km in the east. A poststack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction

  3. Seismic structural response analysis using consistent mass matrices having dynamic coupling

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1977-01-01

    The basis for the theoretical development of this paper is the linear matrix equations of motion for an unconstrained structure subject to support excitation. The equations are formulated in terms of absolute displacement, velocity and acceleration vectors. By means of a transformation of the absolute response vectors into displacements, velocities and accelerations relative to the support motions, the homogeneous equations become non-homogeneous and the non-homogeneous boundary conditions become homogeneous with relative displacements, velocities and accelerations being zero at support points. The forcing function or inertial loading vector is shown to consist of two parts. The first part is comprised of the mass matrix times the suppport acceleration function times a vector of structural displacements resulting from a unit vector of support displacements in the direction of excitation. This inertial loading corresponds to the classical seismic loading vector and is indeed the only loading vector for lumped-mass systems. The second part of he inertial loading vectors consists of the mass matrix times the support acceleration function times a vector of structural accelerations resulting from unit support accelerations in the direction of excitation. This term is not present in classical seismic analysis formulations and results from the presence of off-diagonal terms in the mass matrices which give rise to dynamic coupling through the mass matrix. Thus, for lumped-mass models, the classical formulation of the inertial loading vector is correct. However, if dynamic coupling terms are included through off-diagonal terms in the mass matrix, an additional inertia loading vector must be considered

  4. SMACS: a system of computer programs for probabilistic seismic analysis of structures and subsystems. Volume I. User's manual

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Johnson, J.J.; Tiong, L.W.; Mraz, M.J.; Bumpus, S.; Gerhard, M.A.

    1985-03-01

    The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs, one of the major computational tools of the Seismic Safety Margins Research Program (SSMRP), links the seismic input with the calculation of soil-structure interaction, major structure response, and subsystem response. The seismic input is defined by ensembles of acceleration time histories in three orthogonal directions. Soil-structure interaction and detailed structural response are then determined simultaneously, using the substructure approach to SSI as implemented in the CLASSI family of computer programs. The modus operandi of SMACS is to perform repeated deterministic analyses, each analysis simulating an earthquake occurrence. Parameter values for each simulation are sampled from assumed probability distributions according to a Latin hypercube experimental design. The user may specify values of the coefficients of variation (COV) for the distributions of the input variables. At the heart of the SMACS system is the computer program SMAX, which performs the repeated SSI response calculations for major structure and subsystem response. This report describes SMAX and the pre- and post-processor codes, used in conjunction with it, that comprise the SMACS system

  5. Seismic damage to structures in the M s6.5 Ludian earthquake

    Science.gov (United States)

    Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu

    2016-03-01

    On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.

  6. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  7. Contribution of the JRC Ispra to the intercomparison of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Magonette, G.; Renda, V.

    2002-01-01

    Aim of the work done at JRC has been essentially to investigate the potentiality of the Pseudo-Dynamic (PsD) method to test structures incorporating anti-seismic protection devices based on materials with a strain-rate dependent behaviour. This is of relevant importance due to the interest to perform tests on large-scale mock-ups to assess the behaviour of realistic structure of civil engineering interest. Two specific typologies of protection have been analysed and tested at the European Laboratory for Structural Assessment (ELSA) of JRC Ispra. The first dealing with base isolation and the second with energy dissipation devices. In both cases the protection devices were based on high damping rubber material which is characterised by a moderate dependence from the strain rate of the application of the displacements. To validate a standard procedure to test base isolated structures by the PsD method, a collaboration was set up with the Italian Working Group on Seismic Isolation which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and a manufacturer of isolators ALGA. In the framework of this collaboration it was decided to test at the ELSA laboratory a scaled 5-storey frame structure (provided by ENEL), isolated by means of high damping rubber bearings (HDRBs), which had been tested on the shaking table of ISMES. This experimental activity aimed to compare the results which can be obtained by means of the PsD testing technique with those which can be obtained by means of a truly-dynamic test on a shaking table. To validate a standard procedure to test structures incorporating energy dissipation devices, an international collaboration has been set up with Industries, Research Centres and Universities in the framework of a project partially funded by the European Commission through the General Directorate for Science and Technology. The obtained results show once more that the PsD method, when

  8. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  9. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  10. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling

    Science.gov (United States)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick

    2016-04-01

    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal faulting and serpentinization of the mantle. In agreement with this observation, Vp

  11. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  12. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography

    Science.gov (United States)

    Korenaga, J.; Holbrook, W. S.; Kent, G. M.; Kelemen, P. B.; Detrick, R. S.; Larsen, H.-C.; Hopper, J. R.; Dahl-Jensen, T.

    2000-09-01

    We present results from a combined multichannel seismic reflection (MCS) and wideangle onshore/offshore seismic experiment conducted in 1996 across the southeast Greenland continental margin. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a two-dimensional velocity structure. We employ a hybrid ray-tracing scheme based on the graph method and the local ray-bending refinement to efficiently obtain an accurate forward solution, and we employ smoothing and optional damping constraints to regularize an iterative inversion. We invert 2318 Pg and 2078 PmP travel times to construct a compressional velocity model for the 350-km-long transect, and a long-wavelength structure with strong lateral heterogeneity is recovered, including (1) ˜30-km-thick, undeformed continental crust with a velocity of 6.0 to 7.0 km/s near the landward end, (2) 30- to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone, and (3) 15- to 9-km-thick oceanic crust toward the seaward end. The thickness of the igneous upper crust characterized by a high-velocity gradient also varies from 6 km within the transition zone to ˜3 km seaward. The bottom half of the lower crust generally has a velocity higher than 7.0 km/s, reaching a maximum of 7.2 to 7.5 km/s at the Moho. A nonlinear Monte Carlo uncertainty analysis is performed to estimate the a posteriori model variance, showing that most velocity and depth nodes are well determined with one standard deviation of 0.05-0.10 km/s and 0.25-1.5 km, respectively. Despite significant variation in crustal thickness, the mean velocity of the igneous crust, which serves as a proxy for the bulk crustal composition, is surprisingly constant (˜7.0 km/s) along the transect. On the basis of a mantle melting model incorporating the effect of active mantle upwelling, this velocity-thickness relationship is used to constrain the mantle melting process during the breakup of Greenland

  13. Evaluation of granular soil properties in seismic analysis of nuclear structures

    International Nuclear Information System (INIS)

    Bica, A.; Riera, J.D.; Nanni, L.F.

    1983-01-01

    The seismic analysis of nuclear power plant structures founded on soils, as well as related soil-structure interaction studies, are often made by means of 'equivalent' linear models of soil behavior, represented by effective values of damping and of Young's modulus. Such approach requires resorting to iteration on the material properties, thus leading to a 'multilinear' analysis which can be justified in practice on account of the scarce knowledge of constitutive equations applicable to soils under a general three-dimensional stress state. It is therefore important to establish bounds on the applicability of the multilinear solutions, and to develop reliable procedures for the evaluation of the soil properties to be used in seismic analyses. The paper focuses attention on the dynamic properties of sandy soils. To that effect, an extensive program was conducted using a triaxial dynamic testing apparatus developed at the UFRGS, and the results compared with existing experimental evidence, including data from resonant-column testing. Linear and nonlinear regression techniques applied to the experimental data led to new equations relating damping and soil stiffness to the dependent variables, and permitted as well the determination of the expected error of the estimated parameters. It was found that an increasing frequency, slightly increases both Young's modulus and the effective damping ratio. In addition, the influence of the content of fines was found to be significant. This variable does not appear in several available empirical equations, which only consider the confining pressure, the void ratio and the amplitude of the cyclic shear deformations as relevant variables. (orig.)

  14. A New Structural Model for the Red Sea from Seismic Data

    Science.gov (United States)

    Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.

    2017-12-01

    We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.

  15. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    Science.gov (United States)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  16. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  17. Multi Canister Overpack (MCO) Handling Machine - Independent Review of Seismic Structural Analysis

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The following separate reports and correspondence pertains to the independent review of the seismic analysis. The original analysis was performed by GEC-Alsthom Engineering Systems Limited (GEC-ESL) under subcontract to Foster-Wheeler Environmental Corporation (FWEC) who was the prime integration contractor to the Spent Nuclear Fuel Project for the Multi-Canister Overpack (MCO) Handling Machine (MHM). The original analysis was performed to the Design Basis Earthquake (DBE) response spectra using 5% damping as required in specification, HNF-S-0468 for the 90% Design Report in June 1997. The independent review was performed by Fluor-Daniel (Irvine) under a separate task from their scope as Architect-Engineer of the Canister Storage Building (CSB) in 1997. The comments were issued in April 1998. Later in 1997, the response spectra of the Canister Storage Building (CSB) was revised according to a new soil-structure interaction analysis and accordingly revised the response spectra for the MHM and utilized 7% damping in accordance with American Society of Mechanical Engineers (ASME) NOG-1, ''Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder).'' The analysis was re-performed to check critical areas but because manufacturing was underway, designs were not altered unless necessary. FWEC responded to SNF Project correspondence on the review comments in two separate letters enclosed. The dispositions were reviewed and accepted. Attached are supplier source surveillance reports on the procedures and process by the engineering group performing the analysis and structural design. All calculation and analysis results are contained in the MHM Final Design Report which is part of the Vendor Information File 50100. Subsequent to the MHM supplier engineering analysis, there was a separate analyses for nuclear safety accident concerns that used the electronic input data files provided by FWEC/GEC-ESL and are contained in document SNF-6248

  18. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    Science.gov (United States)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major

  19. The crustal structure of the Southern Nain and Makkovik Provinces of Labrador deriverd from seismic refraction data

    DEFF Research Database (Denmark)

    Funck, T.; Hansen, A.K.; Reid, Ian Derry

    2008-01-01

    A refraction seismic profile was used to determine the crustal structure across the Nain/ Makkovik boundary, and to look for an offshore continuation of the  Nain Plutonic Suite (NPS). Velocity models were developed from forward and inverse modeling of travel times. There are. In the Saglek block...

  20. Evaluation of load on structures caused by mining seismicity for maps of clash of opinions - first results

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta

    -, č. 276 (2007), s. 101-110 ISSN 0372-9508. [Ochrona środowiska w górnictwie podziemnym i odkrywkowym. Krapkowice, 24.05.2007-25.05.2007] Institutional research plan: CEZ:AV0Z30860518 Keywords : mining seismicity * intensive events Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. Crustal-scale pop-up structure in cratonic lithosphere: DOBREdeep seismic reflection study of the Donbas fold belt, Ukraine.

    NARCIS (Netherlands)

    Maystrenko, Yu.; Stovba, S.; Stephenson, R.A.; Bayer, U.; Menyoli, E.; Gajewski, D.; Huebscher, Ch.; Rabbel, W.; Saintot, A.N.; Starostenko, V.I.; Thybo, H.; Tolkunov, A.P.

    2003-01-01

    The DOBRE project investigated the interplay of geologic and geodynamic processes that controlled the evolution of the Donbas fold belt, Ukraine, as an example of an inverted intracratonic rift basin. A deep seismic reflection profile provides an excellent image of the structure of the Donbas fold

  2. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  3. Earthquake Protection of Existing Structures with Limited Seismic Joint: Base Isolation with Supplemental Damping versus Rotational Inertia

    Directory of Open Access Journals (Sweden)

    Dario De Domenico

    2018-01-01

    Full Text Available Existing civil engineering structures having strategic importance, such as hospitals, fire stations, and power plants, often do not comply with seismic standards in force today, as they were designed and built based on past structural guidelines. On the other hand, due to their special importance, structural integrity of such buildings is of vital importance during and after earthquakes, which puts demands on strategies for their seismic protection. In this regard, seismic base isolation has been widely employed; however, the existing limited seismic joint between adjacent buildings may hamper this application because of the large displacements concentrated at the isolation floor. In this paper, we compare two possible remedies: the former is to provide supplemental damping in conventional base isolation systems and the latter consists in a combination of base isolation with supplemental rotational inertia. For the second strategy, a mechanical device, called inerter, is arranged in series with spring and dashpot elements to form the so-called tuned-mass-damper-inerter (TMDI directly connected to an isolation floor. Several advantages of this second system as compared to the first one are outlined, especially with regard to the limitation of floor accelerations and interstory drifts, which may be an issue for nonstructural elements and equipment, in addition to disturbing occupants. Once the optimal design of the TMDI is established, possible implementation of this system into existing structures is discussed.

  4. Structural analysis of the CAREM-25 nuclear power plant subjected to the design basis accident and seismic loads

    International Nuclear Information System (INIS)

    Ambrosini, Daniel; Codina, Ramón H.; Curadelli, Oscar; Martínez, Carlos A.

    2017-01-01

    Highlights: • Structural analysis of CAREM-25 NPP is presented. • Full 3D numerical model was developed. • Transient thermal and static structural analyses were performed. • Modeling guidelines for numerical structural analysis of NPP are recommended. • Envelope condition of DBA dominates the structural behavior. - Abstract: In this paper, a numerical study about the structural response of the Argentine nuclear power plant CAREM-25 subjected to the design basis accident (DBA) and seismic loads is presented. Taking into account the hardware capabilities available, a full 3D finite element model was adopted. A significant part of the building was modeled using more than 2 M solid elements. In order to take into account the foundation flexibility, linear springs were used. The springs and the model were calibrated against a greater model used to study the soil-structure interaction. The structure was subjected to the DBA and seismic loads as combinations defined by ASME international code. First, a transient thermal analysis was performed with the conditions defined by DBA and evaluating the time history of the temperature of the model, each 1 h until 36 h. The final results of this stage were considered as initial conditions of a static structural analysis including the pressure defined by DBA. Finally, an equivalent static analysis was performed to analyze the seismic response considering the design basis spectra for the site. The different loads were combined and the abnormal/extreme environmental combination was the most unfavorable for the structure, defining the design.

  5. Fault-related-folding structures and reflection seismic sections. Study by seismic modeling and balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 2. Seismic modeling oyobi balanced cross section ni yoru study

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    It occasionally happens that there exists a part where reflection near the thrust is not clearly observed in a thrust zone seismic survey cross section. For the effective interpretation of such an occurrence, the use of geological structures as well as the reflected pattern is effective. When the velocity structures for a fold structure having a listric fault caused anticline (unidirectionally inclined with a backlimb, without a forelimb) and for a fault propagation fold are involved, a wrong interpretation may be made since they look alike in reflection wave pattern despite their difference in geological structure. In the concept of balanced cross section, a check is performed, when the stratum after deformation is recovered to the time of deposition, as to whether the geologic stratum area is conserved without excess or shortage. An excess or shortage occurs if there is an error in the model, and this shows that the fault surface or fold structure is not correctly reflected. Positive application of geological knowledge is required in the processing and interpreting of data from a seismic survey. 6 refs., 6 figs.

  6. Improved seismic response of rc frame structures by using fluid viscous dampers

    International Nuclear Information System (INIS)

    Khan, Q.S.; Qazi, A.U.; Ilyas, M.

    2013-01-01

    In modern era passive control devices are used to improve the seismic response of structures during large magnitude earthquakes. In this research an analytical study is carried out on commercial FEM program SAP 2000 by modeling five, seven and nine storey RC frame structures. Response to four earthquake ground motions on modeled frame structures is studied and is effectively controlled by varying the characteristic properties of Fluid viscous dampers (FVD). Response in terms of frequency, displacement, velocity, acceleration, storey drift, base shear and energy dissipation is studied. Quantitatively in the modeled frames damage in terms of percentage change in global stiffness and natural frequency is determined. Qualitatively damage in terms of performance levels as per ATC-40 and FEMA-440 is considered. With an increase in Additional Stiffness Ratio of FVD corresponding increase in natural frequency and reduction in dynamic response is observed. FVDs significantly improve structural performance level of frames from Completely Damage to Immediate Occupancy/Operational Level during large magnitude earthquakes. (author)

  7. Problems and their solutions in practical application of Eurocodes in seismic design of RC structures

    Directory of Open Access Journals (Sweden)

    Milev Jordan

    2016-01-01

    Full Text Available The main purpose of the paper is to present practical application of Eurocodes in the field of RC structures design. The selected examples represent the main problems in practical application of Eurocodes for seismic analysis and design of RC Structures in Bulgarian construction practice. The analysis is focused on some structural and economic problems as well as on some contradictions in Eurocode 8 itself. Special attention is paid to the practical solution of the following problems: recognition of torsionally flexible systems, stiffness reduction of RC elements for linear analysis dimensions and detailing of confined boundary areas of shear walls, detailing of wall structures, etc. Those problems appear during the practical design of some buildings in Bulgaria. Several proposals for solving some problems defined in the paper are presented through some practical examples. Some conclusions are made for further application of Eurocode 8 in the design and construction practice. The importance of some rules and procedures in Eurocode 8 is supported by the examples of damaged RC members during the past earthquakes. The problems of Eurocode 8 and their solutions are illustrated through the experience of Bulgarian construction practice.

  8. Requirements and possible upgrading concept for the WWER-440/213: Mochovce NPP structures under seismic conditions

    International Nuclear Information System (INIS)

    Freiman, M.

    1993-01-01

    The Mochovce-Nuclear Power Plant is one of the WWER-440/213 plants which has been designed against earthquake. Nevertheless, the design earthquake has not been assessed adequately to the seismic hazard at the site. A new seismic design shall include an increased seismic input and assure an acceptable standard of safety. This contribution is related to some design aspects of civil structures for this nearly finished plant, such as: existing design and its margins with regard to the employed codes; requirements for a new design concept; effects to be expected by an increased design earthquake; applicable design methods; use of inelastic design spectra, behavior factors and capacity design; feasible upgrading measures. (author)

  9. Analyzing the effect of large rotations on the seismic response of structures subjected to foundation local uplift

    Directory of Open Access Journals (Sweden)

    El Abbas N.

    2016-01-01

    Full Text Available This work deals with seismic analysis of structures by taking into account soil-structure interaction where the structure is modeled by an equivalent flexible beam mounted on a rigid foundation that is supported by a Winkler like soil. The foundation is assumed to undergo local uplift and the rotations are considered to be large. The coupling of the system is represented by a series of springs and damping elements that are distributed over the entire width of the foundation. The non-linear equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-structure system where the structure was idealized as a single-degree-of-freedom. The seismic response of the structure was calculated under the occurrence of foundation uplift for both large and small rotations. The non-linear differential system of equations was integrated by using the Matlab command ode15s. The maximum response has been determined as function of the intensity of the earthquake, the slenderness of the structure and the damping ratio. It was found that considering local uplift with small rotations of foundation under seismic loading leads to unfavorable structural response in comparison with the case of large rotations.

  10. The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure

    Science.gov (United States)

    Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group

    During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main

  11. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  12. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    Science.gov (United States)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We

  13. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    Science.gov (United States)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  14. Seismic structure and tectonics of the Alasehir--Gediz Graben, Western Turkey

    Science.gov (United States)

    Turk, Sezer

    The Aegean Extensional Province (AEP) in Western Anatolia includes three major graben systems that have formed as a result of N-S tectonic extension in the latest Cenozoic. The 6 to 30-km-wide Alasehir--Gediz Graben (AGG) in the north contains ˜3-km-thick Miocene and Plio-Quaternary, alluvial--fluvial and lacustrine sedimentary rocks. I have used seismic profiles, well-log data and the regional stratigraphy to identify the key stratigraphic units, their bounding surfaces and vertical thicknesses, and to document the subsurface structural architecture of the AGG. A north-dipping detachment fault exposed in the southern shoulder of the AGG basin occurs at 2--2.5 km at depth beneath the graben fill, and is dissected by ˜E--W--striking, synthetic to antithetic, high-angle normal faults. The graben system is crosscut by NNE-oriented cross faults, showing several km of recurrence interval and 10s of meters of vertical displacement. These faults divide the graben into several sub-basins and display positive and negative flower structures. The structural architecture in the sub-basins shows important variations in stratigraphic thicknesses, fault geometry-displacement and deformation patterns, indicating that cross faulting played a critical role in the evolution of the AAG.

  15. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    Science.gov (United States)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  16. Verification and improvement of analytical modeling of seismic isolation bearings and isolated structures

    International Nuclear Information System (INIS)

    Forni, M.; La Grotteria, M.; Martelli, A.; Bertola, S.; Bettinali, F.; Dusi, A.; Bergamo, G.; Bonacina, G.

    2002-01-01

    Due to the complexity of dynamic behaviour of seismic isolation (SI) devices, high cost of their tests and non-negligible number of devices having excellent potential for nuclear applications, several countries judged of great interest to extend validation of their numerical models of such devices to the analysis of experimental data obtained by others. Thus, a four-years Coordinated Research Program (CRP) on Intercomparison of Analysis Methods for Isolated Nuclear Structures, proposed by ENEA (1995), was endorsed by the IAEA in 1995. There, Italy was jointly represented by ENEA, ENEL and ISMES, and supplied test results concerning both High Damping Rubber Bearings (HDRBs) and the MISS (Model of Isolated Steel Structure) mock-up, which had been isolated using such bearings. Test data provided by Italy to the other countries were also re-analysed to improve mathematical models. Aim of this final report is to summarise, after a brief description of the devices and structures considered, the most important results and conclusions of the numerical analyses carried out by Italy. For more detailed information, especially as far as the execution of the tests and the implementation of the numerical models are concerned, please refer to the technical reports presented by Italy to the Research Coordination Meetings (RCMs). (author)

  17. Numerical seismic modelling of fault-fold structures in a mountainous setting

    Energy Technology Data Exchange (ETDEWEB)

    Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. (Calgary Univ., AB (Canada))

    1999-01-01

    Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.

  18. Numerical seismic modelling of fault-fold structures in a mountainous setting

    Energy Technology Data Exchange (ETDEWEB)

    Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. [Calgary Univ., AB (Canada)

    1999-11-01

    Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.

  19. Experimental Assessment of a Skyhook Semiactive Strategy for Seismic Vibration Control of a Steel Structure

    Directory of Open Access Journals (Sweden)

    Nicola Caterino

    2018-01-01

    Full Text Available Sky-hook damping is one of the most promising techniques for feedback control of structural vibrations. It is based on the idea of connecting the structure to an ideal fixed point of the space through passive dissipative devices. Herein the benefit of semiactive (SA sky-hook (SH damping is investigated for seismic protection of a two-storey steel frame via shaking table tests. This kind of SA control is achieved implementing a continuous monitoring of selected structural response parameters and using variable dampers. The damping properties of the latter are changed in real-time so as to make the force provided by the damper match the desired SH damping force as closely as possible. To this aim, two prototype magnetorheological dampers have been installed at the first level of the frame and remotely driven by a SH controller. The effectiveness of the control strategy is measured as response to reduction in terms of floor accelerations and interstory drift in respect to the uncontrolled configuration. Two different calibrations of the SH controller have been tested. The experimental results are deeply discussed in order to identify the optimal one and understand the motivations of its better performance.

  20. Numerical Study on the Seismic Performance of a Steel–Concrete Hybrid Supporting Structure in Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2018-02-01

    Full Text Available This paper presents the numerical investigation on the seismic performance of a steel–concrete hybrid structure consisting of reinforced concrete (RC tubular columns and steel braced truss with A-shaped steel frames, which is a novel supporting structural system to house air-cooled condensers (ACC in large-capacity thermal power plants (TPPs. First, the finite element (FE modeling approach for this hybrid structure using the software ABAQUS was validated by a range of pseudo-dynamic tests (PDTs performed on a 1/8-scaled sub-structure. The failure process, lateral displacement responses, changing rules of dynamic characteristic parameters and lateral stiffness with increase of peak ground acceleration (PGA were presented here. Then, nonlinear time-history analysis of the prototype structure was carried out. The dynamic characteristics, base shear force, lateral deformation capacity, stiffness deterioration and damage characteristics were investigated. Despite the structural complexity and irregularity, both experimental and numerical results indicate that the overall seismic performance of this steel–concrete hybrid supporting structure meets the seismic design requirements with respect to the high-intensity earthquakes.

  1. Seismic fabric and 3-D structure of the southwestern intracontinental Palmyride fold belt, Syria

    Energy Technology Data Exchange (ETDEWEB)

    Chaimov, T.A.; Barazangi, M. (Cornell Univ., Ithaca, NY (United States)); Al-Saad, D.; Sawaf, T.; Khaddour, M. (Ministry of Petroleum and Mineral Resources, Damascus (Syrian Arab Republic))

    1993-12-01

    The Palmyride fold belt, a 400 x 100 km transpressive belt in central Syria that is the northeastern arm of the Syrian arc, is the result of late Mesozoic and Cenozoic inversion of a late Paleozoic and Mesozoic, northeast-trending, linear intracontinental basin located within the northern Arabian platform. The southwestern Palmyrides, near the Dead Sea transform fault system and the Anti-Lebanon mountains, are characterized by short wavelength (5--10 km) en echelon folds separated by small intermontane basins that developed mainly in the Neogene to Holocene. A new three-dimensional data cube, 60 x 70 x 10 km, generated on a Landmark Graphics workstation and based on approximately 700 km of two-dimensional seismic reflection profiles, elucidates the structure of the upper 10 km of the crust in the southwestern Palmyrides. Visualization of the subsurface structure, which is represented by a prominent Upper Cretaceous reflection surface in the data cube, is augmented by topographical and Bouguer gravity data of the same region. Preexisting discontinuities, probable normal fault relicts of the Mesozoic Palmyride rift, likely controlled the development of individual Neogene thrusts. The new subsurface image shows important structural features not identified in outcrop. Short, west-northwest-trending transcurrent (or transfer) faults like the short, en echelon northeast-trending thrust faults and blind thrusts of the Palmyrides. A pervasive regional decollment is not observed, even though Triassic evaporites host local detachments. Unlike topographic relief, which only roughly resembles subsurface structures, the Bouguer gravity signature of the southwestern Palmyrides closely mimics underlying shallow geologic structures both on a large ([approximately]50 km wavelength) and a small ([approximately]5--10 km wavelength) scale. The structural analysis and many other recent studies of the region indicate minor right-lateral shear coupled with compression in the Palmyrides.

  2. Seismic Monitoring To Assess Performance Of Structures In Near-Real Time: Recent Progress

    International Nuclear Information System (INIS)

    Celebi, Mehmet

    2008-01-01

    Earlier papers have described how observed data from classical accelerometers deployed in structures or from differential GPS with high sampling ratios deployed at roofs of tall buildings can be configured to establish seismic health monitoring of structures. In these configurations, drift ratios 1 are the main parametric indicator of damage condition of a structure or component of a structure.Real-time measurement of displacements are acquired either by double integration of accelerometer time-series data, or by directly using GPS. Recorded sensor data is then related to the performance level of a building. Performance-based design method stipulates that for a building the amplitude of relative displacement of the roof of a building (with respect to its base) indicates its performance.Usually, drift ratio is computed using relative displacement between two consecutive floors. When accelerometers are used, a specific software is used to compute displacements and drift ratios in realtime by double integration of accelerometer data from several floors. However, GPS-measured relative displacements are limited to being acquired only at the roof with respect to its reference base. Thus, computed drift ratio is the average drift ratio for the whole building. Until recently, the validity of measurements using GPS was limited to long-period structures (T>1 s) because GPS systems readily available were limited to 10-20 samples per seconds (sps) capability. However, presently, up to 50 sps differential GPS systems are available on the market and have been successfully used to monitor drift ratios [1,2]--thus enabling future usefulness of GPS to all types of structures. Several levels of threshold drift ratios can be postulated in order to make decisions for inspections and/or occupancy.Experience with data acquired from both accelerometers and GPS deployments indicates that they are reliable and provide pragmatic alternatives to alert the owners and other authorized parties

  3. Structure of the Koyna-Warna Seismic Zone, Maharashtra, India: A possible model for large induced earthquakes elsewhere

    Science.gov (United States)

    Catchings, Rufus D.; Dixit, M.M.; Goldman, Mark R.; Kumar, S.

    2015-01-01

    The Koyna-Warna area of India is one of the best worldwide examples of reservoir-induced seismicity, with the distinction of having generated the largest known induced earthquake (M6.3 on 10 December 1967) and persistent moderate-magnitude (>M5) events for nearly 50 years. Yet, the fault structure and tectonic setting that has accommodated the induced seismicity is poorly known, in part because the seismic events occur beneath a thick sequence of basalt layers. On the basis of the alignment of earthquake epicenters over an ~50 year period, lateral variations in focal mechanisms, upper-crustal tomographic velocity images, geophysical data (aeromagnetic, gravity, and magnetotelluric), geomorphic data, and correlation with similar structures elsewhere, we suggest that the Koyna-Warna area lies within a right step between northwest trending, right-lateral faults. The sub-basalt basement may form a local structural depression (pull-apart basin) caused by extension within the step-over zone between the right-lateral faults. Our postulated model accounts for the observed pattern of normal faulting in a region that is dominated by north-south directed compression. The right-lateral faults extend well beyond the immediate Koyna-Warna area, possibly suggesting a more extensive zone of seismic hazards for the central India area. Induced seismic events have been observed many places worldwide, but relatively large-magnitude induced events are less common because critically stressed, preexisting structures are a necessary component. We suggest that releasing bends and fault step-overs like those we postulate for the Koyna-Warna area may serve as an ideal tectonic environment for generating moderate- to large- magnitude induced (reservoir, injection, etc.) earthquakes.

  4. Influence of seismic isolation systems and soil-structure interaction on the response of structures

    Directory of Open Access Journals (Sweden)

    Samah Hasrouri

    2018-01-01

    Full Text Available The reduction of cyclic loading triggering major damage in urban areas is a major challenge in earthquake engineering. The processes of structural control especially control structures for passive isolation systems and earthquake sinks of energy, which consists in superimposing on the structure a device which modifies the rigidity or the damping of the structural system without the demand for an external energy source and without introducing energy for its operation, these devices with taking account the effect of soilstructure interaction are currently regarded as effective solutions to these problem by reducing the level of acceleration imposed on the structure and consequently forces shear and the relative displacements in the superstructure. This reduction of shear forces and displacements will limit the structural damage.

  5. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    International Nuclear Information System (INIS)

    Touqan, Abdul Razzaq

    2008-01-01

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction

  6. Some progress on seismic isolation technology in building structure in China

    International Nuclear Information System (INIS)

    Lin Luan

    1992-01-01

    Seismic isolation technology has been considerably developed in China. Appropriate codes and design manuals have ben used. There is a plan of developing Fast reactor technology in China. The conceptual design for a fast experimental reactor was completed. Investigation of seismic isolation technology for fast reactor has started

  7. Deep seismic investigation of crustal extensional structures in the Danish Basin along the ESTRID-2 profile

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Thybo, Hans

    2008-01-01

    The crust and uppermost mantle in the Danish Basin are investigated by modelling the P-wave velocity distribution along the north-south trending seismic profile ESTRID-2. Seismic tomography and ray inversion modelling demonstrate a variable depth to the top of the crystalline crust, from ~10 km...

  8. Investigation of the crustal and deep structure in Vrancea seismic zone

    International Nuclear Information System (INIS)

    Popa, Mihaela; Radulian, Mircea; Popescu, Emilia; Bazacliu, Olivia; Grecu, Bogdan; Ardeleanu Luminita; Ionescu, Constantin; Ivan, Marian; Dumitru, Ion; Rizescu, Mihaela

    2002-01-01

    The Vrancea zone, located at the sharp bend of the Southeast Carpathians, is characterized by an unusually narrow volume of intense seismicity (four shocks with magnitude greater than 7 occurred during the past century) in the depth range of 60 km to 220 km, resulting in significant seismic risk of the densely populated Bucharest area. The oceanic lithosphere slab beneath Vrancea area moved into an almost vertical position when convergence of plates come to a halt and suction force of the subducting plate vanished. In addition, since subduction occurred in an arcuate geometry, the slab is likely to be segmented as suggested by hypocenter distribution. Wortel and Spakman pioneered the idea of slab detachment, based on tomographic images of the upper mantle beneath the Mediterranean. The detachment hypothesis appears to be compatible with the magmatic evolution and the metamorphic patterns in Vrancea collisional orogenic region. Uniform high-precision hypocentre locations of the whole data set are very important in a seismically active area like Vrancea, where the seismic database is a prerequisite for tectonic interpretation and seismic hazard assessment. Well-constrained earthquake data are also extremely useful for studies focused on high-resolution imaging of the complex continental subduction process in Vrancea. To obtain a better image of the structure beneath Vrancea zone it is necessary to have a good velocity model, a well constrained topography model and detailed geological information. To compute a good velocity model we need a data base containing a large number of local, regional and teleseismic well-located events. The recent international tomographic experiment CALIXTO (Carpathian Arc Lithosphere X-Tomography) carried out in 1999, was designed to determine a 3D snapshot of the geodynamic evolution of the Carpathian arc beneath SE-Romania, and in particular, the ongoing slab break-off in the upper mantle beneath Vrancea region. A network consisting of

  9. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  10. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  11. Receiver function structure beneath a broad-band seismic station in south Sumatra

    Science.gov (United States)

    MacPherson, K. A.; Hidayat, D.; Goh, S.

    2010-12-01

    We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver

  12. Detailed crustal structure of the North China and its implication for seismicity

    Science.gov (United States)

    Jiang, Wenliang; Wang, Xin; Tian, Tian; Zhang, Jingfa; Wang, Donglei

    2014-02-01

    Since the Mesozoic-Cenozoic era the North China Craton has experienced an important tectonic transition and it has given rise to complicated crustal structure and strong earthquake activity. Based on the large-scale surface gravity data, we studied the detailed crustal structure and seismogenic mechanism of the North China. The results indicate that the North China presents typical characteristics of adjoining depression and uplift, alternating basins and hills, inhomogeneous density and also great differences in crustal structure and Moho topography. The upper and middle crustal structures are dominated by the NNE-striking tectonic units, with many faults cut down to the middle crust. The lower crust is characterized by the folding-structure, with high and low-density placed alternately from west to east, presenting lateral heterogeneous feature. Adjusted by the gravity isostasy, Moho topography of the North China fluctuates greatly. Compared with the North China Basin, crustal thickness in the Western Taihang, northern Yanshan and Luzhong areas are much thicker while those densities are lower than the North China Basin. The dominating tectonic direction of the Moho topography strikes NE to NNE and undulates alternately from west to east. The epicenters are mostly concentrated in the upper and middle crust, especially the transitional areas between the high and low-gravity anomalies. The Tancheng earthquake in 1668, Sanhe earthquake in 1673, Tangshan earthquake in 1976, and all other seismic tectonic zones of the North China are all distributed in area where magma moves strongly beneath the crust, which is considered to be related to the movement of the high density, unstable and heat flows along the deep passage from the uppermost and asthenosphere due to the subduction of the Pacific slab towards the Eurasian plate.

  13. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  14. Seismic assessment of safety-related structures: laboratory testing of the pressure relief duct frame at pickering NPP

    International Nuclear Information System (INIS)

    Ghobarah, A.; Biddah, A.; Pilette, C.

    1995-01-01

    The pressure relief duct (PRD) is a Special safety System in the CANDU-PHW multi-unit nuclear power plants (NPP). It is designed to contain and direct the outflow from the reactor building to the pressure suppression and containing systems in the vacuum building. The PRD is a large elevated reinforced concrete box structure of internal width of 6.1 m, height of 7.6 m, and wall thickness of 0.6 m. The PRD is 662 m long and is supported every 22 m by concrete frames of height of 21 m. Typical frame members are 1.8 m in depth and width. A representative elevation of the frame is presented. The section of the PRD under investigation was designed and constructed before the current seismic design codes were in effect. An assessment of the PRD structure when subjected to various levels of ground motion has shown that the frame has a limited seismic withstand capacity. Its seismic performance is dependent on the ductility of the beams and on the ability of the beam-column joint to transfer bending moments and shear forces. The objectives of this study are to provide the data to validate the frame analysis results through laboratory testing of a scaled specimen of the beam-column joint, and to compare the observed response with the response of a beam-column joint when the shear reinforcement is detailed according to current seismic design codes. (author). 3 refs., 10 figs

  15. Analysis of the Seismic Performance of Site-Bolted Beam to Column Connections in Modularized Prefabricated Steel Structures

    Directory of Open Access Journals (Sweden)

    Xuechun Liu

    2017-01-01

    Full Text Available This paper proposes a site-bolted connection that is suitable for modularized prefabricated steel structures. Excellent ductility is achieved by various structural measures. Six connection specimens with different parameters were subjected to quasi-static loading tests and finite element analysis (FEA to determine the seismic performance of the proposed connection (e.g., hysteretic behavior, skeleton curve, ductility, and failure mode. The results of the tests and FEA showed that the connection underwent sufficient plastic deformation under cyclic loading and that its ultimate rotation angle could reach 0.09 rad. A clear plastic hinge formed on the beam before the connection failed, which suggests a ductile failure mode. The connection exhibited a wide hysteresis loop, which indicated good seismic performance. The results also showed that the connection does not slip under small earthquakes and could dissipate energy through slippage in the connection region under a moderate earthquake and through slippage in the connection region as well as plastic deformation at the beam end under a severe earthquake. The number of bolts was the main parameter that affected the seismic performance of the connection. The test and FEA results demonstrated that all six specimens had excellent seismic and ductile performance and an exceptional plastic rotation capacity.

  16. Structural Concept and Analysis of a 17-Story Multifunctional Residential Complex with and without Seismic Isolation System

    International Nuclear Information System (INIS)

    Melkumyan, Mikayel; Gevorgyan, Emma

    2008-01-01

    In recent years seismic isolation technologies in Armenia were extensively applied in construction of multistory buildings. These are 10-17-story residential complexes with parking floors and with floors envisaged for offices, shopping centers, fitness clubs, etc. Also there is a 20-story business centre designed in 2006, which is currently under construction. All mentioned complexes are briefly described in the paper, which is, however, mainly dedicated to the 17-story residential complex designed in 2007. The structural concept, including the new approach on installation of seismic isolation rubber bearings in this building, is described and detailed results of the earthquake response analysis for two cases, i.e. when the building is base isolated and when it has a fixed base, are given. Several time histories were used in the analysis and for both cases the building was analyzed also according to the requirements of the Armenian Seismic Code. Comparison of the obtained results indicates the high effectiveness of the proposed structural concept of isolation system and the need for further improvement of Seismic Code provisions regarding the values of the reduction factors

  17. Comparison between time-step-integration and probabilistic methods in seismic analysis of a linear structure

    International Nuclear Information System (INIS)

    Schneeberger, B.; Breuleux, R.

    1977-01-01

    Assuming that earthquake ground motion is a stationary time function, the seismic analysis of a linear structure can be done by probailistic methods using the 'power spectral density function' (PSD), instead of applying the more traditional time-step-integration using earthquake time histories (TH). A given structure was analysed both by PSD and TH methods computing and comparing 'floor response spectra'. The analysis using TH was performed for two different TH and different frequency intervals for the 'floor-response-spectra'. The analysis using PSD first produced PSD functions of the responses of the floors and these were then converted into 'foor-response-spectra'. Plots of the resulting 'floor-response-spectra' show: (1) The agreement of TH and PSD results is quite close. (2) The curves produced by PSD are much smoother than those produced by TH and mostly form an enelope of the latter. (3) The curves produced by TH are quite jagged with the location and magnitude of the peaks depending on the choice of frequencies at which the 'floor-response-spectra' were evaluated and on the choice of TH. (Auth.)

  18. Intermediate disconnection of structures to improve the dynamic and the seismic response

    International Nuclear Information System (INIS)

    Fabrizio, Cristiano; De Leo, Andrea M.; Di Egidio, Angelo

    2016-01-01

    In the last years some studies have started to investigate the opportunity to improve the seismic behavior of conventional structures by disconnecting one or more upper stories. An archetype model, constituted by a simple two-degree of freedom system, has been taken as representative of structures where a base isolation or a tuned mass damper scheme is used. The system has a constant total mass, while stiffness and mass ratios are taken as variable parameters. An extensive parametric analysis has been performed to characterize the system. Two different types of behavior maps, one referring to the base isolation and the other to the tuned mass damper, have been obtained. In these maps the regions where a base isolation or a tuned mass damper system works properly are well recognizable and it is also possible to point out some other regions of the parameters space where both systems work well. Some numerical simulations, performed on shear-type systems, have been performed to confirm the results provided by the archetype model.

  19. Application of seismic attributes in structural study and fracture analysis of DQ oil field, Iran

    Directory of Open Access Journals (Sweden)

    Shahoo Maleki

    2015-06-01

    Full Text Available The determination of the most unstable areas in oil fields is critical for addressing engineering problems of wellbore and sand production as well as geologic problems such as understanding dynamic constraints on hydrocarbon migration and fracture permeability. In this research work, coherency seismic attribute has been used for the determination of the most critical areas in terms of drilling stabilities in the DQ oil field, Iran. The results obtained have shown that the (1 predominant features are the SSE–NNW and N–S trends (2 the central part of the DQ structure shows the highest concentration of segment bundles, (3 the segment bundles seem to be aligned along some lineaments oriented SE–NW and SSE–NNW, and (4 on the eastern and western margins of the map there is an anomalous concentration of segments oriented E–W. It can be concluded that coherency attribute is a valuable tool for structural analysis highlighting those areas containing unstable features.

  20. Seismic response of elevated rectangular water tanks considering soil structure interaction

    Science.gov (United States)

    Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.

    2017-11-01

    The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases

  1. Ring-Shaped Seismicity Structures in the Areas of Sarez and Nurek Water Reservoirs (Tajikistan): Lithosphere Adaptation to Additional Loading

    Science.gov (United States)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Seismicity characteristics in the areas of Sarez Lake and the Nurek water reservoir are studied. Ring-shaped seismicity structures in two depth ranges (0-33 and 34-70 km) formed prior to the Pamir earthquake of December 7, 2015 ( M w = 7.2). Seismicity rings cross each other near the Usoi Dam, which formed after the strong earthquake in 1911 and led to the formation of Sarez Lake, and near the epicenter of the Pamir earthquake. In addition, three out of the four strongest events ( M ≥ 6.0) recorded in the Pamir region at depths of more than 70 km since 1950 have occurred near Sarez Lake. An aggregate of the data allows us to conclude that the Pamir earthquake, despite its very large energy, refers to eve