WorldWideScience

Sample records for code system srac

  1. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  2. Analysis of the MEX-15 multipurpose reactor using SRAC code system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-12-15

    The MEX-15 is a conceptual design of a Multipurpose Reactor with thermal power of 15 MW and this reactor is pool type with fuel plates U{sub 3}0{sub 8}-Al of low enrichment uranium. This report presents the static calculation for the MEX-15 reactor using SRAC code system and was developed under the collaboration agreement between ININ-JAERI in Research Reactor Technology Development Division of Department of Research Reactor in Tokai Research Establishment. (Author)

  3. A fortran code CVTRAN to provide cross-section file for TWODANT by using macroscopic file written by SRAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Tsuyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuchihashi, Keichiro

    1999-03-01

    A code CVTRAN provides the macroscopic cross-sections in the format of XSLIB file which is one of Standard interface files for a two-dimensional Sn transport code TWODANT by reading a macroscopic cross section file in the PDS format which is prepared by SRAC execution. While a two-dimensional Sn transport code TWOTRAN published by LANL is installed as a module in the SRAC code system, several functions such as alpha search, concentration search, zone thickness search and various edits are suppressed. Since the TWODANT code was released from LANL, its short running time, stable convergence and plenty of edits have attracted many users. The code CVTRAN makes the TWODANT available to the SRAC user by providing the macroscopic cross-sections on a card-image file XSLIB. The CVTRAN also provides material dependent fission spectra into a card-image format file CVLIB, together with group velocities, group boundary energies and material names. The user can feed them into the TWODANT input, if necessary, by cut-and-paste command. (author)

  4. Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code

    Science.gov (United States)

    Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal

    2017-07-01

    Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.

  5. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0)

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu

    2017-04-01

    Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.

  6. Integrated burnup calculation code system SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Hirakawa, Naohiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwasaki, Tomohiko

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user`s manual of SWAT. (author)

  7. VERIFIKASI PAKET PROGRAM MVP-II DAN SRAC2006 PADA KASUS TERAS REAKTOR VERA BENCHMARK.

    Directory of Open Access Journals (Sweden)

    Jati Susilo

    2015-03-01

    calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between referrence with MVP-II (-0,07% and -0,014% and SRAC2006 (0,92% and 0,99% are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. Keywords : MVP-II, SRAC2006, PWR, VERA

  8. Tokamak Systems Code

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  9. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  10. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.

  11. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  12. DESAIN TERAS DAN BAHAN BAKAR PLTN JENIS PEBBLE BED MODULAR REACTOR (PBMR DENGAN MENGGUNAKAN PROGRAM SRAC

    Directory of Open Access Journals (Sweden)

    Sungkowo Wahyu Santoso

    2015-03-01

    Full Text Available Analisis desain down scale teras dan bahan bakar PBMR-HTR dengan menggunakan program SRAC bertujuan mengetahui pengaruh variasi pengayaan U235, burnable poison, laju aliran pendingin dan suhu pendingin masuk terhadap kekritisan teras serta aspek-aspek keselamatan reaktor nuklir dengan parameter nilai keff dan koefisien reaktivitas suhu bahan bakar, moderator dan pendingin. Teras PBMR-HTR berbentuk silinder finite dengan lubang ditengahnya yang berisi 334.000 bahan bakar pebble bed. Bahan bakar berupa UO2, moderator grafit dan pendingin helium. Model desain down scale dilakukan pada ½ teras yang mewakili keseluruhan teras. Penelitian dilakukan dengan memvariasikan pengayaan bahan bakar sebesar 8%, 8,5%, 9%, 9,5% dan 10% sementara variasi konsentrasi burnable poison sebesar 5 ppm, 7 ppm, 9 ppm, 11 ppm, dan 15 ppm. Variasi laju aliran pendingin sebesar 60%, 80%, 100%, 120%, dan 140% sementara variasi suhu masukan pendingin sebesar 673,15K; 723,15K; 773,15K; 823,15K dan 873,15K. Pada penelitian ini keff pada BOL tanpa Gd2O3 sebesar 1.026213 dan EOL sebesar 0.995865 dengan excess reactivity sebesar 2,5 % dengan pengkayaan U235 9%. Sementara keff pada BOL dengan menggunakan Gd2O3 sebesar 1.0069680 dan EOL sebesar 0.9961928 dengan excess reactivity sebesar 0.69 % dengan konsentrasi Gd2O3 7 ppm. Koefisien reaktivitas suhu bahan bakar,moderator dan pendingin berturut-turut sebesar -9,074583E-05/K, -2,971833E-05/K dan 1,120700E-05/K. Koefisien reaktivitas bernilai negatif menunjukkan karakteristik keselamatan melekat (inherent safety telah terpenuhi. Peningkatan suhu masukan dan penurunan laju aliran pendingin berkontribusi menurunkan nilai keff teras sehingga koefisien reaktivitas bernilai negatif. Kata kunci : PBMR-HTR, kritikalitas, reaktivitas, down scale, burnable poison Core and fuel down scale analysis on PBMR-HTR using SRAC program aims to identify the influence of U235 enrichment, burnable poison, coolant flow rate and coolant temperature

  13. New Codes for Spectral Amplitude Coding Optical CDMA Systems

    Directory of Open Access Journals (Sweden)

    Hassan Yousif Ahmed

    2011-03-01

    Full Text Available A new code structure with zero in-phase cross correlation for spectral amplitude coding optical code division multiple access (SAC-OCDMA system is proposed, and called zero vectors combinatorial (ZVC. This code is constructed in a simple algebraic way using Euclidean vectors and combinatorial theories based on the relationship between the number of users N and the weight W. One of the important properties of this code is that the maximum cross correlation (CC is always zero, which means that multi-user interference (MUI and phase induced intensity noise (PIIN are reduced. Bit error rate (BER performance is compared with previous reported codes. Therefore, theoretically, we demonstrate the performance of ZVC code with the related equations. In addition, the structure of the encoder/decoder based on fiber Bragg gratings (FBGs and the proposed system have been analyzed theoretically by taking into consideration the effects of some noises. The results characterizing BER with respect to the total number of active users show that ZVC code offers a significantly improved performance over previous reported codes by supporting large numbers of users at BER≥ 10-9. A comprehensive simulation study has been carried out using a commercial optical system simulator “VPI™”. Moreover, it was shown that the proposed code managed to reduce the hardware complexity and eventually the cost.

  14. FRENDY: A new nuclear data processing system being developed at JAEA

    Science.gov (United States)

    Tada, Kenichi; Nagaya, Yasunobu; Kunieda, Satoshi; Suyama, Kenya; Fukahori, Tokio

    2017-09-01

    JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.

  15. An Interactive Concatenated Turbo Coding System

    Science.gov (United States)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  16. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  17. Characterizing Video Coding Computing in Conference Systems

    NARCIS (Netherlands)

    Tuquerres, G.

    2000-01-01

    In this paper, a number of coding operations is provided for computing continuous data streams, in particular, video streams. A coding capability of the operations is expressed by a pyramidal structure in which coding processes and requirements of a distributed information system are represented. Th

  18. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  19. Expert system interaction with existing analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, V.H.; Fink, R.K.; Bertch, W.J.; Callow, R.A.

    1986-01-01

    Coupling expert systems with existing engineering analysis codes is a promising area in the field of artificial intelligence. The added intelligence can provide for easier and less costly use of the code and also reduce the potential for code misuse. This paper will discuss the methods available to allow interaction between an expert system and a large analysis code running on a mainframe. Concluding remarks will identify potential areas of expert system application with specific areas that are being considered in a current research program. The difficulty of interaction between an analysis code and an expert system is due to the incompatibility between the FORTRAN environment used for the analysis code and the AI environment used for the expert system. Three methods, excluding file transfer techniques, are discussed to help overcome this incompatibility. The first method is linking the FORTRAN routines to the LISP environment on the same computer. Various LISP dialects available on mainframes and their interlanguage communication capabilities are discussed. The second method involves network interaction between a LISP machine and a mainframe computer. Comparisons between the linking method and networking are noted. The third method involves the use of an expert system tool that is campatible with a FORTRAN environment. Several available tools are discussed. With the interaction methods identified, several potential application areas are considered. Selection of the specific areas that will be developed for the pilot project and applied to a thermal-hydraulic energy analysis code are noted.

  20. Improved decoding for a concatenated coding system

    OpenAIRE

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, onl...

  1. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...

  2. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    Adelphi, MD 20783-1197 This technical note provides a brief description of a Java library for Arabic natural language processing ( NLP ) containing code...for training and applying the Arabic NLP system described in the paper "A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix...processing, NLP , Java, code 14 Stephen C. Tratz (301) 394-2305Unclassified Unclassified Unclassified UU ii Contents 1. Introduction 1 2. File Overview 1 3

  3. Verifying compiled file system code

    OpenAIRE

    Mühlberg, Jan Tobias; Lüttgen, Gerald

    2011-01-01

    This article presents a case study on retrospective verification of the Linux Virtual File System (VFS), which is aimed at checking violations of API usage rules and memory properties. Since VFS maintains dynamic data structures and is written in a mixture of C and inlined assembly, modern software model checkers cannot be applied. Our case study centres around our novel automated software verification tool, the SOCA Verifier, which symbolically executes and analyses compi...

  4. Graphics-System Color-Code Interface

    Science.gov (United States)

    Tulppo, J. S.

    1982-01-01

    Circuit originally developed for a flight simulator interfaces a computer graphics system with color monitor. Subsystem is intended for particular display computer (AGT-130, ADAGE Graphics Terminal) and specific color monitor (beam penetration tube--Penetron). Store-and-transmit channel is one of five in graphics/color-monitor interface. Adding 5-bit color code to existing graphics programs requires minimal programing effort.

  5. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  6. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  7. A Students Attendance System Using QR Code

    Directory of Open Access Journals (Sweden)

    Fadi Masalha

    2014-01-01

    Full Text Available Smartphones are becoming more preferred companions to users than desktops or notebooks. Knowing that smartphones are most popular with users at the age around 26, using smartphones to speed up the process of taking attendance by university instructors would save lecturing time and hence enhance the educational process. This paper proposes a system that is based on a QR code, which is being displayed for students during or at the beginning of each lecture. The students will need to scan the code in order to confirm their attendance. The paper explains the high level implementation details of the proposed system. It also discusses how the system verifies student identity to eliminate false registrations.

  8. EAI-oriented information classification code system in manufacturing enterprises

    Institute of Scientific and Technical Information of China (English)

    Junbiao WANG; Hu DENG; Jianjun JIANG; Binghong YANG; Bailing WANG

    2008-01-01

    Although the traditional information classifi-cation coding system in manufacturing enterprises (MEs) emphasizes the construction of code standards, it lacks the management of the code creation, code data transmission and so on. According to the demands of enterprise application integration (EAI) in manufacturing enter-prises, an enterprise application integration oriented information classification code system (EAIO-ICCS) is proposed. EAIO-ICCS expands the connotation of the information classification code system and assures the identity of the codes in manufacturing enterprises with unified management of codes at the view of its lifecycle.

  9. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  10. Blind Recognition Algorithm of Turbo Codes for Communication Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Ali Naseri

    2011-11-01

    Full Text Available Turbo codes are widely used in land and space radio communication systems, and because of complexity of structure, are custom in military communication systems. In electronic warfare, COMINT systems make attempt to recognize codes by blind ways. In this Paper, the algorithm is proposed for blind recognition of turbo code parameters like code kind, code-word length, code rate, length of interleaver and delay blocks number of convolution code. The algorithm calculations volume is0.5L3+1.25L, therefore it is suitable for real time systems.

  11. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  12. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    Science.gov (United States)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  13. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  14. Improved FEC Code Based on Concatenated Code for Optical Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-guo; JIANG Ze; MAO You-ju

    2006-01-01

    The improved three novel schemes of the super forward error correction(super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore,the simulation results for the RS(255,239)+RS(255,239) code and the RS(255,239)+RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction,moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes,and their signal to noise ratio gains are respectively 2~3 dB more than that of the RS(255,239)code at the bit error rate of 1×10-13. Finally,the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.

  15. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  16. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  17. Next generation Zero-Code control system UI

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  18. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    Institute of Scientific and Technical Information of China (English)

    PANG Yu-ye; SUN Jun; WANG Jia

    2007-01-01

    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  19. Private Computing and Mobile Code Systems

    NARCIS (Netherlands)

    Cartrysse, K.

    2005-01-01

    This thesis' objective is to provide privacy to mobile code. A practical example of mobile code is a mobile software agent that performs a task on behalf of its user. The agent travels over the network and is executed at different locations of which beforehand it is not known whether or not these ca

  20. Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns

    Science.gov (United States)

    Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.

    2006-01-01

    Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.

  1. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    Science.gov (United States)

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  2. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  3. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Jow, H.N. (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management.

  4. Automatic counterfeit protection system code classification

    Science.gov (United States)

    Van Beusekom, Joost; Schreyer, Marco; Breuel, Thomas M.

    2010-01-01

    Wide availability of cheap high-quality printing techniques make document forgery an easy task that can easily be done by most people using standard computer and printing hardware. To prevent the use of color laser printers or color copiers for counterfeiting e.g. money or other valuable documents, many of these machines print Counterfeit Protection System (CPS) codes on the page. These small yellow dots encode information about the specific printer and allow the questioned document examiner in cooperation with the manufacturers to track down the printer that was used to generate the document. However, the access to the methods to decode the tracking dots pattern is restricted. The exact decoding of a tracking pattern is often not necessary, as tracking the pattern down to the printer class may be enough. In this paper we present a method that detects what CPS pattern class was used in a given document. This can be used to specify the printer class that the document was printed on. Evaluation proved an accuracy of up to 91%.

  5. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  6. CORA - A Semiautomatic Coding System Application to the Coding of Markush Formulas

    Science.gov (United States)

    Deforeit, Huguette; And Others

    1972-01-01

    A computer system, named CORA, has been devised for coding chemical structures by fragmentation elements. It has been used to encode Markush formulas in patents according to the Ring codes used in the Ringdoc and Pestdoc services and results in an easy, speedy, reliable and inexpensive method. (4 references) (Author)

  7. Morse Monte Carlo Radiation Transport Code System

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)

  8. AVS 3D Video Coding Technology and System

    Institute of Scientific and Technical Information of China (English)

    Siwei Ma; Shiqi Wang; Wen Gao

    2012-01-01

    Following the success of the audio video standard (AVS) for 2D video coding, in 2008, the China AVS workgroup started developing 3D video (3DV) coding techniques. In this paper, we discuss the background, technical features, and applications of AVS 3DV coding technology. We introduce two core techniques used in AVS 3DV coding: inter-view prediction and enhanced stereo packing coding. We elaborate on these techniques, which are used in the AVS real-time 3DV encoder. An application of the AVS 3DV coding system is presented to show the great practical value of this system. Simulation results show that the advanced techniques used in AVS 3DV coding provide remarkable coding gain compared with techniques used in a simulcast scheme.

  9. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  10. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  11. Study of adaptive modulation and LDPC coding in multicarrier systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated.The AM algorithm is based on minimizing the average bit error rate (BER) of systems,the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied.The proposed AM algorithm with that of Fischer et al is compared.Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm.The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems.Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.

  12. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  13. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  14. Rebuilding for Array Codes in Distributed Storage Systems

    CERN Document Server

    Wang, Zhiying; Bruck, Jehoshua

    2010-01-01

    In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against erasures, and only require XOR operations for encoding and decoding. We show that when there are two redundancy nodes, to rebuild one erased systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases, the required disk I/O is also minimized.

  15. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  16. Path Weight Complementary Convolutional Code for Type-II Bit-Interleaved Coded Modulation Hybrid ARQ System

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuxin; ZHANG Lei; YI Na; XIANG Haige

    2007-01-01

    Bit-interleaved coded modulation (BICM) is suitable to bandwidth-efficient communication systems. Hybrid automatic repeat request (HARQ) can provide more reliability to high-speed wireless data transmission. A new path weight complementary convolutional (PWCC) code used in the type-ll BICM-HARQ system is proposed. The PWCC code is composed of the original code and the complimentary code. The path in trellis with large hamming weight of the complimentary code is designed to compensate for the path in trellis with small hamming weight of the original code. Hence, both of the original code and the complimentary code can achieve the performance of the good code criterion of corresponding code rate. The throughput efficiency of the BICM-HARQ system wit PWCC code is higher than repeat code system, a little higher than puncture code system in low signal-to-noise ratio (SNR) values and much higher than puncture code system, the same as repeat code system in high SNR values. These results are confirmed by the simulation.

  17. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  18. System Measures Errors Between Time-Code Signals

    Science.gov (United States)

    Cree, David; Venkatesh, C. N.

    1993-01-01

    System measures timing errors between signals produced by three asynchronous time-code generators. Errors between 1-second clock pulses resolved to 2 microseconds. Basic principle of computation of timing errors as follows: central processing unit in microcontroller constantly monitors time data received from time-code generators for changes in 1-second time-code intervals. In response to any such change, microprocessor buffers count of 16-bit internal timer.

  19. 14 CFR Sec. 1-4 - System of accounts coding.

    Science.gov (United States)

    2010-01-01

    ... General Accounting Provisions Sec. 1-4 System of accounts coding. (a) A four digit control number is... digit code assigned to each profit and loss account denote a detailed area of financial activity or... sequentially within blocks, designating more general classifications of financial activity and...

  20. Binary random systematic erasure code for RAID system

    Science.gov (United States)

    Teng, Pengguo; Wang, Xiaojing; Chen, Liang; Yuan, Dezhai

    2017-03-01

    As the increasing expansion of data scale, storage systems grow in size and complexity, the requirements for systems scalability and methodologies to recover simultaneous disk and sector failures are inevitable. To ensure high reliability and flexible scalability, erasure codes with high fault tolerance and flexibility are required. In this pa per, we present a class of erasure codes satisfied the previous requirements, which referred as Binary Random Systematic erasure code, called BRS code for short. BRS code constructs its generator matrix based on random matrix, whose elements are in Galois Field GF (2), and takes the advantage of exclusive-or (XOR) operations to make it work much fast. It is designed as a systematic code to facilitate the store and recovery. Moreover, δ random redundancies make the probability of successfully decoding controllable. Our evaluations and experiments show that BRS code is flexible on parameters and fault tolerance setting, and has high computing efficiency on encoding and decoding speeds, what is more, when the code length is long enough, BRS code is approximately MDS, thus make it have nearly optimal storage efficiency.

  1. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  2. A highly specific coding system for structural chromosomal alterations.

    Science.gov (United States)

    Martínez-Frías, M L; Martínez-Fernández, M L

    2013-04-01

    The Spanish Collaborative Study of Congenital Malformations (ECEMC, from the name in Spanish) has developed a very simple and highly specific coding system for structural chromosomal alterations. Such a coding system would be of value at present due to the dramatic increase in the diagnosis of submicroscopic chromosomal deletions and duplications through molecular techniques. In summary, our new coding system allows the characterization of: (a) the type of structural anomaly; (b) the chromosome affected; (c) if the alteration affects the short or/and the long arm, and (d) if it is a non-pure dicentric, a non-pure isochromosome, or if it affects several chromosomes. We show the distribution of 276 newborn patients with these types of chromosomal alterations using their corresponding codes according to our system. We consider that our approach may be useful not only for other registries, but also for laboratories performing these studies to store their results on case series. Therefore, the aim of this article is to describe this coding system and to offer the opportunity for this coding to be applied by others. Moreover, as this is a SYSTEM, rather than a fixed code, it can be implemented with the necessary modifications to include the specific objectives of each program. Copyright © 2013 Wiley Periodicals, Inc.

  3. A comparison of mechanical algorithms of fuel performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of fuel rod performance evaluation is to identify the robustness of fuel rod with cladding material during fuel irradiation. Computer simulation of fuel rod performance becomes important to develop new nuclear systems. To construct the computing code system for fuel rod performance, we compared several algorithms of existing fuel rod performance code systems and summarized the details and tips as a preliminary work. Among several code systems, FRAPCON, FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. The computational algorithms related to mechanical interaction of the fuel rod are compared including methodologies and subroutines. This work will be utilized to develop the computing code system for dry process fuel rod performance.

  4. Vision-based reading system for color-coded bar codes

    Science.gov (United States)

    Schubert, Erhard; Schroeder, Axel

    1996-02-01

    Barcode systems are used to mark commodities, articles and products with price and article numbers. The advantage of the barcode systems is the safe and rapid availability of the information about the product. The size of the barcode depends on the used barcode system and the resolution of the barcode scanner. Nevertheless, there is a strong correlation between the information content and the length of the barcode. To increase the information content, new 2D-barcode systems like CodaBlock or PDF-417 are introduced. In this paper we present a different way to increase the information content of a barcode and we would like to introduce the color coded barcode. The new color coded barcode is created by offset printing of the three colored barcodes, each barcode with different information. Therefore, three times more information content can be accommodated in the area of a black printed barcode. This kind of color coding is usable in case of the standard 1D- and 2D-barcodes. We developed two reading devices for the color coded barcodes. First, there is a vision based system, consisting of a standard color camera and a PC-based color frame grabber. Omnidirectional barcode decoding is possible with this reading device. Second, a bi-directional handscanner was developed. Both systems use a color separation process to separate the color image of the barcodes into three independent grayscale images. In the case of the handscanner the image consists of one line only. After the color separation the three grayscale barcodes can be decoded with standard image processing methods. In principle, the color coded barcode can be used everywhere instead of the standard barcode. Typical applications with the color coded barcodes are found in the medicine technique, stock running and identification of electronic modules.

  5. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  6. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  7. MULTIPLE TRELLIS CODED ORTHOGONAL TRANSMIT SCHEME FOR MULTIPLE ANTENNA SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas.This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitary space-time schemes.

  8. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  9. Codes, standards, and PV power systems. A 1996 status report

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J

    1996-06-01

    As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

  10. Code Design and Shuffled Iterative Decoding of a Quasi-Cyclic LDPC Coded OFDM System

    Institute of Scientific and Technical Information of China (English)

    LIU Binbin; BAI Dong; GE Qihong; MEI Shunliang

    2009-01-01

    In multipath environments,the error rate performance of orthogonal frequency division multiplexing (OFDM) is severely degraded by the deep fading subcarriers.Powerful error-correcting codes must be used with OFDM.This paper presents a quasi-cyclic low-density parity-check (LDPC) coded OFDM system,in which the redundant bits of each codeword are mapped to a higher-order modulation constellation.The optimal degree distribution was calculated using density evolution.The corresponding quasi-cyclic LDPC code was then constructed using circulant permutation matrices.Group shuffled message passing scheduling was used in the iterative decoding.Simulation results show that the system achieves better error rate performance and faster decoding convergence than conventional approaches on both additive white Gaussian noise (AWGN) and Rayleigh fading channels.

  11. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  12. Study on New Concatenated Code in WDM Optical Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-guo; JIANG Ze; MAO You-ju; YE Wen-wei

    2007-01-01

    A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to be suitable for WDM optical transmission systems is proposed.The simulation results show that this new concatenated code,compared with the RS(255,239)+CSOC(k0/n0=6/7,J=8) code in ITU-T G.75.1,has a lower redundancy and better error-correction performance,furthermore,its net coding gain(NCG) is respectively 0.46 dB,0.43 dB more than that of RS(255,239)+CSOC(k0/n0 =6/7,J=8) code and BCH(3 860,3 824)+BCH(2 040,1 930) code in ITU-T G.75.1 at the third iteration for the bit error rate(BER) of 10-12.Therefore,the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul,ultra large-capacity and ultra high-speed WDM optical communication systems.

  13. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...

  14. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  15. JEMs and incompatible occupational coding systems: Effect of manual and automatic recoding of job codes on exposure assignment

    NARCIS (Netherlands)

    Koeman, T.; Offermans, N.S.M.; Christopher-De Vries, Y.; Slottje, P.; Brandt, P.A. van den; Goldbohm, R.A.; Kromhout, H.; Vermeulen, R.

    2013-01-01

    Background: In epidemiological studies, occupational exposure estimates are often assigned through linkage of job histories to job-exposure matrices (JEMs). However, available JEMs may have a coding system incompatible with the coding system used to code the job histories, necessitating a translatio

  16. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  17. On the Performance of Code Acquisition in MIMO CDMA Systems

    Science.gov (United States)

    Kim, Sangchoon; An, Jinyoung

    This letter investigates the effects of using multiple transmit antennas on code acquisition for preamble search in the CDMA uplink when MIMO is used for signal transmission and reception. The performance of a ML code acquisition technique in the presence of MIMO channel is analyzed by considering the detection and miss probabilities. The acquisition performance is numerically evaluated on a frequency selective fading channel. It is found that the performance of code acquisition scheme for a SIMO system is better than that for the case of MIMO on the low thresholds in terms of detection performance and MAT.

  18. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72]....

  19. An extensive Markov system for ECG exact coding.

    Science.gov (United States)

    Tai, S C

    1995-02-01

    In this paper, an extensive Markov process, which considers both the coding redundancy and the intersample redundancy, is presented to measure the entropy value of an ECG signal more accurately. It utilizes the intersample correlations by predicting the incoming n samples based on the previous m samples which constitute an extensive Markov process state. Theories of the extensive Markov process and conventional n repeated applications of m-th order Markov process are studied first in this paper. After that, they are realized for ECG exact coding. Results show that a better performance can be achieved by our system. The average code length for the extensive Markov system on the second difference signals was 2.512 b/sample, while the average Huffman code length for the second difference signals was 3.326 b/sample.

  20. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  1. Methods and computer codes for nuclear systems calculations

    Indian Academy of Sciences (India)

    B P Kochurov; A P Knyazev; A Yu Kwaretzkheli

    2007-02-01

    Some numerical methods for reactor cell, sub-critical systems and 3D models of nuclear reactors are presented. The methods are developed for steady states and space–time calculations. Computer code TRIFON solves space-energy problem in (, ) systems of finite height and calculates heterogeneous few-group matrix parameters of reactor cells. These parameters are used as input data in the computer code SHERHAN solving the 3D heterogeneous reactor equation for steady states and 3D space–time neutron processes simulation. Modification of TRIFON was developed for the simulation of space–time processes in sub-critical systems with external sources. An option of SHERHAN code for the system with external sources is under development.

  2. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  3. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  4. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  5. A Low Power Viterbi Decoder for Trellis Coded Modulation System

    Directory of Open Access Journals (Sweden)

    M. Jansi Rani

    2014-02-01

    Full Text Available Forward Error Correction (FEC schemes are an essential component of wireless communication systems. Convolutional codes are employed to implement FEC but the complexity of corresponding decoders increases exponentially according to the constraint length. Present wireless standards such as Third generation (3G systems, GSM, 802.11A, 802.16 utilize some configuration of convolutional coding. Convolutional encoding with Viterbi decoding is a powerful method for forward error correction. Viterbi algorithm is the most extensively employed decoding algorithm for convolutional codes. The main aim of this project is to design FPGA based Viterbi algorithm which encrypts / decrypts the data. In this project the encryption / decryption algorithm is designed and programmed in to the FPGA.

  6. Rateless Space Time Block Code for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Ali H. Alqahtani

    2014-01-01

    Full Text Available This paper presents a rateless space time block code (RSTBC for massive MIMO systems. The paper illustrates the basis of rateless space time codes deployments in massive MIMO transmissions over wireless erasure channels. In such channels, data may be lost or is not decodable at the receiver due to a variety of factors such as channel fading, interference, or antenna element failure. We show that RSTBC guarantees the reliability of the system in such cases, even when the data loss rate is 25% or more. In such a highly lossy channel, the conventional fixed-rate codes fail to perform well, particularly when channel state information is not available at the transmitter. Simulation results are provided to demonstrate the BER performance and the spectral efficiency of the proposed scheme.

  7. Course and Research Analysis Using a Coded Classification System.

    Science.gov (United States)

    Lochstet, Gwenn S.

    1997-01-01

    A system of course analysis was developed and used to code and compare faculty research, courses, and library materials in the Mathematics, Physics, and Statistics departments of the University of South Carolina. The purpose is to provide a guide in determining how well the library's collection supports the academic needs of these departments. (10…

  8. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  9. PCS a code system for generating production cross section libraries

    Energy Technology Data Exchange (ETDEWEB)

    Cox, L.J.

    1997-04-01

    This document outlines the use of the PCS Code System. It summarizes the execution process for generating FORMAT2000 production cross section files from FORMAT2000 reaction cross section files. It also describes the process of assembling the ASCII versions of the high energy production files made from ENDL and Mark Chadwick`s calculations. Descriptions of the function of each code along with its input and output and use are given. {ital This document is under construction. Please submit entries, suggestions, questions, and corrections to} {bold (ljc@llnl.gov)} 3 tabs.

  10. A Systematic Look at Code Performance and System Simulation

    Directory of Open Access Journals (Sweden)

    G.Srikanth

    2014-06-01

    Full Text Available The most standard method in improvise a system’s efficiency in Digital communication is channel coding but this methods is not been able to extend its features for high speed links. Growing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual inter-symbol interference (ISI caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and collective noise as the dominant error mechanisms, this paper analyzes error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviors in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting. Finally, based on a hardware test bed, the performance of standard binary forward error correction and error detection schemes is evaluated, from which recommendations on coding for high-speed links are derived. Keywords:

  11. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  12. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  13. Polynomial system solving for decoding linear codes and algebraic cryptanalysis

    OpenAIRE

    2009-01-01

    This thesis is devoted to applying symbolic methods to the problems of decoding linear codes and of algebraic cryptanalysis. The paradigm we employ here is as follows. We reformulate the initial problem in terms of systems of polynomial equations over a finite field. The solution(s) of such systems should yield a way to solve the initial problem. Our main tools for handling polynomials and polynomial systems in such a paradigm is the technique of Gröbner bases and normal form reductions. The ...

  14. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  15. Stellarator-specific developments for the systems code PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, Felix; Beidler, Craig; Dinklage, Andreas; Feng, Yuehe; Geiger, Joachim; Schauer, Felix; Turkin, Yuriy; Wolf, Robert; Xanthopoulos, Pavlos [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Knight, Peter; Ward, David [Culham Centre for Fusion Energy, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2014-07-01

    The ultimate goal of fusion research is to demonstrate the feasibility of economic production of electricity. The most promising concepts to achieve this by magnetic confinement are the Tokamak and the Stellarator. System codes are used to study the general properties of a fusion power plant. Built in a modular way systems codes describe the physical and technical properties of the power plant components. For the Helical Advanced Stellarator (HELIAS) concept modules have been developed in the frame of the existing Tokamak systems code PROCESS. These include: A geometry model based on Fourier coefficients which represent the complex 3-D plasma shape, a divertor model which assumes diffusive cross-field transport and high radiation at the X-point, a coil model which uses a scaling based on the HELIAS design and a transport model which either employs empirical confinement time scalings or sophisticated 1-D collisional and turbulent transport calculations. This approach aims at a direct comparison between Tokamak and Stellarator power plant designs.

  16. Research of Wavelet Based Multicarrier Modulation System with Near Shannon Limited Codes

    Institute of Scientific and Technical Information of China (English)

    ZHANGHaixia; YUANDongfeng; ZHAOFeng

    2005-01-01

    In this paper, by using turbo codes and Low density parity codes (LDPC) as channel correcting code scheme, Wavelet based multicarrier modulation (WMCM) systems are proposed and investigated on different transmission scenarios. The Bit error rate (BER) performance of these two near Shannon limited codes is simulated and compared with various code parameters. Simulated results show that Turbo coded WMCM (TCWMCM) performs better than LDPC coded WMCM (LDPC-CWMCM) on both AWGN and Rayleigh fading channels when these two kinds of codes are of the same code parameters.

  17. Vision aided inertial navigation system augmented with a coded aperture

    Science.gov (United States)

    Morrison, Jamie R.

    Navigation through a three-dimensional indoor environment is a formidable challenge for an autonomous micro air vehicle. A main obstacle to indoor navigation is maintaining a robust navigation solution (i.e. air vehicle position and attitude estimates) given the inadequate access to satellite positioning information. A MEMS (micro-electro-mechanical system) based inertial navigation system provides a small, power efficient means of maintaining a vehicle navigation solution; however, unmitigated error propagation from relatively noisy MEMS sensors results in the loss of a usable navigation solution over a short period of time. Several navigation systems use camera imagery to diminish error propagation by measuring the direction to features in the environment. Changes in feature direction provide information regarding direction for vehicle movement, but not the scale of movement. Movement scale information is contained in the depth to the features. Depth-from-defocus is a classic technique proposed to derive depth from a single image that involves analysis of the blur inherent in a scene with a narrow depth of field. A challenge to this method is distinguishing blurriness caused by the focal blur from blurriness inherent to the observed scene. In 2007, MIT's Computer Science and Artificial Intelligence Laboratory demonstrated replacing the traditional rounded aperture with a coded aperture to produce a complex blur pattern that is more easily distinguished from the scene. A key to measuring depth using a coded aperture then is to correctly match the blur pattern in a region of the scene with a previously determined set of blur patterns for known depths. As the depth increases from the focal plane of the camera, the observable change in the blur pattern for small changes in depth is generally reduced. Consequently, as the depth of a feature to be measured using a depth-from-defocus technique increases, the measurement performance decreases. However, a Fresnel zone

  18. The ICPC coding system in pharmacy : developing a subset, ICPC-Ph

    NARCIS (Netherlands)

    van Mil, JWF; Brenninkmeijer, R; Tromp, TFJ

    1998-01-01

    The ICPC system is a coding system developed for general medical practice, to be able to code the GP-patient encounters and other actions. Some of the codes can be easily used by community pharmacists to code complaints and diseases in pharmaceutical care practice. We developed a subset of the ICPC

  19. Advanced coding techniques for few mode transmission systems.

    Science.gov (United States)

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol.

  20. Medium-rate speech coding simulator for mobile satellite systems

    Science.gov (United States)

    Copperi, Maurizio; Perosino, F.; Rusina, F.; Albertengo, G.; Biglieri, E.

    1986-01-01

    Channel modeling and error protection schemes for speech coding are described. A residual excited linear predictive (RELP) coder for bit rates 4.8, 7.2, and 9.6 kbit/sec is outlined. The coder at 9.6 kbit/sec incorporates a number of channel error protection techniques, such as bit interleaving, error correction codes, and parameter repetition. Results of formal subjective experiments (DRT and DAM tests) under various channel conditions, reveal that the proposed coder outperforms conventional LPC-10 vocoders by 2 subjective categories, thus confirming the suitability of the RELP coder at 9.6 kbit/sec for good quality speech transmission in mobile satellite systems.

  1. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  2. [Behavior ethogram and PAE coding system of Cervus nippon sichuanicus].

    Science.gov (United States)

    Qi, Wen-Hua; Yue, Bi-Song; Ning, Ji-Zu; Jiang, Xue-Mei; Quan, Qiu-Mei; Guo, Yan-Shu; Mi, Jun; Zuo, Lin; Xiong, Yuan-Qing

    2010-02-01

    A monthly 5-day periodic observation at 06:00-18:00 from March to November 2007 was conducted to record the behavioral processes, contents, and results, and the surrounding habitats of Sichuan sika deer (Cervus nippon sichuanicus) in Donglie, Chonger, and Reer villages of Tiebu Natural Reserve of Sichuan Province. The behavioral ethogram, vigilance behaviors ethogram and its PAE (posture, act, and environment) coding system of the Sichuan sika deer were established, which filled the gap of the PAE coding of ungulates vigilance behaviors. A total of 11 kinds of postures, 83 acts, and 136 behaviors were recorded and distinguished, with the relative frequency of each behavior in relation to gender, age, and season described. Compared with other ungulates, the behavioral repertoire of Sichuan sika deer was mostly similar to that of other cervid animals.

  3. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani

    2015-01-01

    This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two...... key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  4. Research and implementation of flexible coding system oriented multi-view

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuhui; ZHANG Xu; NING Ruxin

    2007-01-01

    On the basis of the requirements of a product data management system (PDM) for the flexible coding system,the principle of the flexible coding system oriented multiview is analyzed. Generation and utilization of coding should be associated with the context of the object. The architecture of the flexible coding system oriented multi-view is studied and the implementation class diagram of the system is designed. The system can support the establishment of five types of code segments, provide the tools of flexible defining coding rules and drive the automatic generation of object coding in different views (contexts). On the foundation of the characteristics of the system, coding for parts is taken as a sample to validate and elaborate the flexible coding process of the system.

  5. Performance of Superposition Coded Broadcast/Unicast Service Overlay System

    Science.gov (United States)

    Yoon, Seokhyun; Kim, Donghee

    The system level performance of a superposition coded broadcast/unicast service overlay system is considered. Cellular network for unicast service only is considered as interference limited system, where increasing the transmission power does not help improve the network throughput especially when the frequency reuse factor is close to 1. In such cases, the amount of power that does not contribute to improving the throughput can be considered as “unused.” This situation motivates us to use the unused power for broadcast services, which can be efficiently provided in OFDM based single frequency networks as in digital multimedia broadcast systems. In this paper, we investigate the performance of such a broadcast/unicast overlay system in which a single frequency broadcast service is superimposed over a unicast cellular service. Alternative service multiplexing using FDM/TDM is also considered for comparison.

  6. Advanced Error-Control Coding Methods Enhance Reliability of Transmission and Storage Data Systems

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    2003-04-01

    Full Text Available Iterative coding systems are currently being proposed and acceptedfor many future systems as next generation wireless transmission andstorage systems. The text gives an overview of the state of the art initerative decoded FEC (Forward Error-Correction error-control systems.Such systems can typically achieve capacity to within a fraction of adB at unprecedented low complexities. Using a single code requires verylong code words, and consequently very complex coding system. One wayaround the problem of achieving very low error probabilities is turbocoding (TC application. A general model of concatenated coding systemis shown - an algorithm of turbo codes is given in this paper.

  7. Hierarchical sparse coding in the sensory system of Caenorhabditis elegans.

    Science.gov (United States)

    Zaslaver, Alon; Liani, Idan; Shtangel, Oshrat; Ginzburg, Shira; Yee, Lisa; Sternberg, Paul W

    2015-01-27

    Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons. This library includes the vast majority of the sensory system in C. elegans. Imaging from individual sensory neurons while subjecting the worms to various stimuli allowed us to compile a comprehensive functional map of the sensory system at single neuron resolution. The functional map reveals that despite the dense wiring, chemosensory neurons represent the environment using sparse codes. Moreover, although anatomically closely connected, chemo- and mechano-sensory neurons are functionally segregated. In addition, the code is hierarchical, where few neurons participate in encoding multiple cues, whereas other sensory neurons are stimulus specific. This encoding strategy may have evolved to mitigate the constraints of a compact sensory system.

  8. Performance of a space-time block coded code division multiple access system over Nakagami-m fading channels

    Science.gov (United States)

    Yu, Xiangbin; Dong, Tao; Xu, Dazhuan; Bi, Guangguo

    2010-09-01

    By introducing an orthogonal space-time coding scheme, multiuser code division multiple access (CDMA) systems with different space time codes are given, and corresponding system performance is investigated over a Nakagami-m fading channel. A low-complexity multiuser receiver scheme is developed for space-time block coded CDMA (STBC-CDMA) systems. The scheme can make full use of the complex orthogonality of space-time block coding to simplify the high decoding complexity of the existing scheme. Compared to the existing scheme with exponential decoding complexity, it has linear decoding complexity. Based on the performance analysis and mathematical calculation, the average bit error rate (BER) of the system is derived in detail for integer m and non-integer m, respectively. As a result, a tight closed-form BER expression is obtained for STBC-CDMA with an orthogonal spreading code, and an approximate closed-form BER expression is attained for STBC-CDMA with a quasi-orthogonal spreading code. Simulation results show that the proposed scheme can achieve almost the same performance as the existing scheme with low complexity. Moreover, the simulation results for average BER are consistent with the theoretical analysis.

  9. Applicability of the SCALE code system to MOX fuel transport systems for criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Toshiaki; Takasugi, Masahiro; Natsume, Toshihiro; Tsuda, Kazuaki

    1996-11-01

    In order to ascertain feasibilities of the SCALE code system for MOX fuel transport systems, criticality analyses were performed for MOX fuel (Pu enrichment; 3.0 wt.%) criticality experiments at JAERI`s TCA and for infinite fuel rod arrays as parameters of Pu enrichment and lattice pitch. The comparison with a combination of the continuous energy Monte Carlo code MCNP and JENDL-3.2 indicated that the SCALE code system with GAM-THERMOS 123-group library can produce feasible results. Though HANSEN-ROACH 16-group library gives poorer results for MOS fuel transport systems, the errors are conservative except for high enriched fuels. (author)

  10. System code improvements for modelling passive safety systems and their validation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Cron, Daniel von der; Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    GRS has been developing the system code ATHLET over many years. Because ATHLET, among other codes, is widely used in nuclear licensing and supervisory procedures, it has to represent the current state of science and technology. New reactor concepts such as Generation III+ and IV reactors and SMR are using passive safety systems intensively. The simulation of passive safety systems with the GRS system code ATHLET is still a big challenge, because of non-defined operation points and self-setting operation conditions. Additionally, the driving forces of passive safety systems are smaller and uncertainties of parameters have a larger impact than for active systems. This paper addresses the code validation and qualification work of ATHLET on the example of slightly inclined horizontal heat exchangers, which are e. g. used as emergency condensers (e. g. in the KERENA and the CAREM) or as heat exchanger in the passive auxiliary feed water systems (PAFS) of the APR+.

  11. New Parallel Interference Cancellation for Convolutionally Coded CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    Xu Guo-xiong; Gan Liang-cai; Huang Tian-xi

    2004-01-01

    Based on BCJR algorithm proposed by Bahl et al and linear soft decision feedback, a reduced-complexity parallel interference cancellation (simplified PIC) for convolutionally coded DS CDMA systems is proposed. By computer simulation, we compare the simplified PIC with the exact PIC. It shows that the simplified PIC can achieve the performance close to the exact PIC if the mean values of coded symbols are linearly computed in terms of the sum of initial a prior log-likelihood rate (LLR) and updated a prior LLR, while a significant performance loss will occur if the mean values of coded symbols are linearly computed in terms of the updated a prior LLR only. Meanwhile, we also compare the simplified PIC with MF receiver and conventional PICs. The simulation results show that the simplified PIC dominantly outperforms the MF receiver and conventional PICs, at signal-noise rate (SNR) of 7 dB, for example, the bit error rate is about 10-4 for the simplified PIC, which is far below that of matched-filter receiver and conventional PIC.

  12. Code Based Analysis for Object-Oriented Systems

    Institute of Scientific and Technical Information of China (English)

    Swapan Bhattacharya; Ananya Kanjilal

    2006-01-01

    The basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independent paths in procedural software. This paper highlights the problem of constructing CFG in object-oriented systems and proposes a new model named Extended Control Flow Graph (ECFG) for code based analysis of Object-Oriented (OO) software. ECFG is a layered CFG where nodes refer to methods rather than statements. A new metrics - Extended Cyclomatic Complexity (E-CC) is developed which is analogous to McCabe's Cyclomatic Complexity (CC) and refers to the number of independent execution paths within the OO software. The different ways in which CFG's of individual methods are connected in an ECFG are presented and formulas for E-CC for these different cases are proposed. Finally we have considered an example in Java and based on its ECFG, applied these cases to arrive at the E-CC of the total system as well as proposed a methodology for calculating the basis set, i.e., the set of independent paths for the OO system that will help in creation of test cases for code testing.

  13. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  14. System Design Considerations In Bar-Code Laser Scanning

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  15. EquiFACS: The Equine Facial Action Coding System.

    Science.gov (United States)

    Wathan, Jen; Burrows, Anne M; Waller, Bridget M; McComb, Karen

    2015-01-01

    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  16. EquiFACS: The Equine Facial Action Coding System.

    Directory of Open Access Journals (Sweden)

    Jen Wathan

    Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  17. A LONE code for the sparse control of quantum systems

    Science.gov (United States)

    Ciaramella, G.; Borzì, A.

    2016-03-01

    In many applications with quantum spin systems, control functions with a sparse and pulse-shaped structure are often required. These controls can be obtained by solving quantum optimal control problems with L1-penalized cost functionals. In this paper, the MATLAB package LONE is presented aimed to solving L1-penalized optimal control problems governed by unitary-operator quantum spin models. This package implements a new strategy that includes a globalized semi-smooth Krylov-Newton scheme and a continuation procedure. Results of numerical experiments demonstrate the ability of the LONE code in computing accurate sparse optimal control solutions.

  18. Electronic health record standards, coding systems, frameworks, and infrastructures

    CERN Document Server

    Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya

    2013-01-01

    Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an

  19. Nonterminals, homomorphisms and codings in different variations of OL-systems. II. Nondeterministic systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto

    1974-01-01

    Continuing the work begun in Part I of this paper, we consider now variations of nondeterministic OL-systems. The present Part II of the paper contains a systematic classification of the effect of nonterminals, codings, weak codings, nonerasing homomorphisms and homomorphisms for all basic variat...

  20. [Data coding in the Israeli healthcare system - do choices provide the answers to our system's needs?].

    Science.gov (United States)

    Zelingher, Julian; Ash, Nachman

    2013-05-01

    The IsraeLi healthcare system has undergone major processes for the adoption of health information technologies (HIT), and enjoys high Levels of utilization in hospital and ambulatory care. Coding is an essential infrastructure component of HIT, and ts purpose is to represent data in a simplified and common format, enhancing its manipulation by digital systems. Proper coding of data enables efficient identification, storage, retrieval and communication of data. UtiLization of uniform coding systems by different organizations enables data interoperability between them, facilitating communication and integrating data elements originating in different information systems from various organizations. Current needs in Israel for heaLth data coding include recording and reporting of diagnoses for hospitalized patients, outpatients and visitors of the Emergency Department, coding of procedures and operations, coding of pathology findings, reporting of discharge diagnoses and causes of death, billing codes, organizational data warehouses and national registries. New national projects for cLinicaL data integration, obligatory reporting of quality indicators and new Ministry of Health (MOH) requirements for HIT necessitate a high Level of interoperability that can be achieved only through the adoption of uniform coding. Additional pressures were introduced by the USA decision to stop the maintenance of the ICD-9-CM codes that are also used by Israeli healthcare, and the adoption of ICD-10-C and ICD-10-PCS as the main coding system for billing purpose. The USA has also mandated utilization of SNOMED-CT as the coding terminology for the ELectronic Health Record problem list, and for reporting quality indicators to the CMS. Hence, the Israeli MOH has recently decided that discharge diagnoses will be reported using ICD-10-CM codes, and SNOMED-CT will be used to code the cLinical information in the EHR. We reviewed the characteristics, strengths and weaknesses of these two coding

  1. 76 FR 4113 - Federal Procurement Data System Product Service Code Manual Update

    Science.gov (United States)

    2011-01-24

    ... ADMINISTRATION Federal Procurement Data System Product Service Code Manual Update AGENCY: Office of... the Products and Services Code (PSC) Manual, which provides codes to describe products, services, and... pat.brooks@gsa.gov . SUPPLEMENTARY INFORMATION: The Products and Services Code (PSC) Manual...

  2. Source Code Verification for Embedded Systems using Prolog

    Directory of Open Access Journals (Sweden)

    Frank Flederer

    2017-01-01

    Full Text Available System relevant embedded software needs to be reliable and, therefore, well tested, especially for aerospace systems. A common technique to verify programs is the analysis of their abstract syntax tree (AST. Tree structures can be elegantly analyzed with the logic programming language Prolog. Moreover, Prolog offers further advantages for a thorough analysis: On the one hand, it natively provides versatile options to efficiently process tree or graph data structures. On the other hand, Prolog's non-determinism and backtracking eases tests of different variations of the program flow without big effort. A rule-based approach with Prolog allows to characterize the verification goals in a concise and declarative way. In this paper, we describe our approach to verify the source code of a flash file system with the help of Prolog. The flash file system is written in C++ and has been developed particularly for the use in satellites. We transform a given abstract syntax tree of C++ source code into Prolog facts and derive the call graph and the execution sequence (tree, which then are further tested against verification goals. The different program flow branching due to control structures is derived by backtracking as subtrees of the full execution sequence. Finally, these subtrees are verified in Prolog. We illustrate our approach with a case study, where we search for incorrect applications of semaphores in embedded software using the real-time operating system RODOS. We rely on computation tree logic (CTL and have designed an embedded domain specific language (DSL in Prolog to express the verification goals.

  3. 42 CFR 405.512 - Carriers' procedural terminology and coding systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Carriers' procedural terminology and coding systems... Determining Reasonable Charges § 405.512 Carriers' procedural terminology and coding systems. (a) General. Procedural terminology and coding systems are designed to provide physicians and third party payers with...

  4. Analysis the Performance of Coded WSK-DWDM Transmission System

    Directory of Open Access Journals (Sweden)

    Bobby Barua

    2012-12-01

    Full Text Available Dense Wavelength Division Multiplexing (DWDM is the system with more than eight active wavelengths per fiber. Again high data rates as well as long spans between amplifiers in a chain require high optical power per channel to satisfy the signal to noise ratio (SNR requirements. So the DWDM systems with long repeater-less spans, the simultaneous requirements of high launched power and low dispersion fibers lead to the generation of new waves by four-wave mixing (FWM, which degrades the performance of a multi-channel transmission system. Several methods have been proposed to mitigate the effect of FWM crosstalk. All these works are performed considering only binary WSK scheme. Although M-ary WSK (M>2 schemes have higher spectral efficiency than binary WSK system. Again, the BER performances for M-ary WDM system are not satisfactory with the effect of FWM. Therefore, in this paper we include the effect of FWM on the performance of an M-ary WDM system and try to mitigate the effect by employing the energy efficient convolution code in a normal dispersive fiber as well as in a dispersion shifted fiber (DSF.

  5. LOW RATE SPACE-TIME TRELLIS CODES IN POWER LIMITED WIRELESS COMMUNICATION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Wu Gang; Chen Ming; Wang Haifeng; Cheng Shixin

    2002-01-01

    Space-time trellis codes can achieve the best tradeoff among bandwidth effciency,diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed. Performance analysis and simulation show that the low rate space-time trellis codes outperform space-time block codes concatenated with convolutional code at the same bandwidth effciency, and are more suitable for the power limited wireless communication system.

  6. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    Science.gov (United States)

    Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.

    2007-12-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions (∽ keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with γ-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and γ-ray strength functions. The results can be converted into ENDF-6 formatted files using the

  7. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  8. PERFORMANCE EVALUATION OF LOW DENSITY PARITY CHECK CODES FOR DIGITAL RADIO MONDIALE (DRM) SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In Digital Radio Mondiale (DRM) system, achieving good audio quality becomes a challenge due to its limited band-width of 9 or 10kHz and the very bad fading channels. Therefore, DRM needs highly efficient channel coding schemes. This paper, proposes the schemes which use the Low-Density Parity-Check (LDPC) coded Bit-Interleaved Coded Modulation (BICM) schemes for the implementation of DRM systems.Simulation results show that the proposed system is more efficient than the Rate Compatible Punctured Convolutional (RCPC) coded DRM system on various broadcast channels, and may be recommended as a coding technology for Digital Amplitude Modulation Broadcasting (DAMB) systems of China.

  9. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey

    OpenAIRE

    UZUN, Vassilya; BILGIN, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospi...

  10. Video coding for next-generation surveillance systems

    Science.gov (United States)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    Video is used as recording media in surveillance system and also more frequently by the Swedish Police Force. Methods for analyzing video using an image processing system have recently been introduced at the Swedish National Laboratory of Forensic Science, and new methods are in focus in a research project at Linkoping University, Image Coding Group. The accuracy of the result of those forensic investigations often depends on the quality of the video recordings, and one of the major problems when analyzing videos from crime scenes is the poor quality of the recordings. Enhancing poor image quality might add manipulative or subjective effects and does not seem to be the right way of getting reliable analysis results. The surveillance system in use today is mainly based on video techniques, VHS or S-VHS, and the weakest link is the video cassette recorder, (VCR). Multiplexers for selecting one of many camera outputs for recording is another problem as it often filters the video signal, and recording is limited to only one of the available cameras connected to the VCR. A way to get around the problem of poor recording is to simultaneously record all camera outputs digitally. It is also very important to build such a system bearing in mind that image processing analysis methods becomes more important as a complement to the human eye. Using one or more cameras gives a large amount of data, and the need for data compression is more than obvious. Crime scenes often involve persons or moving objects, and the available coding techniques are more or less useful. Our goal is to propose a possible system, being the best compromise with respect to what needs to be recorded, movements in the recorded scene, loss of information and resolution etc., to secure the efficient recording of the crime and enable forensic analysis. The preventative effective of having a well functioning surveillance system and well established image analysis methods is not to be neglected. Aspects of

  11. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  12. Verification of ARES transport code system with TAKEDA benchmarks

    Science.gov (United States)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  13. The APR1400 Core Design by Using APA Code System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun [Korea Electric Power Research Institue, Daejeon (Korea, Republic of); Koh, Byung Marn [USERS, Daejeon (Korea, Republic of)

    2008-05-15

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator.

  14. Hybrid Compton camera/coded aperture imaging system

    Science.gov (United States)

    Mihailescu, Lucian [Livermore, CA; Vetter, Kai M [Alameda, CA

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  15. Biometric iris image acquisition system with wavefront coding technology

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  16. Near Capacity Approaching for Large MIMO Systems by Non-Binary LDPC Codes with MMSE Detection

    CERN Document Server

    Suthisopapan, Puripong; Meesomboon, Anupap; Imtawil, Virasit

    2012-01-01

    In this paper, we have investigated the application of non-binary LDPC codes to spatial multiplexing MIMO systems with a large number of low power antennas. We demonstrate that such large MIMO systems incorporating with low-complexity MMSE detector and non-binary LDPC codes can achieve low probability of bit error at near MIMO capacity. The new proposed non-binary LDPC coded system also performs better than other coded large MIMO systems known in the present literature. For instance, non-binary LDPC coded BPSK-MIMO system with 600 transmit/receive antennas performs within 3.4 dB from the capacity while the best known turbo coded system operates about 9.4 dB away from the capacity. Based on the simulation results provided in this paper, the proposed non-binary LDPC coded large MIMO system is capable of supporting ultra high spectral efficiency at low bit error rate.

  17. A simple model of optimal population coding for sensory systems.

    Science.gov (United States)

    Doi, Eizaburo; Lewicki, Michael S

    2014-08-01

    A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise inherent in the system. Encoding the raw sensory signal itself is also problematic, because it contains distortion and noise. The optimal solution would be constrained further by limited biological resources. Here, we analyze a simple theoretical model that incorporates these key aspects of sensory coding, and apply it to conditions in the retina. The model specifies the optimal way to incorporate redundancy in a population of noisy neurons, while also optimally compensating for sensory distortion and noise. Importantly, it allows an arbitrary input-to-output cell ratio between sensory units (photoreceptors) and encoding units (retinal ganglion cells), providing predictions of retinal codes at different eccentricities. Compared to earlier models based on redundancy reduction, the proposed model conveys more information about the original signal. Interestingly, redundancy reduction can be near-optimal when the number of encoding units is limited, such as in the peripheral retina. We show that there exist multiple, equally-optimal solutions whose receptive field structure and organization vary significantly. Among these, the one which maximizes the spatial locality of the computation, but not the sparsity of either synaptic weights or neural responses, is consistent with known basic properties of retinal receptive fields. The model further predicts that receptive field structure changes less with light adaptation at higher input-to-output cell ratios, such as in the periphery.

  18. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey

    National Research Council Canada - National Science Library

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    .... Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card...

  19. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  20. A study on the interlink of CANDU safety analysis codes with development of GUI system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Jeo, Y. J.; Park, Q. C. [Seoul National Univ., Seoul (Korea, Republic of); Kim, H. T.; Min, B. J. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    In order to improve the CANDU safety analysis code system, the interlink of containment analysis code, PRESCON2 to the system thermal hydraulics analysis code, CATHENA, has been implemented with development of the GUI system. Before the GUI development, we partly corrected two codes to optimize on the PC environment. The interlink of two codes could be executed by introducing three interlinking variables, mass flux, mixture enthalpy, and mixture specific volume. To guarantee the robustness of the codes, two codes are extremely linked by using the GUI system. The GUI system provides much of user-friendly functions and will be improved step by step. This study is expected to improve the safety assessment system and technology for CANDU NPPs.

  1. PERFORMANCE ANALYSIS OF CHANNEL ESTIMATION FOR LDPC-CODED OFDM SYSTEM IN MULTIPATH FADING CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Zhu Qi; Li Hao; Feng Guangzeng

    2006-01-01

    In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel estimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed.A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.

  2. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  3. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  4. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    DEFF Research Database (Denmark)

    Sun, Fan

    2011-01-01

    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two......-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  5. Coding of object location in the vibrissal thalamocortical system.

    Science.gov (United States)

    Yu, Chunxiu; Horev, Guy; Rubin, Naama; Derdikman, Dori; Haidarliu, Sebastian; Ahissar, Ehud

    2015-03-01

    In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.

  6. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey.

    Science.gov (United States)

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospital grounds. These QR code bracelets link to the QR Code Identity website, where detailed information is stored; a smartphone or standalone QR code scanner can be used to scan the code. The design of this system allows authorized personnel (e.g., paramedics, firefighters, or police) to access more detailed patient information than the average smartphone user: emergency service professionals are authorized to access patient medical histories to improve the accuracy of medical treatment. In Istanbul, we tested the self-designed system with 174 participants. To analyze the QR Code Identity Tag system's usability, the participants completed the System Usability Scale questionnaire after using the system.

  7. A Secure Code-Based Authentication Scheme for RFID Systems

    Directory of Open Access Journals (Sweden)

    Noureddine Chikouche

    2015-08-01

    Full Text Available Two essential problems are still posed in terms of Radio Frequency Identification (RFID systems, including: security and limitation of resources. Recently, Li et al.'s proposed a mutual authentication scheme for RFID systems in 2014, it is based on Quasi Cyclic-Moderate Density Parity Check (QC-MDPC McEliece cryptosystem. This cryptosystem is designed to reducing the key sizes. In this paper, we found that this scheme does not provide untraceability and forward secrecy properties. Furthermore, we propose an improved version of this scheme to eliminate existing vulnerabilities of studied scheme. It is based on the QC-MDPC McEliece cryptosystem with padding the plaintext by a random bit-string. Our work also includes a security comparison between our improved scheme and different code-based RFID authentication schemes. We prove secrecy and mutual authentication properties by AVISPA (Automated Validation of Internet Security Protocols and Applications tools. Concerning the performance, our scheme is suitable for low-cost tags with resource limitation.

  8. Saphyr: a code system from reactor design to reference calculations

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Baudron, A.M.; Buiron, L.; Coste-Delclaux, M.; Fedon-Magnaud, C.; Lautard, J.J.; Moreau, F.; Nicolas, A.; Sanchez, R.; Zmijarevic, I. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service d' Etudes des Reacteurs et de Modelisation Avancee (DENDMSS/SERMA), 91 - Gif sur Yvette (France); Bergeron, A.; Caruge, D.; Fillion, P.; Gallo, D.; Royer, E. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service Fluides numeriques, Modelisations et Etudes (DEN/DMSS/SFNME), 91 - Gif sur Yvette (France); Loubiere, S. [CEA Saclay, Direction de l' Energie Nucleaire, Direction de la Simulation et des Outils Experimentaux, 91- Gif sur Yvette (France)

    2003-07-01

    In this paper we briefly present the package SAPHYR (in French Advanced System for Reactor Physics) which is devoted to reactor calculations, safety analysis and design. This package is composed of three main codes: APOLLO2 for lattice calculations, CRONOS2 for whole core neutronic calculations and FLICA4 for thermohydraulics. Thanks to a continuous development effort, the SAPHYR system is an outstanding tool covering a large domain of applications, from sophisticated 'research and development' studies that need state-of-the-art methodology to routine industrial calculations for reactor and criticality analysis. SAPHYR is powerful enough to carry out calculations for all types of reactors and is invaluable to understand complex phenomena. SAPHYR components are in use in various nuclear companies such as 'Electricite de France', Framatome-ANP, Cogema, SGN, Transnucleaire and Technicatome. Waiting for the next generation tools (DESCARTES for neutronics and NEPTUNE for thermohydraulics) to be available for such a variety of use, with a better level of flexibility and at least equivalent validation and qualification level, the improvement of SAPHYR is going on, to acquire new functions constantly required by users and to improve current performance levels.

  9. A dual-sided coded-aperture radiation detection system

    Science.gov (United States)

    Penny, R. D.; Hood, W. E.; Polichar, R. M.; Cardone, F. H.; Chavez, L. G.; Grubbs, S. G.; Huntley, B. P.; Kuharski, R. A.; Shyffer, R. T.; Fabris, L.; Ziock, K. P.; Labov, S. E.; Nelson, K.

    2011-10-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5×5×50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  10. Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.

    Science.gov (United States)

    Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy

    2017-05-01

    Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W11O38} ≡ {W11} under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W12O42} ≡ {W12}, {W22O74} ≡ {W22} 1a, {W34O116} ≡ {W34} 2a, and {W36O120} ≡ {W36} 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W11}-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists.

  11. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    and standar - dizing them through the ISO/IEC process should eliminate many of the problems encountered at the NIST SATE and also increase the...view the source code, using both structured and unstruct ons of secure coding rules discovered. However, manua than automated analysis, and the

  12. A Spanish version for the new ERA-EDTA coding system for primary renal disease

    Directory of Open Access Journals (Sweden)

    Óscar Zurriaga

    2015-07-01

    Conclusions: Translation and adaptation into Spanish represent an improvement that will help to introduce and use the new coding system for PKD, as it can help reducing the time devoted to coding and also the period of adaptation of health workers to the new codes.

  13. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  14. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  15. Computer code system for the R and D of nuclear fuel cycle with fast reactor. 5. Development and application of reactor analysis code system

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kenji; Hazama, Taira; Chiba, Go; Ohki, Shigeo; Ishikawa, Makoto [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-12-01

    In the core design of fast reactors (FRs), it is very important to improve the prediction accuracy of the nuclear characteristics for both reducing cost and ensuring reliability of FR plants. A nuclear reactor analysis code system for FRs has been developed by the Japan Nuclear Cycle Development Institute (JNC). This paper describes the outline of the calculation models and methods in the system consisting of several analysis codes, such as the cell calculation code CASUP, the core calculation code TRITAC and the sensitivity analysis code SAGEP. Some examples of verification results and improvement of the design accuracy are also introduced based on the measurement data from critical assemblies, e.g, the JUPITER experiment (USA/Japan), FCA (Japan), MASURCA (France), and BFS (Russia). Furthermore, application fields and future plans, such as the development of new generation nuclear constants and applications to MA{center_dot}FP transmutation, are described. (author)

  16. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  17. On the Performance of Synchronous DS—CDMA Systems with Generalized Orthogonal Spreading Codes

    Institute of Scientific and Technical Information of China (English)

    HAOLi; FANPingzhi

    2003-01-01

    A new synchronous DS-CDMA system em-ploying generalized orthogonal (GO) spreading codes and maximum ratio combining (MRC) scheme is presented in this paper. In particular, the forward link of the system is discussed in detail. The GO codes are used to combat the interference caused by multipath components. The aver-age correlation properties of GO codes are evaluated andthe signal interference ratio (SIR) expressions based on the Rayleigh and Racian fading multipath channel models are derived respectively. The link performance in terms of bit error rate (BER) is obtained for GO codes with different orthogonal zones by Gaussian Approximation and Monte-Carlo simulation respectively. The results reveal that the GO codes appear better BER performance than traditional orthogonal codes in synchronous CDMA systems, and the GO code with larger orthogonal zone exhibits larger per-formance gain.

  18. Study on a new meteorological sampling scheme developed for the OSCAAR code system

    OpenAIRE

    Liu, X.; 富田 賢一; 本間 俊充

    2002-01-01

    One important step in Level 3 Probabilistic Safety Assessment is meteorological sequence sampling, on which the previous studies were mainly related to code systems using straight line plume model and more efforts are needed for trajectory puff model such as the OSCAAR code system. This report describes the development of a new meteorological sampling scheme for the OSCAAR code system that explicitly considers population distribution. A group of principles was set forth for the development of...

  19. Error correction coding for frequency-hopping multiple-access spread spectrum communication systems

    Science.gov (United States)

    Healy, T. J.

    1982-01-01

    A communication system which would effect channel coding for frequency-hopped multiple-access is described. It is shown that in theory coding can increase the spectrum utilization efficiency of a system with mutual interference to 100 percent. Various coding strategies are discussed and some initial comparisons are given. Some of the problems associated with implementing the type of system described here are discussed.

  20. 48 CFR 19.303 - Determining North American Industry Classification System (NAICS) codes and size standards.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Determining North American Industry Classification System (NAICS) codes and size standards. 19.303 Section 19.303 Federal Acquisition... Classification System (NAICS) codes and size standards. (a) The contracting officer shall determine...

  1. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  2. Analysis of the KUCA MEU experiments using the ANL code system

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.

  3. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  4. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  5. The research of breakdown structure and coding system for construction project

    Institute of Scientific and Technical Information of China (English)

    丁大勇; 金维兴; 李培

    2004-01-01

    Whether the breakdown structure and coding system of construction projects are reasonable or not determines to a large degree the pepfofmance level of the entire project management. We analyze in detail the similarities and differences of two kinds of decomposing methods classified by type of work and construction elements based on the discussion of international typical coding standards system designing. We then deduce the differential coefficient relation between project breakdown strueture(PBS) and work breakdown structure (WBS). At the same time we constitute a comprehensive construction project breakdown system including element code and type of work code and make a further schematic presentation of the implementation of the sysrem' s functions.

  6. Validation of system codes for plant application on selected experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Marco K.; Risken, Tobias; Agethen, Kathrin; Bratfisch, Christoph [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2016-05-15

    For decades, the Reactor Simulation and Safety Group at Ruhr-Universitaet Bochum (RUB) contributes to nuclear safety by computer code validation and model development for nuclear safety analysis. Severe accident analysis codes are relevant tools for the understanding and the development of accident management measures. The accidents in the plants Three Mile Island (USA) in 1979 and Fukushima Daiichi (Japan) in 2011 influenced these research activities significantly due to the observed phenomena, such as molten core concrete interaction and hydrogen combustion. This paper gives a brief outline of recent research activities at RUB in the named fields, contributing to code preparation for plant applications. Simulations of the molten core concrete interaction tests CCI-2 and CCI-3 with ASTEC and the hydrogen combustion test Ix9 with COCOSYS are presented exemplarily. Additionally, the application on plants is demonstrated on chosen results of preliminary Fukushima calculations.

  7. Channel coding for underwater acoustic single-carrier CDMA communication system

    Science.gov (United States)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  8. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  9. EELQMS - the European quality management system for engine lubricants - the ATC Code of Practice; EELQMS - Das Europaeische Qualitaets-Management System fuer Motorenoele - der ATC Code of Practice

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, J.H.; Eberan-Eberhorst, C.G.A. von

    1998-01-01

    In 1995 the ATC developed a Code of Practice which, in conjunction with the ATIEL Code of Practice, represents the basis for the European Engine Lubricant Quality Management System (EELQMS). Compliance with the requirements of this system is a prerequisite for performance claims made by engine oil marketers regarding the European ACEA Engine Oil Sequences. TAD, the German section of the Technical Committee of Petroleum Additive Manufacturers in Europe (ATC), has prepared this presentation in order to promote the dialogue between the industries concerned and to provide information on EELQMS and the ATC Code of Practice to a broader audience. Key elements of the paper are: - What is EELQMS? - How does EELQMS work? - What is the role of the ATC Code of Practice in EELQMS? - What are the most important rules of the ATC Code of Practice? - What benefits do EELQMS and the ATC Code of Practice offer to the end-user? - What is the current status of EELQMS? We hope that this presentation will help to promote a better understanding and acceptance of EELQMS on a broad basis. (orig.) [Deutsch] Im Jahre 1995 hat der ATC eine Code of Practice entwickelt, der in Verbindung mit dem ATIEL Code of Practice die Grundlage des Europaeischen Qualitaets-Management-Systems fuer Motoroele (European Engine Lubricant Quality Management System=EELQMS) ist. Die Einhaltung der in diesem System spezifizierten Regeln ist Voraussetzung fuer die Erfuellung der ACEA-Richtlinien und der entsprechenden Performance-Aussagen nach den jeweiligen europaeischen ACEA-Motorenoelsequenzen. Zur Vertiefung des Dialogs zwischen den beteiligten Industrien und zur Verbreitung der Kenntnisse ueber EELQMS und den ATC Code of Practice hat die TAD, die deutsche nationale Organisation innerhalb des europaeischen Dachverbandes der Additivindustrie (ATC), folgende Praesentation ausgearbeitet. Wesentliche Elemente der Praesentation sind: - Was ist EELQMS? - Wie funktioniert EELQMS? - Welche Rolle spielt der ATC Code of

  10. SEACC: the systems engineering and analysis computer code for small wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Tu, P.K.C.; Kertesz, V.

    1983-03-01

    The systems engineering and analysis (SEA) computer program (code) evaluates complete horizontal-axis SWECS performance. Rotor power output as a function of wind speed and energy production at various wind regions are predicted by the code. Efficiencies of components such as gearbox, electric generators, rectifiers, electronic inverters, and batteries can be included in the evaluation process to reflect the complete system performance. Parametric studies can be carried out for blade design characteristics such as airfoil series, taper rate, twist degrees and pitch setting; and for geometry such as rotor radius, hub radius, number of blades, coning angle, rotor rpm, etc. Design tradeoffs can also be performed to optimize system configurations for constant rpm, constant tip speed ratio and rpm-specific rotors. SWECS energy supply as compared to the load demand for each hour of the day and during each session of the year can be assessed by the code if the diurnal wind and load distributions are known. Also available during each run of the code is blade aerodynamic loading information.

  11. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  12. GALILEE: A nuclear data processing system for transport, depletion and shielding codes

    Energy Technology Data Exchange (ETDEWEB)

    COSTE-DELCLAUX, Mireille [Commissariat a l' Energie Atomique, CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, 91191 Gif sur Yvette CEDEX (France)

    2008-07-01

    The Nuclear Data Processing System for Transport, Depletion and Shielding Codes GALILEE is part of a CEA global development program dedicated to fine modelling of nuclear systems. The other projects contributing to this aim are APOLLO3 inherited from DESCARTES (Calvin and Fedon-Magnaud, 2007) which treats deterministic transport, TRIPOLI-4 (Diop et al., 2006) which treats Monte Carlo transport and DARWIN3 (Tsilanizara et al., 1999) which solves all fuel cycle problems. GALILEE aims are: - To provide to application codes (deterministic or Monte Carlo transport codes, shielding codes or depletion codes), a tool-box allowing a consistent processing for nuclear data coming from any evaluation given in ENDF-6 format, - To carry out an automatic chain for creating application libraries, - To provide consistent application libraries for modelling a nuclear system. GALILEE project is carried out in synergy with application codes in order to be able to share 'objects' but also 'tools'. (author)

  13. Proposing a Web-Based Tutorial System to Teach Malay Language Braille Code to the Sighted

    Science.gov (United States)

    Wah, Lee Lay; Keong, Foo Kok

    2010-01-01

    The "e-KodBrailleBM Tutorial System" is a web-based tutorial system which is specially designed to teach, facilitate and support the learning of Malay Language Braille Code to individuals who are sighted. The targeted group includes special education teachers, pre-service teachers, and parents. Learning Braille code involves memorisation…

  14. Nurses' Attitudes Toward the Use of the Bar-coding Medication Administration System

    NARCIS (Netherlands)

    S.D. Marini; A. Hasman; H.A.S. Huijer; H. Dimassi

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the

  15. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    Science.gov (United States)

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  16. Energy efficient error-correcting coding for wireless systems

    NARCIS (Netherlands)

    Shao, Xiaoying

    2010-01-01

    The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required t

  17. Internal Corrosion Control of Water Supply Systems Code of Practice

    Science.gov (United States)

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  18. Internal Corrosion Control of Water Supply Systems Code of Practice

    Science.gov (United States)

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  19. Barriers and challenges of using medical coding systems

    NARCIS (Netherlands)

    Surján, G.

    2011-01-01

    The subject of this study is the generation and utilisation of coded medical data. There are essentially two uses of health data: one is the clinical use within the primary healthcare process. The other use, which is the focus of my thesis, is the central collection of data aggregated from clinical

  20. Implications of Sepedi/English code switching for ASR systems

    CSIR Research Space (South Africa)

    Modipa, TI

    2013-12-01

    Full Text Available to the dominant language can become particularly frequent. We analyse one such scenario: Sepedi spoken in South Africa, where English is the dominant language; and determine the frequency and mechanisms of code switching through the analysis of radio broadcasts...

  1. Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA Systems

    Directory of Open Access Journals (Sweden)

    C.T. Yen

    2013-04-01

    Full Text Available This study analyzes and calculates dual unipolar and bipolar coded configurations of spectral-amplitude-coding optical code division multiple access (SAC-OCDMA systems by using simulation methods. The important feature of the SAC-OCDMA systems is that multiple access interference (MAI can be eliminated by code sequences of a fixed in-phase cross-correlation value. This property can be effectively canceled multiple access interference by using balance detection schemes. This study uses Walsh-Hadamard codes as signature codes for the unipolar and bipolar schemes. The coder and decoder structures are based on optical filters of fiber Bragg gratings (FBGs. The simulation results of unipolar/bipolar coding structures are first presented by commercial simulation obtained using OptiSystem software. The simulation results show that the bit error rate (BER through use of the bipolar coding method is superior to the unipolar scheme, especially when the received effect power is large. When the system needs good performance to transmit multimedia data, we can use bipolar scheme in the network. If the users only transmit voice data, the unipolar method can be employed. The eye diagram also shows that the bipolar encoding structure exhibits a wider opening than the unipolar encoding structure. The flexible implementation of codewords assigns and integratable hardware designs for the scheme with FBGs to realize dual coding OCDMA system is proposed.

  2. Performance of Coded Systems with Generalized Selection Diversity in Nakagami Fading

    Directory of Open Access Journals (Sweden)

    Zummo SalamA

    2008-01-01

    Full Text Available Abstract We investigate the performance of coded diversity systems employing generalized selection combining (GSC over Nakagami fading channels. In particular, we derive a numerical evaluation method for the cutoff rate of the GSC systems. In addition, we derive a new union bound on the bit-error probability based on the code's transfer function. The proposed bound is general to any coding scheme with a known weight distribution such as convolutional and trellis codes. Results show that the new bound is tight to simulation results for wide ranges of diversity order, Nakagami fading parameter, and signal-to-noise ratio (SNR.

  3. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  4. Accuracy and time requirements of a bar-code inventory system for medical supplies.

    Science.gov (United States)

    Hanson, L B; Weinswig, M H; De Muth, J E

    1988-02-01

    The effects of implementing a bar-code system for issuing medical supplies to nursing units at a university teaching hospital were evaluated. Data on the time required to issue medical supplies to three nursing units at a 480-bed, tertiary-care teaching hospital were collected (1) before the bar-code system was implemented (i.e., when the manual system was in use), (2) one month after implementation, and (3) four months after implementation. At the same times, the accuracy of the central supply perpetual inventory was monitored using 15 selected items. One-way analysis of variance tests were done to determine any significant differences between the bar-code and manual systems. Using the bar-code system took longer than using the manual system because of a significant difference in the time required for order entry into the computer. Multiple-use requirements of the central supply computer system made entering bar-code data a much slower process. There was, however, a significant improvement in the accuracy of the perpetual inventory. Using the bar-code system for issuing medical supplies to the nursing units takes longer than using the manual system. However, the accuracy of the perpetual inventory was significantly improved with the implementation of the bar-code system.

  5. COMPLEMENT BLOCK CODING SCHEME FOR REDUCING PEAK-TO-AVERAGE POWER RATIO OF OFDM SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Tao; Zhu Guangxi

    2004-01-01

    A new scheme termed as Complement Block Coding (CBC) technique is proposed to reduce the Peak-to-Average Power Ratio (PAPR) of OFDM signals. Utilizing the complement bits which are added to the original information bits,this method can effectively reduce the PAPR of OFDM systems with random frame size N and the coding rate R ≤ (N - k)/N, where kis a positive integer and k ≤ N/2. The performance results obtained with CBC are given and compared with that of some well known schemes, such as Simple Block Coding (SBC), Modified Simple Block Coding (MSBC) and Simple Odd Parity Code (SOPC) for the same purpose. The results show that, at the same coding rate 3/4, the CBC can achieve almost the same performance as SBC, MSBC, but with lower complexity, and that the same performance can be obtained with higher coding rate by using CBC. At the same coding rate (N - 1)/N, the PAPR reduction of CBC is almost the twice as that of SOPC when N ≥ 16. Further more, the PAPR reductions with coding rate (N - 1)/N are almost the same as that with coding rate less than (N - 1)/N,so the proposed scheme CBC is more suitable for the large frame size with high coding rate and can provide error detection.

  6. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  7. Incorporating prior knowledge of urban scene spatial structure in aperture code designs for surveillance systems

    Science.gov (United States)

    Valenzuela, John R.; Thelen, Brian J.; Subotic, Nikola

    2010-08-01

    Two major missions of Surveillance systems are imaging and ground moving target indication (GMTI). Recent advances in coded aperture electro optical systems have enabled persistent surveillance systems with extremely large fields of regard. The areas of interest for these surveillance systems are typically urban, with spatial topologies having a very definite structure. We incorporate aspects of a priori information on this structure in our aperture code designs to enable optimized dealiasing operations for undersampled focal plane arrays. Our framework enables us to design aperture codes to minimize mean square error for image reconstruction or to maximize signal to clutter ratio for GMTI detection. In this paper we present a technical overview of our code design methodology and show the results of our designed codes on simulated DIRSIG mega-scene data.

  8. PRELIMINARY STUDY ON APPLICATION OF MAX PLUS ALGEBRA IN DISTRIBUTED STORAGE SYSTEM THROUGH NETWORK CODING

    Directory of Open Access Journals (Sweden)

    Agus Maman Abadi

    2016-04-01

    Full Text Available The increasing need in techniques of storing big data presents a new challenge. One way to address this challenge is the use of distributed storage systems. One strategy that implemented in distributed data storage systems is the use of Erasure Code which applied to network coding. The code used in this technique is based on the algebraic structure which is called as vector space. Some studies have also been carried out to create code that is based on other algebraic structures such as module.  In this study, we are going to try to set up a code based on the algebraic structure which is a generalization of the module that is semimodule by utilizing the max operations and sum operations at max plus algebra. The results of this study indicate that the max operation and the addition operation on max plus algebra cannot be used to establish a semimodule code, but by modifying the operation "+" as "min", we get a code based on semimodule. Keywords:   code, distributed storage systems, network coding, semimodule, max plus algebra

  9. Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise

    Directory of Open Access Journals (Sweden)

    Kschischang Frank R

    2006-01-01

    Full Text Available We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT system in the presence of both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber lines (DSL. One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC codes and bit-interleaved coded modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS code. The proposed method has a lower implementation complexity than the concatenated coding approach.

  10. Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA Systems

    Directory of Open Access Journals (Sweden)

    C.T. Yen

    2013-03-01

    Full Text Available This study analyzes and calculates dual unipolar and bipolar coded configurations of spectral-amplitude-coding opticalcode division multiple access (SAC-OCDMA systems by using simulation methods. The important feature of theSAC-OCDMA systems is that multiple access interference (MAI can be eliminated by code sequences of a fixed inphasecross-correlation value. This property can be effectively canceled multiple access interference by using balancedetection schemes. This study uses Walsh-Hadamard codes as signature codes for the unipolar and bipolar schemes.The coder and decoder structures are based on optical filters of fiber Bragg gratings (FBGs. The simulation results ofunipolar/bipolar coding structures are first presented by commercial simulation obtained using OptiSystem software.The simulation results show that the bit error rate (BER through use of the bipolar coding method is superior to theunipolar scheme, especially when the received effect power is large. When the system needs good performance totransmit multimedia data, we can use bipolar scheme in the network. If the users only transmit voice data, the unipolarmethod can be employed. The eye diagram also shows that the bipolar encoding structure exhibits a wider openingthan the unipolar encoding structure. The flexible implementation of codewords assigns and integratable hardwaredesigns for the scheme with FBGs to realize dual coding OCDMA system is proposed.

  11. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. (Cincinnati Univ., OH (United States))

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  12. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. [Cincinnati Univ., OH (United States)

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  13. Turbo product codes and their application in the fourth-generation mobile communication system

    Science.gov (United States)

    He, Yejun; Zhu, Guangxi; Liu, Ying Zhuang; Liu, Jian

    2004-04-01

    In this paper, we firstly present turbo product codes (TPCs) for forward error correction (FEC) coding, including TPCs encoding process and decoding principle, and then compare TPCs with turbo convolutional codes (TCCs) error coding solution. The performance of TPCs is shown to be closer to the Shannon limit than TCCs. Secondly, we introduce TPCs" application in the 4th generation (4G) mobile communication system which is being developed in our country at present. The concept of TPC-OFDM system which promises higher code rate than conventional OFDM is first modified. Finally, simulation results show that the simplified 4G uplink systems offer Bit Error Rate of nearly 0 over IMT-2000 channel at Eb/N0 > 15dB.

  14. Study Of Coded Based Mechanism In WSN System

    Directory of Open Access Journals (Sweden)

    Kaksha S.Thakare

    2016-04-01

    Full Text Available Wireless Sensor networks (WSN is an emerging technology and have great potential to be employed in critical situations like battlefields and commercial applications such as building, traffic surveillance, habitat monitoring and smart homes and many more scenarios.One of the major challenges wireless sensor networks face today is QoS. In order to ensure data security and quality of service required by an application in an energy efficient way, we propose a mechanism for QoS routing with coding and selective encryption scheme for WSNs.Our approach provides reliable and secure data transmission and can adapt to the resource constraints of WSNs.

  15. Associative recall in a volume holographic storage system based on phase-code multiplexing

    Science.gov (United States)

    Berger, G.; Denz, C.; Orlov, S. S.; Phillips, B.; Hesselink, L.

    2001-12-01

    We present two different techniques on how to realize a content-addressed holographic memory when using phase-code multiplexing, relying on simple intensity measurements rather than phase distributions. Theoretical and experimental results of associative recall in a phase-coded system designed for digital data storage will be presented and compared to the corresponding method when using angular multiplexing.

  16. Integration of QR codes into an anesthesia information management system for resident case log management.

    Science.gov (United States)

    Avidan, Alexander; Weissman, Charles; Levin, Phillip D

    2015-04-01

    Quick response (QR) codes containing anesthesia syllabus data were introduced into an anesthesia information management system. The code was generated automatically at the conclusion of each case and available for resident case logging using a smartphone or tablet. The goal of this study was to evaluate the use and usability/user-friendliness of such system. Resident case logging practices were assessed prior to introducing the QR codes. QR code use and satisfactions amongst residents was reassessed at three and six months. Before QR code introduction only 12/23 (52.2%) residents maintained a case log. Most of the remaining residents (9/23, 39.1%) expected to receive a case list from the anesthesia information management system database at the end of their residency. At three months and six months 17/26 (65.4%) and 15/25 (60.0%) residents, respectively, were using the QR codes. Satisfaction was rated as very good or good. QR codes for residents' case logging with smartphones or tablets were successfully introduced in an anesthesia information management system and used by most residents. QR codes can be successfully implemented into medical practice to support data transfer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A System Call Randomization Based Method for Countering Code-Injection Attacks

    Directory of Open Access Journals (Sweden)

    Zhaohui Liang

    2009-10-01

    Full Text Available Code-injection attacks pose serious threat to today’s Internet. The existing code-injection attack defense methods have some deficiencies on performance overhead and effectiveness. To this end, we propose a method that uses system called randomization to counter code injection attacks based on instruction set randomization idea. System calls must be used when an injected code would perform its actions. By creating randomized system calls of the target process, an attacker who does not know the key to the randomization algorithm will inject code that isn’t randomized like as the target process and is invalid for the corresponding de-randomized module. The injected code would fail to execute without calling system calls correctly. Moreover, with extended complier, our method creates source code randomization during its compiling and implements binary executable files randomization by feature matching. Our experiments on built prototype show that our method can effectively counter variety code injection attacks with low-overhead.

  18. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  19. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    Science.gov (United States)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  20. Development of environmental dose assessment system (EDAS) code of PC version

    CERN Document Server

    Taki, M; Kobayashi, H; Yamaguchi, T

    2003-01-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessme...

  1. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  2. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  3. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  4. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  5. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  6. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  7. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    Science.gov (United States)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  8. Design of Spreading-Codes-Assisted Active Imaging System

    Directory of Open Access Journals (Sweden)

    Alexey Volkov

    2015-07-01

    Full Text Available This work discusses an innovative approach to imaging which can improve the robustness of existing active-range measurement methods and potentially enhance their use in a variety of outdoor applications. By merging a proven modulation technique from the domain of spread-spectrum communications with the bleeding-edge CMOS sensor technology, the prototype of the modulated range sensor is designed and evaluated. A suitable set of application-specific spreading codes is proposed, evaluated and tested on the prototype. Experimental results show that the introduced modulation technique significantly reduces the impacts of environmental factors such as sunlight and external light sources, as well as mutual interference of identical devices. The proposed approach can be considered as a promising basis for a new generation of robust and cost-efficient range-sensing solutions for automotive applications, autonomous vehicles or robots.

  9. Design of Spreading-codes-assisted Active Imaging System

    Directory of Open Access Journals (Sweden)

    Alexey Volkov

    2015-07-01

    Full Text Available This work discusses an innovative approach to imaging which can improve the robustness of existing active-range measurement methods and potentially enhance their use in a variety of outdoor applications. By merging a proven modulation technique from the domain of spread-spectrum communications with the bleeding-edge CMOS sensor technology, the prototype of the modulated range sensor is designed and evaluated. A suitable set of application-specific spreading codes is proposed, evaluated and tested on the prototype. Experimental results show that the introduced modulation technique significantly reduces the impacts of environmental factors such as sunlight and external light sources, as well as mutual interference of identical devices. The proposed approach can be considered as a promising basis for a new generation of robust and cost-efficient range-sensing solutions for automotive applications, autonomous vehicles or robots.

  10. Channel estimation for space-time trellis coded-OFDM systems based on nonoverlapping pilot structure

    CSIR Research Space (South Africa)

    Sokoya, O

    2008-09-01

    Full Text Available The performance of space time trellis coded orthogonal frequency division multiplexing (STTC-OFDM) systems relies on accurate channel state information at the receiver for proper decoding. One method of obtaining channel state information...

  11. Use of generalized curvilinear coordinate systems in electromagnetic and hybrid codes

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.W. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-07-01

    The author develops a code to simulate the dynamics in the magnetosphere system. The calculation involves a single level, structured, curvilinear 2D mesh. The mesh density is varied to support regions which demand higher resolution.

  12. Sandia Engineering Analysis Code Access System v. 2.0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-30

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  13. Measuring sustained interaction in adults with deafblindness and multiple disabilities: Development of an observational coding system

    NARCIS (Netherlands)

    Janssen, M.J.; Brink-Groenendijk, N.C.R.; Riksen-Walraven, J.M.A.; Huisman, M.J.M.E.; Dijk, J.P.M. van; Ruijssenaars, A.J.J.M.

    2014-01-01

    Sustained interaction with other people is of crucial importance for persons with deafblindness and multiple disabilities. This article introduces a relatively time-efficient observational coding system to measure sustained interaction directly from video recordings using only two observation catego

  14. Validation Study of CODES Dragonfly Network Model with Theta Cray XC System

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, Misbah [Argonne National Lab. (ANL), Argonne, IL (United States); Ross, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-31

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  15. Multilevel Spatial Multiplexing -Space Time Trellis Coded Modulation System for Fast Fading MIMO Channel

    Directory of Open Access Journals (Sweden)

    K.Kavitha

    2014-03-01

    Full Text Available Multilevel Space Time Trellis Coded Modulation with antenna grouping, which has been proposed recently, has coding gain and diversity gain, which in turn provide high throughput with considerable low computational complexity. However its performance is limited by predefining the antenna groups per component codes. In this paper Multilevel Spatial Multiplexing-Space Time Trellis Coded Modulation (ML-SM-STTCM has been proposed, in which antenna group selection is made based on spatial modulation based on trellis coding proposed by Ertugrul Basar and team. This idea maximizes the spatial diversity. Since only selected antennas are used to transmit the signal, and also the antennas with less cross correlation are in the selected groups, we could able to achieve improved BER performance even in the fast fading channel. Since the antenna selection is based on the component code in the system, at the decoder without increase in the computational complexity, we could achieve better error performance. The performance of the proposed system is analysed with Viterbi decoding algorithm and sub optimal sequential decoding algorithm. In this system, the antenna groups are non-overlapping, hence, it needs Nt, the number transmitter antennas, more than what is required at time t. The computer simulation reveals that the proposed system gives better BER performance compared to Multilevel Space Time Trellis Coded Modulation (ML STTCM over fast fading channel with the same computational complexity both at the transmitter and receiver.

  16. Code development of the national hemovigilance system and expansion strategies for hospital blood banks

    Directory of Open Access Journals (Sweden)

    Kim Jeongeun

    2012-01-01

    Full Text Available Objectives : The aims of this study were to develop reportable event codes that are applicable to the national hemovigilance systems for hospital blood banks, and to present expansion strategies for the blood banks. Materials and Methods : The data were obtained from a literature review and expert consultation, followed by adding to and revising the established hemovigilance code system and guidelines to develop reportable event codes for hospital blood banks. The Medical Error Reporting System-Transfusion Medicine developed in the US and other codes of reportable events were added to the Korean version of the Biologic Products Deviation Report (BPDR developed by the Korean Red Cross Blood Safety Administration, then using these codes, mapping work was conducted. We deduced outcomes suitable for practice, referred to the results of the advisory councils, and conducted a survey with experts and blood banks practitioners. Results : We developed reportable event codes that were applicable to hospital blood banks and could cover blood safety - from blood product safety to blood transfusion safety - and also presented expansion strategies for hospital blood banks. Conclusion : It was necessary to add 10 major categories to the blood transfusion safety stage and 97 reportable event codes to the blood safety stage. Contextualized solutions were presented on 9 categories of expansion strategies of hemovigilance system for the hospital blood banks.

  17. Design and Cost Performance of Decoding Technique for Hybrid Subcarrier Spectral Amplitude Coding-Optical Code Division Multiple Access System

    National Research Council Canada - National Science Library

    R. K.Z. Sahbudin; M. K. Abdullah; M. Mokhtar; S. Hitam; S. B.A. Anas

    2011-01-01

    ...) deploying the Khazani-Syed code was proposed. It was proposed as a mean of increasing the maximum number of simultaneous active users by increasing the subcarrier and/or the SAC-OCDMA code word...

  18. Performance Evaluation of Hybrid ARQ with Code Combining in Packet-Oriented CDMA System

    Institute of Scientific and Technical Information of China (English)

    CHENQingchun; FANPingzhi

    2004-01-01

    In this paper, an extended SNR (signal to noise ratio) concept is proposed to explicate the contribution of code combining to the performance improvement of hybrid ARQ (Automatic repeat request) over the additive white Gaussian noise channel. By extending the Pursley's SNR analysis to hybrid ARQ with code combining in packet-oriented CDMA (Code division multiple access)system, the extended SNR formula is derived, which describes explicitly the SNR variation of the code symbol involved in code combining. It is revealed that the extended SNR formula includes Pursley's SNR formula as a specialcase. Moreover, it is shown that the effective SNR of the combined symbol is increased by a coefficient, which is proportional to the number of repeated replicas involved in the code combining. Based on the extended SNR formula and the resultant SNR variation, a quasi-analytical approximation method is proposed for the performance evaluation of hybrid ARQ with code combining. The residual error rates, average transmission number together with throughput performance are presented by means of numerical analysis and through simulations. It is validated that the extended SNR formula and the resultant quasi-analytical approximations offer a simplified routine to estimate the performance of hybrid ARQ with code combining, particularly for the applications whose reliability performance with respect to the FEC counterpart system could be numerically calculated or evaluated through simulations.

  19. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W

    2006-01-15

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  20. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    ) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet...... by showing that the system can be cast as a Markov jump linear system....

  1. Spreading Code Assignment Strategies for MIMO-CDMA Systems Operating in Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Dahmane AdelOmar

    2009-01-01

    Full Text Available Abstract Code Division Multiple Access (CDMA and multiple input multiple output- (MIMO- CDMA systems suffer from multiple access interference (MAI which limits the spectral efficiency of these systems. By making these systems more power efficient, we can increase the overall spectral efficiency. This can be achieved through the use of improved modulation and coding techniques. Conventional MIMO-CDMA systems use fixed spreading code assignments. By strategically selecting the spreading codes as a function of the data to be transmitted, we can achieve coding gain and introduce additional degrees of freedom in the decision variables at the output of the matched filters. In this paper, we examine the bit error rate performance of parity bit-selected spreading and permutation spreading under different wireless channel conditions. A suboptimal detection technique based on maximum likelihood detection is proposed for these systems operating in frequency selective channels. Simulation results demonstrate that these code assignment techniques provide an improvement in performance in terms of bit error rate (BER while providing increased spectral efficiency compared to the conventional system. Moreover, the proposed strategies are more robust to channel estimation errors as well as spatial correlation.

  2. Performance Comparison of Turbo Code in WIMAX System with Various Detection Techniques

    Directory of Open Access Journals (Sweden)

    Vikas Tursenia

    2013-07-01

    Full Text Available The different FEC techniques like convolution code, RS code and turbo code are used to improve the performance of communication system. In this paper, we study the performance of the MAP, Log-MAP, Max-Log-MAP and APP decoding algorithms for turbo codes, in terms of the a priori information, a posteriori information, extrinsic information and channel reliability. We also analyze how important an accurate estimate of channel reliability factor is to the good performances of the iterative turbo decoder. The simulations are made for parallel concatenation of two recursive systematic convolution codes with a block interleaver at the transmitter, AWGN channel and iterative decoding with different algorithms at the receiver side. The comparison of these detection techniques in term of BER performance is discussed in result section.

  3. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.

  4. Video Transmission over MIMO-OFDM System: MDC and Space-Time Coding-Based Approaches

    Directory of Open Access Journals (Sweden)

    Haifeng Zheng

    2007-03-01

    Full Text Available MIMO-OFDM is a promising technique for the broadband wireless communication system. In this paper, we propose a novel scheme that integrates multiple-description coding (MDC, error-resilient video coding, and unequal error protection strategy with hybrid space-time coding structure for robust video transmission over MIMO-OFDM system. The proposed MDC coder generates multiple bitstreams of equal importance which are very suitable for multiple-antennas system. Furthermore, according to the contribution to the reconstructed video quality, we apply unequal error protection strategy using BLAST and STBC space-time codes for each video bitstream. Experimental results have demonstrated that the proposed scheme can be an excellent alternative to achieve desired tradeoff between the reconstructed video quality and the transmission efficiency.

  5. Time trend of injection drug errors before and after implementation of bar-code verification system.

    Science.gov (United States)

    Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki

    2015-01-01

    Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, pcode medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.

  6. A review on synchronous CDMA systems: optimum overloaded codes, channel capacity, and power control

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Amirhossein

    2011-01-01

    Full Text Available Abstract This paper is a tutorial review on important issues related to code-division multiple-access (CDMA systems such as channel capacity, power control, and optimum codes; specifically, we consider optimum overloaded codes that achieve errorless transmission in the absence of noise for the binary and nonbinary cases. A survey of lower and upper bounds for the sum channel capacity of such systems is given in the presence and absence of channel noise. The asymptotic results for the channel capacity are also investigated. The channel capacity, errorless transmission codes, and power estimation for near-far effects are also explored. The emphasis of this tutorial review is on the overloaded CDMA systems.

  7. Low Complexity Receiver Structures for Space-Time Coded Multiple-Access Systems

    Directory of Open Access Journals (Sweden)

    Jayaweera Sudharman K

    2002-01-01

    Full Text Available Multiuser detection for space-time coded synchronous multiple-access systems in the presence of independent Rayleigh fading is considered. Under the assumption of quasi-static fading, it is shown that optimal (full diversity achieving space-time codes designed for single-user channels, can still provide full diversity in the multiuser channel. The joint optimal maximum likelihood multiuser detector, which can be implemented with a Viterbi-type algorithm, is derived for such space-time coded systems. Low complexity, partitioned detector structures that separate the multiuser detection and space-time decoding into two stages are also developed. Both linear and nonlinear multiuser detection schemes are considered for the first stage of these partitioned space-time multiuser receivers. Simulation results show that these latter methods achieve performance competitive with the single-user bound for space-time coded systems.

  8. Encoding Performance of Orthogonal Space-Time Coded Continuous Phase Modulation System

    Directory of Open Access Journals (Sweden)

    Wenli Shen

    2013-05-01

    Full Text Available The orthogonal space-time coded continuous phase modulation (OST-CPM system shows attractive performance over fading MIMO channels. In this paper, the Chernoff bound on pair-wise error probability (PWEP is studied for two transmit antennas over spatially correlated quasi-static Rayleigh-fading channel. The maximum likelihood sequence detection (MLSD algorithm is applied to the OST-CPM system. Approximate bound for high signal-to-noise ratio (SNR is derived to evaluate the encoding performance in correlated channel. The effects of correlation coefficient matrices on the coding performance are simulated. Both analytical and simulation results show that the coding performance of this system decreases as the fading coefficients between the antennas increases. And the penalty on the coding performance increases a lot in fully correlated channel.

  9. Development of New Generation of Multibody System Computer Codes

    Science.gov (United States)

    2012-11-02

    Book ,” 2nd edn. Springer , New York. 12. Roberson, R.E., and Schwertassek, R., 1988, Dynamics of Multibody Systems, Springer Verlag, Berlin, Germany...vehicle, machine, aerospace, biomechanics , and biological system components such as tires, belt drives, rubber chains, soil, cables, ligaments, soft

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  11. A 10-digit geo-coding system for classification of geomorphosites in India

    Science.gov (United States)

    Kale, Vishwas

    2015-04-01

    India is a country with rich geo-wealth and geoheritage. There are numerous fascinating and exquisite landforms and landscapes in the Indian subcontinent that have immense cultural, socio-economic and scientific value and are significant from the point of view of geotourism and geoeducation. Presently, India has 32 World Heritage Properties, including seven natural properties. The Geological Survey of India (GSI) has declared 26 geosites as National Geological Monuments. Although a few attempts have been made in the last ten years to identify and catalog noteworthy geomorphosites in India, till date no attempt has been made to undertake multi-criteria or multi-attribute assessment and classification of the potential geomorphosites. In view of the limitations and difficulties in the ranking and/or scoring system adopted in many earlier studies on geoheritage sites, a simple ten-digit geo-coding system for some potential geomorphosites in India is suggested. The 10-digit coding system is a numerical scheme for the arrangement of geomorphosites on the basis of some key scientific value criteria, additional value criteria and management criteria as well as the IUCN geo-theme codes and the code numbers assigned to major geomorphic provinces in a region/country. This coding system could be used to establish a classification and the priority of geomorphosites and could be applied to any area or region in the world. The user-friendly geo-coding system has the potential to classify and sort geomorphosites of different characters, origin and value.

  12. Design of network-coding based multi-edge type LDPC codes for multi-source relaying systems

    CERN Document Server

    Li, Jun; Malaney, Robert; Yuan, Jinhong

    2009-01-01

    In this paper we investigate a multi-source LDPC scheme for a Gaussian relay system, where M sources communicate with the destination under the help of a single relay (M-1-1 system). Since various distributed LDPC schemes in the cooperative single-source system, e.g. bilayer LDPC and bilayer multi-edge type LDPC (BMET-LDPC), have been designed to approach the Shannon limit, these schemes can be applied to the $M-1-1$ system by the relay serving each source in a round-robin fashion. However, such a direct application is not optimal due to the lack of potential joint processing gain. In this paper, we propose a network coded multi-edge type LDPC (NCMET-LDPC) scheme for the multi-source scenario. Through an EXIT analysis, we conclude that the NCMET-LDPC scheme achieves higher extrinsic mutual information, relative to a separate application of BMET-LDPC to each source. Our new NCMET-LDPC scheme thus achieves a higher threshold relative to existing schemes.

  13. Electrical utility generating system reliability analysis code, SYSREL. Social cost studies program

    Energy Technology Data Exchange (ETDEWEB)

    Hub, K.; Conley, L.; Buehring, W.; Rowland, B.; Stephenson, M.

    1975-09-01

    The system reliability code, SYSREL, is a system planning tool that can be used to assess the reliability and economic performance of alternative expansion patterns of electric utility generation systems. Given input information such as capacity, forced-outage rate, number of weeks of annual scheduled maintenance, and economic data for individual units along with the expected load characteristics, the code produces estimates of the mean time between system failures, required reserve capacity to meet a specified system-failure-frequency criterion, expected energy generation from each unit, and system energy cost. The categories of calculations performed by the code are maintenance scheduling, reliability, capacity requirement, energy production allocation, and energy cost. The code is designed to examine alternative generating units and system expansion patterns based on the constraints and general economic conditions imposed by the investigator. The computer running time to execute a study is short and many system alternatives can be examined at a relatively low cost. The report contains a technical description of the code, list of input data requirements, program listing, sample execution, and parameter studies. (auth)

  14. Henon CSK Secure Communication System Using Chaotic Turbo Codes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,the authors design a novel chaotic secure communication system, which has high security and good errorcorrecting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. Secondly,chaotic turbo encod er/decoder (hard decision) is introduced. Thirdly, this chaotic secure communication system, which comprises the Henon CSK modulation block and chaotic turbo en coder in a serially concatenated form, is shown. Furthermore, a novel two step encryption scheme is proposed, which is based on the chaotic turbo e ncoded Henon CSK secure communication system.

  15. Development of a SMART core protection system code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Lee, Ki Book; In, Wang Ki; Zee, Sung Quun

    2002-01-01

    SMART is a 330MWt integral type pressurized water reactor that can be used for cogeneration, district heating and seawater desalination as well as electricity generation. Online digital SMART core protection system(SCOPS) is one of the advanced technologies which were adopted to improve the SMART safety. SCOPS calculate the minimum DNBR and maximum linear power density based on the several online measured system parameters, such as excore detector signal, CEA positions, MCP pump speed, coolant pressure and temperatures. SCOPS assures that the SAFDL(Specified Acceptance Fuel Design Limit) on DNBR and LPD is not exceeded during the anticipated operational occurrences. This technical report provides a description of the SCOPS protection algorithm to be implemented as the computer program. In addition to this, the requirements on the protection program interfaces, system interfaces, protection program timing, and system initialization are included.

  16. Model study of the thermal storage system by FEHM code

    Energy Technology Data Exchange (ETDEWEB)

    Tenma, N.; Yasukawa, Kasumi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Zyvoloski, G. [Los Alamos National Laboratory, Los Alamos, NM (United States). Earth and Environmental Science Division

    2003-12-01

    The use of low-temperature geothermal resources is important from the viewpoint of global warming. In order to evaluate various underground projects that use low-temperature geothermal resources, we have estimated the parameters of a typical underground system using the two-well model. By changing the parameters of the system, six different heat extraction scenarios have been studied. One of these six scenarios is recommended because of its small energy loss. (author)

  17. Systemizers Are Better Code-Breakers: Self-Reported Systemizing Predicts Code-Breaking Performance in Expert Hackers and Naïve Participants.

    Science.gov (United States)

    Harvey, India; Bolgan, Samuela; Mosca, Daniel; McLean, Colin; Rusconi, Elena

    2016-01-01

    Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here, we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders-attention to detail and systemizing-may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e., crypto-analysis or code-breaking). A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001, 2003). They were also tested with behavioral tasks involving code-breaking and a control task involving security X-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail) and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing) was related with performance in the X-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015). We discuss the theoretical and translational implications of our findings.

  18. A Spanish version for the new ERA-EDTA coding system for primary renal disease.

    Science.gov (United States)

    Zurriaga, Óscar; López-Briones, Carmen; Martín Escobar, Eduardo; Saracho-Rotaeche, Ramón; Moina Eguren, Íñigo; Pallardó Mateu, Luis; Abad Díez, José María; Sánchez Miret, José Ignacio

    2015-01-01

    The European Renal Association and the European Dialysis and Transplant Association (ERA-EDTA) have issued an English-language new coding system for primary kidney disease (PKD) aimed at solving the problems that were identified in the list of "Primary renal diagnoses" that has been in use for over 40 years. In the context of Registro Español de Enfermos Renales (Spanish Registry of Renal Patients, [REER]), the need for a translation and adaptation of terms, definitions and notes for the new ERA-EDTA codes was perceived in order to help those who have Spanish as their working language when using such codes. Bilingual nephrologists contributed a professional translation and were involved in a terminological adaptation process, which included a number of phases to contrast translation outputs. Codes, paragraphs, definitions and diagnostic criteria were reviewed and agreements and disagreements aroused for each term were labelled. Finally, the version that was accepted by a majority of reviewers was agreed. A wide agreement was reached in the first review phase, with only 5 points of discrepancy remaining, which were agreed on in the final phase. Translation and adaptation into Spanish represent an improvement that will help to introduce and use the new coding system for PKD, as it can help reducing the time devoted to coding and also the period of adaptation of health workers to the new codes. Copyright © 2015 The Authors. Published by Elsevier España, S.L.U. All rights reserved.

  19. Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel

    Directory of Open Access Journals (Sweden)

    R. Yao

    2016-12-01

    Full Text Available Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD. Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM and 3D-Turbo code to improve the Bit Error Rate (BER performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.

  20. Novel secure and bandwidth efficient optical code division multiplexed system for future access networks

    Science.gov (United States)

    Singh, Simranjit

    2016-12-01

    In this paper, a spectrally coded optical code division multiple access (OCDMA) system using a hybrid modulation scheme has been investigated. The idea is to propose an effective approach for simultaneous improvement of the system capacity and security. Data formats, NRZ (non-return to zero), DQPSK (differential quadrature phase shift keying), and PoISk (polarisation shift keying) are used to get the orthogonal modulated signal. It is observed that the proposed hybrid modulation provides efficient utilisation of bandwidth, increases the data capacity and enhances the data confidentiality over existing OCDMA systems. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  1. Performance of Turbo Interference Cancellation Receivers in Space-Time Block Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Emmanuel Oluremi Bejide

    2008-07-01

    Full Text Available We investigate the performance of turbo interference cancellation receivers in the space time block coded (STBC direct-sequence code division multiple access (DS-CDMA system. Depending on the concatenation scheme used, we divide these receivers into the partitioned approach (PA and the iterative approach (IA receivers. The performance of both the PA and IA receivers is evaluated in Rayleigh fading channels for the uplink scenario. Numerical results show that the MMSE front-end turbo space-time iterative approach receiver (IA effectively combats the mixture of MAI and intersymbol interference (ISI. To further investigate the possible achievable data rates in the turbo interference cancellation receivers, we introduce the puncturing of the turbo code through the use of rate compatible punctured turbo codes (RCPTCs. Simulation results suggest that combining interference cancellation, turbo decoding, STBC, and RCPTC can significantly improve the achievable data rates for a synchronous DS-CDMA system for the uplink in Rayleigh flat fading channels.

  2. A preliminary uncertainty analysis of phenomenological inputs employed in MAAP code using the SAUNA system

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. H.; Park, S. Y.; Kim, K. R.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    Uncertainty analysis is an essential element of safety analysis of nuclear power plants, and especially on the increase as an essential methodology of safety assessment by computer codes. Recently, these efforts have been stepped up to apply the uncertainty methodology in severe accident analysis and PSA Level 2. From this point of view, a statistical sampling-based MAAP-specific platform for a severe accident uncertainty analysis, SAUNA, is being developed in KAERI. Its main purpose is to execute many simulations that are employed for uncertainty analysis. For its efficient implementation, the SAUNA system is composed of three related modules: Firstly, a module for preparing a statistical sampling matrix, secondly, a module for the dynamic linking between code and samples for code simulation, and thirdly, a postprocessing module for further analysis of the code simulation results. The main objective of this paper is to introduce the main functions of the SAUNA system and its example of implementation.

  3. A New Approach in Cryptographic Systems Using Fractal Image Coding

    Directory of Open Access Journals (Sweden)

    Nadia M.G. Al-Saidi

    2009-01-01

    Full Text Available Problem statement: With the rapid development in the communications and information transmissions there is a growing demand for new approaches that increase the security of cryptographic systems. Approach: Therefore some emerging theories, such as fractals, can be adopted to provide a contribution toward this goal. In this study we proposed a new cryptographic system utilizing fractal theories; this approach exploited the main feature of fractals generated by IFS techniques. Results: Double enciphering and double deciphering methods performed to enhance the security of the system. The encrypted date represented the attractor generated by the IFS transformation, collage theorem was used to find the IFSM for decrypting data. Conclusion/Recommendations: The proposed method gave the possibility to hide maximum amount of data in an image that represent the attractor of the IFS without degrading its quality and to make the hidden data robust enough to withstand known cryptographic attacks and image processing techniques which did not change the appearance of image.

  4. Modelling of Be Disks in Binary Systems Using the Hydrodynamic Code PLUTO

    Science.gov (United States)

    Cyr, I. H.; Panoglou, D.; Jones, C. E.; Carciofi, A. C.

    2016-11-01

    The study of the gas structure and dynamics of Be star disks is critical to our understanding of the Be star phenomenon. The central star is the major force driving the evolution of these disks, however other external forces may also affect the formation of the disk, for example, the gravitational torque produced in a close binary system. We are interested in understanding the gravitational effects of a low-mass binary companion on the formation and growth of a disk in a close binary system. To study these effects, we used the grid-based hydrodynamic code PLUTO. Because this code has not been used to study such systems before, we compared our simulations against codes used in previous work on binary systems. We were able to simulate the formation of a disk in both an isolated and binary system. Our current results suggest that PLUTO is in fact a well suited tool to study the dynamics of Be disks.

  5. Code orange: Towards transformational leadership of emergency management systems.

    Science.gov (United States)

    Caro, Denis H J

    2015-09-01

    The 21(st) century calls upon health leaders to recognize and respond to emerging threats and systemic emergency management challenges through transformative processes inherent in the LEADS in a caring environment framework. Using a grounded theory approach, this qualitative study explores key informant perspectives of leaders in emergency management across Canada on pressing needs for relevant systemic transformation. The emerging model points to eight specific attributes of transformational leadership central to emergency management and suggests that contextualization of health leadership is of particular import.

  6. Auto Code Generation for Simulink-Based Attitude Determination Control System

    Science.gov (United States)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  7. Error Control Coding in Optical Fiber Communication Systems: An Overview

    Directory of Open Access Journals (Sweden)

    Majid Hatamian

    Full Text Available In sending data from one point to another, such as transferring data between various components of a computer system, due to the existence of electromagnetic waves and other issues such as noise and attenuation, information may be changed in the middle of ...

  8. The development of efficient coding for an electronic mail system

    Science.gov (United States)

    Rice, R. F.

    1983-01-01

    Techniques for efficiently representing scanned electronic documents were investigated. Major results include the definition and preliminary performance results of a Universal System for Efficient Electronic Mail (USEEM), offering a potential order of magnitude improvement over standard facsimile techniques for representing textual material.

  9. Low-Cost Encoding Device for Optical Code Division Multiple Access System

    OpenAIRE

    Mohammad S. Ab-Rahman; Boonchuan Ng; Norshilawati M. Ibrahim; Sahbudin Shaari

    2009-01-01

    Problem statement: Instead of using Fiber Bragg Grating (FBG) to develop the coded spectrums, which consist of expensive elements, the grating also are highly sensitive to environmental changes and this will contribute to the increment of capital and operational expenditures (CAPEX and OPEX). Approach: This study presented the development of low-cost 16-ports encoding device for Optical Code Division Multiple Access (OCDMA) systems based on Arrayed Waveguide Grating (AWG) devices and optical ...

  10. STUDY OF CODING GENERATOR BASED ON IN-SYSTEM PROGRAMMING TECHNIQUE AND DEVICES

    Institute of Scientific and Technical Information of China (English)

    Liu Duren; Jin Yajing; Ren Zhichun

    2002-01-01

    This paper presents a design of coding waveform generator controlled by microcomputer or single-chip microcomputer and realizes arbitrary coding waveform combination based on In-system programming(ISP) technique and High Density Programmable Logic Deivce (HDPLD),and using latch register, control counter and easily expanded PS (Parallel in & Serial out) shift register array. This scheme can overcome some shortcomings in past schemes, so that hardware design can be realized by means of software.

  11. Systemizers Are Better Code-Breakers: Self-Reported Systemizing Predicts Code-Breaking Performance in Expert Hackers and Naïve Participants

    Science.gov (United States)

    Harvey, India; Bolgan, Samuela; Mosca, Daniel; McLean, Colin; Rusconi, Elena

    2016-01-01

    Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here, we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders—attention to detail and systemizing—may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e., crypto-analysis or code-breaking). A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001, 2003). They were also tested with behavioral tasks involving code-breaking and a control task involving security X-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail) and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing) was related with performance in the X-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015). We discuss the theoretical and translational implications of our findings. PMID:27242491

  12. Definition of the basic DEMO tokamak geometry based on systems code studies

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Botond, E-mail: botond.meszaros@efda.org [EFDA Power Plant Physics and Technology, Garching (Germany); Bachmann, Christian [EFDA Power Plant Physics and Technology, Garching (Germany); Kemp, Richard [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Federici, Gianfranco [EFDA Power Plant Physics and Technology, Garching (Germany)

    2015-10-15

    Highlights: • The definition of the DEMO 2D geometry has been introduced. • A methodology to derive the DEMO radial and vertical builds from the PROCESS systems code results has been defined. • Other 2D and 3D geometrical assumptions required to create a sensible 3D configuration model of DEMO have been defined. - Abstract: This paper describes the methodology that has been developed and applied to derive the principal geometry of the main DEMO tokamak systems, in particular the radial and vertical cross section based on the systems code output parameters, while exact parameters are described elsewhere [1]. This procedure reviews the analysis of the radial and vertical build provided by the system code to verify critical integration interfaces, e.g. missing or too large gaps and/or insufficient thickness of components, and updates these dimensions based on results of more detailed analyses (e.g. neutronics, plasma scenario modelling, etc.) that were carried out outside of the system code in the past years. As well as providing a 3D configuration model of the DEMO tokamak for integrated engineering analysis, the results can also be used to refine the systems code model. This method, subject to continuous refinement, controls the derivation of the main machine parameters and ensures their coherence vis-à-vis a number of agreed controlled physics and engineering assumptions.

  13. Object-adaptive depth compensated inter prediction for depth video coding in 3D video system

    Science.gov (United States)

    Kang, Min-Koo; Lee, Jaejoon; Lim, Ilsoon; Ho, Yo-Sung

    2011-01-01

    Nowadays, the 3D video system using the MVD (multi-view video plus depth) data format is being actively studied. The system has many advantages with respect to virtual view synthesis such as an auto-stereoscopic functionality, but compression of huge input data remains a problem. Therefore, efficient 3D data compression is extremely important in the system, and problems of low temporal consistency and viewpoint correlation should be resolved for efficient depth video coding. In this paper, we propose an object-adaptive depth compensated inter prediction method to resolve the problems where object-adaptive mean-depth difference between a current block, to be coded, and a reference block are compensated during inter prediction. In addition, unique properties of depth video are exploited to reduce side information required for signaling decoder to conduct the same process. To evaluate the coding performance, we have implemented the proposed method into MVC (multiview video coding) reference software, JMVC 8.2. Experimental results have demonstrated that our proposed method is especially efficient for depth videos estimated by DERS (depth estimation reference software) discussed in the MPEG 3DV coding group. The coding gain was up to 11.69% bit-saving, and it was even increased when we evaluated it on synthesized views of virtual viewpoints.

  14. V.S.O.P. (99/05) computer code system

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)

  15. V.S.O.P. (99/05) computer code system

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)

  16. Different Types of Coding Input Data In Optical Transmission Systems

    Directory of Open Access Journals (Sweden)

    Ján Ružbarský

    2016-12-01

    Full Text Available Optical fiber transmission systems are currently the most widely used transmission media. Their development in time had improved their characteristics to such an extent that they gradually replaced very popular copper cable connections. Inspite of that optical fibers still have not reached perfection and constant improvement is needed. Apart from notable advantages such as large data transfer, few numbers of repeaters required on the transmission path or higher safety of transmitted data, optical fiber has also drawbacks that include not sufficient purity optical fibers, fiber fragility and also higher proclivity to nonlinear effects. Weaknesses of optical systems can be depressed by e.g. a selection of an appropriate laser, a proper combination of materials used for fiber production during the manufacture process, or even by using an encryption of transmitted data. This article is focused on the comparison of optical signal properties in various source encoding types of input data.

  17. Model based code generation for distributed embedded systems

    OpenAIRE

    Raghav, Gopal; Gopalswamy, Swaminathan; Radhakrishnan, Karthikeyan; Hugues, Jérôme; Delange, Julien

    2010-01-01

    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these diff...

  18. Coding for MIMO-OFDM in future wireless systems

    CERN Document Server

    Ahmed, Bannour

    2015-01-01

    This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.

  19. VLSI Implementation of Encryption and Decryption System Using Hamming Code Algorithm

    Directory of Open Access Journals (Sweden)

    Fazal Noorbasha

    2014-04-01

    Full Text Available In this paper, we propose an optimized VLSI implementation of encryption and decryption system using hamming code algorithm. In the present field of communication has got many applications, and in every field the data is encoded at the transmitter and transfer on a communication channel and receive at the receiver after data is decoded. During the broadcast of data it might get degraded because of some noise on the channel. So it is crucial for the receiver to have some function which can recognize and correct the error in the received data. Hamming code is one of such forward error correcting code which has got many applications. In this paper the algorithm for hamming code is discussed and then implementation of it in verilog is done to get the results. Hamming code is an upgrading over parity check method. Here a code is implemented in verilog in which 4-bit of information data is transmitted with 3-redundancy bits. In order to do that the proposed method uses a Field Programmable Gate Array (FPGA. It is known that FPGA provides quick implementation and fast hardware verification. It gives facilities of reconfiguring the design construct unlimited number of times. The HDL code is written in verilog, Gate Level Circuit and Layout is implemented in CMOS technology.

  20. Code of ethics for the national pharmaceutical system: Codifying and compilation

    Directory of Open Access Journals (Sweden)

    Pooneh Salari

    2013-01-01

    Full Text Available Pharmacists as one of health-care providers face ethical issues in terms of pharmaceutical care, relationship with patients and cooperation with the health-care team. Other than pharmacy, there are pharmaceutical companies in various fields of manufacturing, importing or distributing that have their own ethical issues. Therefore, pharmacy practice is vulnerable to ethical challenges and needs special code of conducts. On feeling the need, based on a shared project between experts of the ethics from relevant research centers, all the needs were fully recognized and then specified code of conduct for each was written. The code of conduct was subject to comments of all experts involved in the pharmaceutical sector and thus criticized in several meetings. The prepared code of conduct is comprised of professional code of ethics for pharmacists, ethics guideline for pharmaceutical manufacturers, ethics guideline for pharmaceutical importers, ethics guideline for pharmaceutical distributors, and ethics guideline for policy makers. The document was compiled based on the principles of bioethics and professionalism. The compiling the code of ethics for the national pharmaceutical system is the first step in implementing ethics in pharmacy practice and further attempts into teaching the professionalism and the ethical code as the necessary and complementary effort are highly recommended.

  1. V.S.O.P. (99/05) Computer Code System : computer code system for reactor physics and fuel cycle simulation

    OpenAIRE

    Scherer, W.; Brockmann, H.; Haas, K. A.; Rütten, H. J.

    2005-01-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The...

  2. Capacity of Synchronous CDMA Systems with Near-Far Effects and Design of Suboptimum Signature Codes

    CERN Document Server

    Kabir, P; Pad, P; Marvasti, F

    2011-01-01

    This paper deals with near-far effects on various aspects of Code Division Multiple Access (CDMA) systems. Initially, we propose a new class of codes for over-loaded synchronous wireless CDMA systems that are robust against near-far effects; and then we provide a low complexity decoder for a subclass of such codes. Moreover, bounds for the sum capacity of CDMA systems in the presence of near-far effects are derived. An important contributions of this paper is the development of a method that translates a near-far sum capacity problem with imperfect channel state estimation to the evaluation of the capacity for a CDMA system with perfect channel state estimation. To show the power and utility of the results, a number of sum capacity bounds for special cases are numerically evaluated.

  3. Study on Space-Time Coding Anti-Interference Techniques to Improve System Capacity

    Institute of Scientific and Technical Information of China (English)

    LIUQin; YANGJiawei; LIJiandon

    2005-01-01

    The future communication requires more advanced mobile service and has more users, so the spectrum is becoming one of factors restraining the development. To solve this problem, many new coding, modulating and transmitting techniques are put forward. Spacetime coding technique is just one important method, which has been used in the third generation communication systems. The paper focuses on the anti-interference technique to restrain the interference of co-channel users while simply introducing the concept of space-time block coding. Antiinterference technique uses the relationship among signals to remove the interference, which can enhance the capacity of communication system by introducing cochannel users.Moreover, the paper submits a strategy to eliminate theeffect of co-channel interference by decoding signals by stages while using different performance of various modulation techniques. The system performance can be more enhanced by using this strategy, which is very important for enlarging the capacity of system.

  4. Coding and signal processing for magnetic recording systems

    CERN Document Server

    Vasic, Bane

    2004-01-01

    RECORDING SYSTEMSA BriefHistory of Magnetic Storage, Dean PalmerPhysics of Longitudinal and Perpendicular Recording, Hong Zhou, Tom Roscamp, Roy Gustafson, Eric Boernern, and Roy ChantrellThe Physics of Optical Recording, William A. Challener and Terry W. McDanielHead Design Techniques for Recording Devices, Robert E. RottmayerCOMMUNICATION AND INFORMATION THEORY OF MAGNETIC RECORDING CHANNELSModeling the Recording Channel, Jaekyun MoonSignal and Noise Generation for Magnetic Recording Channel Simulations, Xueshi Yang and Erozan M. KurtasStatistical Analysis of Digital Signals and Systems, Dra

  5. 110 °C range athermalization of wavefront coding infrared imaging systems

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  6. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems.

    Science.gov (United States)

    Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin

    2014-03-10

    We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.

  7. Windtalking Computers: Frequency Normalization, Binary Coding Systems and Encryption

    CERN Document Server

    Zirkind, Givon

    2009-01-01

    The goal of this paper is to discuss the application of known techniques, knowledge and technology in a novel way, to encrypt computer and non-computer data. To-date most computers use base 2 and most encryption systems use ciphering and/or an encryption algorithm, to convert data into a secret message. The method of having the computer "speak another secret language" as used in human military secret communications has never been imitated. The author presents the theory and several possible implementations of a method for computers for secret communications analogous to human beings using a secret language or; speaking multiple languages. The kind of encryption scheme proposed significantly increases the complexity of and the effort needed for, decryption. As every methodology has its drawbacks, so too, the data of the proposed system has its drawbacks. It is not as compressed as base 2 would be. However, this is manageable and acceptable, if the goal is very strong encryption: At least two methods and their ...

  8. A contextual coding system for transplantation and end stage diseases.

    Science.gov (United States)

    Jacquelinet, Christian; Burgun, Anita; Djabbour, Sami; Delamarre, Denis; Clerc, Patrick; Boutin, Bernard; Le Beux, Pierre

    2003-01-01

    The Establissement français des Greffes (EfG) is a state agency dealing with Public Health issues related to organ, tissue and cell transplantation in France. EfG maintains a national information system (EfG-IS) for the evaluation of organ transplantation activities. The EfG-IS is moving toward a new n-tier architecture comprising a terminological server. Because this terminological server is shared by various kind of transplant teams and dialysis centers to record patients data at different time point, contextualisation of terms appeared as a functional requirement. We report in this paper various contexts for medical terms and how they have been taken into account.

  9. Symbolic coding for noninvertible systems: uniform approximation and numerical computation

    Science.gov (United States)

    Beyn, Wolf-Jürgen; Hüls, Thorsten; Schenke, Andre

    2016-11-01

    It is well known that the homoclinic theorem, which conjugates a map near a transversal homoclinic orbit to a Bernoulli subshift, extends from invertible to specific noninvertible dynamical systems. In this paper, we provide a unifying approach that combines such a result with a fully discrete analog of the conjugacy for finite but sufficiently long orbit segments. The underlying idea is to solve appropriate discrete boundary value problems in both cases, and to use the theory of exponential dichotomies to control the errors. This leads to a numerical approach that allows us to compute the conjugacy to any prescribed accuracy. The method is demonstrated for several examples where invertibility of the map fails in different ways.

  10. In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System

    Science.gov (United States)

    Zhou, Wei; Chang, Jin

    2016-01-01

    Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103

  11. Strategies for developing subchannel capability in an advanced system thermalhydraulic code: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Rao, Y.F., E-mail: zhong.cheng@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-06-15

    In the framework of developing next generation safety analysis tools, Canadian Nuclear Laboratories (CNL) has planned to incorporate subchannel analysis capability into its advanced system thermalhydraulic code CATHENA 4. This paper provides a literature review and an assessment of current subchannel codes. It also evaluates three code-development methods: (i) static coupling of CATHENA 4 with the subchannel code ASSERT-PV, (ii) dynamic coupling of the two codes, and (iii) fully implicit implementation for a new, standalone CATHENA 4 version with subchannel capability. Results of the review and assessment suggest that the current ASSERT-PV modules can be used as the base for the fully implicit implementation of subchannel capability in CATHENA 4, and that this option may be the most cost-effective in the long run, resulting in savings in user application and maintenance costs. In addition, improved versatility of the tool could be accomplished by the addition of new features that could be added as part of its development. The new features would improve the capabilities of the existing subchannel code in handling low, reverse, and stagnant flows often encountered in system thermalhydraulic analysis. Therefore, the method of fully implicit implementation is preliminarily recommended for further exploration. A feasibility study will be performed in an attempt to extend the present work into a preliminary development plan. (author)

  12. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    Science.gov (United States)

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  13. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    Directory of Open Access Journals (Sweden)

    Shengyong Li

    2009-11-01

    Full Text Available In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array. The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user’s password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  14. Shannon's secrecy system with informed receivers and its application to systematic coding for wiretapped channels

    CERN Document Server

    Merhav, Neri

    2007-01-01

    Shannon's secrecy system is studied in a setting, where both the legitimate decoder and the wiretapper have access to side information sequences correlated to the source, but the wiretapper receives both the coded information and the side information via channels that are more noisy than the respective channels of the legitmate decoder, which in turn, also shares a secret key with the encoder. A single--letter characterization is provided for the achievable region in the space of five figures of merit: the equivocation at the wiretapper, the key rate, the distortion of the source reconstruction at the legitimate receiver, the bandwidth expansion factor of the coded channels, and the average transmission cost (generalized power). Beyond the fact that this is an extension of earlier studies, it also provides a framework for studying fundamental performance limits of systematic codes in the presence of a wiretap channel. The best achievable performance of systematic codes is then compared to that of a general co...

  15. The Dutch corporate governance code and its monitoring: a balanced system?

    NARCIS (Netherlands)

    Hof, B.; Kerste, M.; Rosenboom, N.; Rougoor, W.; de Jong, A.

    2013-01-01

    The compliance of exchange-listed companies with the Dutch corporate governance code is generally high. This research takes three hypothetical changes to the current system as a starting point to investigate the question: is the Dutch system of regulating and monitoring corporate governance balanced

  16. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    Science.gov (United States)

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  17. Solid Warehouse Material Management System Based on ERP and Bar Code Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; WANG Jie; YUAN Bing; WU Chao; HU Qiao-dan

    2004-01-01

    This paper presents a manufacturing material management system based on ERP, which is combined with industrial bar code information collection and material management, and carries out extensive research on the system structure and function model, as well as a detailed application scheme.

  18. Radiation and confinement in 0D fusion systems codes

    Science.gov (United States)

    Lux, H.; Kemp, R.; Fable, E.; Wenninger, R.

    2016-07-01

    In systems modelling for fusion power plants, it is essential to robustly predict the performance of a given machine design (including its respective operating scenario). One measure of machine performance is the energy confinement time {τ\\text{E}} that is typically predicted from experimentally derived confinement scaling laws (e.g. IPB98(y,2)). However, the conventionally used scaling laws have been derived for ITER which—unlike a fusion power plant—will not have significant radiation inside the separatrix. In the absence of a new high core radiation relevant confinement scaling, we propose an ad hoc correction to the loss power {{P}\\text{L}} used in the ITER confinement scaling and the calculation of the stored energy {{W}\\text{th}} by the radiation losses from the ‘core’ of the plasma {{P}\\text{rad,\\text{core}}} . Using detailed ASTRA / TGLF simulations, we find that an appropriate definition of {{P}\\text{rad,\\text{core}}} is given by 60% of all radiative losses inside a normalised minor radius {ρ\\text{core}}=0.75 . We consider this an improvement for current design predictions, but it is far from an ideal solution. We therefore encourage more detailed experimental and theoretical work on this issue.

  19. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  20. Feature-based coding system: a new way of characterizing hypnosis styles.

    Science.gov (United States)

    Varga, Katalin; Kekecs, Zoltán

    2015-01-01

    In this pilot study, the authors introduce a new system to assess hypnosis style. The Feature-Based Coding System (FBCS) comprises 24 standard individual hypnosis sessions, which were videotaped and coded according to both a previous and the new coding system. In addition, both subjects and hypnotists filled the Archaic Involvement Measure (AIM), the Phenomenology of Consciousness Inventory (PCI), and the Dyadic Interactional Harmony Questionnaire (DIH). The interrater agreement of FBCS was good and the construct Maternal-Paternal Axis had a good internal consistency (α = .95). Construct validity was also supported by the findings. Based on these results, a larger scale study is warranted to further establish the reliability and usefulness of this tool.

  1. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    Directory of Open Access Journals (Sweden)

    Zummo SalamA

    2008-01-01

    Full Text Available Abstract We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded FHSS over Rician fading channel. The effect of pilot-aided channel estimation is studied for Rician fading channels using the Gaussian approximation. From this, the optimal hopping rate in coded FHSS is approximated. Results show that the performance loss due to interference increases as the hopping rate decreases.

  2. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2009-02-01

    Full Text Available We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded FHSS over Rician fading channel. The effect of pilot-aided channel estimation is studied for Rician fading channels using the Gaussian approximation. From this, the optimal hopping rate in coded FHSS is approximated. Results show that the performance loss due to interference increases as the hopping rate decreases.

  3. Ultra Low Complexity Soft Output Detector for Non-Binary LDPC Coded Large MIMO Systems

    CERN Document Server

    Suthisopapan, Puripong; Kasai, Kenta; Imtawil, Virasit

    2012-01-01

    The theoretic results of MIMO capacity tell us that the higher the number of antennas are employed, the higher the transmission rate is. This makes MIMO systems with hundreds of antennas very attractive but one of the major problems that obstructs such large dimensional MIMO systems from the practical realization is a high complexity of the MIMO detector. We present in this paper the new soft output MIMO detector based on matched filtering that can be applied to the large MIMO systems which are coded by the powerful non-binary LDPC codes. The per-bit complexity of the proposed detector is just 0.28% to that of low complexity soft output MMSE detector and scales only linearly with a number of antennas. Furthermore, the coded performances with small information length 800 bits are within 4.2 dB from the associated MIMO capacity.

  4. Homomorphic Self-repairing Codes for Agile Maintenance of Distributed Storage Systems

    CERN Document Server

    Oggier, Frederique

    2011-01-01

    Distributed data storage systems are essential to deal with the need to store massive volumes of data. In order to make such a system fault-tolerant, some form of redundancy becomes crucial, incurring various overheads - most prominently in terms of storage space and maintenance bandwidth requirements. Erasure codes, originally designed for communication over lossy channels, provide a storage efficient alternative to replication based redundancy, however entailing high communication overhead for maintenance, when some of the encoded fragments need to be replenished in news ones after failure of some storage devices. We propose as an alternative a new family of erasure codes called self-repairing codes (SRC) taking into account the peculiarities of distributed storage systems, specifically the maintenance process. SRC has the following salient features: (a) encoded fragments can be repaired directly from other subsets of encoded fragments by downloading less data than the size of the complete object, ensuring ...

  5. Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Mousseau

    2010-05-01

    This document presents high-level architectural and system requirements for a next-generation system analysis code (NGSAC) to support reactor safety decision-making by plant operators and others, especially in the context of light water reactor plant life extension. The capabilities of NGSAC will be different from those of current-generation codes, not only because computers have evolved significantly in the generations since the current paradigm was first implemented, but because the decision-making processes that need the support of next-generation codes are very different from the decision-making processes that drove the licensing and design of the current fleet of commercial nuclear power reactors. The implications of these newer decision-making processes for NGSAC requirements are discussed, and resulting top-level goals for the NGSAC are formulated. From these goals, the general architectural and system requirements for the NGSAC are derived.

  6. DIST: a computer code system for calculation of distribution ratios of solutes in the purex system

    Energy Technology Data Exchange (ETDEWEB)

    Tachimori, Shoichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-05-01

    Purex is a solvent extraction process for reprocessing the spent nuclear fuel using tri n-butylphosphate (TBP). A computer code system DIST has been developed to calculate distribution ratios for the major solutes in the Purex process. The DIST system is composed of database storing experimental distribution data of U(IV), U(VI), Pu(III), Pu(IV), Pu(VI), Np(IV), Np(VI), HNO{sub 3} and HNO{sub 2}: DISTEX and of Zr(IV), Tc(VII): DISTEXFP and calculation programs to calculate distribution ratios of U(IV), U(VI), Pu(III), Pu(IV), Pu(VI), Np(IV), Np(VI), HNO{sub 3} and HNO{sub 2}(DIST1), and Zr(IV), Tc(VII)(DITS2). The DIST1 and DIST2 determine, by the best-fit procedures, the most appropriate values of many parameters put on empirical equations by using the DISTEX data which fulfill the assigned conditions and are applied to calculate distribution ratios of the respective solutes. Approximately 5,000 data were stored in the DISTEX and DISTEXFP. In the present report, the following items are described, 1) specific features of DIST1 and DIST2 codes and the examples of calculation 2) explanation of databases, DISTEX, DISTEXFP and a program DISTIN, which manages the data in the DISTEX and DISTEXFP by functions as input, search, correction and delete. and at the annex, 3) programs of DIST1, DIST2, and figure-drawing programs DIST1G and DIST2G 4) user manual for DISTIN. 5) source programs of DIST1 and DIST2. 6) the experimental data stored in the DISTEX and DISTEXFP. (author). 122 refs.

  7. V.S.O.P. (99/09) Computer Code System for Reactor Physics and Fuel Cycle Simulation; Version 2009

    OpenAIRE

    Rütten, H.-J.; Haas, K. A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-01-01

    V.S.O.P.(99/ 09) represents the further development of V.S.O.P.(99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of...

  8. Low-Cost Encoding Device for Optical Code Division Multiple Access System

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ab-Rahman

    2009-01-01

    Full Text Available Problem statement: Instead of using Fiber Bragg Grating (FBG to develop the coded spectrums, which consist of expensive elements, the grating also are highly sensitive to environmental changes and this will contribute to the increment of capital and operational expenditures (CAPEX and OPEX. Approach: This study presented the development of low-cost 16-ports encoding device for Optical Code Division Multiple Access (OCDMA systems based on Arrayed Waveguide Grating (AWG devices and optical switches. The encoding device is one of the new technologies that used to transmit the coded data in the optical communication system by using AWG and optical switches. It provided a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG were coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoding device used 16 Double Pole Double Throw (DPDT toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V was given, the optical switch will give code '1' and vice versa. Results: We found that the insertion loss, crosstalk, uniformity and Optical Signal-Noise-Ratio (OSNR for the developed prototype are Conclusion: We had successful developed the AWG-based OCDMA encoding device prototype and characterized using linearity testing and continuous signal testing. The developed prototype was expected to be applied in the optical communication system on Passive Optical Networks (PONs.

  9. Validation and application of the system code ATHLET-CD for BWR severe accident analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Imke, Uwe; Sanchez, Victor

    2016-10-15

    Highlights: • We present the application of the system code ATHLET-CD code for BWR safety analyses. • Validation of core in-vessel models is performed based on KIT CORA experiments. • A SB-LOCA scenario is simulated on a generic German BWR plant up to vessel failure. • Different core reflooding possibilities are investigated to mitigate the accident consequences. • ATHLET-CD modelling features reflect the current state of the art of severe accident codes. - Abstract: This paper is aimed at the validation and application of the system code ATHLET-CD for the simulation of severe accident phenomena in Boiling Water Reactors (BWR). The corresponding models for core degradation behaviour e.g., oxidation, melting and relocation of core structural components are validated against experimental data available from the CORA-16 and -17 bundle tests. Model weaknesses are discussed along with needs for further code improvements. With the validated ATHLET-CD code, calculations are performed to assess the code capabilities for the prediction of in-vessel late phase core behaviour and reflooding of damaged fuel rods. For this purpose, a small break LOCA scenario for a generic German BWR with postulated multiple failures of the safety systems was selected. In the analysis, accident management measures represented by cold water injection into the damaged reactor core are addressed to investigate the efficacy in avoiding or delaying the failure of the reactor pressure vessel. Results show that ATHLET-CD is applicable to the description of BWR plant behaviour with reliable physical models and numerical methods adopted for the description of key in-vessel phenomena.

  10. Systemizers are better code-breakers:Self-reported systemizing predicts code-breaking performance in expert hackers and naïve participants

    Directory of Open Access Journals (Sweden)

    India eHarvey

    2016-05-01

    Full Text Available Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders - attention to detail and systemizing - may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e. crypto-analysis or code-breaking. A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001; Baron-Cohen et al., 2003. They were also tested with behavioural tasks involving code-breaking and a control task involving security x-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing was related with performance in the x-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015. We discuss the theoretical and translational implications of our findings.

  11. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  12. Differential Space-Time Block Code Modulation for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2002-01-01

    Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.

  13. Efficient spread space-time block coding scheme in multiple antenna systems

    Institute of Scientific and Technical Information of China (English)

    Qiu Ling; Zheng Xiayu

    2006-01-01

    Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.

  14. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  15. BCH Codes for Coherent Star DQAM Systems with Laser Phase Noise

    Science.gov (United States)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar; Zibar, Darko; Sergeyev, Sergey; Popov, Sergei

    2017-03-01

    Coherent optical systems have relatively high laser phase noise, which affects the performance of forward error correction (FEC) codes. In this paper, we propose a method for selecting Bose-Chaudhuri-Hocquenghem (BCH) codes for coherent systems with star-shaped constellations and M-ary differential quadrature amplitude modulation (DQAM). Our method supports constellations of any order M which is a power of 2, and includes differential M-ary phase shift keying as a special case. Our approach is straightforward, requiring only short pre-FEC simulations to parameterize a statistical model, based on which we select codes analytically. It is applicable to pre-FEC bit error rates (BERs) of around 10-3. We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of 10-5, codes selected with our method yield BERs within 2× target. Lastly, we extend our method to systems with interleaving, which enables us to use codes with lower overhead.

  16. Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.

    Science.gov (United States)

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping

    2016-07-01

    The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging.

  17. Space-Time Block Coding for Time Slotted CDMA Systems with Frequency-Selective Fading

    Institute of Scientific and Technical Information of China (English)

    WANGYingmin; YIKechu; NIUZhongxia; TIANHongxin

    2003-01-01

    The radio channel fading is one of the most important physical limitations for wireless mobile communications. Space-time coding is a coding technique that is designed for use with multiple transmit antennas and offers an effective transmit diversity technique to combat fading. However, most existing space-time coding schemes assume fiat fading that may not be valid for wideband wireless mobile communication channels. In this paper, a novel spacetime block coding scheme based on block processing is proposed for time slotted CDMA systems with frequencyselective fading. In order to get quasi-orthogonality, we encode the information based on the two data fields (blocks) of a burst, other than the symbols in a data field (block). As a consequence, it is convenient for block processing of joint detection which can be used with just some small modifications of the algorithms with no space-time coding. For decoding the new space time codes, block linear joint detection algorithms are developed. Then, we simplify these algorithms with an iterative procedure. With moderate iterative times, the computation complexity of the simplified algorithms is much less than that of the exact algorithms. Simulation results show that the performance of the simplified joint detection algorithms approximates to that of the exact ones.

  18. Parallel coding schemes of whisker velocity in the rat's somatosensory system.

    Science.gov (United States)

    Lottem, Eran; Gugig, Erez; Azouz, Rony

    2015-03-15

    The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whisker velocity in tactile information transmission and its coding mechanisms. We show that in anaesthetized rats, whisker velocity is related to the radial distance of the object contacted and its own velocity. Whisker velocity is accurately and reliably coded in first-order neurons in parallel, by both the relative time interval between velocity-independent first spike latency of rapidly adapting neurons and velocity-dependent first spike latency of slowly adapting neurons. At the same time, whisker velocity is also coded, although less robustly, by the firing rates of slowly adapting neurons. Comparing first- and second-order neurons, we find similar decoding efficiencies for whisker velocity using either temporal or rate-based methods. Both coding schemes are sufficiently robust and hardly affected by neuronal noise. Our results suggest that whisker kinematic variables are coded by two parallel coding schemes and are disseminated in a similar way through various brain stem nuclei to multiple brain areas. Copyright © 2015 the American Physiological Society.

  19. Development of environmental dose assessment system (EDAS) code of PC version

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Mitsumasa; Kikuchi, Masamitsu; Kobayashi, Hideo; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessment with JAERI. (author)

  20. Performance analysis and code recognition for dual N-ary orthogonal hybrid modulation systems

    Institute of Scientific and Technical Information of China (English)

    Qiao Xiaoqiang; Zhao Hangsheng; Cai Yueming

    2008-01-01

    A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and flat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.

  1. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  2. A Novel Criterion for Optimum MultilevelCoding Systems in Mobile Fading Channels

    Institute of Scientific and Technical Information of China (English)

    YUAN Dongfeng; WANG Chengxiang; YAO Qi; CAO Zhigang

    2001-01-01

    A novel criterion that is "capac-ity rule" and "mapping rule" for the design of op-timum MLC scheme over mobile fading channels isproposed.According to this theory,the performanceof multilevel coding with multistage decoding schemes(MLC/MSD) in mobile fading channels is investi-gated,in which BCH codes are chosen as componentcodes,and three mapping strategies with 8ASK mod-ulation are used.Numerical results indicate that whencode rates of component codes in MLC scheme are de-signed based on "capacity rule",the performance ofthe system with block partitioning (BP) is optimumfor Rayleigh fading channels,while the performance ofthe system with Ungerboeck partioning (UP) is bestfor AWGN channels.

  3. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    Directory of Open Access Journals (Sweden)

    Nakayama Shinsuke

    2017-01-01

    Full Text Available We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS. DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp and (d,xn reactions. In the present work, the analysis of (d,xn reactions is extended to higher incident energy up to nearly 100 MeV and also DEURACS is applied to (d,xd reactions at 80 and 100 MeV. The DEURACS calculations reproduce the experimental double-differential cross sections for the (d,xn and (d,xd reactions well.

  4. Diversity Gain and Coding Performance of OST-CPM System in Spatially Correlated Channels

    Directory of Open Access Journals (Sweden)

    Wen-Li Shen

    2013-03-01

    Full Text Available The Chernoff bound on Pair-Wise Error Probability (PWEP performance of orthogonal space-time coded CPM (OST-CPM systems is investigated, for two transmit antennas, over spatially correlated channels. Approximate Chernoff bound for high Signal-to-Noise Ratio (SNR is derived to evaluate the diversity gain and coding performance in correlated channels. The achievable diversity gain of this system decreases due to the signal correlation between the antennas. Simulation results show that the error performance over a correlated channel is degraded when the correlation coefficient increases. And the penalty on the code performance increases a lot in fully correlated channels. It can also be seen that the diversity gain decreases when the channel is fully correlated, which matches well with the theoretical analysis. The upper bounds can be looser when diversity order decreases.

  5. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    Science.gov (United States)

    Nakayama, Shinsuke; Kouno, Hiroshi; Watanabe, Yukinobu; Iwamoto, Osamu; Ye, Tao; Ogata, Kazuyuki

    2017-09-01

    We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS). DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp) and (d,xn) reactions. In the present work, the analysis of (d,xn) reactions is extended to higher incident energy up to nearly 100 MeV and also DEURACS is applied to (d,xd) reactions at 80 and 100 MeV. The DEURACS calculations reproduce the experimental double-differential cross sections for the (d,xn) and (d,xd) reactions well.

  6. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  7. Evolution of the CYCLE code for the system analysis of the nuclear fuel cycle

    Directory of Open Access Journals (Sweden)

    A.G. Kalashnikov

    2016-06-01

    Full Text Available The CYCLE code is intended to simulate mathematically the operation of a nuclear power system (NPS with thermal and fast reactors in an open or closed nuclear fuel cycle, to develop scenarios of efficient nuclear power evolution in Russia and to analyze trends in global nuclear power. The code is based on a well-known software program, WIMSD-5B, broadly used for the design of thermal reactor cells, and on a 2D multi-group software system, RZA, for the fast neutron reactor simulation. The CYCLE code was developed at IPPE in Obninsk. This paper presents a brief review of the capabilities and information on the current status of the CYCLE code. The code allows simulation of key facilities of the external fuel cycle (fuel fabrication and reprocessing facilities, SNF storage, uranium, plutonium, neptunium, americium and curium stores, RW long-term storage sites, nuclear reactors, including RBMK-1000 reactors, existing and advanced VVER reactors (using different fuel types, and fast reactors (both existing and innovative. As an important feature, the CYCLE code allows the evolution of the fuel's nuclide composition both in reactors and at the external fuel cycle phase to be considered in details. Offered as an extra option is the capability to calculate a variety of the nuclear fuel cycle cost parameters for nuclear power plants with thermal and fast reactors. For years, the code has been successfully used as part of INPRO, an international innovative nuclear reactor and fuel cycle project. The results of studies into the Russian NPS evolution scenarios were presented at Global 2011. Some other of the CYCLE-based simulation results were presented at Global 2015.

  8. Implementation of a Novel Concatenated FEC by RS and Irregular Turbo Codes on OFDM Systems

    Directory of Open Access Journals (Sweden)

    A. Shanmugam

    2005-01-01

    Full Text Available Code Division Multiple Access (CDMA performs well in a multi-cellular environment where a single frequency is used in all cells. Code Division Multiple Access (CDMA has severe problems associated with multipath and Channel news. One possible problem is that the receiver may require a very large dynamic range in order to handle the large signal strength variation among users. Due to that the Bit Error Rate (BER is getting increased. Moreover due to the addition of uncontrollable random channel noise degrade the performance of the receiver. The multipath problems give inter symbol interference. This can be reduced by Orthogonal Frequency Division Multiplexing (OFDM technique. More work could be done on investigating suitable techniques for doing OFDM promises to be a suitable modulation technique for high capacity wireless communications and will become increasing important in the future as wireless networks become more relied on. In order to increase the wireless network performance, this study has concentrated on OFDM with a novel forward error correction by data transmission with Quadrature Phase Shift Keying (QPSK as modulation techniques. Here an FEC scheme by concatenation of Reed Solomon (RS and the Irregular Turbo code is implemented in OFDM. The simulation results show that the system BER performance is decreased with this technique, when compared to the system having Forward Error Correction (FEC by RS code alone and irregular turbo code alone.

  9. Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding.

    Science.gov (United States)

    Vladimirskiy, Boris; Urbanczik, Robert; Senn, Walter

    2015-01-01

    Predictive coding has been previously introduced as a hierarchical coding framework for the visual system. At each level, activity predicted by the higher level is dynamically subtracted from the input, while the difference in activity continuously propagates further. Here we introduce modular predictive coding as a feedforward hierarchy of prediction modules without back-projections from higher to lower levels. Within each level, recurrent dynamics optimally segregates the input into novelty and familiarity components. Although the anatomical feedforward connectivity passes through the novelty-representing neurons, it is nevertheless the familiarity information which is propagated to higher levels. This modularity results in a twofold advantage compared to the original predictive coding scheme: the familiarity-novelty representation forms quickly, and at each level the full representational power is exploited for an optimized readout. As we show, natural images are successfully compressed and can be reconstructed by the familiarity neurons at each level. Missing information on different spatial scales is identified by novelty neurons and complements the familiarity representation. Furthermore, by virtue of the recurrent connectivity within each level, non-classical receptive field properties still emerge. Hence, modular predictive coding is a biologically realistic metaphor for the visual system that dynamically extracts novelty at various scales while propagating the familiarity information.

  10. A Concise and Comprehensive Description of Shoulder Pathology and Procedures: The 4D Code System

    Directory of Open Access Journals (Sweden)

    Laurent Lafosse

    2012-01-01

    Full Text Available Background. We introduce a novel description system of shoulder pathoanatomy. Its goal is to provide a comprehensive three-dimensional picture, with an additional component of time; thus, we call it the 4D code. Methods. Each line of the code starts with right versus left and a time designation. The pillar components are recorded regardless of pathology; they include subscapularis, long head of biceps tendon, supraspinatus, infraspinatus, and teres minor. Secondary elements can be added if there is observed pathology, including acromioclavicular joint, glenohumeral joint, labrum, tear configuration, location and extent of partial cuff tear, calcific tendonitis, fatty infiltration, and neuropathy. Results. We provide two illustrative examples of patients which show the ease and effectiveness of the 4D code. With a few simple lines, significant amount of information about patients’ pathology, surgery, and recovery can be easily conveyed. Discussion. We utilize existing validated classification systems for parts of the shoulder and provide a frame work to build a comprehensive picture. The alphanumeric code provides a simple language that is universally understood. The 4D code is concise yet complete. It seeks to improve efficiency and accuracy of the communication, documentation, and visualization of shoulder pathology within individual practices and between providers.

  11. Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks

    Institute of Scientific and Technical Information of China (English)

    Zhao Ting-Yu; Liu Qin-Xiao; Yu Fei-Hong

    2012-01-01

    This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates.Based on the stationary phase method,the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function.Finally,a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.

  12. BLOCK CODING SCHEME FOR REDUCING PAPR IN OFDM SYSTEMS WITH LARGE NUMBER OF SUBCARRIERS

    Institute of Scientific and Technical Information of China (English)

    Jiang Tao; Zhu Guangxi; Zheng Jianbin

    2004-01-01

    The major drawback in Orthogonal Frequency Division Multiplexing (OFDM) system is due to the high Peak-to-Average Power Ratio (PAPR), so the performance of the system is significantly degraded by the nonlinearity of a High Power Amplifier (HPA) in the transmitter.In order to mitigate distortion, a block coding scheme for reducing PAPR in OFDM systems with large number of subcarriers based on complementary sequences and predistortion is proposed,which is capable of both error correction and PAPR reduction. Computer simulation results show that the proposed scheme significantly improves Bit Error Rate(BER) performance as compared to an uncoded system when an HPA is employed or a coded system without predistortion.

  13. Users manual for the FORSS sensitivity and uncertainty analysis code system

    Energy Technology Data Exchange (ETDEWEB)

    Lucius, J.L.; Weisbin, C.R.; Marable, J.H.; Drischler, J.D.; Wright, R.Q.; White, J.E.

    1981-01-01

    FORSS is a code system used to study relationships between nuclear reaction cross sections, integral experiments, reactor performance parameter predictions and associated uncertainties. This report describes the computing environment and the modules currently used to implement FORSS Sensitivity and Uncertainty Methodology.

  14. Blind Multiuser Detection for Long-Code CDMA Systems with Transmission-Induced Cyclostationarity

    Directory of Open Access Journals (Sweden)

    Ding Zhi

    2005-01-01

    Full Text Available We consider blind channel identification and signal separation in long-code CDMA systems. First, by modeling the received signals as cyclostationary processes with modulation-induced cyclostationarity, long-code CDMA system is characterized using a time-invariant system model. Secondly, based on the time-invariant model, multistep linear prediction method is used to reduce the intersymbol interference introduced by multipath propagation, and channel estimation then follows by utilizing the nonconstant modulus precoding technique with or without the matrix-pencil approach. The channel estimation algorithm without the matrix-pencil approach relies on the Fourier transform, and requires additional constraint on the code sequences other than being nonconstant modulus. It is found that by introducing a random linear transform, the matrix-pencil approach can remove (with probability one the extra constraint on the code sequences. Thirdly, after channel estimation, equalization is carried out using a cyclic Wiener filter. Finally, since chip-level equalization is performed, the proposed approach can readily be extended to multirate cases, either with multicode or variable spreading factor. Simulation results show that compared with the approach using the Fourier transform, the matrix-pencil-based approach can significantly improve the accuracy of channel estimation, therefore the overall system performance.

  15. Neonatal Facial Coding System for Assessing Postoperative Pain in Infants: Item Reduction is Valid and Feasible

    NARCIS (Netherlands)

    Peters, J.W.B.; Koot, H.M.; Grunau, R.E.; Boer, J. de; Druenen, M.J. van; Tibboel, D.; Duivenvoorden, H.J.

    2003-01-01

    Objective: The objectives of this study were to: (1) evaluate the validity of the Neonatal Facial Coding System (NFCS) for assessment of postoperative pain and (2) explore whether the number of NFCS facial actions could be reduced for assessing postoperative pain. Design: Prospective, observational

  16. The Development of a Systematic Coding System for Elementary Students' Drawings of Engineers

    Science.gov (United States)

    Weber, Nicole; Duncan, Daphne; Dyehouse, Melissa; Strobel, Johannes; Diefes-Dux, Heidi A.

    2011-01-01

    The Draw an Engineer Test (DAET) is a common measure of students' perceptions of engineers. The coding systems currently used for K-12 research are general rubrics or checklists to capture the images presented in the drawing, which leave out some of the richness of students' perceptions, currently only captured with an accompanying student…

  17. A System for English Vocabulary Acquisition Based on Code-Switching

    Science.gov (United States)

    Mazur, Michal; Karolczak, Krzysztof; Rzepka, Rafal; Araki, Kenji

    2016-01-01

    Vocabulary plays an important part in second language learning and there are many existing techniques to facilitate word acquisition. One of these methods is code-switching, or mixing the vocabulary of two languages in one sentence. In this paper the authors propose an experimental system for computer-assisted English vocabulary learning in…

  18. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  19. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  20. A NEW DECODER OF SYNCHRONOUS OPTICAL CODE DIVISION MULTIPLE ACCESS SYSTEMS USING SEGMENTED CORRELATION

    Institute of Scientific and Technical Information of China (English)

    Li Ou; Wu Jiangxing; Lan Julong

    2001-01-01

    A new segmented correlating decoder of synchronous optical CDMA using modified prime sequence codes is proposed. The performance of the proposed system is analyzed under the assumption of Poisson shot noise model for the receiver photodetector. The decoder technique is shown to be more effective to improve the bit error probability performance than the method using an optical hard-limiter.

  1. The Therapy Process Observational Coding System for Child Psychotherapy Strategies Scale

    Science.gov (United States)

    McLeod, Bryce D.; Weisz, John R.

    2010-01-01

    Most everyday child and adolescent psychotherapy does not follow manuals that document the procedures. Consequently, usual clinical care has remained poorly understood and rarely studied. The Therapy Process Observational Coding System for Child Psychotherapy-Strategies scale (TPOCS-S) is an observational measure of youth psychotherapy procedures…

  2. Quality of visual sewer inspection data: The need for a new coding system?! (poster)

    NARCIS (Netherlands)

    Dirksen, J.; Van der Steen, A.; Langeveld, J.G.; Clemens, F.H.L.R.

    2013-01-01

    Previous research learned that the reproducibility of visual sewer inspection data is poor (Dirksen et al.). Further research by Arjan et al. showed that the applied coding system has a major influence on the reproducibility. The aim of this study was to give relevant suggestions to improve the qual

  3. SLSF loop handling system. Volume III. AISC code evaluations and analysis of critical attachments. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H.; Cowie, A.; Malek, R. A.; Rafer, A.; Ma, D.; Tebo, F.

    1978-10-01

    SLSF loop handling system was analyzed for deadweight and postulated dynamic loading conditions using a linear elastic static equivalent method of stress analysis. Stress computations of Cradle and critical attachments per AISC Code guidelines are presented. HFEF is credited with in-depth review of initial phase of work.

  4. Stress, Neural Systems, and Genetic Code: An Interview with Neuroscientist Judy Cameron. Perspectives

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Research indicates some early life stresses can have a profound impact, resulting in changes in brain function and behavior, and even differences in the ways some genes express their particular genetic code signature. At various times during early development, different neural systems appear to have an increased sensitivity to stress and can…

  5. The Body Action Coding System I : Muscle activations during the perception and expression of emotion

    NARCIS (Netherlands)

    Huis In 't Veld, E.M.J.; van Boxtel, G.J.M.; de Gelder, B.

    2014-01-01

    Body postures provide clear signals about emotional expressions, but so far it is not clear what muscle patterns are associated with specific emotions. This study lays the groundwork for a Body Action Coding System by investigating what combinations of muscles are used for emotional bodily

  6. Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips

    DEFF Research Database (Denmark)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar

    2014-01-01

    Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. Thi...... approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio....... these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our......Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN...

  7. Proportional fair scheduling with superposition coding in a cellular cooperative relay system

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2013-01-01

    Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional fairn...

  8. Stress, Neural Systems, and Genetic Code: An Interview with Neuroscientist Judy Cameron. Perspectives

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Research indicates some early life stresses can have a profound impact, resulting in changes in brain function and behavior, and even differences in the ways some genes express their particular genetic code signature. At various times during early development, different neural systems appear to have an increased sensitivity to stress and can…

  9. Neonatal Facial Coding System for Assessing Postoperative Pain in Infants: Item Reduction is Valid and Feasible

    NARCIS (Netherlands)

    Peters, J.W.B.; Koot, H.M.; Grunau, R.E.; Boer, J. de; Druenen, M.J. van; Tibboel, D.; Duivenvoorden, H.J.

    2003-01-01

    Objective: The objectives of this study were to: (1) evaluate the validity of the Neonatal Facial Coding System (NFCS) for assessment of postoperative pain and (2) explore whether the number of NFCS facial actions could be reduced for assessing postoperative pain. Design: Prospective, observational

  10. Randomization of Symbol Repetition of Punch Cards with Superimposed Coding in Information-Search Systems.

    Science.gov (United States)

    Pirovich, L. Ya

    The article shows the effect of the irregularity of using separate symbols on search noise on punch cards with superimposed symbol coding in information-search system (IPS). A binomial law of random value distribution of repetition of each symbol is established and analyzed. A method of determining the maximum value of symbol repetition is…

  11. Analysis of BER Performance of the Spread Spectrum Communication System with Constrained Spreading Code

    OpenAIRE

    長谷川, 孝明; 羽渕, 裕真

    1996-01-01

    Copyright notice. c1996 IEICE All rights reserved. "Analysis of BER Performance of the Spread Spectrum Communication System with Constrained Spreading Code"Hiromasa HABUCHI, Toshio TAKEBAYASHI, Takaaki HASEGAWA. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences ,1996 Vol.E79-A No.12 pp. 2078-2080 許諾No.07RB0055.

  12. A Critical Appraisal of the Juvenile Justice System under Cameroon's 2005 Criminal Procedure Code: Emerging Challenges

    Directory of Open Access Journals (Sweden)

    S Tabe

    2012-03-01

    Full Text Available The objective of this article is to examine the changes introduced by the 2005 Cameroonian Criminal Procedure Code on matters of juvenile justice, considering that before this Code, juvenile justice in Cameroon was governed by extra-national laws. In undertaking this analysis, the article highlights the evolution of the administration of juvenile justice 50 years after independence of Cameroon. It also points out the various difficulties and shortcomings in the treatment of juvenile offenders in Cameroon since the enactment of the new Criminal Procedure Code. The article reveals that the 2005 Code is an amalgamation of all hitherto existing laws in the country that pertained to juvenile justice, and that despite the considerable amount of criticism it has received, the Code is clearly an improvement of the system of juvenile justice in Cameroon, since it represents a balance of the due process rights of young people, the protection of society and the special needs of young offenders. This is so because the drafters of the Code took a broad view of the old laws on juvenile justice. Also a wide range of groups were consulted, including criminal justice professionals, children’s service organisations, victims, parents, young offenders, educators, advocacy groups and social-policy analysts. However, to address the challenges that beset the juvenile justice system of Cameroon, the strategy of the government should be focussed on three areas: the prevention of youth crime, the provision of meaningful consequences for the actions of young people, and the rehabilitation and reintegration of young offenders. Cameroonian law should seek educative solutions rather than to impose prison sentences or other repressive measures on young offenders. Special courts to deal with young offenders should be established outside the regular penal system and should be provided with resources that are adequate for and appropriate to fostering their understanding of

  13. Fountain code-based error control scheme for dimmable visible light communication systems

    Science.gov (United States)

    Feng, Lifang; Hu, Rose Qingyang; Wang, Jianping; Xu, Peng

    2015-07-01

    In this paper, a novel error control scheme using Fountain codes is proposed in on-off keying (OOK) based visible light communications (VLC) systems. By using Fountain codes, feedback information is needed to be sent back to the transmitter only when transmitted messages are successfully recovered. Therefore improved transmission efficiency, reduced protocol complexity and relative little wireless link-layer delay are gained. By employing scrambling techniques and complementing symbols, the least complemented symbols are needed to support arbitrary dimming target values, and the value of entropy of encoded message are increased.

  14. Development of core fuel management code system for WWER-type reactors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, a core fuel management program for hexagonal pressurized water type WWER reactors (CFMHEX) has been developed, which is based on advanced three-dimensional nodal method and integrated with thermal hydraulic code to realize the coupling of neutronics and thermal-hydraulics. In CFMHEX, all these feedback effects such as burnup, power distribution, moderator density, and control rod insertion are considered. The verification and validation of the code system have been examined through the IAEA WWER-1000-type Kalinin NPP benchmark problem. The numerical results are in good agreement with measurements and are close to those of other international institutes.

  15. Performance of an Error Control System with Turbo Codes in Powerline Communications

    Directory of Open Access Journals (Sweden)

    Balbuena-Campuzano Carlos Alberto

    2014-07-01

    Full Text Available This paper reports the performance of turbo codes as an error control technique in PLC (Powerline Communications data transmissions. For this system, computer simulations are used for modeling data networks based on the model classified in technical literature as indoor, and uses OFDM (Orthogonal Frequency Division Multiplexing as a modulation technique. Taking into account the channel, modulation and turbo codes, we propose a methodology to minimize the bit error rate (BER, as a function of the average received signal noise ratio (SNR.

  16. PERFORMANCE OF LDPC CODED FMT SYSTEMS OVER FREQUENCY SELECTIVE FADING CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Bi Guangguo; Du Peng

    2005-01-01

    This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.

  17. A Parallel Monte Carlo Code for Simulating Collisional N-body Systems

    CERN Document Server

    Pattabiraman, Bharath; Liao, Wei-Keng; Choudhary, Alok; Kalogera, Vassiliki; Memik, Gokhan; Rasio, Frederic A

    2012-01-01

    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the H\\'enon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures, and the introduction of a parallel random number generation scheme, as well as a parallel sorting algorithm, required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. The implementation uses the Message Passing Interface (MPI) library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functi...

  18. Joint robustness security in optical OFDM access system with Turbo-coded subcarrier rotation.

    Science.gov (United States)

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Wang, Yongjun

    2015-01-12

    This paper proposes a novel robust physical secure method for optical orthogonal frequency division multiplexing (OFDM) access system based on Turbo-coded subcarrier rotation. It can realize a secure communication while keep robustness to channel noise. The subcarrier rotation is controlled by the interleaver module of Turbo coding, which is under the charge of Logistic map. The random puncturing can further enhance the security. The channel feedback can ensure the puncturing module working at a suitable coding rate. A 72.28 Gb/s encrypted 16QAM-OFDM signal is successfully demonstrated in the experiment. The results show robust performance under different channel noise conditions and good resistance to illegal optical network unit (ONU).

  19. [An update of the diagnostic coding system by the Spanish Society of Pediatric Emergencies].

    Science.gov (United States)

    Benito Fernández, J; Luaces Cubells, C; Gelabert Colomé, G; Anso Borda, I

    2015-06-01

    The Quality Working Group of the Spanish Society of Pediatric Emergencies (SEUP) presents an update of the diagnostic coding list. The original list was prepared and published in Anales de Pediatría in 2000, being based on the International Coding system ICD-9-CM current at that time. Following the same methodology used at that time and based on the 2014 edition of the ICD-9-CM, 35 new codes have been added to the list, 15 have been updated, and a list of the most frequent references to trauma diagnoses in pediatrics have been provided. In the current list of diagnoses, SEUP reflects the significant changes that have taken place in Pediatric Emergency Services in the last decade. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  20. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina); AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina)

    2007-11-15

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level.

  1. IRACM : A code system to calculate induced radioactivity produced by ions and neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Susumu; Fukuda, Mitsuhiro; Nishimura, Koichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Watanabe, Hiromasa; Yamano, Naoki

    1997-05-01

    It is essential to estimate of radioactivity induced in accelerator components and samples bombarded by energetic ion beams and the secondary neutrons of high-energy accelerator facilities in order to reduce the amount of radioactive wastes and to minimize radiation exposure to personnel. A computer code system IRACM has been developed to estimate product nuclides and induced radioactivity in various radiation environments of accelerator facilities. Nuclide transmutation with incident particles of neutron, proton, deuteron, alpha, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne and {sup 40}Ar can be computed for arbitrary multi-layer target system in a one-dimensional geometry. The code system consists of calculation modules and libraries including activation cross sections, decay data and photon emission data. The system can be executed in both FACOM-M780 mainframe and DEC workstations. (author)

  2. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    DEFF Research Database (Denmark)

    Sun, Fan

    2011-01-01

    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two...... different system performance requirements. For different objectives, two optimization problems are formulated and solutions are presented. One is to minimize the outage probability given the efficiency requirement, while the other one is to maximize the transmission efficiency given the outage probability...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  3. CONGESTION MANAGEMENT IN DEREGULATED POWER SYSTEMS USING REAL CODED GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Sujatha Balaraman

    2010-11-01

    Full Text Available In this paper, an efficient method has been proposed for transmission line over load alleviation in deregulated power system using real coded genetic algorithm (RCGA. For secure operation of power system, the network loading has to be maintained within specified limits. Transmission line congestion initiates the cascading outages which forces the system to collapse. Accurate prediction and alleviation of line overloads is the suitable corrective action to avoid network collapse. In this paper an attempt is made to explore the use of real coded genetic algorithm to find the optimal generation rescheduling for relieving congestion. The effectiveness of the proposed algorithm has been analyzed on IEEE 30 bus test system. The results obtained by the proposed method are found to be quite encouraging when compared with Simulated Annealing (SA and hence it will be useful in electrical restructuring.

  4. A Novel Architecture for Network Coded Electronic Health Record Storage System

    Directory of Open Access Journals (Sweden)

    B. Venkatalakshmi

    2012-10-01

    Full Text Available The use of network coding for large scale content distribution improves download time. This is demonstrated in this work by the use of network coded Electronic Health Record Storage System (EHR-SS. A Novel Architecture of 4-layers to build the EHR-SS is designed. The application integrates the data captured for the patient from three modules namely administrative data, medical records of consultation and reports of medical tests. The lower layer is the data capturing layer using RFID reader. The data is captured in the lower level from different nodes. This data is combined with some linear coefficients using linear network coding. At the lower level the data from different tags are combined and stored and at the level 2 coding combines the data from multiple readers and a corresponding encoding vector is generated. This network coding is done at the server node through small mat lab net-cod interface software. While accessing the stored data, the user data has the data type represented in the form of decoding vector. For storing and retrieval the primary key is the patient id. The results obtained were observed with a reduction of download time of about 12% for our case study set up.

  5. Visualizing the software system towards identifying the topic from source code using semantic clustering

    Directory of Open Access Journals (Sweden)

    Kanchan Sharma

    2014-03-01

    Full Text Available In software re-engineering, domain knowledge are valuable source of information for developers. Here, we describe how the coding standards are helpful for the identification of domain while writing the source code. Internal comments and logical identifier names in source code are the key source to find the concept and domain area for the application. One of the Information retrieval techniques, Latent Semantic Indexing (LSI uses this linguistic information such as identifier names and comments in source code to map it with the domain name. Based on the linguistic results from LSI engine, a clustering technique used to group source artifacts that use similar vocabulary and a way of representing complex system into simpler components. It works at the source code textual level and making it language independent. Prior research activity correlated the semantics with structural information and applied it at different level of abstraction. Based on the frequency of the domain terms labeling has been provided after discrete characterization of the clusters, using machine learning and visually explored. Visualization makes the concept detection much easier.

  6. A coded structured light system based on primary color stripe projection and monochrome imaging.

    Science.gov (United States)

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  7. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    Directory of Open Access Journals (Sweden)

    Armando Viviano Razionale

    2013-10-01

    Full Text Available Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  8. Study on a new meteorological sampling scheme developed for the OSCAAR code system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinhe; Tomita, Kenichi; Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    One important step in Level-3 Probabilistic Safety Assessment is meteorological sequence sampling, on which the previous studies were mainly related to code systems using the straight-line plume model and more efforts are needed for those using the trajectory puff model such as the OSCAAR code system. This report describes the development of a new meteorological sampling scheme for the OSCAAR code system that explicitly considers population distribution. A group of principles set for the development of this new sampling scheme includes completeness, appropriate stratification, optimum allocation, practicability and so on. In this report, discussions are made about the procedures of the new sampling scheme and its application. The calculation results illustrate that although it is quite difficult to optimize stratification of meteorological sequences based on a few environmental parameters the new scheme do gather the most inverse conditions in a single subset of meteorological sequences. The size of this subset may be as small as a few dozens, so that the tail of a complementary cumulative distribution function is possible to remain relatively static in different trials of the probabilistic consequence assessment code. (author)

  9. An Automatic Code Generator Expert System Using Proprietary Language for Wider Business Application

    Directory of Open Access Journals (Sweden)

    Aurangzeb Khan

    2014-05-01

    Full Text Available The proposed System is an automatic front-end Code Generator Expert System (CGES for ensuring wider business application for the generation of GUI with a source code for Databases. Safe keeping of data for smooth transaction in business has always been a matter of concern. With the help of the proposed CGES, with economy of effort and time, a customizable database application may be produced with a simple wizard. The CGES requires a database as a pre-requisite input. Once the normalized database is featured with a diagram, the CGES shall apply techniques according to the pre-defined algorithm; the complete application with source code in various modules shall automatically produce. By selecting the CGES solutions, an N-tier application shall give rise to a product, comprising of SQL server queries, Object Oriented features and modules. The results prove on a test working principles of the system are written in MS SQL Server and on the Visual Basic.NET source code generated by CGES.

  10. A novel repetition space-time coding scheme for mobile FSO systems

    Science.gov (United States)

    Li, Ming; Cao, Yang; Li, Shu-ming; Yang, Shao-wen

    2015-03-01

    Considering the influence of more random atmospheric turbulence, worse pointing errors and highly dynamic link on the transmission performance of mobile multiple-input multiple-output (MIMO) free space optics (FSO) communication systems, this paper establishes a channel model for the mobile platform. Based on the combination of Alamouti space-time code and time hopping ultra-wide band (TH-UWB) communications, a novel repetition space-time coding (RSTC) method for mobile 2×2 free-space optical communications with pulse position modulation (PPM) is developed. In particular, two decoding methods of equal gain combining (EGC) maximum likelihood detection (MLD) and correlation matrix detection (CMD) are derived. When a quasi-static fading and weak turbulence channel model are considered, simulation results show that whether the channel state information (CSI) is known or not, the coding system demonstrates more significant performance of the symbol error rate (SER) than the uncoding. In other words, transmitting diversity can be achieved while conveying the information only through the time delays of the modulated signals transmitted from different antennas. CMD has almost the same effect of signal combining with maximal ratio combining (MRC). However, when the channel correlation increases, SER performance of the coding 2×2 system degrades significantly.

  11. Validation of system codes RELAP5 and SPECTRA for natural convection boiling in narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Stempniewicz, M.M., E-mail: stempniewicz@nrg.eu; Slootman, M.L.F.; Wiersema, H.T.

    2016-10-15

    Highlights: • Computer codes RELAP5/Mod3.3 and SPECTRA 3.61 validated for boiling in narrow channels. • Validated codes can be used for LOCA analyses in research reactors. • Code validation based on natural convection boiling in narrow channels experiments. - Abstract: Safety analyses of LOCA scenarios in nuclear power plants are performed with so called thermal–hydraulic system codes, such as RELAP5. Such codes are validated for typical fuel geometries applied in nuclear power plants. The question considered by this article is if the codes can be applied for LOCA analyses in research reactors, in particular exceeding CHF in very narrow channels. In order to answer this question, validation calculations were performed with two thermal–hydraulic system codes: RELAP and SPECTRA. The validation was based on natural convection boiling in narrow channels experiments, performed by Prof. Monde et al. in the years 1990–2000. In total 42 vertical tube and annulus experiments were simulated with both codes. A good agreement of the calculated values with the measured data was observed. The main conclusions are: • The computer codes RELAP5/Mod 3.3 (US NRC version) and SPECTRA 3.61 have been validated for natural convection boiling in narrow channels using experiments of Monde. The dimensions applied in the experiments were performed for a range that covers the values observed in typical research reactors. Therefore it is concluded that both codes are validated and can be used for LOCA analyses in research reactors, including natural convection boiling. The applicability range of the present validation is: hydraulic diameters of 1.1 ⩽ D{sub hyd} ⩽ 9.0 mm, heated lengths of 0.1 ⩽ L ⩽ 1.0 m, pressures of 0.10 ⩽ P ⩽ 0.99 MPa. In most calculations the burnout was predicted to occur at lower power than that observed in the experiments. In several cases the burnout was observed at higher power. The overprediction was not larger than 16% in RELAP and 15% in

  12. Computationally Efficient Blind Code Synchronization for Asynchronous DS-CDMA Systems with Adaptive Antenna Arrays

    OpenAIRE

    Chia-Chang Hu

    2005-01-01

    A novel space-time adaptive near-far robust code-synchronization array detector for asynchronous DS-CDMA systems is developed in this paper. There are the same basic requirements that are needed by the conventional matched filter of an asynchronous DS-CDMA system. For the real-time applicability, a computationally efficient architecture of the proposed detector is developed that is based on the concept of the multistage Wiener filter (MWF) of Goldstein and Reed. This multistage technique resu...

  13. ADAPTIVE ERROR-LIMITING METHOD SUITABLEFOR THE WALSH CODE SHUTTING MULTIPLEXING IN THE MINE MONITOR SYSTEM

    Institute of Scientific and Technical Information of China (English)

    ZhuLiping

    1996-01-01

    Through the analysis for the process of Walsh modulation and demodulation, the adaptive error-limiting method suitable for the Walsh code shutting multiplexing in the mine monitor system is advanced in this article. It is proved by theoretical analysis and circuit experiments that this method is easy to carry out and can not onlyimprove the quality of information transmission but also meet the requirement of thesystem patrol test time without the increasement of system investment.

  14. Holographic codes

    CERN Document Server

    Latorre, Jose I

    2015-01-01

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  15. The Role of the International Code Council in the U.S. Building Regukation System and Green Building Contruction

    Directory of Open Access Journals (Sweden)

    David Walls

    2015-03-01

    Full Text Available This paper will address the components of the International Code Council (ICC as one of the most important organizations in terms of developing the model building codes for the US: the international codes. This membership-driven organization has the task of providing the building industry and all its stakeholders with the necessary regulatory documents, training, certification, plan check, product evaluation, and accreditation services to achieve safer and more sustainable building construction. This article provides an overview of the building codes in the U.S., the ICC and its subsidiaries, and ICC’s systems designed to support the codes and the regulatory industry.

  16. Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system.

    Science.gov (United States)

    Clague, H; Theunissen, F; Miller, J P

    1997-01-01

    Methods of stochastic systems analysis were applied to examine the effect of adaptation on frequency encoding by two functionally identical primary interneurons of the cricket cercal system. Stimulus reconstructions were obtained from a linear filtering transformation of spike trains elicited in response to bursts of broadband white noise air current stimuli (5-400 Hz). Each linear reconstruction was compared with the actual stimulus in the frequency domain to obtain a measure of waveform coding accuracy as a function of frequency. The term adaptation in this paper refers to the decrease in firing rate of a cell after the onset or increase in power of a white noise stimulus. The increase in firing rate after stimulus offset or decrease in stimulus power is assumed to be a complementary aspect of the same phenomenon. As the spike rate decreased during the course of adaptation, the total amount of information carried about the velocity waveform of the stimulus also decreased. The quality of coding of frequencies between 70 and 400 Hz decreased dramatically. The quality of coding of frequencies between 5 and 70 Hz decreased only slightly or even increased in some cases. The disproportionate loss of information about the higher frequencies could be attributed in part to the more rapid loss of spikes correlated with high-frequency stimulus components than of spikes correlated with low-frequency components. An increase in the responsiveness of a cell to frequencies > 70 Hz was correlated with a decrease in the ability of that cell to encode frequencies in the 5-70 Hz range. This nonlinear property could explain the improvement seen in some cases in the coding accuracy of frequencies between 5 and 70 Hz during the course of adaptation. Waveform coding properties also were characterized for fully adapted neurons at several stimulus intensities. The changes in coding observed through the course of adaptation were similar in nature to those found across stimulus powers

  17. Property-based Code Slicing for Efficient Verification of OSEK/VDX Operating Systems

    Directory of Open Access Journals (Sweden)

    Mingyu Park

    2012-12-01

    Full Text Available Testing is a de-facto verification technique in industry, but insufficient for identifying subtle issues due to its optimistic incompleteness. On the other hand, model checking is a powerful technique that supports comprehensiveness, and is thus suitable for the verification of safety-critical systems. However, it generally requires more knowledge and cost more than testing. This work attempts to take advantage of both techniques to achieve integrated and efficient verification of OSEK/VDX-based automotive operating systems. We propose property-based environment generation and model extraction techniques using static code analysis, which can be applied to both model checking and testing. The technique is automated and applied to an OSEK/VDX-based automotive operating system, Trampoline. Comparative experiments using random testing and model checking for the verification of assertions in the Trampoline kernel code show how our environment generation and abstraction approach can be utilized for efficient fault-detection.

  18. SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wendelin, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewandowski, Allan [Allan Lewandowski Solar Consulting LLC, Evergreen, CO (United States)

    2013-10-01

    SolTrace is an optical simulation tool designed to model optical systems used in concentrating solar power (CSP) applications. The code was first written in early 2003, but has seen significant modifications and changes since its inception, including conversion from a Pascal-based software development platform to C++. SolTrace is unique in that it can model virtually any optical system utilizingthe sun as the source. It has been made available for free and as such is in use worldwide by industry, universities, and research laboratories. The fundamental design of the code is discussed, including enhancements and improvements over the earlier version. Comparisons are made with other optical modeling tools, both non-commercial and commercial in nature. Finally, modeled results are shownfor some typical CSP systems and, in one case, compared to measured optical data.

  19. Technique for using a geometry and visualization system to monitor and manipulate information in other codes

    Science.gov (United States)

    Dickens, Thomas P.

    1992-01-01

    A technique was developed to allow the Aero Grid and Paneling System (AGPS), a geometry and visualization system, to be used as a dynamic real-time geometry monitor, manipulator, and interrogator for other codes. This technique involves the direct connection of AGPS with one or more external codes through the use of Unix pipes. AGPS has several commands that control communication with the external program. The external program uses several special subroutines that allow simple, direct communication with AGPS. The external program creates AGPS command lines and transmits the line over the pipes or communicates on a subroutine level. AGPS executes the commands, displays graphics/geometry information, and transmits the required solutions back to the external program. The basic ideas discussed in this paper could easily be implemented in other graphics/geometry systems currently in use or under development.

  20. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACS is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.

  1. Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    CERN Document Server

    Torrieri, Don; Kwon, Hyuck

    2010-01-01

    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral eff...

  2. Performance of degree distribution based HARQ scheme for LDPC-coded OFDM system

    Institute of Scientific and Technical Information of China (English)

    LI Xue-hua; CAO Yi-qing; LI Zhen-song; YANG Da-cheng

    2009-01-01

    This article studies the degree distribution property of low density parity check (LDPC) codes by Gaussian approximation (GA) and presents an efficient hybrid automatic repeat quest (HARQ) scheme for LDPC-coded orthogonal frequency division multiplexing (OFDM) system. In the scheme, the important bits with large degrees have high retransmission priorities and are mapped to the sub-carriers with better channel quality indicator (CQI) levels in the OFDM system. The new scheme provides more protection to the bits with large degrees and thus contributes more to the decoding process by offering more transmission power. In this way the system performance would be improved. The statistics and simulation results also prove the new scheme.

  3. Fundamental algorithm and computational codes for the light beam propagation in high power laser system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.

  4. Calculation of the Novovoronezh Recriticality Experiment with the KARATE-440 code system

    Energy Technology Data Exchange (ETDEWEB)

    Hegyi, György, E-mail: ghegyi@aeki.kfki.hu [MTA KFKI Atomic Energy Research Institute, Budapest (Hungary)

    2011-07-01

    In this paper the results of KARATE-440 calculations on Novovoronezh NPP Recriticality Experiment are presented, the corresponding parameters are analyzed. The simulation of the processes and the comparison of the results with the measurements are of particular interest as these efforts make our code to be validated in a higher level. The KARATE-440 code system has been developed and applied for VVER-440 core analysis during near twenty years, as a close collaboration among the developers and the specialists at the 4 Hungarian nuclear power units. KARATE is now a mature, demonstrated, complete and integrated system of computer codes and procedures that provide full and independent VVER core analysis capabilities. Even if only some well defined states of the experiment were simulated, satisfactory agreement was found between measured and calculated data. The results present evidence that the KARATE- 440 code package can adequately model the reactor states in a wide range of performance parameters and the special core type referred in the experiment so it is acceptable for neutronic analysis of all the VVER-440 NPP's. (author)

  5. An Approach to Share Architectural Drawing Information and Document Information for Automated Code Checking System

    Institute of Scientific and Technical Information of China (English)

    Jungsik Choi; Inhan Kim

    2008-01-01

    The purpose of this study is to suggest a way of optimized managing and sharing information be-tween standard architectural drawings and construction documents in Korea architectural industry for auto-mated code checking system by linked STEP and XML. To archive this purpose, the authors have analyzed current research and technical development for STEP and XML link and developed a prototype system for sharing information between model based drawings and XML based construction documents. Finally, the authors have suggested practical use scenario of sharing information through linked STEP and XML using test case of automatic code checking. In the paper, the possibility of constructing integrated architectural computing environment through exchange and sharing of drawing information and external data for the whole building life-cycle, from the conceptual design stage to the construction and maintenance stage has been examined. Automated code checking through linked STEP and XML could be enhanced through col-laboration business, more completed code, improved building performance, and reduced construction costs.

  6. Measuring parent-child mutuality: a review of current observational coding systems.

    Science.gov (United States)

    Funamoto, Allyson; Rinaldi, Christina M

    2015-01-01

    Mutuality is defined as a smooth, back-and-forth positive interaction consisting of mutual enjoyment, cooperation, and responsiveness. The bidirectional nature of mutuality is an essential component to the parent-child relationship since a high quality parent-child mutual relationship is crucial to encouraging children's positive socialization and development (S. Lollis & L. Kuczynski, 1997; E.E. Maccoby, 2007). Several coding systems have been developed in recent years to assess this distinct and crucial aspect of the parent-child relationship. The present article reviews the following four mutuality coding schemes: the Parent-Child Interaction System (K. Deater-Deckard, M.V. Pylas, & S. Petrill, 1997), the Mutually Responsive Orientation Scale (N. Aksan, G. Kochanska, & M.R. Ortmann, 2006), the Caregiver-Child Affect, Responsiveness, and Engagement Scale (C.S. Tamis-LeMonda, P. Ahuja, B. Hannibal, J.D. Shannon, & M. Spellmann, 2002), and the Synchrony and Control Coding Scheme (J. Mize & G.S. Pettit, 1997). The review will focus on observational coding schemes available to researchers interested a central element of quality parent-child relationships in the early years.

  7. Context-dependent coding and gain control in the auditory system of crickets.

    Science.gov (United States)

    Clemens, Jan; Rau, Florian; Hennig, R Matthias; Hildebrandt, K Jannis

    2015-10-01

    Sensory systems process stimuli that greatly vary in intensity and complexity. To maintain efficient information transmission, neural systems need to adjust their properties to these different sensory contexts, yielding adaptive or stimulus-dependent codes. Here, we demonstrated adaptive spectrotemporal tuning in a small neural network, i.e. the peripheral auditory system of the cricket. We found that tuning of cricket auditory neurons was sharper for complex multi-band than for simple single-band stimuli. Information theoretical considerations revealed that this sharpening improved information transmission by separating the neural representations of individual stimulus components. A network model inspired by the structure of the cricket auditory system suggested two putative mechanisms underlying this adaptive tuning: a saturating peripheral nonlinearity could change the spectral tuning, whereas broad feed-forward inhibition was able to reproduce the observed adaptive sharpening of temporal tuning. Our study revealed a surprisingly dynamic code usually found in more complex nervous systems and suggested that stimulus-dependent codes could be implemented using common neural computations.

  8. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes

    Science.gov (United States)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  9. Rate-adaptive modulation and coding for optical fiber transmission systems

    Science.gov (United States)

    Gho, Gwang-Hyun; Kahn, Joseph M.

    2011-01-01

    Rate-adaptive optical transmission techniques adjust information bit rate based on transmission distance and other factors affecting signal quality. These techniques enable increased bit rates over shorter links, while enabling transmission over longer links when regeneration is not available. They are likely to become more important with increasing network traffic and a continuing evolution toward optically switched mesh networks, which make signal quality more variable. We propose a rate-adaptive scheme using variable-rate forward error correction (FEC) codes and variable constellations with a fixed symbol rate, quantifying how achievable bit rates vary with distance. The scheme uses serially concatenated Reed-Solomon codes and an inner repetition code to vary the code rate, combined with singlecarrier polarization-multiplexed M-ary quadrature amplitude modulation (PM-M-QAM) with variable M and digital coherent detection. A rate adaptation algorithm uses the signal-to-noise ratio (SNR) or the FEC decoder input bit-error ratio (BER) estimated by a receiver to determine the FEC code rate and constellation size that maximizes the information bit rate while satisfying a target FEC decoder output BER and an SNR margin, yielding a peak rate of 200 Gbit/s in a nominal 50-GHz channel bandwidth. We simulate single-channel transmission through a long-haul fiber system incorporating numerous optical switches, evaluating the impact of fiber nonlinearity and bandwidth narrowing. With zero SNR margin, we achieve bit rates of 200/100/50 Gbit/s over distances of 650/2000/3000 km. Compared to an ideal coding scheme, the proposed scheme exhibits a performance gap ranging from about 6.4 dB at 650 km to 7.5 dB at 5000 km.

  10. Constructing quantum error-correcting codes for p^m-state systems from classical error-correcting codes

    OpenAIRE

    Matsumoto, Ryutaroh; Uyematsu, Tomohiko

    1999-01-01

    Comment: 10 pages, LaTeX2e. To appear in IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (ISSN 0916-8508), vol. E83-A, no. 10, Oct. 2000. Revision on Dec. 14, 1999: Added a note on a systematic construction of quantum codes with efficient decoding algorithms. Revision on June 26, 2000: Corrected lots of errors, and added a review on the overall error correction process. No original materials were added

  11. Malicious Code Execution Detection and Response Immune System inspired by the Danger Theory

    CERN Document Server

    Kim, Jungwon; Twycross, Jamie; Aickelin, Uwe

    2010-01-01

    The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.

  12. Prior-to-Secondary School Course Classification System: School Codes for the Exchange of Data (SCED). NFES 2011-801

    Science.gov (United States)

    National Forum on Education Statistics, 2011

    2011-01-01

    In this handbook, "Prior-to-Secondary School Course Classification System: School Codes for the Exchange of Data" (SCED), the National Center for Education Statistics (NCES) and the National Forum on Education Statistics have extended the existing secondary course classification system with codes and descriptions for courses offered at…

  13. Parameter optimization of pulse compression in ultrasound imaging systems with coded excitation.

    Science.gov (United States)

    Behar, Vera; Adam, Dan

    2004-08-01

    A linear array imaging system with coded excitation is considered, where the proposed excitation/compression scheme maximizes the signal-to-noise ratio (SNR) and minimizes sidelobes at the output of the compression filter. A pulse with linear frequency modulation (LFM) is used for coded excitation. The excitation/compression scheme is based on the fast digital mismatched filtering. The parameter optimization of the excitation/compression scheme includes (i) choice of an optimal filtering function for the mismatched filtering; (ii) choice of an optimal window function for tapering of the chirp amplitude; (iii) optimization of a chirp-to-transducer bandwidth ratio; (iv) choice of an appropriate n-bit quantizer. The simulation results show that the excitation/compression scheme can be implemented as a Dolph-Chebyshev filter including amplitude tapering of the chirp with a Lanczos window. An example of such an optimized system is given where the chirp bandwidth is chosen to be 2.5 times the transducer bandwidth and equals 6 MHz: The sidelobes are suppressed to -80 dB, for a central frequency of 4 MHz, and to -94 dB, for a central frequency of 8 MHz. The corresponding improvement of the SNR is 18 and 21 dB, respectively, when compared to a conventional short pulse imaging system. Simulation of B-mode images demonstrates the advantage of coded excitation systems of detecting regions with low contrast.

  14. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  15. Validation of Framework Code Approach to a Life Prediction System for Fiber Reinforced Composites

    Science.gov (United States)

    Gravett, Phillip

    1997-01-01

    The grant was conducted by the MMC Life Prediction Cooperative, an industry/government collaborative team, Ohio Aerospace Institute (OAI) acted as the prime contractor on behalf of the Cooperative for this grant effort. See Figure I for the organization and responsibilities of team members. The technical effort was conducted during the period August 7, 1995 to June 30, 1996 in cooperation with Erwin Zaretsky, the LERC Program Monitor. Phil Gravett of Pratt & Whitney was the principal technical investigator. Table I documents all meeting-related coordination memos during this period. The effort under this grant was closely coordinated with an existing USAF sponsored program focused on putting into practice a life prediction system for turbine engine components made of metal matrix composites (MMC). The overall architecture of the NMC life prediction system was defined in the USAF sponsored program (prior to this grant). The efforts of this grant were focussed on implementing and tailoring of the life prediction system, the framework code within it and the damage modules within it to meet the specific requirements of the Cooperative. T'he tailoring of the life prediction system provides the basis for pervasive and continued use of this capability by the industry/government cooperative. The outputs of this grant are: 1. Definition of the framework code to analysis modules interfaces, 2. Definition of the interface between the materials database and the finite element model, and 3. Definition of the integration of the framework code into an FEM design tool.

  16. Over 10 dB Net Coding Gain Based on 20% Overhead Hard Decision Forward Error Correction in 100G Optical Communication Systems

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Zibar, Darko;

    2011-01-01

    We propose a product code with shortened BCH component codes for 100G optical communication systems. Simulation result shows that 10 dB net coding gain is promising at post- FEC BER of 1E-15.......We propose a product code with shortened BCH component codes for 100G optical communication systems. Simulation result shows that 10 dB net coding gain is promising at post- FEC BER of 1E-15....

  17. Application of the coupled code RELAP5-QUABOX/CUBBOX in the system analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bencik, V.; Feretic, D.; Debrecin, N. [Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2002-11-01

    Best estimate codes and methods for the realistic simulation of operational transients and accidents are being developed in two directions. First, computer codes with models of the interaction between multidimensional neutron kinetic and NPP dynamic behavior enable realistic simulation of transients characterized by strong coupling between neutronics and thermal-hydraulics as well as of transients that result in asymmetrical spatial core power distribution. Coupled codes consisting of a system thermal-hydraulic code and a multidimensional neutronic code are being developed worldwide in order to accomplish that task. Secondly, development of the qualified plant nodalization and of the models of plant protection and control systems is important for the realistic system analysis of operational transients and accidents. Comparison of the coupled code and point kinetic results is important for the validation of the coupled code and to gain more experience in the use of the coupled code in realistic analyses. In this paper the results of two transients for NPP Krsko using the coupled code RELAP5-QUABOX/CUBBOX (R5QC) and RELAP5 stand alone code are discussed. (orig.)

  18. Stiefel Manifold and TCQ based on Unit Memory Coding for MIMO System

    Directory of Open Access Journals (Sweden)

    Vijey Thayananthan

    2014-02-01

    Full Text Available The Multi Input and Multi Output (MIMO systems have been analyzed with a number of quantization techniques. In this short communication, few problems like performance and accuracy are investigated through a quantization technique based on Stiefel Manifold (SM. In order to improve these problems, suitable Trellis Coded Quantization (TCQ based on Unit Memory (UM coding is studied and applied to SM of MIMO components as a novel approach. Anticipated results are the bit error performance which is an overall improvement of feedback connected between transmitter and receiver of MIMO. As a conclusion, this research not only reduces the quantization problems on SM but also improve the performance and accuracy of limited-rate feedback used in MIMO system.

  19. Measurements with Pinhole and Coded Aperture Gamma-Ray Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Solodov, Alexander A [ORNL; Abdul-Jabbar, Najeb M [ORNL; Hayward, Jason P [ORNL; Ziock, Klaus-Peter [ORNL

    2010-01-01

    From a safeguards perspective, gamma-ray imaging has the potential to reduce manpower and cost for effectively locating and monitoring special nuclear material. The purpose of this project was to investigate the performance of pinhole and coded aperture gamma-ray imaging systems at Oak Ridge National Laboratory (ORNL). With the aid of the European Commission Joint Research Centre (JRC), radiometric data will be combined with scans from a three-dimensional design information verification (3D-DIV) system. Measurements were performed at the ORNL Safeguards Laboratory using sources that model holdup in radiological facilities. They showed that for situations with moderate amounts of solid or dense U sources, the coded aperture was able to predict source location and geometry within ~7% of actual values while the pinhole gave a broad representation of source distributions

  20. Modular Python-based Code for Thomson Scattering System on NSTX-U

    Science.gov (United States)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  1. Moving object detection method using H.263 video coded data for remote surveillance systems

    Science.gov (United States)

    Kohno, Atsushi; Hata, Toshihiko; Ozaki, Minoru

    1998-12-01

    This paper describes a moving object detection method using H.263 coded data. For video surveillance systems, it is necessary to detect unusual states because there are a lot of cameras in the system and video surveillance is tedious in normal states. We examine the information extracted from H.263 coded data and propose a method of detecting alarm events from that information. Our method consists of two steps. In the first step, using motion vector information, a moving object can be detected based on the vector's size and the similarities between the vectors in one frame and the two adjoining frames. In the second step, using DCT coefficients, the detection errors caused by the change of the luminous intensity can be eliminated based on the characteristics of the H.263's DCT coefficients. Thus moving objects are detected by analyzing the motion vectors and DCT coefficients, and we present some experimental results that show the effectiveness of our method.

  2. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    Science.gov (United States)

    Chen, Y. S.

    1986-03-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  3. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  4. Validity of the Child Facial Coding System for the Assessment of Acute Pain in Children With Cerebral Palsy.

    Science.gov (United States)

    Hadden, Kellie L; LeFort, Sandra; O'Brien, Michelle; Coyte, Peter C; Guerriere, Denise N

    2016-04-01

    The purpose of the current study was to examine the concurrent and discriminant validity of the Child Facial Coding System for children with cerebral palsy. Eighty-five children (mean = 8.35 years, SD = 4.72 years) were videotaped during a passive joint stretch with their physiotherapist and during 3 time segments: baseline, passive joint stretch, and recovery. Children's pain responses were rated from videotape using the Numerical Rating Scale and Child Facial Coding System. Results indicated that Child Facial Coding System scores during the passive joint stretch significantly correlated with Numerical Rating Scale scores (r = .72, P Child Facial Coding System scores were also significantly higher during the passive joint stretch than the baseline and recovery segments (P Child Facial Coding System is a valid method of identifying pain in children with cerebral palsy.

  5. Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Rida El Chall

    2016-01-01

    Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.

  6. Reliability studies of incident coding systems in high hazard industries: A narrative review of study methodology.

    Science.gov (United States)

    Olsen, Nikki S

    2013-03-01

    This paper reviews the current literature on incident coding system reliability and discusses the methods applied in the conduct and measurement of reliability. The search strategy targeted three electronic databases using a list of search terms and the results were examined for relevance, including any additional relevant articles from the bibliographies. Twenty five papers met the relevance criteria and their methods are discussed. Disagreements in the selection of methods between reliability researchers are highlighted as are the effects of method selection on the outcome of the trials. The review provides evidence that the meaningfulness of and confidence in results is directly affected by the methodologies employed by the researcher during the preparation, conduct and analysis of the reliability study. Furthermore, the review highlights the heterogeneity of methodologies employed by researchers measuring reliability of incident coding techniques, reducing the ability to critically compare and appraise techniques being considered for the adoption of report coding and trend analysis by client organisations. It is recommended that future research focuses on the standardisation of reliability research and measurement within the incident coding domain.

  7. Development of An Automatic Verification Program for Thermal-hydraulic System Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Ahn, K. T.; Ko, S. H.; Kim, Y. S.; Kim, D. W. [Pusan National University, Busan (Korea, Republic of); Suh, J. S.; Cho, Y. S.; Jeong, J. J. [System Engineering and Technology Co., Daejeon (Korea, Republic of)

    2012-05-15

    As a project activity of the capstone design competitive exhibition, supported by the Education Center for Green Industry-friendly Fusion Technology (GIFT), we have developed a computer program which can automatically perform non-regression test, which is needed repeatedly during a developmental process of a thermal-hydraulic system code, such as the SPACE code. A non-regression test (NRT) is an approach to software testing. The purpose of the non-regression testing is to verify whether, after updating a given software application (in this case, the code), previous software functions have not been compromised. The goal is to prevent software regression, whereby adding new features results in software bugs. As the NRT is performed repeatedly, a lot of time and human resources will be needed during the development period of a code. It may cause development period delay. To reduce the cost and the human resources and to prevent wasting time, non-regression tests need to be automatized. As a tool to develop an automatic verification program, we have used Visual Basic for Application (VBA). VBA is an implementation of Microsoft's event-driven programming language Visual Basic 6 and its associated integrated development environment, which are built into most Microsoft Office applications (In this case, Excel)

  8. A dynamical systems proof of Kraft-McMillan inequality and its converse for prefix-free codes

    Science.gov (United States)

    Nagaraj, Nithin

    2009-03-01

    Uniquely decodable codes are central to lossless data compression in both classical and quantum communication systems. The Kraft-McMillan inequality is a basic result in information theory which gives a necessary and sufficient condition for a code to be uniquely decodable and also has a quantum analogue. In this letter, we provide a novel dynamical systems proof of this inequality and its converse for prefix-free codes (no codeword is a prefix of another—the popular Huffman codes are an example). For constrained sources, the problem is still open.

  9. Detection and reconstruction of error control codes for engineered and biological regulatory systems.

    Energy Technology Data Exchange (ETDEWEB)

    May, Elebeoba Eni; Rintoul, Mark Daniel; Johnston, Anna Marie; Pryor, Richard J.; Hart, William Eugene; Watson, Jean-Paul

    2003-10-01

    A fundamental challenge for all communication systems, engineered or living, is the problem of achieving efficient, secure, and error-free communication over noisy channels. Information theoretic principals have been used to develop effective coding theory algorithms to successfully transmit information in engineering systems. Living systems also successfully transmit biological information through genetic processes such as replication, transcription, and translation, where the genome of an organism is the contents of the transmission. Decoding of received bit streams is fairly straightforward when the channel encoding algorithms are efficient and known. If the encoding scheme is unknown or part of the data is missing or intercepted, how would one design a viable decoder for the received transmission? For such systems blind reconstruction of the encoding/decoding system would be a vital step in recovering the original message. Communication engineers may not frequently encounter this situation, but for computational biologists and biotechnologist this is an immediate challenge. The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder system for engineered and biological data. Building on Sandia's strengths in discrete mathematics, algorithms, and communication theory, we use linear programming and will use evolutionary computing techniques to construct efficient algorithms for modeling the coding system for minimally errored engineered data stream and genomic regulatory DNA and RNA sequences. The objective for the initial phase of this project is to construct solid parallels between biological literature and fundamental elements of communication theory. In this light, the milestones for FY2003 were focused on defining genetic channel characteristics and providing an initial approximation for key parameters, including coding rate, memory length, and minimum distance values. A secondary objective addressed the question of

  10. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  11. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    Science.gov (United States)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  12. Outdoor Stand-Off Interrogation of Fissionable Material with a Hybrid Coded Imaging System

    Science.gov (United States)

    2013-06-01

    OUTDOOR STAND-OFF INTERROGATION OF FISSIONABLE MATERIAL WITH A HYBRID CODED IMAGING SYSTEM  A.L. Hutcheson  , B.F. Phlips, E.A. Wulf ...of the Hermes-III gamma ray simulator,” in Pulsed Power Conference, 1989. 7 th , 1898, p. 26. [5] E.A. Wulf , A.L. Hutcheson, B.F. Phlips, L.J

  13. Two Schemes of Blind MMSE Multiuser Receiver for Space-Time Coded CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    LU Min; XU Chang-jiang; FENG Guang-zeng

    2004-01-01

    Minimum Mean Square Error (MMSE) multiuser detection yields the highest output SINR among all linear detectors. The blind MMSE linear detector can be implemented with batch processes or sequential processes. In this paper, according to the different implementations of blind detectors, the authors analyze two schemes of the blind MMSE multiuser receiver for space-time coded CDMA Systems and make a comparison between both schemes by the theoretical analysis and numerical simulations.

  14. V. S. O. P. ('94) Computer Code System for Reactor Physics and Fuel Cycle Simulation

    OpenAIRE

    Teuchert, E.; Haas, K. A.; Rütten, H. J.; Brockmann, Hans; Gerwin, Helmut; Ohlig, U.; Scherer, Winfried

    1994-01-01

    V. S. O. P. ('Very Superior Old Programs) is a system of codes lurked together for the simulationof reactor life histories and temporary in-depth research. In comprises neutron cross sectionlibraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculationwith depletion and shut-down features, in-core and out-of--pile fuel management, fuel cyclecost analysis, and thermal hydraulics (at present restricted to 's). Various techniques havebeen employed to accelerat...

  15. V. S. O. P. - Computer Code System for Reactor Physics and Fuel Cycle Simulation

    OpenAIRE

    Teuchert, E.; Hansen, U.; Haas, K. A.

    1980-01-01

    V .S .O .P . (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprisesneutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based onneutron flux synthesis with depletion and shut-down features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employe...

  16. An Alternative Coding System Defining the Total and Severity of Wear

    Science.gov (United States)

    1996-04-01

    of fluid which may be retated to the severity of wear that has occurred in the sampled machine. A 20 to 30ml plastic bottle provides an adequate...University of Wales Swansea Abstract: A ferrous debris monitor is described which is capable of measuring the concentration of ferrous wear debris ...suspended in a lubricant and the severity of wear associated with particle size of this suspended debris . A coding system is proposed : PQ index(total

  17. Multi-Antenna OFDM System Using Coded Wavelet with Weighted Beamforming

    OpenAIRE

    K. Anoh; Asif, R.; R. Abd-Alhameed; Rodriguez, J.; J. M. Noras; S.M.R. Jones; Hussaini, A.S.

    2014-01-01

    A major drawback in deploying beamforming scheme in orthogonal frequency division multiplexing (OFDM) is to obtain the optimal weights that are associated with information beams. Two beam weighting methods, namely co-phasing and singular vector decomposition (SVD), are considered to maximize the signal beams for such beamforming scheme. Initially the system performance with and without interleaving is investigated using coded fast Fourier transform (FFT)-OFDM and wavelet-based OFDM. The two...

  18. Migration to the ICD-10 coding system: A primer for spine surgeons (Part 1

    Directory of Open Access Journals (Sweden)

    Gazanfar Rahmathulla

    2014-01-01

    Full Text Available Background: On 1 October 2015, a new federally mandated system goes into effect requiring the replacement of the International Classification of Disease-version 9-Clinical Modification (ICD-9-CM with ICD-10-CM. These codes are required to be used for reimbursement and to substantiate medical necessity. ICD-10 is composite with as many as 141,000 codes, an increase of 712% when compared to ICD-9. Methods: Execution of the ICD-10 system will require significant changes in the clinical administrative and hospital-based practices. Through the transition, diminished productivity and practice revenue can be anticipated, the impacts of which the spine surgeon can minimizeby appropriate education and planning. Results: The advantages of the new system include increased clarity and more accurate definitions reflecting patient condition, information relevant to ambulatory and managed care encounters, expanded injury codes, laterality, specificity, precise data for safety and compliance reporting, data mining for research, and finally, enabling pay-for-performance programs. The disadvantages include the cost per physician, training administrative staff, revenue loss during the learning curve, confusion, the need to upgrade hardware along with software, and overall expense to the healthcare system. Conclusions: With the deadline rapidly approaching, gaps in implementation result in delayed billing, delayed or diminished reimbursements, and absence of quality and outcomes data. It is thereby essential for spine surgeons to understand their role in transitioning to this new environment. Part I of this article discusses the background, coding changes, and costs as well as reviews the salient features of ICD-10 in spine surgery

  19. Modeling of Vector Quantization Image Coding in an Ant Colony System

    Institute of Scientific and Technical Information of China (English)

    LIXia; LUOXuehui; ZHANGJihong

    2004-01-01

    Ant colony algorithm is a newly emerged stochastic searching optimization algorithm in recent years. In this paper, vector quantization image coding is modeled as a stochastic optimization problem in an Ant colony system (ACS). An appropriately adapted ant colony algorithm is proposed for vector quantization codebook design. Experimental results show that the ACS-based algorithm can produce a better codebook and the improvement of Pixel signal-to-noise ratio (PSNR) exceeds 1dB compared with the conventional LBG algorithm.

  20. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    Science.gov (United States)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  1. MATHEMATICAL FRAMEWORK FOR THE ANALYSIS OF DYNAMC STOCHASTIC SYSTEMS WITH THE RAVEN CODE

    Energy Technology Data Exchange (ETDEWEB)

    C. Rabiti; D. Mandelli; J. Cogliati; R. Kinoshita

    2013-05-01

    RAVEN (Reactor Analysis and Virtual control Environment) is a software code under development at Idaho National Laboratory aimed at performing probabilistic risk assessment and uncertainty quantification using RELAP-7, for which it acts also as a simulation controller. In this paper we will present the equations characterizing a dynamic stochastic system and we will then discuss the behavior of each stochastic term and how it is accounted for in the RAVEN software design. Moreover we will present preliminary results of the implementation.

  2. ELCOS: the PSI code system for LWR core analysis. Part II: user`s manual for the fuel assembly code BOXER

    Energy Technology Data Exchange (ETDEWEB)

    Paratte, J.M.; Grimm, P.; Hollard, J.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user`s manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs.

  3. Implementation and verification of a HELIAS module for the systems code PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany); Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J. [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany); Kemp, R.; Knight, P. [Culham Centre for Fusion Energy, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Schauer, F.; Turkin, Y. [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany); Ward, D. [Culham Centre for Fusion Energy, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Wolf, R.; Xanthopoulos, P. [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany)

    2015-10-15

    Highlights: • The implementation of a HELIAS module in the systems code PROCESS is discussed. • Verification w.r.t. W7-X and its performance predictions yields very good agreement. • The generality of the HELIAS models allows with minor adaption's the modeling of tokamaks. • Verification with respect to a tokamak DEMO test case shows very good agreement. - Abstract: In order to study design points of next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. The code package PROCESS is such a tool, widely used for tokamak systems studies. In this work, the implementation and verification of a HELIAS module into PROCESS is addressed. These HELIAS models include: a plasma geometry model based on Fourier coefficients, a basic island divertor model, as well as a coil model which combines scaling aspects based on the Helias 5-B reactor design in combination with analytic inductance and field calculations. The models are verified firstly with respect to W7-X. Secondly, the generality of the models is used to represent the tokamak which is compared against the original tokamak PROCESS models using a DEMO design as reference case. Both approaches show very good agreement.

  4. A Coded Aperture Compressive Imaging Array and Its Visual Detection and Tracking Algorithms for Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Hanxiao Wu

    2012-10-01

    Full Text Available In this paper, we propose an application of a compressive imaging system to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system is proposed to reduce the needed high resolution coded mask requirements and facilitate the storage of the projection matrix. Random Gaussian, Toeplitz and binary phase coded masks are utilized to obtain the compressive sensing images. The corresponding motion targets detection and tracking algorithms directly using the compressive sampling images are developed. A mixture of Gaussian distribution is applied in the compressive image space to model the background image and for foreground detection. For each motion target in the compressive sampling domain, a compressive feature dictionary spanned by target templates and noises templates is sparsely represented. An l1 optimization algorithm is used to solve the sparse coefficient of templates. Experimental results demonstrate that low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz phase mask, motion detection algorithms using a random binary phase mask can yield better detection results. However using random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed image. Our tracking algorithm can achieve a real time speed that is up to 10 times faster than that of the l1 tracker without any optimization.

  5. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    Science.gov (United States)

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.

  6. PERFORMANCE EVALUATION OF TURBO CODED OFDM SYSTEMS AND APPLICATION OF TURBO DECODING FOR IMPULSIVE CHANNEL

    Directory of Open Access Journals (Sweden)

    Savitha H. M.

    2010-09-01

    Full Text Available A comparison of the performance of hard and soft-decision turbo coded Orthogonal Frequency Division Multiplexing systems with Quadrature Phase Shift Keying (QPSK and 16-Quadrature Amplitude Modulation (16-QAM is considered in the first section of this paper. The results show that the soft-decision method greatly outperforms the hard-decision method. The complexity of the demapper is reduced with the use of simplified algorithm for 16-QAM demapping. In the later part of the paper, we consider the transmission of data over additive white class A noise (AWAN channel, using turbo coded QPSK and 16-QAM systems. We propose a novel turbo decoding scheme for AWAN channel. Also we compare the performance of turbo coded systems with QPSK and 16-QAM on AWAN channel with two different channel values- one computed as per additive white Gaussian noise (AWGN channel conditions and the other as per AWAN channel conditions. The results show that the use of appropriate channel value in turbo decoding helps to combat the impulsive noise more effectively. The proposed model for AWAN channel exhibits comparable Bit error rate (BER performance as compared to AWGN channel.

  7. Optimization technique of wavefront coding system based on ZEMAX externally compiled programs

    Science.gov (United States)

    Han, Libo; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2016-10-01

    Wavefront coding technique as a means of athermalization applied to infrared imaging system, the design of phase plate is the key to system performance. This paper apply the externally compiled programs of ZEMAX to the optimization of phase mask in the normal optical design process, namely defining the evaluation function of wavefront coding system based on the consistency of modulation transfer function (MTF) and improving the speed of optimization by means of the introduction of the mathematical software. User write an external program which computes the evaluation function on account of the powerful computing feature of the mathematical software in order to find the optimal parameters of phase mask, and accelerate convergence through generic algorithm (GA), then use dynamic data exchange (DDE) interface between ZEMAX and mathematical software to realize high-speed data exchanging. The optimization of the rotational symmetric phase mask and the cubic phase mask have been completed by this method, the depth of focus increases nearly 3 times by inserting the rotational symmetric phase mask, while the other system with cubic phase mask can be increased to 10 times, the consistency of MTF decrease obviously, the maximum operating temperature of optimized system range between -40°-60°. Results show that this optimization method can be more convenient to define some unconventional optimization goals and fleetly to optimize optical system with special properties due to its externally compiled function and DDE, there will be greater significance for the optimization of unconventional optical system.

  8. Improving the detection task performance of a LWIR imaging system through the use of wavefront coding

    Science.gov (United States)

    Gross, Kevin A.; Kubala, Kenny

    2007-04-01

    In a traditional optical system the imaging performance is maximized at a single point in the operational space. This characteristic leads to maximizing the probability of detection if the object is on axis, at the designed conjugate, with the designed operational temperature and if the system components are manufactured without error in form and alignment. Due to the many factors that influence the system's image quality the probability of detection will decrease away from this peak value. An infrared imaging system is presented that statistically creates a higher probability of detection over the complete operational space for the Hotelling observer. The system is enabled through the use of wavefront coding, a computational imaging technology in which optics, mechanics, detection and signal processing are combined to enable LWIR imaging systems to be realized with detection task performance that is difficult or impossible to obtain in the optical domain alone. The basic principles of statistical decision theory will be presented along with a specific example of how wavefront coding technology can enable improved performance and reduced sensitivity to some of the fundamental constraints inherent in LWIR systems.

  9. Development of a tritium transport analysis code for the LMFBR system

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki; Torii, Tatsuo [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan)

    2001-03-01

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  10. Synchronization of MIMO OFDM systems by perfect complete generalized complementary orthogonal loosely synchronous code groups

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; YANG Xun; LI Dao-ben

    2009-01-01

    This article proposes a time/frequency synchronization algorithm in the multiple input multiple output (MIMO) systems, in which the perfect complete generalized complementary orthogonal loosely synchronous code groups are used as the synchronization sequence. The synchronization algorithm is divided into four stages: 1) synchronization in time domain by signal autocorrelation; 2) synchronization in frequency domain by fast Fourier transform (FFT); 3) multipath dissociation using coherent detection and fine time synchronization; 4) fine frequency offset estimation by phase rotation. As per the perfect complete generalized complementary orthogonal loosely synchronous code groups, the cross-correlation and out-of-phase auto-correlation for any relative shift between any two codes is always zero. This ideal property makes the time/frequency synchronization algorithm simple and efficient. The simulation results show that even in the multipath fast fading channel with low signal noise ratio (SNR), the MIMO system can get synchronized both in the time domain and frequency domain with high stability and reliability.

  11. Chiefly Symmetric: Results on the Scalability of Probabilistic Model Checking for Operating-System Code

    Directory of Open Access Journals (Sweden)

    Marcus Völp

    2012-11-01

    Full Text Available Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.

  12. FPGA-based LDPC-coded APSK for optical communication systems.

    Science.gov (United States)

    Zou, Ding; Lin, Changyu; Djordjevic, Ivan B

    2017-02-20

    In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.

  13. Psychometric properties of the Motivational Interviewing Treatment Integrity coding system 4.2 with jail inmates.

    Science.gov (United States)

    Owens, Mandy D; Rowell, Lauren N; Moyers, Theresa

    2017-10-01

    Motivational Interviewing (MI) is an evidence-based approach shown to be helpful for a variety of behaviors across many populations. Treatment fidelity is an important tool for understanding how and with whom MI may be most helpful. The Motivational Interviewing Treatment Integrity coding system was recently updated to incorporate new developments in the research and theory of MI, including the relational and technical hypotheses of MI (MITI 4.2). To date, no studies have examined the MITI 4.2 with forensic populations. In this project, twenty-two brief MI interventions with jail inmates were evaluated to test the reliability of the MITI 4.2. Validity of the instrument was explored using regression models to examine the associations between global scores (Empathy, Partnership, Cultivating Change Talk and Softening Sustain Talk) and outcomes. Reliability of this coding system with these data was strong. We found that therapists had lower ratings of Empathy with participants who had more extensive criminal histories. Both Relational and Technical global scores were associated with criminal histories as well as post-intervention ratings of motivation to decrease drug use. Findings indicate that the MITI 4.2 was reliable for coding sessions with jail inmates. Additionally, results provided information related to the relational and technical hypotheses of MI. Future studies can use the MITI 4.2 to better understand the mechanisms behind how MI works with this high-risk group. Published by Elsevier Ltd.

  14. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  15. Analysis and Simulation for Capacity of Time Division-Synchronous Code Division Multiple Access System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Capacity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access)system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplinkand the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed.Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysisand simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2kspeech service is given.

  16. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-12-23

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC. In addition, we propose an adaptive MLSTBC schemes that are capable of accommodating the channel signal-to-noise ratio variation of wireless systems by near instantaneously adapting the uplink transmission configuration. The main results demonstrate that significant effective throughput improvements can be achieved while maintaining a certain target bit error rate.

  17. SOFTICE: Facilitating both Adoption of Linux Undergraduate Operating Systems Laboratories and Students' Immersion in Kernel Code

    Directory of Open Access Journals (Sweden)

    Alessio Gaspar

    2007-06-01

    Full Text Available This paper discusses how Linux clustering and virtual machine technologies can improve undergraduate students' hands-on experience in operating systems laboratories. Like similar projects, SOFTICE relies on User Mode Linux (UML to provide students with privileged access to a Linux system without creating security breaches on the hosting network. We extend such approaches in two aspects. First, we propose to facilitate adoption of Linux-based laboratories by using a load-balancing cluster made of recycled classroom PCs to remotely serve access to virtual machines. Secondly, we propose a new approach for students to interact with the kernel code.

  18. SOFTICE: Facilitating both Adoption of Linux Undergraduate Operating Systems Laboratories and Students' Immersion in Kernel Code

    Directory of Open Access Journals (Sweden)

    Alessio Gaspar

    2007-06-01

    Full Text Available This paper discusses how Linux clustering and virtual machine technologies can improve undergraduate students' hands-on experience in operating systems laboratories. Like similar projects, SOFTICE relies on User Mode Linux (UML to provide students with privileged access to a Linux system without creating security breaches on the hosting network. We extend such approaches in two aspects. First, we propose to facilitate adoption of Linux-based laboratories by using a load-balancing cluster made of recycled classroom PCs to remotely serve access to virtual machines. Secondly, we propose a new approach for students to interact with the kernel code.

  19. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  20. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  1. The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems

    Science.gov (United States)

    Nelson, W. R.; Namito, Yoshihito

    1990-03-01

    In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.

  2. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  3. Model Children's Code.

    Science.gov (United States)

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  4. CONTROL STRATEGY FOR ELECTROHYDRAULIC POSITION SERVO SYSTEM WITH GENERALIZED PULSE CODE MODULATION

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; PAN Huachen; CHEN Ying

    2007-01-01

    A hybrid control strategy has been designed and developed for the electro-hydraulic position servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and experimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good performances, and the servo control is carried out with GPCM through on-offvalves.

  5. Development of Attendance Database System Using Bar-coded Student Card

    Directory of Open Access Journals (Sweden)

    Abdul Fadlil

    2008-04-01

    Full Text Available The calculation of the level of attendance is very important, because one indicator of a person's credibility can be seen from the level of attendance. For example, at a university, data about the level of attendance of a student in a lecture is very important as one of components in the assessment. The manual presence system is considered less effective. This research presents the draft of presence system using bar codes (barcodes as input data representing the attendance. The presence system is supported by three main components, those are a bar code found on the student card (KTM, a CCD barcode scanner series and a CD-108E computer. Management of attendance list using this system allows for optimization of functions of KTM. The presence system has been tested with several KTM through a variety of distances and positions of the barcode scanner barcode. The test results is obtained at ideal position for reading a barcode when a barcode scanner is at 2 cm from the object with 90 degree. At this position the level of accuracy reach 100%.

  6. Performance Evaluation at the System Level of Reconfigurable Space-Time Coding Techniques for HSDPA

    Directory of Open Access Journals (Sweden)

    Alexiou Angeliki

    2005-01-01

    Full Text Available A reconfigurable space-time coding technique is investigated, for a high-speed downlink packet access multiple-antenna network, which combats the effects of antenna correlation. Reconfigurability is achieved at the link level by introducing a linear precoder in a space-time block coded system. The technique assumes knowledge of the long-term characteristics of the channel, namely the channel correlation matrix at the transmitter. The benefits of the proposed reconfigurable technique as compared to the conventional non-reconfigurable versions are evaluated via system-level simulations. In order to characterize the system-level performance accurately and, at the same time, use a feasible approach in terms of computational complexity, a suitable link-to-system interface has been developed. The average system throughput and the number of satisfied users are the performance metrics of interest. Simulation results demonstrate the performance enhancements achieved by the application of reconfigurable techniques as compared to their conventional counterparts.

  7. Improvements in the Monte Carlo code for simulating 4πβ(PC)-γ coincidence system measurements

    Science.gov (United States)

    Dias, M. S.; Takeda, M. N.; Toledo, F.; Brancaccio, F.; Tongu, M. L. O.; Koskinas, M. F.

    2013-01-01

    A Monte Carlo simulation code known as ESQUEMA has been developed by the Nuclear Metrology Laboratory (Laboratório de Metrologia Nuclear-LMN) in the Nuclear and Energy Research Institute (Instituto de Pesquisas Energéticas e Nucleares-IPEN) to be used as a benchmark for radionuclide standardization. The early version of this code simulated only β-γ and ec-γ emitters with reasonably high electron and X-ray energies. To extend the code to include other radionuclides and enable the code to be applied to software coincidence counting systems, several improvements have been made and are presented in this work.

  8. DEVELOPMENT OF A COMPUTER PROGRAM TO SUPPORT AN EFFICIENT NON-REGRESSION TEST OF A THERMAL-HYDRAULIC SYSTEM CODE

    Directory of Open Access Journals (Sweden)

    JUN YEOB LEE

    2014-10-01

    Full Text Available During the development process of a thermal-hydraulic system code, a non-regression test (NRT must be performed repeatedly in order to prevent software regression. The NRT process, however, is time-consuming and labor-intensive. Thus, automation of this process is an ideal solution. In this study, we have developed a program to support an efficient NRT for the SPACE code and demonstrated its usability. This results in a high degree of efficiency for code development. The program was developed using the Visual Basic for Applications and designed so that it can be easily customized for the NRT of other computer codes.

  9. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo [and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  10. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (porting). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo; Tanabe, Hidenobu [and others

    1998-01-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the porting. In this porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. (author)

  11. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (parallelization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hideo; Kawai, Wataru; Nemoto, Toshiyuki [Fujitsu Ltd., Tokyo (Japan)] [and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the parallelization. In this parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. In the vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  12. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...MultiCore Systems 5a. CONTRACT NUMBER FA8655-12-1-2021 5b. GRANT NUMBER Grant 12-2021 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...code for Heterogeneous multicore systems . The approach was based on the OmpSs programming model and the performance tools that constitute two strategic

  13. The Body Action Coding System II: Muscle activations during the perception and expression of emotion

    Directory of Open Access Journals (Sweden)

    Elisabeth M.J. Huis in 't Veld

    2014-09-01

    Full Text Available Research into the expression and perception of emotions has mostly focused on facial expressions. Recently, body postures have become increasingly important in research, but knowledge on muscle activity during the perception or expression of emotion is lacking. The current study continues the development of a Body Action Coding System (BACS, which was initiated in a previous study, and described the involvement of muscles in the neck, shoulders and arms during expression of fear and anger. The current study expands the BACS by assessing the activity patterns of three additional muscles. Surface electromyography of muscles in the neck (upper trapezius descendens, forearms (extensor carpi ulnaris, lower back (erector spinae longissimus and calves (peroneus longus were measured during active expression and passive viewing of fearful and angry body expressions. The muscles in the forearm were strongly active for anger expression and to a lesser extent for fear expression. In contrast, muscles in the calves were recruited slightly more for fearful expressions. It was also found that muscles automatically responded to the perception of emotion, without any overt movement. The observer’s forearms responded to the perception of fear, while the muscles used for leaning backwards were activated when faced with an angry adversary. Lastly, the calf responded immediately when a fearful person was seen, but responded slower to anger. There is increasing interest in developing systems that are able to create or recognize emotional body language for the development of avatars, robots, and online environments. To that end, multiple coding systems have been developed that can either interpret or create bodily expressions based on static postures, motion capture data or videos. However, the BACS is the first coding system based on muscle activity.

  14. The Body Action Coding System II: muscle activations during the perception and expression of emotion.

    Science.gov (United States)

    Huis In 't Veld, Elisabeth M J; van Boxtel, Geert J M; de Gelder, Beatrice

    2014-01-01

    Research into the expression and perception of emotions has mostly focused on facial expressions. Recently, body postures have become increasingly important in research, but knowledge on muscle activity during the perception or expression of emotion is lacking. The current study continues the development of a Body Action Coding System (BACS), which was initiated in a previous study, and described the involvement of muscles in the neck, shoulders and arms during expression of fear and anger. The current study expands the BACS by assessing the activity patterns of three additional muscles. Surface electromyography of muscles in the neck (upper trapezius descendens), forearms (extensor carpi ulnaris), lower back (erector spinae longissimus) and calves (peroneus longus) were measured during active expression and passive viewing of fearful and angry body expressions. The muscles in the forearm were strongly active for anger expression and to a lesser extent for fear expression. In contrast, muscles in the calves were recruited slightly more for fearful expressions. It was also found that muscles automatically responded to the perception of emotion, without any overt movement. The observer's forearms responded to the perception of fear, while the muscles used for leaning backwards were activated when faced with an angry adversary. Lastly, the calf responded immediately when a fearful person was seen, but responded slower to anger. There is increasing interest in developing systems that are able to create or recognize emotional body language for the development of avatars, robots, and online environments. To that end, multiple coding systems have been developed that can either interpret or create bodily expressions based on static postures, motion capture data or videos. However, the BACS is the first coding system based on muscle activity.

  15. On the implementation of new technology modules for fusion reactor systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Franza, F., E-mail: fabrizio.franza@kit.edu [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Boccaccini, L.V.; Fisher, U. [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Gade, P.V.; Heller, R. [Institute for Technical Physics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany)

    2015-10-15

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  16. Coding the Beams: Improving Beamforming Training in mmWave Communication System

    CERN Document Server

    Tsang, Y Ming; Addepalli, Sateesh

    2011-01-01

    The mmWave communication system is operating at a regime with high number of antennas and very limited number of RF analog chains. Large number of antennas are used to extend the communication range for recovering the high path loss while fewer RF analog chains are designed to reduce transmit and processing power and hardware complexity. In this regime, typical MIMO algorithms are not applicable. Before any communication starts, devices are needed to align their beam pointing angles towards each other. An efficient searching protocol to obtain the best beam angle pair is therefore needed. It is called BeamForming (BF) training protocol. This paper presents a fast BF training protocol called beam coding. Each beam angle is assigned unique signature code. By coding multiple beam angles and steering at their angles simultaneously in a training packet, the best beam angle pair can be obtained in a few packets. This faster BF training protocol not only shows the robustness in non-line-of-sight, multi-user and movi...

  17. An asynchronous writing method for restart files in the gysela code in prevision of exascale systems*

    Directory of Open Access Journals (Sweden)

    Thomine O.

    2013-12-01

    Full Text Available The present work deals with an optimization procedure developed in the full-f global GYrokinetic SEmi-LAgrangian code (GYSELA. Optimizing the writing of the restart files is necessary to reduce the computing impact of crashes. These files require a very large memory space, and particularly so for very large mesh sizes. The limited bandwidth of the data pipe between the comput- ing nodes and the storage system induces a non-scalable part in the GYSELA code, which increases with the mesh size. Indeed the transfer time of RAM to data depends linearly on the files size. The necessity of non synchronized writing-in-file procedure is therefore crucial. A new GYSELA module has been developed. This asynchronous procedure allows the frequent writ- ing of the restart files, whilst preventing a severe slowing down due to the limited writing bandwidth. This method has been improved to generate a checksum control of the restart files, and automatically rerun the code in case of a crash for any cause.

  18. Novel 2D-sequential color code system employing Image Sensor Communications for Optical Wireless Communications

    Directory of Open Access Journals (Sweden)

    Trang Nguyen

    2016-06-01

    Full Text Available The IEEE 802.15.7r1 Optical Wireless Communications Task Group (TG7r1, also known as the revision of the IEEE 802.15.7 Visible Light Communication standard targeting the commercial usage of visible light communication systems, is of interest in this paper. The paper is mainly concerned with Image Sensor Communications (ISC of TG7r1; however, the major challenge facing ISC, as addressed in the Technical Consideration Document (TCD of TG7r1, is Image Sensor Compatibility among the variety of different commercial cameras on the market. One of the most challenging but interesting compatibility requirements is the need to support the verified presence of frame rate variation. This paper proposes a novel design for 2D-sequential color code. Compared to a QR-code-based sequential transmission, the proposed design of 2D-sequential code can overcome the above challenge that it is compatible with different frame rate variations and different shutter operations, and has the ability to mitigate the rolling effect as well as the rotating effect while effectively minimizing transmission overhead. Practical implementations are demonstrated and a performance comparison is presented.

  19. Using wavefront coding technique as an optical encryption system: reliability analysis and vulnerabilities assessment

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.

  20. Dose estimation in space using the Particle and Heavy-Ion Transport code System (PHITS)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Katarina

    2009-06-15

    The radiation risks in space are well known, but work still needs to be done in order to fully understand the radiation effects on humans and how to minimize the risks especially now when the activity in space is increasing with plans for missions to the Moon and Mars. One goal is to develop transport codes that can estimate the radiation environment and its effects. These would be useful tools for reducing the radiation effects when designing and planning space missions. The Particle and Heavy-Ion Transport code System, PHITS, is a three dimensional Monte Carlo code with great possibilities to perform radiation transport calculations and estimating radiation exposure such as absorbed dose, equivalent dose and dose equivalent. Therefore a benchmarking with experiments performed at the ISS was done and also an estimation of different material's influences on the shielding was made. The simulated results already agree reasonable with the measurements, but can most likely be significantly improved when more realistic shielding geometries will be used. This indicates that PHITS is a useful tool for estimating radiation risks for humans in space and when designing shielding of space crafts

  1. Validation of a multidimensional deterministic nuclear data sensitivity and uncertainty code system: an application needing supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Bidaud, A.; Mastrangelo, V. [Conservatoire National des Arts et Metiers, Laboratoire de Physique (CNAM), 75 - Paris (France); Institut de Physique Nucleaire (IN2P3/CNRS) 91 - Orsay (France); Kodeli, I.; Sartori, E. [OECD NEA Data Bank, 92 - Issy les Moulineaux (France)

    2003-07-01

    The quality of nuclear core modelling is linked to the quality of basic nuclear data such as probability of reaction (i.e. cross sections) between neutrons and the nucleus of the core materials. Perturbation Theory, whose applications in nuclear science has been largely developed in the sixties provides tools for estimating the sensitivity of integral parameters such as k-eff, reaction rates, or breeding ratio to the cross sections. The computation with these tools requires approximations in the simulation of space, angles and energy dependent neutron transport. To minimise the impact of the geometry modelling approximations in the calculation, use of 3 dimensional multigroup transport codes is recommended. Sensitivity and uncertainty analyses are the tools needed to estimate the accuracy that a code system with data libraries can achieve. They can guide users as to the specific need for improved data to carry out reliable simulations. However, as full-scale models in 3 dimensions with refined descriptions of the phase-space are used, high performance computers and codes designed to run on parallel architectures are needed to obtain results within acceptable time limits.

  2. Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-03-01

    Full Text Available The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs, with negative impact on the safety of medium voltage (MV and low voltage (LV systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards.

  3. A study on cooling efficiency using 1-d analysis code suitable for cooling system of thermoforming

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen Zhe; Heo, Kwang Su; Xuan, Dong Ji; Seol, Seoung Yun [Chonnam National University, Gwangju (Korea, Republic of)

    2009-03-15

    Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming

  4. AUS98 - The 1998 version of the AUS modular neutronic code system

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G.S.; Harrington, B.V

    1998-07-01

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module refs., tabs.

  5. From Requirements to code: an Architecture-centric Approach for producing Quality Systems

    CERN Document Server

    Bucchiarone, Antonio; Muccini, Henry; Pelliccione, Patrizio

    2009-01-01

    When engineering complex and distributed software and hardware systems (increasingly used in many sectors, such as manufacturing, aerospace, transportation, communication, energy, and health-care), quality has become a big issue, since failures can have economics consequences and can also endanger human life. Model-based specifications of a component-based system permit to explicitly model the structure and behaviour of components and their integration. In particular Software Architectures (SA) has been advocated as an effective means to produce quality systems. In this chapter by combining different technologies and tools for analysis and development, we propose an architecture-centric model-driven approach to validate required properties and to generate the system code. Functional requirements are elicited and used for identifying expected properties the architecture shall express. The architectural compliance to the properties is formally demonstrated, and the produced architectural model is used to automa...

  6. Simple PSF based method for pupil phase mask's optimization in wavefront coding system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zi; CHEN Yan-ping; ZHAO Ting-yu; YE Zi; YU Fei-hong

    2007-01-01

    By applying the wavefront coding technique to an optical system, the depth of focus can be greatly increased. Several complicated methods, such as Fisher Information based method, have already been taken to optimize for the best pupil phase mask in ideal condition. Here one simple point spread function (PSF) based method with only the standard deviation method used to evaluate the PSF stability over the depth of focus is taken to optimize for the best coefficients of pupil phase mask in practical optical systems. Results of imaging simulations for optical systems with and without pupil phase mask are presented, and the sharpness of image is calculated for comparison. The optimized results showed better and much more stable imaging quality over the original system without changing the position of the image plane.

  7. Implementation of the probability table method in a continuous-energy Monte Carlo code system

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, T.M.; Brown, F.B. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-10-01

    RACER is a particle-transport Monte Carlo code that utilizes a continuous-energy treatment for neutrons and neutron cross section data. Until recently, neutron cross sections in the unresolved resonance range (URR) have been treated in RACER using smooth, dilute-average representations. This paper describes how RACER has been modified to use probability tables to treat cross sections in the URR, and the computer codes that have been developed to compute the tables from the unresolved resonance parameters contained in ENDF/B data files. A companion paper presents results of Monte Carlo calculations that demonstrate the effect of the use of probability tables versus the use of dilute-average cross sections for the URR. The next section provides a brief review of the probability table method as implemented in the RACER system. The production of the probability tables for use by RACER takes place in two steps. The first step is the generation of probability tables from the nuclear parameters contained in the ENDF/B data files. This step, and the code written to perform it, are described in Section 3. The tables produced are at energy points determined by the ENDF/B parameters and/or accuracy considerations. The tables actually used in the RACER calculations are obtained in the second step from those produced in the first. These tables are generated at energy points specific to the RACER calculation. Section 4 describes this step and the code written to implement it, as well as modifications made to RACER to enable it to use the tables. Finally, some results and conclusions are presented in Section 5.

  8. A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O. [ed.

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  9. A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O. (ed.)

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  10. Project of decree relative to the licensing and statement system of nuclear activities and to their control and bearing various modifications of the public health code and working code; Projet de decret relatif au regime d'autorisation et de declaration des activites nucleaires et a leur controle et portant diverses modifications du code de la sante publique et du code du travail

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This decree concerns the control of high level sealed radioactive sources and orphan sources. It has for objective to introduce administrative simplification, especially the radiation sources licensing and statement system, to reinforce the control measures planed by the public health code and by the employment code, to bring precision and complements in the editing of several already existing arrangements. (N.C.)

  11. A simple channel estimator for space-time coded OFDM systems in rapid fading channels

    Institute of Scientific and Technical Information of China (English)

    单淑伟; 罗汉文; 宋文涛

    2004-01-01

    A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.

  12. A simple channel estimator for space-time coded OFDM systems in rapid fading channels

    Institute of Scientific and Technical Information of China (English)

    SHAN Shu-wei(单淑伟); LUO Han-wen(罗汉文); SONG Wen-tao(宋文涛)

    2004-01-01

    A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant "Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.

  13. Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Science.gov (United States)

    2010-08-01

    the desired user at the kth symbol time with active MAI can be written as y (k) = C ⌊k/nFB⌋ x (k) + nint(k) + n(k), 1 ≤ k ≤ N 2 (3) 4 Demod . Metric...ar X iv :1 00 8. 31 96 v1 [ cs .I T ] 1 9 A ug 2 01 0 1 Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols Don...boldface represent matrices. E denotes the statistical expectation, (·)T is the matrix transpose, * is the complex conjugate, and ⌊ x ⌋ is the largest integer

  14. Phase transfer function based method to alleviate image artifacts in wavefront coding imaging system

    Science.gov (United States)

    Mo, Xutao; Wang, Jinjiang

    2013-09-01

    Wavefront coding technique can extend the depth of filed (DOF) of the incoherent imaging system. Several rectangular separable phase masks (such as cubic type, exponential type, logarithmic type, sinusoidal type, rational type, et al) have been proposed and discussed, because they can extend the DOF up to ten times of the DOF of ordinary imaging system. But according to the research on them, researchers have pointed out that the images are damaged by the artifacts, which usually come from the non-linear phase transfer function (PTF) differences between the PTF used in the image restoration filter and the PTF related to real imaging condition. In order to alleviate the image artifacts in imaging systems with wavefront coding, an optimization model based on the PTF was proposed to make the PTF invariance with the defocus. Thereafter, an image restoration filter based on the average PTF in the designed depth of field was introduced along with the PTF-based optimization. The combination of the optimization and the image restoration proposed can alleviate the artifacts, which was confirmed by the imaging simulation of spoke target. The cubic phase mask (CPM) and exponential phase mask (EPM) were discussed as example.

  15. Hybrid optical-digital encryption system based on wavefront coding paradigm

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    The wavefront coding is a widely used in the optical systems to compensate aberrations and increase the depth of field. This paper presents experimental results on application of the wavefront coding paradigm for data encryption. We use a synthesised diffractive optical element (DOE) to deliberately introduce a phase distortion during the images registration process to encode the acquired image. In this case, an optical convolution of the input image with the point spread function (PSF) of the DOE is registered. The encryption is performed optically, and is therefore is fast and secure. Since the introduced distortion is the same across the image, the decryption is performed digitally using deconvolution methods. However, due to noise and finite accuracy of a photosensor, the reconstructed image is degraded but still readable. The experimental results, which are presented in this paper, indicate that the proposed hybrid optical-digital system can be implemented as a portable device using inexpensive off-the-shelf components. We present the results of optical encryption and digital restoration with quantitative estimations of the images quality. Details of hardware optical implementation of the hybrid optical-digital encryption system are discussed.

  16. a Code for Automated Construction of Potential Energy Surfaces for Van Der Waals Systems

    Science.gov (United States)

    Quintas Sánchez, Ernesto; Dawes, Richard

    2017-06-01

    The potential energy surface (PES) constitutes a cornerstone for theoretical studies of spectroscopy and dynamics. We fit PESs using a local interpolating moving least squares (L-IMLS) approach. The L-IMLS method is interpolative and has the flexibility to fit energies or energies and gradients, where inclusion of gradient information significantly reduces the number of points required for an accurate fit. The method permits fully automated PES generation: beginning with an initial set of seed points, an automatic point selection scheme determines where new data are required and, in a series of iterations, computes new ab initio data and updates the fit until a specified accuracy is reached. We have interfaced this fitting approach to popular electronic structure codes such as Molpro and CFOUR to automatically generate ab initio 4D PESs for vdWs systems composed of two (rigid) linear fragments. We present here our freely distributed code designed to run in parallel on a computing cluster, allowing the user to specify the system (masses, interatomic equilibrium distances, symmetry, energy range of interest, etc.) through an input file. For a selection of benchmark systems, we show that PESs with fitting errors below 1 \\wn can be constructed using only a few hundred ab initio points. M. Majumder, S. Ndengue and R. Dawes, Molecular Physics 114, 1 (2016).

  17. On the Efficacy of Source Code Optimizations for Cache-Based Systems

    Science.gov (United States)

    VanderWijngaart, Rob F.; Saphir, William C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Obtaining high performance without machine-specific tuning is an important goal of scientific application programmers. Since most scientific processing is done on commodity microprocessors with hierarchical memory systems, this goal of "portable performance" can be achieved if a common set of optimization principles is effective for all such systems. It is widely believed, or at least hoped, that portable performance can be realized. The rule of thumb for optimization on hierarchical memory systems is to maximize temporal and spatial locality of memory references by reusing data and minimizing memory access stride. We investigate the effects of a number of optimizations on the performance of three related kernels taken from a computational fluid dynamics application. Timing the kernels on a range of processors, we observe an inconsistent and often counterintuitive impact of the optimizations on performance. In particular, code variations that have a positive impact on one architecture can have a negative impact on another, and variations expected to be unimportant can produce large effects. Moreover, we find that cache miss rates-as reported by a cache simulation tool, and confirmed by hardware counters-only partially explain the results. By contrast, the compiler-generated assembly code provides more insight by revealing the importance of processor-specific instructions and of compiler maturity, both of which strongly, and sometimes unexpectedly, influence performance. We conclude that it is difficult to obtain performance portability on modern cache-based computers, and comment on the implications of this result.

  18. Terminated and Tailbiting Spatially Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems

    CERN Document Server

    Häger, Christian; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-01-01

    We study the design of spectrally efficient fiber-optical communication systems based on different spatially coupled (SC) forward error correction (FEC) schemes. In particular, we optimize the allocation of the coded bits from the FEC encoder to the modulation bits of the signal constellation. Two SC code classes are considered. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes which are decoded using iterative hard-decision decoding. For both code classes, the bit allocation is optimized for the terminated and tailbiting SC cases based on a density evolution analysis. An optimized bit allocation can significantly improve the performance of tailbiting SC codes codes over the baseline sequential allocation, up to the point where they have a comparable gap to capacity as their terminated counterparts, at a lower FEC overhead. For the considered terminated SC co...

  19. Variable-length balanced codes for quadrature phase shift keyed systems

    Directory of Open Access Journals (Sweden)

    Xin Tu

    2015-10-01

    Full Text Available The authors outline an approach to construct capacity-approaching balanced quadrature phase shift keyed (QPSK codes. These codes ensure an equal number of different symbol values and many symbol transitions in the encoded sequence in order to assist practical demodulators to accurately recover symbol values. Their codes are comprised of instantaneously decodable variable-length codewords that exhibit excellent performance with average code rates higher than previously reported fixed-length balanced QPSK codes.

  20. Iterative multi-user detection and decoding for space-time block coding systems

    Institute of Scientific and Technical Information of China (English)

    JIN Yi-dan; ZHANG Feng; WU Wei-ling

    2006-01-01

    To restrain the interference of co-channel users using space-time block coding (STBC), the proposed Gaussian-forcing soft decision multi-user detection (GFSDMUD) algorithm is applied in flat-fading channels by using the relation among the users' signals, which can enhance the capacity by introducing co-channel users. During iterations, extrinsic information is calculated and exchanged between a soft multi-user detector and a bank of turbo decoders to achieve refined estimates of the users' signals. The simulations show that the proposed iterative receiver techniques provide significant performance improvement around 2 dB over conventional noniterative methods. Furthermore, iterative multi-user space-time processing techniques offer substantial performance gains around 8 dB by adding the number of receiver antennas from 4to 6, and the system performance can be enhanced by using this strategy in multi-user STBC systems, which is very important for enlarging the system capacity.

  1. Simple Strehl ratio based method for pupil phase mask's optimization in wavefront coding system

    Institute of Scientific and Technical Information of China (English)

    Wenzi Zhang; Yanping Chen; Tingyu Zhao; Zi Ye; Feihong Yu

    2006-01-01

    @@ By applying the wavefront coding technique to an optical system,the depth of focus can be greatly increased.Several complicated methods have already been taken to optimize for the best pupil phase mask in ideal condition.Here a simple Strehl ratio based method with only the standard deviation method used to evaluate the Strehl ratio stability over the depth of focus is applied to optimize for the best coefficients of pupil phase mask in practical optical systems.Results of imaging simulations for optical systems with and without pupil phase mask are presented,and the sharpness of image is calculated for comparison.The optimized pupil phase mask shows good results in extending the depth of focus.

  2. Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo

    Directory of Open Access Journals (Sweden)

    Guo Dong

    2005-01-01

    Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.

  3. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  4. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  5. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  6. The physics and technology basis entering European system code studies for DEMO

    Science.gov (United States)

    Wenninger, R.; Kembleton, R.; Bachmann, C.; Biel, W.; Bolzonella, T.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; Donné, A. J. H.; Eich, T.; Fable, E.; Federici, G.; Franke, T.; Lux, H.; Maviglia, F.; Meszaros, B.; Pütterich, T.; Saarelma, S.; Snickers, A.; Villone, F.; Vincenzi, P.; Wolff, D.; Zohm, H.

    2017-01-01

    A large scale program to develop a conceptual design for a demonstration fusion power plant (DEMO) has been initiated in Europe. Central elements are the baseline design points, which are developed by system codes. The assessment of the credibility of these design points is often hampered by missing information. The main physics and technology content of the central European system codes have been published (Kovari et al 2014 Fusion Eng. Des. 89 3054-69, 2016 Fusion Eng. Des. 104 9-20, Reux et al 2015 Nucl. Fusion 55 073011). In addition, this publication discusses key input parameters for the pulsed and conservative design option \\tt{EU DEMO1 2015} and provides justifications for the parameter choices. In this context several DEMO physics gaps are identified, which need to be addressed in the future to reduce the uncertainty in predicting the performance of the device. Also the sensitivities of net electric power and pulse duration to variations of the input parameters are investigated. The most extreme sensitivity is found for the elongation ( Δ {κ95}=10 % corresponds to Δ {{P}\\text{el,\\text{net}}}=125 % ).

  7. Combining Adaptive Coding and Modulation with Hierarchical Modulation in Satcom Systems

    CERN Document Server

    Meric, Hugo; Arnal, Fabrice; Lesthievent, Guy; Boucheret, Marie-Laure

    2011-01-01

    We investigate the design of a broadcast system in order to maximise the throughput. This task is usually challenging due to the channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. Even if the second scheme was proved to be optimal for some channels, modern satellite communications systems such as DVB-SH and DVB-S2 mainly rely on time sharing strategy to optimize the throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. We propose in this article to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We introduce the hierarchical 16-APSK to boost the performance of the DVB-S2 standard. We also evaluate various strategies to group the receivers in pairs when using hierarchical modulation. Finally, we show in a realistic use case based on...

  8. Image Encryption Algorithm Based on Dynamic DNA Coding and Chen’s Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-01-01

    Full Text Available With the development of national information processes, specific image information from secret departments or individuals is often required to be confidentially transmitted. Numerous image encryption methods exist, especially since the initial value sensitivity and other characteristics of chaos theory and chaos theory-based encryption have become increasingly important in recent years. At present, DNA coding constitutes a new research direction of image encryption that uses the four base pairs of DNA code and image pixel values to establish a special correspondence, in order to achieve pixel diffusion. There are eight DNA encoding rules, and current methods of selecting the DNA encoding rules are largely fixed. Thus, the security of encoded data is not high. In this paper, we use the Lorenz chaotic system, Chen’s hyperchaotic system, and the DNA encoding combination and present a new image encryption algorithm that can dynamically select eight types of DNA encoding rules and eight types of DNA addition and subtraction rules, with significant improvements in security. Through simulation experiments and histograms, correlations, and NPCR analyses, we have determined that the algorithm possesses numerous desirable features, including good encryption effects and antishear and antinoise performances.

  9. Trellis-Based Iterative Adaptive Blind Sequence Estimation for Uncoded/Coded Systems with Differential Precoding

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Ming

    2005-01-01

    Full Text Available We propose iterative, adaptive trellis-based blind sequence estimators, which can be interpreted as reduced-complexity receivers derived from the joint ML data/channel estimation problem. The number of states in the trellis is considered as a design parameter, providing a trade-off between performance and complexity. For symmetrical signal constellations, differential encoding or generalizations thereof are necessary to combat the phase ambiguity. At the receiver, the structure of the super-trellis (representing differential encoding and intersymbol interference is explicitly exploited rather than doing differential decoding just for resolving the problem of phase ambiguity. In uncoded systems, it is shown that the data sequence can only be determined up to an unknown shift index. This shift ambiguity can be resolved by taking an outer channel encoder into account. The average magnitude of the soft outputs from the corresponding channel decoder is exploited to identify the shift index. For frequency-hopping systems over fading channels, a double serially concatenated scheme is proposed, where the inner code is applied to combat the shift ambiguity and the outer code provides time diversity in conjunction with an interburst interleaver.

  10. Coupling a system code with computational fluid dynamics for the simulation of complex coolant reactivity effects

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotto, D.

    2011-11-15

    The current doctoral research is focused on the development and validation of a coupled computational tool, to combine the advantages of computational fluid dynamics (CFD) in analyzing complex flow fields and of state-of-the-art system codes employed for nuclear power plant (NPP) simulations. Such a tool can considerably enhance the analysis of NPP transient behavior, e.g. in the case of pressurized water reactor (PWR) accident scenarios such as Main Steam Line Break (MSLB) and boron dilution, in which strong coolant flow asymmetries and multi-dimensional mixing effects strongly influence the reactivity of the reactor core, as described in Chap. 1. To start with, a literature review on code coupling is presented in Chap. 2, together with the corresponding ongoing projects in the international community. Special reference is made to the framework in which this research has been carried out, i.e. the Paul Scherrer Institute's (PSI) project STARS (Steady-state and Transient Analysis Research for the Swiss reactors). In particular, the codes chosen for the coupling, i.e. the CFD code ANSYS CFX V11.0 and the system code US-NRC TRACE V5.0, are part of the STARS codes system. Their main features are also described in Chap. 2. The development of the coupled tool, named CFX/TRACE from the names of the two constitutive codes, has proven to be a complex and broad-based task, and therefore constraints had to be put on the target requirements, while keeping in mind a certain modularity to allow future extensions to be made with minimal efforts. After careful consideration, the coupling was defined to be on-line, parallel and with non-overlapping domains connected by an interface, which was developed through the Parallel Virtual Machines (PVM) software, as described in Chap. 3. Moreover, two numerical coupling schemes were implemented and tested: a sequential explicit scheme and a sequential semi-implicit scheme. Finally, it was decided that the coupling would be single

  11. A mobile medical QR-code authentication system and its automatic FICE image evaluation application

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chang

    2015-04-01

    Full Text Available This paper presents an adaptive imaging technique run on a mobile service system for endoscopic image enhancement by using color transform and Gray Level Co-occurrence Matrices (GLCM for a single input endoscopy image. The method is simply deal with the color image channels combination which chose the maximum scalar values of red, green and blue channel images, respectively. The GLCM subsequently applied for selecting the highest contrast and entropy images of the expanding image series. The enhanced endoscopy image is generated by fusing of the color, contrast and entropy images. We also proposed a service system with medical image retrieval application via quick response code authentication based on the Android operating system, which helps clinicians convenient in using mobile phone and reviewing images of the patient with cost efficiency. For the mobile technologies are growing rapidly, the mobile service system is installed to connect a Picture Archive and Communication Systems (PACS system in hospital and applied for automatic evaluation of colon images screening. The experimental results show the proposed system is efficient for observing gastrointestinal tract polyp. The performance is evaluated and compared with Fujinon intelligent chromo endoscopy enhanced method.

  12. Performance Analysis of Video Frame Transmission on DVB-H 4K Mode System for different code rates

    Directory of Open Access Journals (Sweden)

    Mitul Prajapati

    2012-03-01

    Full Text Available DVB-H (Digital Video Broadcasting for Handheld terminals is a digital transmission standard developed by the international DVB-Project. It was standardized in 2004 and enables small battery powered handheld devices to receive IP data services such as low definition TV services. The DVB-H standard is derived from the DVB-T standard which is used to broadcast TV services in Europe. The convolution code is used as error correction code. In this paper, we have implemented physical layer of DVB-H for 4K mode system. Here we had transmitted a JPEG format of frame of movie through AWGN channel and observed the image quality for different code rates used for convolution coding. The code rates used are 1/2, 2/3, 3/4, 5/6 and 7/8.

  13. Performance improvement of hybrid subcarrier multiplexing optical spectrum code division multiplexing system using spectral direct decoding detection technique

    Science.gov (United States)

    Sahbudin, R. K. Z.; Abdullah, M. K.; Mokhtar, M.

    2009-06-01

    This paper proposes a hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system for the purpose of combining the advantages of both techniques. Optical spectrum code division multiple-access (OSCDMA) is one of the multiplexing techniques that is becoming popular because of the flexibility in the allocation of channels, ability to operate asynchronously, enhanced privacy and increased capacity in bursty nature networks. On the other hand, subcarrier multiplexing (SCM) technique is able to enhance the channel data rate of OSCDMA systems. In this paper, a newly developed detection technique for the OSCDM called spectral direct decoding (SDD) detection technique is compared mathematically with the AND subtraction detection technique. The system utilizes a new unified code construction named KS (Khazani-Syed) code. The results characterizing the bit-error-rate (BER) show that SDD offers a significant improved performance at BER of 10 -9.

  14. Model of U3Si2 Fuel System using BISON Fuel Code

    Energy Technology Data Exchange (ETDEWEB)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  15. Proportional fair scheduling with superposition coding in a cellular cooperative relay system

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2013-01-01

    Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...

  16. [Pain assessment using the Facial Action Coding System. A systematic review].

    Science.gov (United States)

    Rojo, Rosa; Prados-Frutos, Juan Carlos; López-Valverde, Antonio

    2015-10-21

    Self-reporting is the most widely used pain measurement tool, although it may not be useful in patients with loss or deficit in communication skills. The aim of this paper was to undertake a systematic review of the literature of pain assessment through the Facial Action Coding System (FACS). The initial search found 4,335 references and, within the restriction «FACS», these were reduced to 40 (after exclusion of duplicates). Finally, only 26 articles meeting the inclusion criteria were included. Methodological quality was assessed using the GRADE system. Most patients were adults and elderly health conditions, or cognitive deficits and/or chronic pain. Our conclusion is that FACS is a reliable and objective tool in the detection and quantification of pain in all patients.

  17. A DISCRETE WAVELET TRANSFORM – SINGULAR VALUE DECOMPOSITION SYSTEM FOR IMAGE CODING

    Directory of Open Access Journals (Sweden)

    H. de Jesús Ochoa-Domínguez,

    2007-08-01

    Full Text Available A system that combines techniques of wavelet transform (DWT and singular value decomposition (SVD toencode images is presented. The image is divided into tiles or blocks of 64x64 pixels. The decision criterionas to which transform to use is based on the standard deviation of the 8x8 pixel subblocks of the tile toencode. A successive approximation quantizer is used to encode the subbands and vector quantization/scalarquantization is used to encode the SVD eigenvectors/eigenvalues, respectively. For coding color images, theRGB components are transformed into YCbCr before encoding in 4:2:0 format. Results show that theproposed system outperforms the JPEG and approaches the JPEG2000.

  18. Optimal performance of networked control systems with bandwidth and coding constraints.

    Science.gov (United States)

    Zhan, Xi-Sheng; Sun, Xin-xiang; Li, Tao; Wu, Jie; Jiang, Xiao-Wei

    2015-11-01

    The optimal tracking performance of multiple-input multiple-output (MIMO) discrete-time networked control systems with bandwidth and coding constraints is studied in this paper. The optimal tracking performance of networked control system is obtained by using spectral factorization technique and partial fraction. The obtained results demonstrate that the optimal performance is influenced by the directions and locations of the nonminimum phase zeros and unstable poles of the given plant. In addition to that, the characters of the reference signal, encoding, the bandwidth and additive white Gaussian noise (AWGN) of the communication channel are also closely influenced by the optimal tracking performance. Some typical examples are given to illustrate the theoretical results.

  19. Multi-Antenna OFDM System Using Coded Wavelet with Weighted Beamforming

    Directory of Open Access Journals (Sweden)

    K. Anoh

    2014-04-01

    Full Text Available A major drawback in deploying beamforming scheme in orthogonal frequency division multiplexing (OFDM is to obtain the optimal weights that are associated with information beams. Two beam weighting methods, namely co-phasing and singular vector decomposition (SVD, are considered to maximize the signal beams for such beamforming scheme. Initially the system performance with and without interleaving is investigated using coded fast Fourier transform (FFT-OFDM and wavelet-based OFDM. The two beamforming schemes are applied to the wavelet-based OFDM as confirmed to perform better than the FFT-OFDM. It is found that the beam-weight by SVD improves the performance of the system by about 2dB at the expense of the co-phasing method. The capacity performances of the weighting methods are also compared and discussed.

  20. An Iterative Power Allocation Algorithm for Group-wise Space-Time Block Coding Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-wei; ZHANG Hai-bin; SONG Wen-tao; LUO Han-wen; LIU Xing-zhao

    2007-01-01

    An iterative transmit power allocation (PA) algorithm was proposed for group-wise space-time block coding (G-STBC) systems with group-wise successive interference cancellation (GSIC) receivers.Group-wise interference suppression (GIS) filters are employed to separate each group's transmit signals from other interfer ences and noise.While the total power on all transmit symbols is constrained, all transmit PA coefficients are updated jointly according to the channel information at each iteration.Through PA, each detection symbol has the same post-detection signal to interference-and-noise ratio (SINR).The simulation results verify that the proposed PA algorithm converges at the equilibrium quickly after few iterations, and it achieves much lower bit error rates than the previous single symbol SIC PA and the fixed ratio PA algorithms for G-STBC systems with GSIC receivers.

  1. Space applications of the MITS electron-photon Monte Carlo transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Kensek, R.P.; Lorence, L.J.; Halbleib, J.A. [Sandia National Labs., Albuquerque, NM (United States); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-07-01

    The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction.

  2. A multi-layer VLC imaging system based on space-time trace-orthogonal coding

    Science.gov (United States)

    Li, Peng-Xu; Yang, Yu-Hong; Zhu, Yi-Jun; Zhang, Yan-Yu

    2017-02-01

    In visible light communication (VLC) imaging systems, different properties of data are usually demanded for transmission with different priorities in terms of reliability and/or validity. For this consideration, a novel transmission scheme called space-time trace-orthogonal coding (STTOC) for VLC is proposed in this paper by taking full advantage of the characteristics of time-domain transmission and space-domain orthogonality. Then, several constellation designs for different priority strategies subject to the total power constraint are presented. One significant advantage of this novel scheme is that the inter-layer interference (ILI) can be eliminated completely and the computation complexity of maximum likelihood (ML) detection is linear. Computer simulations verify the correctness of our theoretical analysis, and demonstrate that both transmission rate and error performance of the proposed scheme greatly outperform the conventional multi-layer transmission system.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  4. Enhancing transfusion safety with an innovative bar-code-based tracking system.

    Science.gov (United States)

    Askeland, Ryan W; McGrane, Steve P; Reifert, Dan R; Kemp, John D

    2009-01-01

    In an effort to reduce transfusion errors, a novel, comprehensive, computerized wireless bar-code-based tracking system for matching patients, blood samples and blood products was created and deployed at a major academic medical centre. With a grant from the Agency for Healthcare Research and Quality, software was developed to track scans at the times of sample collection, sample arrival in the blood bank, blood product dispensation from the blood bank and blood product administration. The system was deployed in February 2005. The system was well accepted from the outset, and the sample rejection rate due to clerical errors fell from 1.82 to 0.17%; incident reports fell by 83%. At the final blood administration step, the accumulated data as of November 2008 indicated that identification errors were being detected and prevented every 42.4 days and that the scan completion rate was stable at about 99%. Process analysis suggested that these were independent events and, thus, would be expected to coincide (and potentially produce a mis-transfusion) every 4,240 days (11.6 years) on average. We estimate that the system is 10 times safer than the manual system previously employed at our institution and may be 15-20 times safer than most systems employed in the United States.

  5. An M-Learning System Based on Mobile Phones and Quick Response Codes

    Directory of Open Access Journals (Sweden)

    Hend S. Al-Khalifa

    2011-01-01

    Full Text Available Problem statement: Many instructors in academia wish to know how much their students understand the content of the lecture; however, doing this manually will be very difficult and time consuming. Similarly, most students have communication problems with their instructors and they wish if they can ask their questions without any fear. So a need for a technology to bridge these gaps is becoming apparent in our rapidly changing world. Approach: The development and implementation of a Mobile Snapshot Response system, which uses the camera integrated within mobile phones and QR Codes to leverage student interaction in the classroom. The potential objective of the system is to increase the connectivity between the instructor and the student by offering the student the opportunity to evaluate the lecture content and send inquires to the instructor after class. Results: The Mobile Snapshot Response system has been developed, implemented and tested and user evaluation has proved the system’s ease of use. Conclusions: The mobile snapshot response system can help in improving the communications between teachers and their students and in providing students with the ability to raise questions and comments without embarrassment. Moreover, the students will be able to answer short assessments at the end of each class in an easy and convenient way. Thus, our system will benefit the teachers as well as the students and improve the delivery of lectures by getting a timely feedback and by automatically analyzing student’s answers.

  6. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  7. “PROCESS”: A systems code for fusion power plants – Part 2: Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kovari, M., E-mail: michael.kovari@ccfe.ac.uk; Fox, F.; Harrington, C.; Kembleton, R.; Knight, P.; Lux, H.; Morris, J.

    2016-03-15

    Highlights: • PROCESS is an optimising systems code for fusion reactors. • It allows the user to choose which constraints to impose and which to ignore. • Multiple constraints greatly restrict the parameter space of the optimised model. • For example, when coil current is increased greatly, major radius hardly changes. - Abstract: PROCESS is a reactor systems code – it assesses the engineering and economic viability of a hypothetical fusion power station using simple models of all parts of a reactor system. PROCESS allows the user to choose which constraints to impose and which to ignore, so when evaluating the results it is vital to study the list of constraints used. New algorithms submitted by collaborators can be incorporated – for example safety, first wall erosion, and fatigue life will be crucial and are not yet taken into account. This paper describes algorithms relating to the engineering aspects of the plant. The toroidal field (TF) coils and the central solenoid are assumed by default to be wound from niobium-tin superconductor with the same properties as the ITER conductors. The winding temperature and induced voltage during a quench provide a limit on the current density in the TF coils. Upper limits are placed on the stresses in the structural materials of the TF coil, using a simple two-layer model of the inboard leg of the coil. The thermal efficiency of the plant can be estimated using the maximum coolant temperature, and the capacity factor is derived from estimates of the planned and unplanned downtime, and the duty cycle if the reactor is pulsed. An example of a pulsed power plant is given. The need for a large central solenoid to induce most of the plasma current, and physics assumptions that are conservative compared to some other studies, result in a large machine, with a cryostat 36 m in diameter. Multiple constraints, working together, restrict the parameter space of the optimised model. For example, even when the ratio of

  8. Blind Estimation of the Phase and Carrier Frequency Offsets for LDPC-Coded Systems

    Directory of Open Access Journals (Sweden)

    Houcke Sebastien

    2010-01-01

    Full Text Available Abstract We consider in this paper the problem of phase offset and Carrier Frequency Offset (CFO estimation for Low-Density Parity-Check (LDPC coded systems. We propose new blind estimation techniques based on the calculation and minimization of functions of the Log-Likelihood Ratios (LLR of the syndrome elements obtained according to the parity check matrix of the error-correcting code. In the first part of this paper, we consider phase offset estimation for a Binary Phase Shift Keying (BPSK modulation and propose a novel estimation technique. Simulation results show that the proposed method is very effective and outperforms many existing algorithms. Then, we modify the estimation criterion so that it can work for higher-order modulations. One interesting feature of the proposed algorithm when applied to high-order modulations is that the phase offset of the channel can be blindly estimated without any ambiguity. In the second part of the paper, we consider the problem of CFO estimation and propose estimation techniques that are based on the same concept as the ones presented for the phase offset estimation. The Mean Squared Error (MSE and Bit Error Rate (BER curves show the efficiency of the proposed estimation techniques.

  9. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.

    Science.gov (United States)

    Nabatiyan, A; Poulet, J F A; de Polavieja, G G; Hedwig, B

    2003-10-01

    Auditory pattern recognition by the CNS is a fundamental process in acoustic communication. Because crickets communicate with stereotyped patterns of constant frequency syllables, they are established models to investigate the neuronal mechanisms of auditory pattern recognition. Here we provide evidence that for the neural processing of amplitude-modulated sounds, the instantaneous spike rate rather than the time-averaged neural activity is the appropriate coding principle by comparing both coding parameters in a thoracic interneuron (Omega neuron ON1) of the cricket (Gryllus bimaculatus) auditory system. When stimulated with different temporal sound patterns, the analysis of the instantaneous spike rate demonstrates that the neuron acts as a low-pass filter for syllable patterns. The instantaneous spike rate is low at high syllable rates, but prominent peaks in the instantaneous spike rate are generated as the syllable rate resembles that of the species-specific pattern. The occurrence and repetition rate of these peaks in the neuronal discharge are sufficient to explain temporal filtering in the cricket auditory pathway as they closely match the tuning of phonotactic behavior to different sound patterns. Thus temporal filtering or "pattern recognition" occurs at an early stage in the auditory pathway.

  10. Mass transfer in eccentric binary systems using the binary evolution code BINSTAR

    CERN Document Server

    Davis, P J; Deschamps, R

    2013-01-01

    We present the first calculations of mass transfer via RLOF for a binary system with a significant eccentricity using our new binary stellar evolution code. The study focuses on a 1.50+1.40 Msun main sequence binary with an eccentricity of 0.25, and an orbital period of about 0.7 d. The reaction of the stellar components due to mass transfer is analyzed, and the evolution of mass transfer during the periastron passage is compared to recent smooth particle hydrodynamics (SPH) simulations. The impact of asynchronism and non-zero eccentricity on the Roche lobe radius, and the effects of tidal and rotational deformation on the stars' structures, are also investigated. Calculations were performed using the state-of-the-art binary evolution code BINSTAR, which calculates simultaneously the structure of the two stars and the evolution of the orbital parameters. The evolution of the mass transfer rate during an orbit has a Gaussian-like shape, with a maximum at periastron, in qualitative agreement with SPH simulation...

  11. Turbo Processing for Joint Channel Estimation, Synchronization, and Decoding in Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ko ChiChung

    2009-01-01

    Full Text Available This paper proposes a turbo joint channel estimation, synchronization, and decoding scheme for coded multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM systems. The effects of carrier frequency offset (CFO, sampling frequency offset (SFO, and channel impulse responses (CIRs on the received samples are analyzed and explored to develop the turbo decoding process and vector recursive least squares (RLSs algorithm for joint CIR, CFO, and SFO tracking. For burst transmission, with initial estimates derived from the preamble, the proposed scheme can operate without the need of pilot tones during the data segment. Simulation results show that the proposed turbo joint channel estimation, synchronization, and decoding scheme offers fast convergence and low mean squared error (MSE performance over quasistatic Rayleigh multipath fading channels. The proposed scheme can be used in a coded MIMO-OFDM transceiver in the presence of multipath fading, carrier frequency offset, and sampling frequency offset to provide a bit error rate (BER performance comparable to that in an ideal case of perfect synchronization and channel estimation over a wide range of SFO values.

  12. Turbo Processing for Joint Channel Estimation, Synchronization, and Decoding in Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available This paper proposes a turbo joint channel estimation, synchronization, and decoding scheme for coded multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM systems. The effects of carrier frequency offset (CFO, sampling frequency offset (SFO, and channel impulse responses (CIRs on the received samples are analyzed and explored to develop the turbo decoding process and vector recursive least squares (RLSs algorithm for joint CIR, CFO, and SFO tracking. For burst transmission, with initial estimates derived from the preamble, the proposed scheme can operate without the need of pilot tones during the data segment. Simulation results show that the proposed turbo joint channel estimation, synchronization, and decoding scheme offers fast convergence and low mean squared error (MSE performance over quasistatic Rayleigh multipath fading channels. The proposed scheme can be used in a coded MIMO-OFDM transceiver in the presence of multipath fading, carrier frequency offset, and sampling frequency offset to provide a bit error rate (BER performance comparable to that in an ideal case of perfect synchronization and channel estimation over a wide range of SFO values.

  13. Fundamental algorithm and computational codes for the light beam propagation in high power laser system

    Institute of Scientific and Technical Information of China (English)

    GUO; Hong

    2001-01-01

    [1]Sacks, R. A., The PROP 92 Fourier Beam Propagation Code, UCRL-LR-105821-96-4.[2]Williams, W. H., Modeling of Self-Focusing Experiments by Beam Propagation Codes, UCRL-LR-105821-96-1.[3]User guide for FRESNEL software.[4]Hunt, J. H., Renard, P. A., Simmons, W. W., Improved performance of fusion lasers using the imaging properties of multiple spatial filters, Appl. Opt., 1977, 16: 779.[5]Deng Ximing, Guo Hong, Cao Qing, Invariant integral and statistical equations for the paraxial beam propagation in free space, Science in China (in Chinese) Ser. A, 1997, 27(1): 64.[6]Goodman, J. W., Introduction to Fourier Optics, New York: McGraw-Hill, 1968.[7]Born, M., Wolf, E., Principles of Optics, New York: Pergamon Press, 1975.[8]Siegman, A. E., Lasers, New York: Mill Valley CA, 1986.[9]Fan Dianyuan, Fresnel number of complex system, Optica Sinica (in Chinese), 1983, 3(4): 319.[10]L

  14. Two Novel Space-Time Coding Techniques Designed for UWB MISO Systems Based on Wavelet Transform

    Science.gov (United States)

    Zaki, Amira Ibrahim; El-Khamy, Said E.

    2016-01-01

    In this paper two novel space-time coding multi-input single-output (STC MISO) schemes, designed especially for Ultra-Wideband (UWB) systems, are introduced. The proposed schemes are referred to as wavelet space-time coding (WSTC) schemes. The WSTC schemes are based on two types of multiplexing, spatial and wavelet domain multiplexing. In WSTC schemes, four symbols are transmitted on the same UWB transmission pulse with the same bandwidth, symbol duration, and number of transmitting antennas of the conventional STC MISO scheme. The used mother wavelet (MW) is selected to be highly correlated with transmitted pulse shape and such that the multiplexed signal has almost the same spectral characteristics as those of the original UWB pulse. The two WSTC techniques increase the data rate to four times that of the conventional STC. The first WSTC scheme increases the data rate with a simple combination process. The second scheme achieves the increase in the data rate with a less complex receiver and better performance than the first scheme due to the spatial diversity introduced by the structure of its transmitter and receiver. The two schemes use Rake receivers to collect the energy in the dense multipath channel components. The simulation results show that the proposed WSTC schemes have better performance than the conventional scheme in addition to increasing the data rate to four times that of the conventional STC scheme. PMID:27959939

  15. Performance analysis of electronic structure codes on HPC systems: a case study of SIESTA.

    Science.gov (United States)

    Corsetti, Fabiano

    2014-01-01

    We report on scaling and timing tests of the SIESTA electronic structure code for ab initio molecular dynamics simulations using density-functional theory. The tests are performed on six large-scale supercomputers belonging to the PRACE Tier-0 network with four different architectures: Cray XE6, IBM BlueGene/Q, BullX, and IBM iDataPlex. We employ a systematic strategy for simultaneously testing weak and strong scaling, and propose a measure which is independent of the range of number of cores on which the tests are performed to quantify strong scaling efficiency as a function of simulation size. We find an increase in efficiency with simulation size for all machines, with a qualitatively different curve depending on the supercomputer topology, and discuss the connection of this functional form with weak scaling behaviour. We also analyze the absolute timings obtained in our tests, showing the range of system sizes and cores favourable for different machines. Our results can be employed as a guide both for running SIESTA on parallel architectures, and for executing similar scaling tests of other electronic structure codes.

  16. Embedded Systems Hardware Integration and Code Development for Maraia Capsule and E-MIST

    Science.gov (United States)

    Carretero, Emmanuel S.

    2015-01-01

    The cost of sending large spacecraft to orbit makes them undesirable for carrying out smaller scientific missions. Small spacecraft are more economical and can be tailored for missions where specific tasks need to be carried out, the Maraia capsule is such a spacecraft. Maraia will allow for samples of experiments conducted on the International Space Station to be returned to earth. The use of balloons to conduct experiments at the edge of space is a practical approach to reducing the large expense of using rockets. E-MIST is a payload designed to fly on a high altitude balloon. It can maintain science experiments in a controlled manner at the edge of space. The work covered here entails the integration of hardware onto each of the mentioned systems and the code associated with such work. In particular, the resistance temperature detector, pressure transducers, cameras, and thrusters for Maraia are discussed. The integration of the resistance temperature detectors and motor controllers to E-MIST is described. Several issues associated with sensor accuracy, code lock-up, and in-flight reset issues are mentioned. The solutions and proposed solutions to these issues are explained.

  17. Synaptic learning rules and sparse coding in a model sensory system.

    Directory of Open Access Journals (Sweden)

    Luca A Finelli

    2008-04-01

    Full Text Available Neural circuits exploit numerous strategies for encoding information. Although the functional significance of individual coding mechanisms has been investigated, ways in which multiple mechanisms interact and integrate are not well understood. The locust olfactory system, in which dense, transiently synchronized spike trains across ensembles of antenna lobe (AL neurons are transformed into a sparse representation in the mushroom body (MB; a region associated with memory, provides a well-studied preparation for investigating the interaction of multiple coding mechanisms. Recordings made in vivo from the insect MB demonstrated highly specific responses to odors in Kenyon cells (KCs. Typically, only a few KCs from the recorded population of neurons responded reliably when a specific odor was presented. Different odors induced responses in different KCs. Here, we explored with a biologically plausible model the possibility that a form of plasticity may control and tune synaptic weights of inputs to the mushroom body to ensure the specificity of KCs' responses to familiar or meaningful odors. We found that plasticity at the synapses between the AL and the MB efficiently regulated the delicate tuning necessary to selectively filter the intense AL oscillatory output and condense it to a sparse representation in the MB. Activity-dependent plasticity drove the observed specificity, reliability, and expected persistence of odor representations, suggesting a role for plasticity in information processing and making a testable prediction about synaptic plasticity at AL-MB synapses.

  18. Performance analysis of electronic structure codes on HPC systems: a case study of SIESTA.

    Directory of Open Access Journals (Sweden)

    Fabiano Corsetti

    Full Text Available We report on scaling and timing tests of the SIESTA electronic structure code for ab initio molecular dynamics simulations using density-functional theory. The tests are performed on six large-scale supercomputers belonging to the PRACE Tier-0 network with four different architectures: Cray XE6, IBM BlueGene/Q, BullX, and IBM iDataPlex. We employ a systematic strategy for simultaneously testing weak and strong scaling, and propose a measure which is independent of the range of number of cores on which the tests are performed to quantify strong scaling efficiency as a function of simulation size. We find an increase in efficiency with simulation size for all machines, with a qualitatively different curve depending on the supercomputer topology, and discuss the connection of this functional form with weak scaling behaviour. We also analyze the absolute timings obtained in our tests, showing the range of system sizes and cores favourable for different machines. Our results can be employed as a guide both for running SIESTA on parallel architectures, and for executing similar scaling tests of other electronic structure codes.

  19. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  20. LDPC based time-frequency double differential space-time coding for multi-antenna OFDM systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-feng; JIANG Hai-ning; SONG Wen-tao; LUO Han-wen

    2006-01-01

    Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in frequency-selective fading channels. This paper's authors derived a novel time-frequency double differential space-time (TF-DDST)coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems ina time-varying frequency-selective fading environment, where double differential space-time coding is introduced into both time domain and frequency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.