A Monte Carlo burnup code linking MCNP and REBUS
International Nuclear Information System (INIS)
Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.
1998-01-01
The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)
A Monte Carlo burnup code linking MCNP and REBUS
International Nuclear Information System (INIS)
Hanan, N. A.
1998-01-01
The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids
GB - a preliminary linking code between MCNP4C and Origen2.1 - DEN/UFMG version
International Nuclear Information System (INIS)
Campolina, Daniel; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Cavatoni, Andre
2009-01-01
Nowadays it is possible to perform burnup simulation in a detailed 3D geometry and a continuous energy description by the Monte Carlo method. This paper describes an initial project to create and verify a connection code to link Origen2.1 (Oak Ridge National Laboratory) and MCNP4C (Los Alamos National Laboratory). Essentially the code includes point depletion capability to the MCNP code. The incorporation of point depletion capability is explicit and can be summarized by three steps: 1-Monte Carlo determines reaction rates, 2-the reaction rates are used to determine microscopic cross sections for depletion equations, 3-solution of depletion equations (given by Origen2.1) determines number densities for next MCNP step. To evaluate the initial version of the program, we focused on comparing the results with one of the major Monte Carlo burnup codes: MCNPX version 2.6.0. The input files for all codes share the same MCNP geometry, nuclear data library and core thermal power. While simulating 75 time steps at 800 kw of a Heat Pipe Power System model, we have found that the codes generate very similar results. The neutron flux and criticality value of the core agree, especially in the begin of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB (author)
Development of MCNP interface code in HFETR
International Nuclear Information System (INIS)
Qiu Liqing; Fu Rong; Deng Caiyu
2007-01-01
In order to describe the HFETR core with MCNP method, the interface code MCNPIP for HFETR and MCNP code is developed. This paper introduces the core DXSY and flowchart of MCNPIP code, and the handling of compositions of fuel elements and requirements on hardware and software. Finally, MCNPIP code is validated against the practical application. (authors)
Potential of the MCNP computer code
International Nuclear Information System (INIS)
Kyncl, J.
1995-01-01
The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs
Analysis of parallel computing performance of the code MCNP
International Nuclear Information System (INIS)
Wang Lei; Wang Kan; Yu Ganglin
2006-01-01
Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)
MatMCNP: A Code for Producing Material Cards for MCNP
Energy Technology Data Exchange (ETDEWEB)
DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saavedra, Karen C. [American Structurepoint, Inc., Indianapolis, IN (United States)
2014-09-01
A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.
International Nuclear Information System (INIS)
Bourauel, Peter; Nabbi, Rahim; Biel, Wolfgang; Forrest, Robin
2009-01-01
The MCNP 3D Monte Carlo computer code is used not only for criticality calculations of nuclear systems but also to simulate transports of radiation and particles. The findings so obtained about neutron flux distribution and the associated spectra allow information about materials activation, nuclear heating, and radiation damage to be obtained by means of activation codes such as FISPACT. The stochastic character of particle and radiation transport processes normally links findings to the materials cells making up the geometry model of MCNP. Where high spatial resolution is required for the activation calculations with FISPACT, fine segmentation of the MCNP geometry becomes compulsory, which implies considerable expense for the modeling process. For this reason, an alternative simulation technique has been developed in an effort to automate and optimize data transfer between MCNP and FISPACT. (orig.)
Evaluation of Geometric Progression (GP Buildup Factors using MCNP Codes (MCNP6.1 and MCNP5-1.60
Directory of Open Access Journals (Sweden)
Kim Kyung-O
2016-01-01
Full Text Available The gamma-ray buildup factors of three-dimensional point kernel code (QAD-CGGP are re-evaluated by using MCNP codes (MCNP6.1 and MCNPX5-1.60 and ENDF/B-VI.8 photoatomic data, which cover an energy range of 0.015–15 MeV and an iron thickness of 0.5–40 Mean Free Path (MFP. These new data are fitted to the Geometric Progression (GP fitting function and are then compared with ANS standard data equipped with QAD-CGGP. In addition, a simple benchmark calculation was performed to compare the QAD-CGGP results applied with new and existing buildup factors based on the MCNP codes. In the case of the buildup factors of low-energy gamma-rays, new data are evaluated to be about 5% higher than the existing data. In other cases, these new data present a similar trend based on the specific penetration depth, while existing data continuously increase beyond that depth. In a simple benchmark, the calculations using the existing data were slightly underestimated compared to the reference data at a deep penetration depth. On the other hand, the calculations with new data were stabilized with an increasing penetration depth, despite a slight overestimation at a shallow penetration depth.
UNR. A code for processing unresolved resonance data for MCNP
International Nuclear Information System (INIS)
Hogenbirk, A.
1994-09-01
In neutron transport problems the correct treatment of self-shielding is important for those nuclei present in large concentrations. Monte Carlo calculations using continuous-energy cross section data, such as calculations with the code MCNP, offer the advantage that neutron transport is calculated in a very accurate way. Self-shielding in the resolved resonance region is taken into account exactly in MCNP. However, self-shielding in the unresolved resonance region can not be taken into account by MCNP, although the effect of it may be important in many applications. In this report a description is given of the computer code UNR. With this code problem-dependent cross section libraries can be produced for MCNP. In these libraries self-shielded cross section data in the unresolved resonance range are given, which are produced by NJOY-module UNRESR. It is noted, that the treatment for resonance self-shielding presented in this report is approximate. However, the current version of MCNP does not allow the use of probability tables, which would be a general solution. (orig.)
Nuclear densimeter of soil simulated in MCNP-4C code
International Nuclear Information System (INIS)
Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.
2009-01-01
The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)
Parallelization of MCNP4 code by using simple FORTRAN algorithms
International Nuclear Information System (INIS)
Yazid, P.I.; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka.
1993-12-01
Simple FORTRAN algorithms, that rely only on open, close, read and write statements, together with disk files and some UNIX commands have been applied to parallelization of MCNP4. The code, named MCNPNFS, maintains almost all capabilities of MCNP4 in solving shielding problems. It is able to perform parallel computing on a set of any UNIX workstations connected by a network, regardless of the heterogeneity in hardware system, provided that all processors produce a binary file in the same format. Further, it is confirmed that MCNPNFS can be executed also on Monte-4 vector-parallel computer. MCNPNFS has been tested intensively by executing 5 photon-neutron benchmark problems, a spent fuel cask problem and 17 sample problems included in the original code package of MCNP4. Three different workstations, connected by a network, have been used to execute MCNPNFS in parallel. By measuring CPU time, the parallel efficiency is determined to be 58% to 99% and 86% in average. On Monte-4, MCNPNFS has been executed using 4 processors concurrently and has achieved the parallel efficiency of 79% in average. (author)
Utilization of MCNP code in the research and design for China advanced research reactor
International Nuclear Information System (INIS)
Shen Feng
2006-01-01
MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)
Using MCNP code for neutron and photon skyshine analysis
Energy Technology Data Exchange (ETDEWEB)
Zharkov, V.P.; Dikareva, O.F.; Kartashev, I.A.; Kiselev, A.N.; Netecha, M.E. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Nomura, Y.; Tsubosaka, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)
2000-03-01
The MCNP Monte-Carlo code was used for the investigation of the sensitivity of neutron and neutron-induced secondary photon dose rate, total and thermal neutron fluxes and space-energy distributions to energy and angular distribution of radiation source, to thickness and composition of the ground, air density (including it changing with height), humidities of air and ground, thermalization effects, detector's dimension and its disposal above the ground level. The calculations were performed with the assumption that the source or released radiation into the atmosphere can be treated as a point source and the source containment structure has a negligible perturbation on the skyshine radiation field. (author)
Investigation of the applicability of MCNP code to complicated geometries
International Nuclear Information System (INIS)
Higuchi, Kenji; Yamaguchi, Yukichi
1994-03-01
Applicability of MCNP code, which is a general purpose Monte Carlo code for particle transport problems, to complicated geometries, has been investigated as a study in Human Acts Simulation Program (HASP), in which basic studies for intelligent robot for patrol and inspection of nuclear facilities are being performed. In HASP, basic software systems simulating the behavior of intelligent robot of human shape working in Japan Research Reactor No.3 are being developed. The aim of Dose Evaluation system in HASP is to establish the methodology to evaluate irradiation damage of the LSI/VLSI circuits embedded within a robot body and to give design criteria of intelligent robot. Monte Carlo method is used to solve particle transport problem in a complicated geometry such as robot body. Preliminary evaluation to establish the methodology has been conducted using continuous energy Monte Carlo code, MCNP with the anthropomorphic phantom. The phantom has the same degree of geometric complexity as robot body and is widely used for the calculation of the effective dose equivalent for radiological protection. It allowed us to verify the validity of the methodology by comparison of calculation results with the data in ICRP Pub. 51. In this report, the method used in the calculation of effective dose equivalent, visualization system supporting visualization of input data for complicated geometry and the results in the evaluation of validity of the method by the comparison of the calculated results with the data in the ICRP publication are described. (author)
Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)
International Nuclear Information System (INIS)
Kirk, B.L.; West, J.T.
1984-06-01
The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided
Problem and solution of tally segment card in MCNP code
International Nuclear Information System (INIS)
Xie Jiachun; Zhao Shouzhi; Sun Zheng; Jia Baoshan
2010-01-01
Wrong results may be given when FS card (tally segment card) was used for tally with other tally cards in Monte Carlo code MCNP. According to the comparison of segment tally results which were obtained by FS card of three different models of the same geometry, the tally results of fuel regions were found to be wrong in fill pattern. The reason is that the fuel cells were described by Universe card and FILL card, and the filled cells were always considered at Universe card definition place. A proposed solution was that the segment tally for filled cells was done at Universe card definition place. Radial flux distribution of one example was calculated in this way. The results show that the fault of segment tally with FS card in fill pattern could be solved by this method. (authors)
Modeling the PUSPATI TRIGA Reactor using MCNP code
International Nuclear Information System (INIS)
Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh
2012-01-01
The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)
CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.
Saegusa, Jun
2008-01-01
The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.
1995-01-01
This paper describes calculations performed to validate the modified version of the MCNP code, the MCNP-DSP, used for: the neutron and photon spectra of the spontaneous fission of californium 252; the representation of the detection processes for scattering detectors; the timing of the detection process; and the calculation of the frequency analysis parameters for the MCNP-DSP code
Study of bremsstrahlung photons in bulk target using MCNP code
Directory of Open Access Journals (Sweden)
S. Sangaroon
2017-11-01
Full Text Available The aim of this research was to study the feasibility of bremsstrahlung photon production in target bombarded by 1 GeV electrons. The calculations were performed by the Monte Carlo code MCNP. Six target materials with densities between 2 and 20 g/cm3 were studied. The bremsstrahlung photon flux is high for the target density above 8 g/cm3. Copper is the best target for 1 GeV electron beam due to high bremsstrahlung photon production, low scattering and low transmission electron flux. The copper target was altered to have different thicknesses between 0.01 and 2.5 cm. The results showed that the bremsstrahlung photon flux significantly increased when the target thickness increased from 0.01 to 1.5 cm. The angular distribution of the bremsstrahlung photons with angles between 0 and 120 degrees was determined for copper target. The maximum angle of the photon scattering was about 20 degree.
International Nuclear Information System (INIS)
Cramer, S.N.
1985-09-01
An overview of the RSIC-distributed version of the MCNP code (a soupled Monte Carlo neutron-photon code) is presented. All general features of the code, from machine hardware requirements to theoretical details, are discussed. The current nuclide cross-section and other libraries available in the standard code package are specified, and a realistic example of the flexible geometry input is given. Standard and nonstandard source, estimator, and variance-reduction procedures are outlined. Examples of correct usage and possible misuse of certain code features are presented graphically and in standard output listings. Finally, itemized summaries of sample problems, various MCNP code documentation, and future work are given
Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.
Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W
1998-05-01
The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.
MCNP-DSP, Monte Carlo Neutron-Particle Transport Code with Digital Signal Processing
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: MCNP-DSP is recommended only for experienced MCNP users working with subcritical measurements. It is a modification of the Los Alamos National Laboratory's Monte Carlo code MCNP4a that is used to simulate a variety of subcritical measurements. The DSP version was developed to simulate frequency analysis measurements, correlation (Rossi-) measurements, pulsed neutron measurements, Feynman variance measurements, and multiplicity measurements. CCC-700/MCNP4C is recommended for general purpose calculations. 2 - Methods:MCNP-DSP performs calculations very similarly to MCNP and uses the same generalized geometry capabilities of MCNP. MCNP-DSP can only be used with the continuous-energy cross-section data. A variety of source and detector options are available. However, unlike standard MCNP, the source and detector options are limited to those described in the manual because these options are specified in the MCNP-DSP extra data file. MCNP-DSP is used to obtain the time-dependent response of detectors that are modeled in the simulation geometry. The detectors represent actual detectors used in measurements. These time-dependent detector responses are used to compute a variety of quantities such as frequency analysis signatures, correlation signatures, multiplicity signatures, etc., between detectors or sources and detectors. Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV - 1 GeV for photons and electrons. 3 - Restrictions on the complexity of the problem: None noted
Measurements by activation foils and comparative computations by MCNP code
International Nuclear Information System (INIS)
Kyncl, J.
2008-01-01
Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)
A review of radiation dosimetry applications using the MCNP Monte Carlo code
Energy Technology Data Exchange (ETDEWEB)
Solberg, T.D.; DeMarco, J.J.; Chetty, I.J.; Mesa, A.V.; Cagnon, C.H.; Li, A.N.; Mather, K.K.; Medin, P.M.; Arellano, A.R.; Smathers, J.B. [California Univ., Los Angeles, CA (United States). Dept. of Radiation Oncology
2001-07-01
The Monte Carlo code MCNP (Monte Carlo N-Particle) has a significant history dating to the early years of the Manhattan Project. More recently, MCNP has been used successfully to solve many problems in the field of medical physics. In radiotherapy applications MCNP has been used successfully to calculate the bremsstrahlung spectra from medical linear accelerators, for modeling the dose distributions around high dose rate brachytherapy sources, and for evaluating the dosimetric properties of new radioactive sources used in intravascular irradiation for prevention of restenosis following angioplasty. MCNP has also been used for radioimmunotherapy and boron neutron capture therapy applications. It has been used to predict fast neutron activation of shielding and biological materials. One area that holds tremendous clinical promise is that of radiotherapy treatment planning. In diagnostic applications, MCNP has been used to model X-ray computed tomography and positron emission tomography scanners, to compute the dose delivered from CT procedures, and to determine detector characteristics of nuclear medicine devices. MCNP has been used to determine particle fluxes around radiotherapy treatment devices and to perform shielding calculations in radiotherapy treatment rooms. This manuscript is intended to provide to the reader a comprehensive summary of medical physics applications of the MCNP code. (orig.)
Improvement of Monte Carlo code A3MCNP for large-scale shielding problems
International Nuclear Information System (INIS)
Miyake, Y.; Ohmura, M.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G.E.
2004-01-01
A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3 MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for a concrete cask streaming problem and a PWR dosimetry problem. (author)
Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design
International Nuclear Information System (INIS)
Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.
2004-01-01
A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem
A review of radiation dosimetry applications using the MCNP Monte Carlo code
International Nuclear Information System (INIS)
Solberg, T.D.; DeMarco, J.J.; Chetty, I.J.; Mesa, A.V.; Cagnon, C.H.; Li, A.N.; Mather, K.K.; Medin, P.M.; Arellano, A.R.; Smathers, J.B.
2002-01-01
The Monte Carlo code MCNP (Monte Carlo N-Particle) has a significant history dating to the early years of the Manhattan Project. More recently, MCNP has been used successfully to solve many problems in the field of medical physics. In radiotherapy applications MCNP has been used successfully to calculate the bremsstrahlung spectra from medical linear accelerators, for modeling the dose distributions around high dose rate brachytherapy sources, and for evaluating the dosimetric properties of new radioactive sources used in intravascular irradiation for prevention of restenosis following angioplasty. MCNP has also been used for radioimmunotherapy and boron neutron capture therapy applications. It has been used to predict fast neutron activation of shielding and biological materials. One area that holds tremendous clinical promise is that of radiotherapy treatment planning. In diagnostic applications, MCNP has been used to model X-ray computed tomography and positron emission tomography scanners, to compute the dose delivered from CT procedures, and to determine detector characteristics of nuclear medicine devices. MCNP has been used to determine particle fluxes around radiotherapy treatment devices and to perform shielding calculations in radiotherapy treatment rooms. This manuscript is intended to provide to the reader a comprehensive summary of medical physics applications of the MCNP code. (author)
Acceleration of the MCNP branch of the OCTOPUS depletion code system
Energy Technology Data Exchange (ETDEWEB)
Pijlgroms, B.J.; Hogenbirk, A.; Oppe, J. [Section Nuclear and Reactor Physics, ECN Nuclear Research, Petten (Netherlands)
1998-09-01
OCTOPUS depletion calculations using the 3D Monte Carlo spectrum code MCNP (Monte Carlo Code for Neutron and Photon Transport) require much computing time. In a former implementation, the time required by OCTOPUS to perform multi-zone calculations, increased roughly proportional to the number of burnable zones. By using a different method the situation has improved considerably. In the new implementation described here, the dependence of the computing time on the number of zones has been moved from the MCNP code to a faster postprocessing code. By this, the overall computing time will reduce substantially. 11 refs.
Acceleration of the MCNP branch of the OCTOPUS depletion code system
International Nuclear Information System (INIS)
Pijlgroms, B.J.; Hogenbirk, A.; Oppe, J.
1998-09-01
OCTOPUS depletion calculations using the 3D Monte Carlo spectrum code MCNP (Monte Carlo Code for Neutron and Photon Transport) require much computing time. In a former implementation, the time required by OCTOPUS to perform multi-zone calculations, increased roughly proportional to the number of burnable zones. By using a different method the situation has improved considerably. In the new implementation described here, the dependence of the computing time on the number of zones has been moved from the MCNP code to a faster postprocessing code. By this, the overall computing time will reduce substantially. 11 refs
Application of the NJOY code for unresolved resonance treatment in the MCNP utility code
International Nuclear Information System (INIS)
Milosevic, M.; Greenspan, E.; Vujic, J. . E-mail addresses of corresponding authors: mmilos@vin.bg.ac.yu , vujic@nuc.berkeley.edu ,; Milosevic, M.; Vujic, J.)
2005-01-01
There are numerous uncertainties in the prediction of neutronic characteristics of reactor cores, particularly in the case of innovative reactor designs, arising from approximations used in the solution of the transport equation, and in nuclear data processing and cross section libraries generation. This paper describes the problems encountered in the analysis of the Encapsulated Nuclear Heat Source (ENHS) benchmark core and the new procedures and cross section libraries developed to overcome these problems. The ENHS is a new lead-bismuth or lead cooled novel reactor concept that is fuelled with metallic alloy of Pu, U and Zr, and it is designed to operate for 20 effective full power years without refuelling and with very small burnup reactivity swing. The computational tools benchmarked include: MOCUP - a coupled MCNP-4C and ORIGEN2.1 utility codes with MCNP data libraries based on the ENDF/B-VI evaluations; and KWO2 - a coupled KENO-V.a and ORIGEN2.1 code with ENDFB-V.2 based 238 group library. Calculations made for the ENHS benchmark have shown that the differences between the results obtained using different code systems and cross section libraries are significant and should be taken into account in assessing the quality of nuclear data libraries. (author)
MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2
International Nuclear Information System (INIS)
Briesmeister, J.F.
1986-09-01
This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The first chapter is a primer for the novice user. The second chapter describes the mathematics, data, physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be exhaustive - details of the particular techniques and of the Monte Carlo method itself will have to be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and the fifth chapter explains the output. The appendices show how to use MCNP on particular computer systems at the Los Alamos National Laboratory and also give details about some of the code internals that those who wish to modify the code may find useful. 57 refs
Comparison of TITAN hybrid deterministic transport code and MCNP5 for simulation of SPECT
International Nuclear Information System (INIS)
Royston, K.; Haghighat, A.; Yi, C.
2010-01-01
Traditionally, Single Photon Emission Computed Tomography (SPECT) simulations use Monte Carlo methods. The hybrid deterministic transport code TITAN has recently been applied to the simulation of a SPECT myocardial perfusion study. The TITAN SPECT simulation uses the discrete ordinates formulation in the phantom region and a simplified ray-tracing formulation outside of the phantom. A SPECT model has been created in the Monte Carlo Neutral particle (MCNP)5 Monte Carlo code for comparison. In MCNP5 the collimator is directly modeled, but TITAN instead simulates the effect of collimator blur using a circular ordinate splitting technique. Projection images created using the TITAN code are compared to results using MCNP5 for three collimator acceptance angles. Normalized projection images for 2.97 deg, 1.42 deg and 0.98 deg collimator acceptance angles had maximum relative differences of 21.3%, 11.9% and 8.3%, respectively. Visually the images are in good agreement. Profiles through the projection images were plotted to find that the TITAN results followed the shape of the MCNP5 results with some differences in magnitude. A timing comparison on 16 processors found that the TITAN code completed the calculation 382 to 2787 times faster than MCNP5. Both codes exhibit good parallel performance. (author)
Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.
Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A
2005-01-01
The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.
Modeling of a planning system in radiotherapy and Nuclear Medicine using the MCNP6 code
International Nuclear Information System (INIS)
Massicano, Felipe
2015-01-01
Cancer therapy has many branches and one of them is the use of radiation sources as treatment leading method. Radiotherapy and nuclear medicine are examples of these treatment types. For using the ionization radiation as main tool for the therapy, there is the need of crafting many treatment simulation in order to maximum the tumoral tissue dose without surpass the dose limit in health tissue surrounding. Treatment planning systems (TPS) are systems which have the purpose of simulating these therapy types. Nuclear medicine and radiotherapy have many distinct features linked to the therapy mode and consequently they have different TPS destined for each. The radiotherapy TPS is more developed than the nuclear medicine TPS and by that reason the development of a TPS that was similar to the radiotherapy TPS, but enough generic for include other therapy types, it will contribute with significant advances in nuclear medicine and in others therapy types with radiation. Based on this, the goal of work was to model a TPS that utilizes the Monte Carlo N-Particle Transport code (MCNP6) in order to simulate radiotherapy therapy, nuclear medicine therapy and with potential for simulating other therapy types too. The result of this work was the creation of a Framework in Java language, object oriented, named IBMC which will assist in the development of new TPS with MCNP6 code. The IBMC allowed to develop rapidly and easily TPS for radiotherapy and nuclear medicine and the results were validated with systems already consolidated. The IBMC showed high potential for developing TPS by new therapy types. (author)
Installation of Monte Carlo neutron and photon transport code system MCNP4
International Nuclear Information System (INIS)
Takano, Makoto; Sasaki, Mikio; Kaneko, Toshiyuki; Yamazaki, Takao.
1993-03-01
The continuous energy Monte Carlo code MCNP-4 including its graphic functions has been installed on the Sun-4 sparc-2 work station with minor corrections. In order to validate the installed MCNP-4 code, 25 sample problems have been executed on the work station and these results have been compared with the original ones. And, the most of the graphic functions have been demonstrated by using 3 sample problems. Further, additional 14 nuclides have been included to the continuous cross section library edited from JENDL-3. (author)
Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry
International Nuclear Information System (INIS)
Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.
2002-01-01
The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators
International Nuclear Information System (INIS)
Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi
1987-02-01
Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)
Implementation of a tree algorithm in MCNP code for nuclear well logging applications.
Li, Fusheng; Han, Xiaogang
2012-07-01
The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. Copyright © 2011 Elsevier Ltd. All rights reserved.
About the application of MCNP4 code in nuclear reactor core design calculations
International Nuclear Information System (INIS)
Svarny, J.
2000-01-01
This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)
Energy Technology Data Exchange (ETDEWEB)
Thanh, Tran Thien; Tao, Chau Van; Loan, Truong Thi Hong; Nhon, Mai Van; Chuong, Huynh Dinh; Au, Bui Hai [Vietnam National Univ., Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics
2012-12-15
The accuracy of the coincidence-summing corrections in gamma spectrometry depends on the total efficiency calibration that is hardly obtained over the whole energy as the required experimental conditions are not easily attained. Monte Carlo simulations using MCNP5 code was performed in order to estimate the affect of the shielding to total efficiency. The effect of HPGe response are also shown. (orig.)
Natto, S A; Lewis, D G; Ryde, S J
1998-01-01
The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.
MCNP and other nuclear codes output graphical representation using python scripts
International Nuclear Information System (INIS)
Cadenas Mendicoa, A. M.
2016-01-01
Due to the lack of graphical representation capability of same nuclear codes like MCNP of GOTHIC, widely used in the industry, the following article describes the development of an interface to use a graphical representation open source (Paraview) with the outputs generated by the nuclear codes. Moreover, this article aims at describing the advantage of this type of visualization programs for the modeling and decision making in the calculation. (Author)
MCNPX{trademark} -- The LAHET{trademark}/MCNP{trademark} code merger
Energy Technology Data Exchange (ETDEWEB)
Hughes, H.G.; Adams, K.J.; Chadwick, M.B. [and others
1997-08-01
The MCNP code is written and maintained by Group X-TM at Los Alamos National Laboratory. In response to the demands of the accelerator community, the authors have undertaken a major effort to expand the capabilities of MCNP to increase the set of transportable particles; to make use of newly evaluated high-energy nuclear data tables for neutrons, protons, and potentially other particles; and to incorporate physics models for use where tabular data are unavailable. A preliminary version of the expanded code, called MCNPX, has now been issued for testing. The new code includes all existing LAHET physics modules, and has the ability to utilize the 150-MeV data libraries that have recently been released by LANL Group T-2.
Verification of the AZNHEX code v.1.4 with MCNP6 for different reference cases
International Nuclear Information System (INIS)
Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Del Valle G, E.
2017-09-01
The codes that make up the AZTLAN platform (AZTHECA, AZTRAN, AZKIND and AZNHEX) are currently in the testing phase simulating a variety of nuclear reactor assemblies and cores to compare and validate the results obtained for a particular case, with codes globally used in the nuclear area such as CASMO, Serpent and MCNP. The objective of this work is to continue improving the future versions of the codes of the AZTLAN platform so that accurate and reliable results can be obtained for the user. To test the current version of the AZNHEX code, 3 cases were taken into account, the first being the simulation of a VVER-440 reactor assembly; for the second case, the assembly of a fast reactor cooled with helium was simulated and for the third case it was decided to take up the case of the core of a fast reactor cooled with sodium, this because the previous versions of AZNHEX did not show adequate results and, in addition, they presented a considerable amount of limitations. The comparison and validation of the results (neutron multiplication factor, radial power, radial flow, axial power) for these three cases were made using the code MCNP6. The results obtained show that this version of AZNHEX produces values of the neutron multiplication factor and the neutron and power flow distributions very close to those of MCNP6. (Author)
Utilization of the MCNP-3A code for criticality safety analysis
International Nuclear Information System (INIS)
Maragni, M.G.; Moreira, J.M.L.
1996-01-01
In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis
RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes
International Nuclear Information System (INIS)
Parisi, C.; D'Auria, F.
2007-01-01
The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)
Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)
2014-07-01
A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm{sup 2}s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)
Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes
International Nuclear Information System (INIS)
Hussein, M.S.; Bonin, H.W.; Lewis, B.J.
2014-01-01
A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm 2 s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)
Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility
International Nuclear Information System (INIS)
Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki
2007-01-01
The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)
Implementation of a tree algorithm in MCNP code for nuclear well logging applications
Energy Technology Data Exchange (ETDEWEB)
Li Fusheng, E-mail: fusheng.li@bakerhughes.com [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States); Han Xiaogang [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States)
2012-07-15
The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. - Highlights: Black-Right-Pointing-Pointer Tree structure programming is suitable for Monte-Carlo based particle tracking. Black-Right-Pointing-Pointer Enhanced pulse height tally is developed for oilwell logging tool simulation. Black-Right-Pointing-Pointer Neutron interaction tally and gamma ray index tally for geochemical logging.
International Nuclear Information System (INIS)
Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.
1989-01-01
Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)
Implementation of 3D models in the Monte Carlo code MCNP
International Nuclear Information System (INIS)
Lopes, Vivaldo; Millian, Felix M.; Guevara, Maria Victoria M.; Garcia, Fermin; Sena, Isaac; Menezes, Hugo
2009-01-01
On the area of numerical dosimetry Applied to medical physics, the scientific community focuses on the elaboration of new hybrids models based on 3D models. But different steps of the process of simulation with 3D models needed improvement and optimization in order to expedite the calculations and accuracy using this methodology. This project was developed with the aim of optimize the process of introduction of 3D models within the simulation code of radiation transport by Monte Carlo (MCNP). The fast implementation of these models on the simulation code allows the estimation of the dose deposited on the patient organs on a more personalized way, increasing the accuracy with this on the estimates and reducing the risks to health, caused by ionizing radiations. The introduction o these models within the MCNP was made through a input file, that was constructed through a sequence of images, bi-dimensional in the 3D model, generated using the program '3DSMAX', imported by the program 'TOMO M C' and thus, introduced as INPUT FILE of the MCNP code. (author)
Energy Technology Data Exchange (ETDEWEB)
Cadenas Mendicoa, A. M.
2016-08-01
Due to the lack of graphical representation capability of same nuclear codes like MCNP of GOTHIC, widely used in the industry, the following article describes the development of an interface to use a graphical representation open source (Paraview) with the outputs generated by the nuclear codes. Moreover, this article aims at describing the advantage of this type of visualization programs for the modeling and decision making in the calculation. (Author)
International Nuclear Information System (INIS)
Park, W.S.; Lee, K.M.; Lee, C.S.; Lee, J.T.; Oh, S.K.
1992-01-01
In this work, the validity and quantitative uncertainty of WIMS (KAERI) - VENTURE code system for the design and analysis of KMRR core was tried to be inferred using a well known benchmark code, MCNP. WIMS (KAERI) showed an excellent agreement with MCNP code. For three different control rod positions at a simulated core which has a quarter symmetry, total peaking factors and three sub-factors (radial, axial, and local) obtained from VENTURE were compared with those of MCNP. The comparison proved the validity of VENTURE and showed better agreement in the order of radial, axial, and local factors. The uncertainty of WIMS (KAERI) - VENTURE system was inferred using the 2σ band of total peaking obtained by MCNP. The uncertainty of WIMS (KAERI) - VENTURE system were found to be 18.5 % for the operating condition. (author)
Analysis of radiation field distribution in Yonggwang unit 3 with MCNP code
International Nuclear Information System (INIS)
Lee, Cheol Woo; Ha, Wi Ho; Shin, Chang Ho; Kim, Soon Young; Kim, Jong Kyung
2004-01-01
Radiation field analysis is performed at the inside of the containment building of nuclear power plant(NPP) using the well-known MCNP code. The target NPP in this study is Yonggwang Unit 3 Cycle 8. In this work, whole transport calculations were done using MCNPX 2.4.0 due to the functional benefits, such as Mesh Tally, that the code provides. The neutron spectra released from the operating reactor core were firstly evaluated as a radiation source term, and then dose distributions in the work areas of the NPP were calculated
Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.
Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R
2000-07-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.
The use of the MCNP code for the quantitative analysis of elements in geological formations
Energy Technology Data Exchange (ETDEWEB)
Cywicka-Jakiel, T.; Woynicka, U. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Zorski, T. [University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Krakow (Poland)
2003-07-01
The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)
The use of the MCNP code for the quantitative analysis of elements in geological formations
International Nuclear Information System (INIS)
Cywicka-Jakiel, T.; Woynicka, U.; Zorski, T.
2003-01-01
The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)
2014-03-27
Vehicle Code System (VCS), the Monte Carlo Adjoint SHielding (MASH), and the Monte Carlo n- Particle ( MCNP ) code. Of the three, the oldest and still most...widely utilized radiation transport code is MCNP . First created at Los Alamos National Laboratory (LANL) in 1957, the code simulated neutral...particle types, and previous versions of MCNP were repeatedly validated using both simple and complex 10 geometries [12, 13]. Much greater discussion and
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
Performance of the improved version of Monte Carlo code A 3MCNP for large-scale shielding problems
International Nuclear Information System (INIS)
Omura, M.; Miyake, Y.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G. E.
2005-01-01
A 3MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, which automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3MCNP uses the three-dimensional (3-D) Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3MCNP (referred to as A 3MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3MCNPV for a concrete cask neutron and gamma-ray shielding problem, and a PWR dosimetry problem. (authors)
International Nuclear Information System (INIS)
Deng Li; Xie Zhongsheng
1999-01-01
The coupled neutron and photon transport Monte Carlo code MCNP (version 3B) has been parallelized in parallel virtual machine (PVM) and message passing interface (MPI) by modifying a previous serial code. The new code has been verified by solving sample problems. The speedup increases linearly with the number of processors and the average efficiency is up to 99% for 12-processor. (author)
Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming
2017-08-01
The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.
Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry
International Nuclear Information System (INIS)
Cintra, Felipe B. de; Yoriyaz, Helio
2009-01-01
The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10 -9 g up to 10 -3 g immersed in an infinite water medium (density of 1g/cm 3 ) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm 3 . The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10 -4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)
A simulation of a pebble bed reactor core by the MCNP-4C computer code
Directory of Open Access Journals (Sweden)
Bakhshayesh Moshkbar Khalil
2009-01-01
Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.
MCNP variance reduction overview
International Nuclear Information System (INIS)
Hendricks, J.S.; Booth, T.E.
1985-01-01
The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code
International Nuclear Information System (INIS)
Hussein, M.S; Lewis, B.J.; Bonin, H.W.
2013-01-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)
2013-07-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP
International Nuclear Information System (INIS)
Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi
2009-05-01
Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)
Parallel processing of Monte Carlo code MCNP for particle transport problem
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Kawasaki, Takuji
1996-06-01
It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)
Energy Technology Data Exchange (ETDEWEB)
Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)
2012-08-15
This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.
Calibration curves of a PGNAA system for cement raw material analysis using the MCNP code
International Nuclear Information System (INIS)
Oliveira, Carlos; Salgado, Jose
1998-01-01
In large samples, the γ-ray count rate of a prompt gamma neutron activation analysis system is a multi-variable function of the elemental dry composition, density, water content and thickness of the material. The experimental calibration curves require tremendous laboratory work, using a great number of standards with well-known compositions. Although a Monte Carlo simulation study does not avoid the experimental calibration work, it reduces the number of experimental calibration standards. This paper is part of a feasibility study for a PGNAA system for on-line continuous characterisation of cement raw material conveyed on a belt (Oliveira, C., Salgado, J. and Carvalho, F. G. (1997) Optimisation of PGNAA instrument design for cement raw materials using the MCNP code. J. Radioanal. Nucl. Chem. 216(2), 191-198; Oliveira, C., Salgado, J., Goncalves, I. F., Carvalho, F. G. and Leitao, F. (1997a) A Monte Carlo study of the influence of geometry arrangements and structural materials on a PGNAA system performance for cement raw materials analysis. Appl. Radiat. Isot. (accepted); Oliveira, C., Salgado, J. and Leitao, F. (1997b) Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP code. Appl. Radiat. Isot. (accepted).]. It reports on the influence of the density, mass water content and thickness on the calibration curves of the PGNAA system. The MCNP-4A code, running in a Pentium-PC and in a DEC workstation, was used to simulate the PGNAA configuration system
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
1979-11-01
The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables
International Nuclear Information System (INIS)
Mashnik, Stepan G.
2011-01-01
MCNP6, the latest and most advanced LANL transport code representing a recent merger of MCNP5 and MCNPX, has been Validated and Verified (V and V) against a variety of intermediate and high-energy experimental data and against results by different versions of MCNPX and other codes. In the present work, we V and V MCNP6 using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.02 and LAQGSM03.03. We found that MCNP6 describes reasonably well various reactions induced by particles and nuclei at incident energies from 18 MeV to about 1 TeV per nucleon measured on thin and thick targets and agrees very well with similar results obtained with MCNPX and calculations by CEM03.02, LAQGSM03.01 (03.03), INCL4 + ABLA, and Bertini INC + Dresner evaporation, EPAX, ABRABLA, HIPSE, and AMD, used as stand alone codes. Most of several computational bugs and more serious physics problems observed in MCNP6/X during our V and V have been fixed; we continue our work to solve all the known problems before MCNP6 is distributed to the public. (author)
A comparison study for mass attenuation coefficients of some amino acids using MCNP code
Energy Technology Data Exchange (ETDEWEB)
Vahabi, Seyed Milad; Bahreynipour, Mostean; Shamsaie-Zafarghandi, Mojtaba [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics
2017-07-15
In this study, a novel model of MCNP4C code reported recently was used to determine the photon mass attenuation coefficients of some amino acids at energies, 123, 360, 511, 662, 1170, 1280 and 1330 keV. The simulation results were compared with the XCOM data. It was indicated that the results were highly close to the calculated XCOM values. Obtained results were used to calculate the molar extinction coefficient. All the results showed the convenience and usefulness of the model in calculation of mass attenuation coefficients of amino acids.
Shielding analysis of high level waste water storage facilities using MCNP code
Energy Technology Data Exchange (ETDEWEB)
Yabuta, Naohiro [Mitsubishi Research Inst., Inc., Tokyo (Japan)
2001-01-01
The neutron and gamma-ray transport analysis for the facility as a reprocessing facility with large buildings having thick shielding was made. Radiation shielding analysis consists of a deep transmission calculation for the concrete wall and a skyshine calculation for the space out of the buildings. An efficient analysis with a short running time and high accuracy needs a variance reduction technique suitable for all the calculation regions and structures. In this report, the shielding analysis using MCNP and a discrete ordinate transport code is explained and the idea and procedure of decision of variance reduction parameter is completed. (J.P.N.)
Calculation of the effective dose from natural radioactivity sources in soil using MCNP code
International Nuclear Information System (INIS)
Krstic, D.; Nikezic, D.
2008-01-01
Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors
Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.
Tran, Van Hung; Tran, Khac An
2010-06-01
By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.
Calculation of the effective dose from natural radioactivity in soil using MCNP code.
Krstic, D; Nikezic, D
2010-01-01
Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.
Oliveira, C
2001-01-01
A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.
Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system
International Nuclear Information System (INIS)
Iga, Kiminori; Takada, Hiroshi; Nagao, Tadashi.
1998-01-01
In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B 4 C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)
Schweda, K
2002-01-01
The analysis of (e,e'n) experiments at the Darmstadt superconducting electron linear accelerator S-DALINAC required the calculation of neutron response functions for the NE213 liquid scintillation detectors used. In an open geometry, these response functions can be obtained using the Monte Carlo codes NRESP7 and NEFF7. However, for more complex geometries, an extended version of the Monte Carlo code MCNP exists. This extended version of the MCNP code was improved upon by adding individual light-output functions for charged particles. In addition, more than one volume can be defined as a scintillator, thus allowing the simultaneous calculation of the response for multiple detector setups. With the implementation of sup 1 sup 2 C(n,n'3 alpha) reactions, all relevant reactions for neutron energies E sub n <20 MeV are now taken into consideration. The results of these calculations were compared to experimental data using monoenergetic neutrons in an open geometry and a sup 2 sup 5 sup 2 Cf neutron source in th...
International Nuclear Information System (INIS)
Quade, U.
1994-01-01
Neutron- und Gamma dose rate calculations were performed for the storage containers filled with plutonium nitrate of the MOX fabrication facility of Siemens. For the particle transport calculations the Monte Carlo Code MCNP 4.2 was used. The calculated results were compared with experimental dose rate measurements. It can be stated that the choice of the code system was appropriate since all aspects of the many facettes of the problem were well reproduced in the calculations. The position dependency as well as the influence of the shieldings, the reflections and the mutual influences of the sources were well described by the calculations for the gamma and for the neutron dose rates. However, good agreement with the experimental results on the gamma dose rates could only be reached when the lead shielding of the detector was integrated into the geometry modelling of the calculations. For some few cases of thick shieldings and soft gamma ray sources the statistics of the calculational results were not sufficient. In such cases more elaborate variance reduction methods must be applied in future calculations. Thus the MCNP code in connection with NGSRC has been proven as an effective tool for the solution of this type of problems. (orig./HP) [de
Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system
Energy Technology Data Exchange (ETDEWEB)
Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi
1998-01-01
In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)
Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code
Faghihi, F.; Mehdizadeh, S.; Hadad, K.
Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.
International Nuclear Information System (INIS)
Yamazaki, Takao; Fujisaki, Masahide; Okuda, Motoi; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka
1993-01-01
The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Pozuelo, F.; Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.
2012-07-01
In this case, used codes PENELOPE MCNP5, based on the Monte Carlo method for x-ray spectrum taking into account the characteristics of the x-ray tube. In order to achieve a greater fit of simulated by the theoretical spectrum. It carried out a sensitivity analysis of the parameters available in both codes. The obtaining of the simulated spectrum could lead to an improvement in quality control of the x-ray tube to incorporate it as a method complementary to techniques.
A group of neutronics calculations in the MNSR using the MCNP-4C code
International Nuclear Information System (INIS)
Khattab, K.; Sulieman, I.
2009-11-01
The MCNP-4C code was used to model the 3-D core configuration for the Syrian Miniature Neutron Source Reactor (MNSR). The continuous energy neutron cross sections were evaluated from ENDF/B-VI library to calculate the thermal and fast neutron fluxes in the MNSR inner and outer irradiation sites. The thermal fluxes in the MNSR inner irradiation sites were measured for the first time using the multiple foil activation method. Good agreements were noticed between the calculated and measured results. This model is used as well to calculate neutron flux spectrum in the reactor inner and outer irradiation sites and the reactor thermal power. Three 3-D neutronic models for the Syrian MNSR reactor using the MCNP-4C code were developed also to assess the possibility of fuel conversion from 89.87 % HEU fuel (UAl 4 -Al) to 19.75 % LEU fuel (UO 2 ). This model is used in this paper to calculate the following reactor core physics parameters: clean cold core excess reactivity, calibration of the control rod worth and calculation its shut down margin, calibration of the top beryllium shim plate reflector, axial neutron flux distributions in the inner and outer irradiation sites and the kinetics parameters ( ι p l and β e ff). (authors)
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis
International Nuclear Information System (INIS)
Hoogenboom, J.E.
2013-01-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)
NaI(Tl) detectors modeling in MCNP-X and Gate/Geant4 codes
Energy Technology Data Exchange (ETDEWEB)
Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, Cesar Marques, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
NaI (Tl) detectors are widely used in gamma-ray densitometry, but their modeling in Monte Carlo codes, such as MCNP-X and Gate/Geant4, needs a lot of work and does not yield comparable results with experimental arrangements, possibly due to non-simulated physical phenomena, such as light transport within the scintillator. Therefore, it is necessary a methodology that positively impacts the results of the simulations while maintaining the real dimensions of the detectors and other objects to allow validating a modeling that matches up with the experimental arrangement. Thus, the objective of this paper is to present the studies conducted with the MCNPX and Gate/Geant4 codes, in which the comparisons of their results were satisfactory, showing that both can be used for the same purposes. (author)
Application of MCNP code in shielding calculation of minitype fast reactor
International Nuclear Information System (INIS)
He Keyu; Han Weishi
2008-01-01
An accurate shielding calculation model has been set up for the minitype sodium-cooled fast reactor (MFR) based on MCNP code and particular calculation of its primary shielding parameters has been carried out. The results indicate that the photon and neutron flux density of MFR has rapidly fallen to a low-level. The material for the shielding layer outside of main container is primarily of carbon steel, which can be design as a shielding structure satisfying the safety code. The sodium activation in primary circuit is extremely limited and it is simple to shield from. Both the output of helium in reflector and burn up of boron-10 in control rod are very small. These materials can be used for several cycle lives. (authors)
Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code
International Nuclear Information System (INIS)
Shiba, T.; Fallot, M.
2015-01-01
To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)
S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code
International Nuclear Information System (INIS)
Coca Perez, Marco Antonio; Torres Aroche, Leonel Alberto; Cornejo, Nestor; Martin Hernandez, Guido
2003-01-01
The main objective of this work was estimate the voxels S values for 188 Re at cubical geometry using the MCNP-4C code for the simulation of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxels were estimated and reported for 188 Re and Y 90 . A comparison of voxels S values computed with the MCNP code the data reported in MIRD pamphlet 17 for 90 Y was performed in order to evaluate our results
Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.
2016-01-01
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460
Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S
2016-03-08
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.
International Nuclear Information System (INIS)
Khattab, K.; Boush, M.; Alkassiri, H.
2013-01-01
Highlights: • The MCNP4C was used to calculate the gamma ray dose rate spatial distribution in for the SGIF. • Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter was conducted as well. • Good agreements were noticed between the calculated and measured results. • The maximum relative differences were less than 7%, 4% and 4% in the x, y and z directions respectively. - Abstract: A three dimensional model for the Syrian gamma irradiation facility (SGIF) is developed in this paper to calculate the gamma ray dose rate spatial distribution in the irradiation room at the 60 Co source board using the MCNP-4C code. Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter is conducted as well to compare the calculated and measured results. Good agreements are noticed between the calculated and measured results with maximum relative differences less than 7%, 4% and 4% in the x, y and z directions respectively. This agreement indicates that the established model is an accurate representation of the SGIF and can be used in the future to make the calculation design for a new irradiation facility
MCNP: a general Monte Carlo code for neutron and photon transport
International Nuclear Information System (INIS)
1978-07-01
The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron--photon transport. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation (such as ENDF/B-IV) are accounted for. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. Standard optional variance reduction schemes include geometry splitting and Russian roulette, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point detectors, track-length estimators, and source biasing. The standard output of MCNP includes two-way current as a function of energy, time, and angle with the normal, across any subset of bounding surfaces in the problem. Fluxes across any set of bounding surfaces are available as a function of time and energy. Similarly, the flux at designated points and the average flux in a cell (track length per unit volume) are standard tallies. Reactions such as fissions or absorptions may be obtained in a subset of geometric cells. The heating tallies give the energy deposition per starting particle. In addition, particles may be flagged when they cross specified surfaces or enter designated cells, and the contributions of these flagged particles to certain of the tallies are listed separately. All quantities printed out have their relative errors listed also. 11 figures, 27 tables
Benchmark calculation for GT-MHR using HELIOS/MASTER code package and MCNP
International Nuclear Information System (INIS)
Lee, Kyung Hoon; Kim, Kang Seog; Noh, Jae Man; Song, Jae Seung; Zee, Sung Quun
2005-01-01
The latest research associated with the very high temperature gas-cooled reactor (VHTR) is focused on the verification of a system performance and safety under operating conditions for the VHTRs. As a part of those, an international gas-cooled reactor program initiated by IAEA is going on. The key objectives of this program are the validation of analytical computer codes and the evaluation of benchmark models for the projected and actual VHTRs. New reactor physics analysis procedure for the prismatic VHTR is under development by adopting the conventional two-step procedure. In this procedure, a few group constants are generated through the transport lattice calculations using the HELIOS code, and the core physics analysis is performed by the 3-dimensional nodal diffusion code MASTER. We evaluated the performance of the HELIOS/MASTER code package through the benchmark calculations related to the GT-MHR (Gas Turbine-Modular Helium Reactor) to dispose weapon plutonium. In parallel, MCNP is employed as a reference code to verify the results of the HELIOS/MASTER procedure
Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics
International Nuclear Information System (INIS)
Parreno Z, F.; Paucar J, R.; Picon C, C.
1998-01-01
The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)
EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes
Energy Technology Data Exchange (ETDEWEB)
Paolo Balestra; Carlo Parisi; Andrea Alfonsi
2016-02-01
The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.
Calculation of age-dependent effective doses for external exposure using the MCNP code
International Nuclear Information System (INIS)
Hung, Tran Van
2013-01-01
Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)
Calculation of conversion coefficients for clinical photon spectra using the MCNP code.
Lima, M A F; Silva, A X; Crispim, V R
2004-01-01
In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).
Calculation of age-dependent effective doses for external exposure using the MCNP code
Energy Technology Data Exchange (ETDEWEB)
Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)
2013-07-15
Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)
Image enhancement using MCNP5 code and MATLAB in neutron radiography.
Tharwat, Montaser; Mohamed, Nader; Mongy, T
2014-07-01
This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bakkari, B El; Bardouni, T El.; Erradi, L.; Chakir, E.; Meroun, O.; Azahra, M.; Boukhal, H.; Khoukhi, T El.; Htet, A.
2007-01-01
Full text: New releases of nuclear data files made available during the few recent years. The reference MCNP5 code (1) for Monte Carlo calculations is usually distributed with only one standard nuclear data library for neutron interactions based on ENDF/B-VI. The main goal of this work is to process new neutron cross sections libraries in ACE continuous format for MCNP code based on the most recent data files recently made available for the scientific community : ENDF/B-VII.b2, ENDF/B-VI (release 8), JEFF3.0, JEFF-3.1, JENDL-3.3 and JEF2.2. In our data treatment, we used the modular NJOY system (release 99.9) (2) in conjunction with its most recent upadates. Assessment of the processed point wise cross sections libraries performances was made by means of some criticality prediction and analysis of other integral parameters for a set of reactor benchmarks. Almost all the analyzed benchmarks were taken from the international handbook of Evaluated criticality safety benchmarks experiments from OECD (3). Some revised benchmarks were taken from references (4,5). These benchmarks use Pu-239 or U-235 as the main fissionable materiel in different forms, different enrichments and cover various geometries. Monte Carlo calculations were performed in 3D with maximum details of benchmark description and the S(α,β) cross section treatment was adopted in all thermal cases. The resulting one standard deviation confidence interval for the eigenvalue is typically +/-13% to +/-20 pcm [fr
International Nuclear Information System (INIS)
Naito, Yoshitaka
2001-01-01
To assist succeeding reports which will be presented in this research meeting, following items on the computer code MCNP developed in USA are presented: (1) history of development of MCNP, (2) meaning of the development, (3) progress of study on Monte Carlo codes in the nuclear code committee and (4) expectation to Monte Carlo codes. (author)
International Nuclear Information System (INIS)
Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; Hendricks, J.; Hughes, H.G.; Johns, R.; Kiedrowski, B.; Martz, R.; Mashnik, S.; McKinney, G.; Pelowitz, D.; Prael, R.; Sweezy, J.
2016-01-01
Highlights: • MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. • MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. • These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and Nonproliferation Division, Radiation Transport Modeling Team (NEN-5) respectively, have combined their code development efforts to produce the next evolution of MCNP. • While maintenance and major bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. • In fact, the initial release of MCNP6 contains numerous new features not previously found in either code. • These new features are summarized in this document. • Packaged with MCNP6 is also the new production release of the ENDF/B-VII.1 nuclear data files usable by MCNP. • The high quality of the overall merged code, usefulness of these new features, along with the desire in the user community to start using the merged code, have led us to make the first MCNP6 production release: MCNP6 version 1. • High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, our automated nightly software debugger tests, the underlying high quality nuclear and atomic databases, and significant testing by many beta testers. - Abstract: MCNP6 can be described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and
Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes
Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.
2018-06-01
To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.
Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon
2018-01-01
Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.
Energy Technology Data Exchange (ETDEWEB)
Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu
2017-04-01
Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.
MCNP Code in Assessment of Variations of Effective Dose with Torso Adipose Tissue Thickness
International Nuclear Information System (INIS)
Massoud, E.
2005-01-01
The effective dose is the unite used in the field of radiation protection. It is a well defined doubly weighted uantity involving both physical and biological variables. Several factors may induce variation in the effective dose in different individuals of similar exposure data. One of these factors is the variation of adipose tissue thickness in different exposed individuals. This study essentially concenrs the assessment of the possible variation in the effective dose due to variation in the thickness of adipose tissue. The study was done using MCNP4b code to perform mathematical model of the human body depending on that given to the reference man developed by International Commission of Radiological Protection (ICRP), and calculate the effective dose with different thicknessess of adipose tissues. The study includes a comprehensive appraisal of the Monte Cario simulation, the Medical Internal Radiation Dose (MIRD) model for the human body, and the various mathematical considerations involved in the radiation dose calculations for the various pertinent parts of the human body. The radiation energies considered were 80 KeV, 300 KeV and I MeV, applying two exposure positions; anteroposterior (AP), postero-anterior (PA) with different adipose tissue thickness. This study is a theoretical approach based on detailed mathematical calculations of great precision that deals with all considerations involved in the mechanisms of radiation energy absorption in biological system depending on the variation in the densities of the particular in biological system depending on the variation in the densities of the particular tissues. The results obtained indicate that maximum decrease in effective dose occures with the lowest energy at 5cm adipose tissues thickeness for both AP and PA exposure positions. The results obtained were compared to similar work previsouly done using MCNP4 b showing very good agreement
International Nuclear Information System (INIS)
Cintra, Felipe Belonsi de
2010-01-01
This study made a comparison between some of the major transport codes that employ the Monte Carlo stochastic approach in dosimetric calculations in nuclear medicine. We analyzed in detail the various physical and numerical models used by MCNP5 code in relation with codes like EGS and Penelope. The identification of its potential and limitations for solving microdosimetry problems were highlighted. The condensed history methodology used by MCNP resulted in lower values for energy deposition calculation. This showed a known feature of the condensed stories: its underestimates both the number of collisions along the trajectory of the electron and the number of secondary particles created. The use of transport codes like MCNP and Penelope for micrometer scales received special attention in this work. Class I and class II codes were studied and their main resources were exploited in order to transport electrons, which have particular importance in dosimetry. It is expected that the evaluation of available methodologies mentioned here contribute to a better understanding of the behavior of these codes, especially for this class of problems, common in microdosimetry. (author)
S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code
International Nuclear Information System (INIS)
Coca, M.A.; Torres, L.A.; Cornejo, N.; Martin, G.
2008-01-01
Full text: MIRD formalism at voxel level has been suggested as an optional methodology to perform internal radiation dosimetry calculation during internal radiation therapy in Nuclear Medicine. Voxel S values for Y 90 , 131 I, 32 P, 99m Tc and 89 Sr have been published to different sizes. Currently, 188 Re has been proposed as a promising radionuclide for therapy due to its physical features and availability from generators. The main objective of this work was to estimate the voxel S values for 188 Re at cubical geometry using the MCNP-4C code for the simulations of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxel were estimated and reported for 188 Re and Y 90 . A comparison of voxel S values computed with the MCNP code and the data reported in MIRD Pamphlet 17 for 90 Y was performed in order to evaluate our results. (author)
International Nuclear Information System (INIS)
Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.
2009-01-01
At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)
International Nuclear Information System (INIS)
Masukawa, Fumihiro; Takano, Makoto; Naito, Yoshitaka; Yamazaki, Takao; Fujisaki, Masahide; Suzuki, Koichiro; Okuda, Motoi.
1993-11-01
In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)
Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P
2007-01-01
The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.
Development and validation of a model TRIGA Mark III reactor with code MCNP5
International Nuclear Information System (INIS)
Galicia A, J.; Francois L, J. L.; Aguilar H, F.
2015-09-01
The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K eff was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)
Study of salinity in aqueous medium using X-Ray beam with MCNP-X code
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Caroline M.; Braz, Delson [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, César M., E-mail: cbarbosa@nuclear.ufrj.br, E-mail: delson@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In offshore production, it is possible that the produced water presents geochemical characteristics that correspond to the mixture of formation water (connate water) and the sea water (injection water), and the physical-chemical behavior of the injected water allows a considerable variation in the index of salinity altering the water/oil ratio during transportation and/or extraction. Injection water is generally used to raise the reservoir pressure, increasing the percentage of extracted oil. This water has a significant amount of salts that generate some difficulties, such as measuring fractions of volume in multiphase systems. One way to check the effects of salinity would be to regularly measure the amount of salt present in the water. In this way, this work presents a methodology to measure the concentration and the types of salts using nuclear techniques through the MCNP-X computational code. The measurement geometry uses an X-ray beam (40-100 keV) and NaI(Tl) scintillation detector positioned diametrically opposed to the source. The studied samples were the NaCl, KCl and MgCl{sub 2} salts in aqueous solution. The results present the possibility of differentiating the formation and injection waters due to differences in the salt concentrations. (author)
K0-PGNAA of pollutants in aqueous samples using MCNP code
International Nuclear Information System (INIS)
Hamid, A.; Shahbunder, H.
2014-01-01
Prompt γ-neutron activation analysis (PGNAA) using the k 0 method by employing the 1951.1 keV γ-line of the 35 Cl(n, γ) 36 Cl thermal neutron reaction as monostandard comparator was described. The method has been applied and evaluated using the anti-Compton prompt γ-ray neutron activation analysis facility using 252 Cf neutron source with a neutron flux of 6.16·10 6 n· cm -2 · s -1 . A well-type HPGe detector as the main detector surrounded by NaI(Tl) guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The properties of neutron flux were determined by MCNP code calculations. In order to determine the efficiency curve of an HPGe detector, the prompt γ-rays from chlorine were used and an exponential curve was fitted. AC-PGNAA method has been used for the determination of high neutron absorbing elements like Cd, Sm and Gd as well as 20 light and heavy elements (Na, Mg, Al, Si, P, K, Ca, Ti, V, Mn, Sc, Fe, Co, Zn, La, Rb, Cs, As and Th) in standard reference materials (IAEA, Soil-7) and ten sediment samples collected from El-Manzala lake in northern part of Egypt. The reference material IAEA, Soil-7 was analyzed for data validation and good agreement between the experimental values and the certified values have been obtained
Image enhancement using MCNP5 code and MATLAB in neutron radiography
International Nuclear Information System (INIS)
Tharwat, Montaser; Mohamed, Nader; Mongy, T.
2014-01-01
This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. - Highlights: • This work is applicable for static based film neutron radiography and digital neutron imaging. • MATLAB is a useful tool for imaging enhancement in radiographic film. • Advanced imaging processing is available in the ETRR-2 for imaging processing and data extraction. • The digital imaging system is suitable for complex shapes and sizes, while MATLAB technique is suitable for simple shapes and sizes. • Quantitative measurements are available
Flow regime identification methodology with MCNP-X code and artificial neural network
International Nuclear Information System (INIS)
Salgado, Cesar M.; Instituto de Engenharia Nuclear; Schirru, Roberto; Brandao, Luis E.B.; Pereira, Claudio M.N.A.
2009-01-01
This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification. (author)
Shielding calculations for neutron calibration bunker using Monte Carlo code MCNP-4C
International Nuclear Information System (INIS)
Suman, H.; Kharita, M. H.; Yousef, S.
2008-02-01
In this work, the dose arising from an Am-Be source of 10 8 neutron/sec strength located inside the newly constructed neutron calibration bunker in the National Radiation Metrology Laboratories, was calculated using MCNP-4C code. It was found that the shielding of the neutron calibration bunker is sufficient. As the calculated dose is not expected to exceed in inhabited areas 0.183 μSv/hr, which is 10 times smaller than the regulatory dose constraints. Hence, it can be concluded that the calibration bunker can house - from the external exposure point of view - an Am-Be neutron source of 10 9 neutron/sec strength. It turned out that the neutron dose from the source is few times greater than the photon dose. The sky shine was found to contribute significantly to the total dose. This contribution was estimated to be 60% of the neutron dose and 10% of the photon dose. The systematic uncertainties due to various factors have been assessed and was found to be between 4 and 10% due to concrete density variations; 15% due to the dose estimation method; 4 -10% due to weather variations (temperature and moisture). The calculated dose was highly sensitive to the changes in source spectra. The uncertainty due to the use of two different neutron spectra is about 70%.(author)
k0-PGNAA of pollutants in aqueous samples using MCNP code
Directory of Open Access Journals (Sweden)
A. Hamid
2014-03-01
Full Text Available Prompt γ-neutron activation analysis (PGNAA using the k0 method by employing the 1951.1 keV γ-line of the 35Cl(n, γ36Cl thermal neutron reaction as monostandard comparator was described. The method has been applied and evaluated using the anti-Compton prompt γ-ray neutron activation analysis facility using 252Cf neutron source with a neutron flux of 6.16 · 106 n · cm-2 · s-1. A well-type HPGe detector as the main detector surrounded by NaI(Tl guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The properties of neutron flux were determined by MCNP code calculations. In order to determine the efficiency curve of an HPGe detector, the prompt γ-rays from chlorine were used and an exponential curve was fitted. AC-PGNAA method has been used for the determination of high neutron absorbing elements like Cd, Sm and Gd as well as 20 light and heavy elements (Na, Mg, Al, Si, P, K, Ca, Ti, V, Mn, Sc, Fe, Co, Zn, La, Rb, Cs, As and Th in standard reference materials (IAEA, Soil-7 and ten sediment samples collected from El-Manzala lake in northern part of Egypt. The reference material IAEA, Soil-7 was analyzed for data validation and good agreement between the experimental values and the certified values have been obtained.
Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation
Directory of Open Access Journals (Sweden)
Fatemeh Sadat Rasouli
2012-09-01
Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations. Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.
Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B
International Nuclear Information System (INIS)
Hernandez, Antonio Carlos
2002-01-01
Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)
Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B
International Nuclear Information System (INIS)
Hernandes, Antonio Carlos
2002-01-01
Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency Ν Τ = 1,35x10 8 n/cm 2 , a fast neutron dose of 5,86x -1 0 Gy/Ν Τ and a gamma ray dose of 8,30x -14 Gy/Ν Τ . (author)
Evaluation of Tehran research reactor (TRR) control rod worth using MCNP4C computer code
International Nuclear Information System (INIS)
Hosseini, Mohammad; Vosoughi, Naser; Hosseini, Seyed Abolfazl
2010-01-01
The main objective of reactor control system is to provide a safe reactor starting up, operation and shutting down. Calculation or measurement of precise values of control rod worth is of great importance in Tehran Research Reactor (TRR), considering the fact that they are the only controlling tools in the reactor. In present paper, simulation of TRR in First Operation Cycle (FOC) and in cold and clean core for the calculation of total and integral worth of control nods is reported. MCNP4C computer code has been used for all simulation process. Two method have been used for control rods worth calculation in this paper, namely the direct approach and perturbation method. It is shown that while the direct approach is appropriate for worth calculation of both the shim and the regulating control rods, the perturbation method is just suitable for tiny reactivity changes, i.e. for small initial part of regulating rods. Results of simulation are compared with the reported data in Safety Analysis Report (SAR) of Tehran research reactor and showed satisfactory agreement. (author)
Simulation of dental intensifying screen for intraoral radiographic using MCNP5 code
International Nuclear Information System (INIS)
Ferreira, Vanessa M.; Oliveira, Renato C.M.; Barros, Graiciany P.; Oliveira, Arno H.; Veloso, M. Auxiliadora F.
2011-01-01
One of basic principles for radiological protection is the optimization of techniques for obtain radiographic images, in way that the dose in the patient is kept as low as reasonably achievable (ALARA). Intensifying screens are used in medical radiology, which reduce considerably the dose rates in the production of radiographic images, maintaining the quality of these, while in dental radiology, there is no a intensifying screen available for intraoral examinations. From this technological requirement, this paper evaluates a computational modeling of an intensifying screen for use in intraoral radiography. For this, it was used the Monte Carlo code MCNP5 that allows the radiography simulation through the transport of electrons and photons in the different materials present in this examination. The goal of an intensifying screen is the conversion of X-ray photons to photons in the visible spectrum, knowing that radiographic films are more sensitive to light photons than to X-ray photons. So the screen should be composed of an efficient material for converting x-rays photons in light photons, therefore was made simulations using different materials, thicknesses and positions possible for placing screen in radiographic film in order to find the way more technically feasible. (author)
Performance of the MTR core with MOX fuel using the MCNP4C2 code
International Nuclear Information System (INIS)
Shaaban, Ismail; Albarhoum, Mohamad
2016-01-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.
MCNP(TM) Release 6.1.1 beta: Creating and Testing the Code Distribution
Energy Technology Data Exchange (ETDEWEB)
Cox, Lawrence J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-06-12
This report documents the preparations for and testing of the production release of MCNP6™1.1 beta through RSICC at ORNL. It addresses tests on supported operating systems (Linux, MacOSX, Windows) with the supported compilers (Intel, Portland Group and gfortran). Verification and Validation test results are documented elsewhere. This report does not address in detail the overall packaging of the distribution. Specifically, it does not address the nuclear and atomic data collection, the other included software packages (MCNP5, MCNPX and MCNP6) and the collection of reference documents.
Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4
International Nuclear Information System (INIS)
Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A
2004-01-01
The expanding clinical use of low-energy photon emitting 125 I and 103 Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst ±5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately ±2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV
Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G
2006-01-01
The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.
Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A
2004-02-07
The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.
Calibration of a foot borne spectrometry system using the MCNP 4C code
International Nuclear Information System (INIS)
Nylen, T.; Agren, G.
2004-01-01
The increased interest for the cycling of radioactive Caesium in natural ecosystems has gained need for rapid and reliable methods to investigate the deposition density in natural soils. One commonly used method, soil sampling, is a good method that correctly used gives information of both the horizontal and vertical distribution of the desired nuclide. The main disadvantage is that the method is time consuming regarding sampling, preparation and measurements. An alternative method is the use of semiconductors or scintillation detectors in the field i.e. in cars, airplanes, or helicopters. Theses methods are rapid and integrate over large areas which gives a more reliable mean value provided that the operator has some basic knowledge about the depth distribution of the radio nuclides and bulk density in the soil. To be effective the systems are often connected to a GPS to give the exact coordinate for each measurement. In a situation where the area of interest is too large to cover by soil samples and measurements by airplane not will give a spatial resolution good enough, one feasible method is to use a foot borne gamma spectrometry system. The advantage of a foot borne system is that the operator can cover a quite large area within a few hours and that the method can detect small anomalies in the deposition field which may be difficult to discover with soil samples. This abstract describes the calibration of a foot borne gamma-spectrometry system carried in a back-pack and consisting of a NaI-detector, a GPS and a system for logging activity and position. The detector system and surroundings has been modeled in the Monte Carlo code MCNP 4C (Figure 1). The Monte Carlo method gives the possibility to study the influence of complex geometries that are difficult to create for a practical calibration using real activity. The results of the MCNP calibration model, has been compared to foot borne gamma-spectrometry field measurements in a Cs-137 deposition area. A
International Nuclear Information System (INIS)
Campolina, Daniel de Almeida Magalhaes
2009-01-01
In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)
International Nuclear Information System (INIS)
Luneville, L.; Chiron, M.; Toubon, H.; Dogny, S.; Huver, M.; Berger, L.
2001-01-01
The research performed in common these last 3 years by the French Atomic Commission CEA, COGEMA and Eurisys Mesures had for main subject the realization of a complete tool of modelization for the largest range of realistic cases, the Pascalys modelization software. The main purpose of the modelization was to calculate the global measurement efficiency, which delivers the most accurate relationship between the photons emitted by the nuclear source in volume, punctual or deposited form and the germanium hyper pure detector, which detects and analyzes the received photons. It has been stated since long time that experimental global measurement efficiency becomes more and more difficult to address especially for complex scene as we can find in decommissioning and dismantling or in case of high activities for which the use of high activity reference sources become difficult to use for both health physics point of view and regulations. The choice of a calculation code is fundamental if accurate modelization is searched. MCNP represents the reference code but its use is long time calculation consuming and then not practicable in line on the field. Direct line-of-sight point kernel code as the French Atomic Commission 3-D analysis Mercure code can represent the practicable compromise between the most accurate MCNP reference code and the realistic performances needed in modelization. The comparison between the results of Pascalys-Mercure and MCNP code taking in account the last improvements of Mercure in the low energy range where the most important errors can occur, is presented in this paper, Mercure code being supported in line by the recent Pascalys 3-D modelization scene software. The incidence of the intrinsic efficiency of the Germanium detector is also approached for the total efficiency of measurement. (authors)
International Nuclear Information System (INIS)
Hendricks, J.S.
1994-01-01
The MCNP code development program is a relatively large and rapidly changing project in the small and highly-specialized field of radiation transport, specifically radiation protection and shielding. A number of major new MCNP initiatives are described in the subsequent papers in this session. The focus of this paper is the important new developments not described elsewhere and a number of recent developments that have been available since MCNP4A but have gone unnoticed. In particular, we report for the first time a new MCNP quality assurance initiative providing 97% test coverage, a new MCNP feature enabling plotting of nuclear data, and the other new features developed so far for MCNP4B. Finally, an attempt is made to articulate how all these fit together into the overall MCNP development program
International Nuclear Information System (INIS)
Tzika, F.; Stamatelatos, I.E.
2004-01-01
Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample
International Nuclear Information System (INIS)
Qiu, R.; Li, J.; Zhang, Z.; Liu, L.; Bi, L.; Ren, L.
2009-01-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface. (authors)
Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code
International Nuclear Information System (INIS)
He, Tongming Tony
2003-01-01
Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated
Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5
International Nuclear Information System (INIS)
Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose; Ortiz, J.; Pereira, Claubia
2013-01-01
A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)
Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5
Energy Technology Data Exchange (ETDEWEB)
Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose, E-mail: sergalbe@upv.es [Universitat Politecnica de Valencia, Valencia, (Spain). Instituto de Seguridad Industrial, Radiofisica y Medioambiental (ISIRYM); Ortiz, J. [Universitat Politecnica de Valencia, Valencia, (Spain). Servicio de Radiaciones. Lab. de Radiactividad Ambiental; Pereira, Claubia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear
2013-07-01
A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
Comparison calculations of WWER-1000 fuel assemblies by using the MCNP 4.2 a KASSETA codes
International Nuclear Information System (INIS)
Trgina, M.
1993-12-01
The power multiplication and distribution factors are compared for various geometries and material configurations of WWER-1000 fuel assemblies. The calculations were performed in 2 ways: (i) using nuclear data, employing older and current data collections, and (ii) using the author's own model based on the KASSETA code. The comparison code MCNP 4.2 is described, intended for computerized simulation of the transport of neutrons, photons and electrons. This code uses its own cross section library. The methodology is outlined and a specification of the Monte Carlo method employed is given. The use of the refined data library gave rise to appreciable deviations of the multiplication factors in all variants. The use of the older data library led to identical criticality results for the variant with water holes. For inserted absorbers the discrepancies in criticality and in power distribution data are appreciable. The marked disagreement between the results of application of the MCNP 4.2 and KASSETA codes for the variants with inserted control elements is indicative of inappropriateness of the approximation procedure in the latter code. (J.B.). 2 tabs., 11 figs., 11 refs
International Nuclear Information System (INIS)
Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki
2015-03-01
There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)
MCNP Progress & Performance Improvements
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-04-14
Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.
The study on neutron and photon distribution of AP1000 reactor by MCNP code
International Nuclear Information System (INIS)
Chen Defeng; Shen Mingqi
2014-01-01
The core and reactor structural of AP1000 was modeled by the MCNP calculation program which is based on the Monte Carlo method in this paper, the neutron and photon distribution of AP1000 reactor core was calculated by the conditions of reactor critical. The results show that the AP1000 reactor neutron and photon distribution is in accordance with the critical design of PWR. (authors)
International Nuclear Information System (INIS)
Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian
2013-01-01
The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)
Energy Technology Data Exchange (ETDEWEB)
Galicia A, J.; Francois L, J. L.; Bastida O, G. E. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico); Del Valle G, E., E-mail: jgaliciaa87@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico)
2017-09-15
The codes that make up the AZTLAN platform (AZTHECA, AZTRAN, AZKIND and AZNHEX) are currently in the testing phase simulating a variety of nuclear reactor assemblies and cores to compare and validate the results obtained for a particular case, with codes globally used in the nuclear area such as CASMO, Serpent and MCNP. The objective of this work is to continue improving the future versions of the codes of the AZTLAN platform so that accurate and reliable results can be obtained for the user. To test the current version of the AZNHEX code, 3 cases were taken into account, the first being the simulation of a VVER-440 reactor assembly; for the second case, the assembly of a fast reactor cooled with helium was simulated and for the third case it was decided to take up the case of the core of a fast reactor cooled with sodium, this because the previous versions of AZNHEX did not show adequate results and, in addition, they presented a considerable amount of limitations. The comparison and validation of the results (neutron multiplication factor, radial power, radial flow, axial power) for these three cases were made using the code MCNP6. The results obtained show that this version of AZNHEX produces values of the neutron multiplication factor and the neutron and power flow distributions very close to those of MCNP6. (Author)
International Nuclear Information System (INIS)
Youssef, M. Z.
2007-01-01
Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the
Energy Technology Data Exchange (ETDEWEB)
Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)
International Nuclear Information System (INIS)
Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Esquivel E, J.
2016-09-01
The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)
International Nuclear Information System (INIS)
Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza
2015-01-01
This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)
Energy Technology Data Exchange (ETDEWEB)
Zehtabian, M; Zaker, N; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)
2015-06-15
Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.
International Nuclear Information System (INIS)
Maragni, M.G.; Moreira, J.M.L.
1992-01-01
A criticality safety analysis has been carried out for the storage tubes for irradiated fuel elements from the IEA-R1 research reactor. The analysis utilized the MCNP computer code which allows exact simulations of complex geometries. Aiming reducing the amount of input data, the fuel element cross-sections have been spatially smeared out. The earth material interstice between fuel elements has been approximated conservatively as concrete because its composition was unknown. The storage tubes have been found subcritical for the most adverse conditions (water flooding and un-irradiated fuel elements). A similar analysis with the KENO-IV computer code overestimated the KEF result but still confirmed the criticality safety of the storage tubes. (author)
First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes
International Nuclear Information System (INIS)
Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong
2015-01-01
A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)
International Nuclear Information System (INIS)
Vargas E, S.; Esquivel E, J.; Ramirez S, J. R.
2013-10-01
The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)
MCNP and OMEGA criticality calculations
International Nuclear Information System (INIS)
Seifert, E.
1998-04-01
The reliability of OMEGA criticality calculations is shown by a comparison with calculations by the validated and widely used Monte Carlo code MCNP. The criticality of 16 assemblies with uranium as fissionable is calculated with the codes MCNP (Version 4A, ENDF/B-V cross sections), MCNP (Version 4B, ENDF/B-VI cross sections), and OMEGA. Identical calculation models are used for the three codes. The results are compared mutually and with the experimental criticality of the assemblies. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)
2017-02-15
In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.
Directory of Open Access Journals (Sweden)
Reza Bagheri
2017-02-01
Full Text Available In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium–bismuth–borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium–bismuth–borosilicate glasses have good gamma ray shielding properties from the shielding point of view.
MCNP: Photon benchmark problems
International Nuclear Information System (INIS)
Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.
1991-09-01
The recent widespread, markedly increased use of radiation transport codes has produced greater user and institutional demand for assurance that such codes give correct results. Responding to these pressing requirements for code validation, the general purpose Monte Carlo transport code MCNP has been tested on six different photon problem families. MCNP was used to simulate these six sets numerically. Results for each were compared to the set's analytical or experimental data. MCNP successfully predicted the analytical or experimental results of all six families within the statistical uncertainty inherent in the Monte Carlo method. From this we conclude that MCNP can accurately model a broad spectrum of photon transport problems. 8 refs., 30 figs., 5 tabs
Development of interface between MCNP-FISPACT-MCNP (IPR-MFM) based on rigorous two step method
International Nuclear Information System (INIS)
Shaw, A.K.; Swami, H.L.; Danani, C.
2015-01-01
In this work we present the development of interface tool between MCNP-FISPACT-MCNP (MFM) based on Rigorous Two Step method for the shutdown dose rate (SDDR) calculation. The MFM links MCNP radiation transport and the FISPACT inventory code through a suitable coupling scheme. MFM coupling scheme has three steps. In first step it picks neutron spectrum and total flux from MCNP output file to use as input parameter for FISPACT. It prepares the FISPACT input files by using irradiation history, neutron flux and neutron spectrum and then execute the FISPACT input file in the second step. Third step of MFM coupling scheme extracts the decay gammas from the FISPACT output file and prepares MCNP input file for decay gamma transport followed by execution of MCNP input file and estimation of SDDR. Here detailing of MFM methodology and flow scheme has been described. The programming language PYTHON has been chosen for this development of the coupling scheme. A complete loop of MCNP-FISPACT-MCNP has been developed to handle the simplified geometrical problems. For validation of MFM interface a manual cross-check has been performed which shows good agreements. The MFM interface also has been validated with exiting MCNP-D1S method for a simple geometry with 14 MeV cylindrical neutron source. (author)
International Nuclear Information System (INIS)
Brockhoff, R.C.; Hendricks, J.S.
1994-09-01
The MCNP test set is used to test the MCNP code after installation on various computer platforms. For MCNP4 and MCNP4A this test set included 25 test problems designed to test as many features of the MCNP code as possible. A new and better test set has been devised to increase coverage of the code from 85% to 97% with 28 problems. The new test set is as fast as and shorter than the MCNP4A test set. The authors describe the methodology for devising the new test set, the features that were not covered in the MCNP4A test set, and the changes in the MCNP4A test set that have been made for MCNP4B and its developmental versions. Finally, new bugs uncovered by the new test set and a compilation of all known MCNP4A bugs are presented
International Nuclear Information System (INIS)
Youssef, M.Z.; Feder, R.; Davis, I.
2007-01-01
The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
International Nuclear Information System (INIS)
Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.
2007-01-01
In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required
Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.
Evaluation of a 50-MV photon therapy beam from a racetrack microtron using MCNP4B Monte Carlo code
International Nuclear Information System (INIS)
Gudowska, I.; Svensson, R.
2001-01-01
High energy photon therapy beam from the 50 MV racetrack microtron has been evaluated using the Monte Carlo code MCNP4B. The spatial and energy distribution of photons, radial and depth dose distributions in the phantom are calculated for the stationary and scanned photon beams from different targets. The calculated dose distributions are compared to the experimental data using a silicon diode detector. Measured and calculated depth-dose distributions are in fairly good agreement, within 2-3% for the positions in the range 2-30 cm in the phantom, whereas the larger discrepancies up to 10% are observed in the dose build-up region. For the stationary beams the differences in the calculated and measured radial dose distributions are about 2-10%. (orig.)
Determination of the detection efficiency of a HPGe detector by means of the MCNP 4A simulation code
International Nuclear Information System (INIS)
Leal, B.
2004-01-01
In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)
Energy Technology Data Exchange (ETDEWEB)
Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2016-06-15
The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.
International Nuclear Information System (INIS)
Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.
2015-01-01
In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.
International Nuclear Information System (INIS)
Hussein, M.S.; Bonin, H.W.; Lewis, B.J.
2014-01-01
The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)
2014-07-01
The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)
International Nuclear Information System (INIS)
Orsi, R.
2003-01-01
Bot3p consists of a set of standard Fortran 77 language programs that gives the users of the deterministic transport codes Dort and Tort some useful diagnostic tools to prepare and check the geometry of their input data files for both Cartesian and cylindrical geometries including graphical display modules. Bot3p produces at the same time the geometrical and material distribution data for the deterministic transport codes Twodant and Threedant and, only in three-dimensional (3D) Cartesian geometry, for the Monte Carlo Transport Code MCNP. This makes it possible to compare directly for the same geometry the effects stemming from the use of different data libraries and solution approaches on transport analysis results. Through the use of Bot3p, radiation transport problems with complex 3D geometrical structures can be modelled easily, as a relatively small amount of engineer-time is required and refinement is achieved by changing few parameters. This tool is useful for solving very large challenging problems. (author)
International Nuclear Information System (INIS)
Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.
2007-01-01
Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations
Directory of Open Access Journals (Sweden)
Pešić Milan P.
2012-01-01
Full Text Available A numerical simulation of the radiological consequences of the RB reactor reactivity excursion accident, which occurred on October 15, 1958, and an estimation of the total doses received by the operators were run by the MCNP5 computer code. The simulation was carried out under the same assumptions as those used in the 1960 IAEA-organized experimental simulation of the accident: total fission energy of 80 MJ released in the accident and the frozen positions of the operators. The time interval of exposure to high doses received by the operators has been estimated. Data on the RB1/1958 reactor core relevant to the accident are given. A short summary of the accident scenario has been updated. A 3-D model of the reactor room and the RB reactor tank, with all the details of the core, created. For dose determination, 3-D simplified, homogenised, sexless and faceless phantoms, placed inside the reactor room, have been developed. The code was run for a number of neutron histories which have given a dose rate uncertainty of less than 2%. For the determination of radiation spectra escaping the reactor core and radiation interaction in the tissue of the phantoms, the MCNP5 code was run (in the KCODE option and “mode n p e”, with a 55-group neutron spectra, 35-group gamma ray spectra and a 10-group electron spectra. The doses were determined by using the conversion of flux density (obtained by the F4 tally in the phantoms to doses using factors taken from ICRP-74 and from the deposited energy of neutrons and gamma rays (obtained by the F6 tally in the phantoms’ tissue. A rough estimation of the time moment when the odour of ozone was sensed by the operators is estimated for the first time and given in Appendix A.1. Calculated total absorbed and equivalent doses are compared to the previously reported ones and an attempt to understand and explain the reasons for the obtained differences has been made. A Root Cause Analysis of the accident was done and
Wangerin, K; Culbertson, C N; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.
Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.
International Nuclear Information System (INIS)
Gholami, S.; Kamali Asl, A.; Aghamiri, M.; Allahverdi, M.
2010-01-01
Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.
Directory of Open Access Journals (Sweden)
Somayeh Gholami
2010-06-01
Full Text Available Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.
International Nuclear Information System (INIS)
Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.
1991-01-01
Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems
International Nuclear Information System (INIS)
Bilanovic, Z.; McCracken, D.R.
1994-12-01
In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs
International Nuclear Information System (INIS)
Kruijf, W.J.M. de; Janssen, A.J.
1994-01-01
Very accurate Mote Carlo calculations with Monte Carlo Code have been performed to serve as reference for benchmark calculations on resonance absorption by U 238 in a typical PWR pin-cell geometry. Calculations with the energy-pointwise slowing down code calculates the resonance absorption accurately. Calculations with the multigroup discrete ordinates code XSDRN show that accurate results can only be achieved with a very fine energy mesh. (authors). 9 refs., 5 figs., 2 tabs
Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George
2017-09-01
This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.
International Nuclear Information System (INIS)
Valentine, T.E.
1997-01-01
The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from the 252 Cf-source-driven frequency analysis measurements. This code can be used to validate calculational methods and cross section data sets from subcritical experiments. This code provides a more general model for interpretation and planning of experiments for nuclear criticality safety, nuclear safeguards, and nuclear weapons identification and replaces the use of point kinetics models for interpreting the measurements. The use of MCNP-DSP extends the usefulness of this measurement method to systems with much lower neutron multiplication factors
Comparative calculations with the HETC/MCNP and HETC/TWODAN codes
International Nuclear Information System (INIS)
Broeders, C.; Broeders, I.
1995-01-01
Transmutations of actinides and fission products can be achieved also by proton accelerators. For a theoretical study of this process the HETC code has been developed. A special procedure has been developed for dealing with spallation neutrons whose kinetic energy is below 10 to 20 MeV. (orig.)
Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes
International Nuclear Information System (INIS)
Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A.
2015-01-01
The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K eff at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes
Energy Technology Data Exchange (ETDEWEB)
Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A., E-mail: giovanni.laranjo@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais; Rossi, Pedro R., E-mail: pedro.russorossi@gmail.com [FERMIUM - Tecnologia Nuclear, Sao Paulo, SP (Brazil)
2015-07-01
The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K{sub eff} at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)
Directory of Open Access Journals (Sweden)
Aldawahra Saadou
2015-06-01
Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.
Energy Technology Data Exchange (ETDEWEB)
Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)
International Nuclear Information System (INIS)
Khattab, K.; Bush, M; Kassery, H.
2009-03-01
A 3-D model for the irradiation plant which belongs to the Atomic Energy Commission, Department of Radiation Technology in the Deir Al-Hajar area near Damascus, is presented in this work using the MCNP-4C code. This model is used to calculate the spatial gamma ray dose in the (x, y, z) coordinate. Good agreements are noticed between the measured and the calculated results. (author)
International Nuclear Information System (INIS)
Hendricks, J.S.; Briesmeister, J.F.
1991-01-01
MCNP is a widely used and actively developed Monte Carlo radiation transport code. Many important features have recently been added and more are under development. Benchmark studies not only indicate that MCNP is accurate but also that modern computer codes can give answers basically as accurate as the physics data that goes in them. Even deep penetration problems can be correct to within a factor of two after 10 to 25 mean free paths of penetration. And finally, Monte Carlo calculations, once thought to be too expensive to run routinely, can now be run effectively on desktop computers which compete with the supercomputers of yesteryear. 21 refs., 3 tabs
MCNP trademark Monte Carlo: A precis of MCNP
International Nuclear Information System (INIS)
Adams, K.J.
1996-01-01
MCNP trademark is a general purpose three-dimensional time-dependent neutron, photon, and electron transport code. It is highly portable and user-oriented, and backed by stringent software quality assurance practices and extensive experimental benchmarks. The cross section database is based upon the best evaluations available. MCNP incorporates state-of-the-art analog and adaptive Monte Carlo techniques. The code is documented in a 600 page manual which is augmented by numerous Los Alamos technical reports which detail various aspects of the code. MCNP represents over a megahour of development and refinement over the past 50 years and an ongoing commitment to excellence
Energy Technology Data Exchange (ETDEWEB)
Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2013-10-15
The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)
Directory of Open Access Journals (Sweden)
Lida Gholamkar
2016-09-01
Full Text Available Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammography device (Planmed Oy, Finland, equipped with an amorphous selenium detector. Different anode/filter materials, such as molybdenum-rhodium (Mo-Rh, molybdenum-molybdenum (Mo-Mo, tungsten-tin (W-Sn, tungsten-silver (W-Ag, tungsten-palladium (W-Pd, tungsten-aluminum (W-Al, tungsten-molybdenum (W-Mo, molybdenum-aluminum (Mo-Al, tungsten-rhodium (W-Rh, rhodium-aluminum (Rh-Al, and rhodium-rhodium (Rh-Rh, were simulated in this study. The voltage range of the X-ray tube was between 24 and 34 kV with a 2 kV interval. Results The charts of changing photon flux versus energy were plotted for different types of anode-filter combinations. The comparison with the findings reported by others indicated acceptable consistency. Also, the X-ray spectra, obtained from MCNP5 and MCNPX codes for W-Ag and W-Rh combinations, were compared. We compared the present results with the reported data of MCNP4C and IPEM report No. 78 for Mo-Mo, Mo-Rh, and W-Al combinations. Conclusion The MCNPX calculation outcomes showed acceptable results in a low-energy X-ray beam range (10-35 keV. The obtained simulated spectra for different anode/filter combinations were in good conformity with the finding of previous research.
International Nuclear Information System (INIS)
Mirzakhanian, L; Enger, S; Giusti, V
2015-01-01
Purpose: A major concern in proton therapy is the production of secondary neutrons causing secondary cancers, especially in young adults and children. Most utilized Monte Carlo codes in proton therapy are Geant4 and MCNP. However, the default versions of Geant4 and MCNP6 do not have suitable cross sections or physical models to properly handle secondary particle production in proton energy ranges used for therapy. In this study, default versions of Geant4 and MCNP6 were modified to better handle production of secondaries by adding the TENDL-2012 cross-section library. Methods: In-water proton depth-dose was measured at the “The Svedberg Laboratory” in Uppsala (Sweden). The proton beam was mono-energetic with mean energy of 178.25±0.2 MeV. The measurement set-up was simulated by Geant4 version 10.00 (default and modified version) and MCNP6. Proton depth-dose, primary and secondary particle fluence and neutron equivalent dose were calculated. In case of Geant4, the secondary particle fluence was filtered by all the physics processes to identify the main process responsible for the difference between the default and modified version. Results: The proton depth-dose curves and primary proton fluence show a good agreement between both Geant4 versions and MCNP6. With respect to the modified version, default Geant4 underestimates the production of secondary neutrons while overestimates that of gammas. The “ProtonInElastic” process was identified as the main responsible process for the difference between the two versions. MCNP6 shows higher neutron production and lower gamma production than both Geant4 versions. Conclusion: Despite the good agreement on the proton depth dose curve and primary proton fluence, there is a significant discrepancy on secondary neutron production between MCNP6 and both versions of Geant4. Further studies are thus in order to find the possible cause of this discrepancy or more accurate cross-sections/models to handle the nuclear
International Nuclear Information System (INIS)
Dawahra, S.; Khattab, K.
2011-01-01
Highlights: → The MCNP4C code was used to calculate the power distribution in 3-D geometry in the MNSR reactor. → The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. → The minimum power was found in the fuel ring number 9 and was 79.9 W. → The total power in the total fuel rods was 30.9 kW. - Abstract: The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 kW. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 kW. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively.
Comparison of HPGe detector response data for low energy photons using MCNP, EGS, and its codes
International Nuclear Information System (INIS)
Kim, Soon Young; Kim, Jong Kyung
1995-01-01
In this study, the photopeak efficiency, K α and K β escape fractions of HPGe detector(100mm 2 X 10mm) are calculated and tabulated as a function of incident X-ray energies from 12 to 60keV in 2-keV increments. Compton, elastic, and penetration fractions are not tabulated from this work since they are negligible amounts in this energy range. The results calculated from this work are compared with earlier Monte Carlo results which had been carried out by Chin-Tu Chen et al.. From the comparison, it is found that the results calculated from each code show a large difference when the incident photon energy approaches to 12keV as compared with energy ranges from 50 to 60keV. In X-ray dosimetry and diagnostic radiology, it is essential to have accurate knowledge of X-ray spectra for studies of patient dose and image quality. Being X-ray spectra measured with a detection system, some distortions due to the incomplete absorption of primary photon or escape before interacting with the detector which have finite dimension can take place
International Nuclear Information System (INIS)
Atak, H.; Celikten, O. S.; Tombakoglu, M.
2009-01-01
Gamma ray dose buildup factors in water for isotropic point, plane mono directional and infinite/finite line sources were calculated using the MCNP code. The buildup factors are determined for gamma ray energies of 1, 2, 3 and 4 Mev and for shield thicknesses of 1, 2, 4 and 7 mean free paths. The calculated buildup factors were then fitted in the Taylor and Berger forms. For the line sources a buildup factor table was also constructed using the Sievert function and the constants in Taylor form derived in this study to compare with the Monte Carlo results. All buildup factors were compared with the tabulated data given in literature. In order to reduce the statistical errors on buildup factors, 'forced collision' option was used in the MCNP calculations.
International Nuclear Information System (INIS)
Jannati Isfahani, A.; Shokrani, P.; Raisali, Gh.
2010-01-01
Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a minimum target dose of 85 Gy. The goal of this study was to develop a Monte Carlo simulation method for treatment planning optimization of the COMS and USC eye plaques. Material and Methods: The MCNP4C code was used to simulate three plaques: COMS-12mm, COMS-20mm, and USC ≠9 with I-125 seeds. Calculation of dose was performed in a spherical water phantom (radius 12 mm) using a 3D matrix with a size of 12 voxels in each dimension. Each voxel contained a sphere of radius 1 mm. Results: Dose profiles were calculated for each plaque. Isodose lines were created in 2 planes normal to the axes of the plaque, at the base of the tumor and at the level of the 85 Gy isodose in a 7 day treatment. Discussion and Conclusion: This study shows that it is necessary to consider the following tumor properties in design or selection of an eye plaque: the diameter of tumor base, its thickness and geometric shape, and the tumor location with respect to normal critical structures. The plaque diameter is selected by considering the tumor diameter. Tumor thickness is considered when selecting the seed parameters such as their number, activity and distribution. Finally, tumor shape and its location control the design of following parameters: the shape and material of the plaque and the need for collimation.
Directory of Open Access Journals (Sweden)
Sedigheh Sina
2011-06-01
Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources. Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively. By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.
Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code
International Nuclear Information System (INIS)
Peixoto, Philippe N.B.; Salgado, Cesar M.
2015-01-01
The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)
Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code
Energy Technology Data Exchange (ETDEWEB)
Peixoto, Philippe N.B.; Salgado, Cesar M., E-mail: phbelache@hotmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)
Daures, J; Gouriou, J; Bordy, J M
2011-03-01
This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.
Energy Technology Data Exchange (ETDEWEB)
Leal, B. [Centro Regional de Estudios Nucleares, A.P. 579C, 98068 Zacatecas (Mexico)
2004-07-01
In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)
Energy Technology Data Exchange (ETDEWEB)
Parreno Z, F.; Paucar J, R.; Picon C, C. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)
1998-12-31
The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)
Data analysis and visualization in MCNP trademark
International Nuclear Information System (INIS)
Waters, L.S.
1994-01-01
There are many situations where the user may wish to go beyond current MCNP capabilities. For example, data produced by the code may need formatting for input into an external graphics package. Limitations on disk space may hinder writing out large PTRAK files. Specialized data analysis routines may be needed to model complex experimental results. One may wish to produce particle histories in a format not currently available in the code. To address these and other similar concerns a new capability in MCNP is being tested. A number of real, integer, logical and character variables describing the current and past characteristics of a particle are made available online to the user in three subroutines. The type of data passed can be controlled by cards in the INP file. The subroutines otherwise are empty, and the user may code in any desired analysis. A new MCNP executable is produced by compiling these subroutines and linking to a library which contains the object files for the rest of the code
Energy Technology Data Exchange (ETDEWEB)
Broeders, C.; Broeders, I.
1995-08-01
Transmutations of actinides and fission products can be achieved also by proton accelerators. For a theoretical study of this process the HETC code has been developed. A special procedure has been developed for dealing with spallation neutrons whose kinetic energy is below 10 to 20 MeV. (orig.)
Directory of Open Access Journals (Sweden)
A Shirani
2010-06-01
Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR has been simulated using the MCNP code, and reactivity worth of flooding the inner irradiation sites of this reactor in an accident has been calculated. Also, by inserting polyethylene capsules containing water inside the inner irradiation sites, reactivity changes of this reactor in same such accident have been measured, the results of which are in good agreements with the calculated results. In this work, the reactivity worth due to flooding one inner irradiation site is 0.53mk , and reactivity worth due to flooding of the whole 5 inner irradiation sites is 2.61 mk.
Potential MCNP enhancements for NCT
International Nuclear Information System (INIS)
Estes, G.P.; Taylor, W.M.
1992-01-01
MCNP a Monte Carlo radiation transport code, is currently widely used in the medical community for a variety of purposes including treatment planning, diagnostics, beam design, tomographic studies, and radiation protection. This is particularly true in the Neutron Capture Therapy (NCT) community. The current widespread medical use of MCNP after its general public distribution in about 1980 attests to the code's general versatility and usefulness, particularly since its development to date has not been influenced by medical applications. This paper discusses enhancements to MCNP that could be implemented at Los Alamos for the benefit of the NCT community. These enhancements generally fall into two categories, namely those that have already been developed to some extent but are not yet publicly available, and those that seem both needed based on our current understanding of NCT goals, and achievable based on our working knowledge of the MCNP code. MCNP is a general, coupled neutron/photon/electron Monte Carlo code developed and maintained by the Radiation Transport Group at Los Alamos. It has been used extensively for radiation shielding studies, reactor analysis, detector design, physics experiment interpretation, oil and gas well logging, radiation protection studies, accelerator design, etc. over the years. MCNP is a three-dimensional geometry, continuous energy physics code capable of modeling complex geometries, specifying material regions such as organs by the intersections of analytical surfaces
International Nuclear Information System (INIS)
White, Morgan C.
2000-01-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Energy Technology Data Exchange (ETDEWEB)
White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second
International Nuclear Information System (INIS)
Abella, V.; Miro, R.; Juste, B.; Verdu, G.
2008-01-01
Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by
Directory of Open Access Journals (Sweden)
A Shirani
2010-12-01
Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR is first simulated using the WIMSD code, and its fuel burn-up after 7 years of operation ( when the reactor was revived by adding a 1.5 mm thick beryllium shim plate to the top of its core and also after 14 years of operation (total operation time of the reactor is calculated. The reactor is then simulated using the MCNP code, and its reactivity variation due to adding a 1.5 mm thick beryllium shim plate to the top of the reactor core, after 7 years of operation, is calculated. The results show good agreement with the available data collected at the revival time. Exess reactivity of the reactor at present time (after 14 years of operation and after 7 years of the the reactor revival time is also determined both experimentally and by calculation, which show good agreement, and indicate that at the present time there is no need to add any further beryllium shim plate to the top of the reactor core. Furthermore, by adding more beryllium layers with various thicknesses to the top of the reactor core, in the input program of the MCNP program, reactivity value of these layers is calculated. From these results, one can predict the necessary beryllium thickness needed to reach a desired reactivity in the MNSR reactor.
MCNP trademark Software Quality Assurance plan
International Nuclear Information System (INIS)
Abhold, H.M.; Hendricks, J.S.
1996-04-01
MCNP is a computer code that models the interaction of radiation with matter. MCNP is developed and maintained by the Transport Methods Group (XTM) of the Los Alamos National Laboratory (LANL). This plan describes the Software Quality Assurance (SQA) program applied to the code. The SQA program is consistent with the requirements of IEEE-730.1 and the guiding principles of ISO 900
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
New developments enhancing MCNP for criticality safety
International Nuclear Information System (INIS)
Hendricks, J.S.; McKinney, G.W.; Forster, R.A.
1993-01-01
Since the early 80's MCNP has had three estimates of k eff : collision, absorption, and track length. MCNP has also had collision and absorption estimators of removal lifetime. These are calculated for every cycle and are averaged over the cycles as simple averages and covariance weighted averages. Correlation coefficients between estimators are also calculated. These criticality estimators are all in addition to the extensive summary information and tally edits used in shielding and other problems. A number of significant new developments have been made to enhance the MCNP Monte Carlo radiation transport code for criticality safety applications. These are available in the newly released MCNP4A version of the code
International Nuclear Information System (INIS)
Mosteller, Russell D.
2002-01-01
Two validation suites, one for criticality and another for radiation shielding, have been defined and tested for the MCNP Monte Carlo code. All of the cases in the validation suites are based on experiments so that calculated and measured results can be compared in a meaningful way. The cases in the validation suites are described, and results from those cases are discussed. For several years, the distribution package for the MCNP Monte Carlo code1 has included an installation test suite to verify that MCNP has been installed correctly. However, the cases in that suite have been constructed primarily to test options within the code and to execute quickly. Consequently, they do not produce well-converged answers, and many of them are physically unrealistic. To remedy these deficiencies, sets of validation suites are being defined and tested for specific types of applications. All of the cases in the validation suites are based on benchmark experiments. Consequently, the results from the measurements are reliable and quantifiable, and calculated results can be compared with them in a meaningful way. Currently, validation suites exist for criticality and radiation-shielding applications.
Energy Technology Data Exchange (ETDEWEB)
Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K{sub eff} was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)
International Nuclear Information System (INIS)
Salehi, A. A.; Vosoughi, N.; Shahriari, M.
2002-01-01
In reactor core neutronic calculations, we usually choose a control volume and investigate about the input, output, production and absorption inside it. Finally, we derive neutron transport equation. This equation is not easy to solve for simple and symmetrical geometry. The objective of this paper is to introduce a new direct method for neutronic calculations. This method is based on physics of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equation series without production of neutron transport differential equation and mandatory passing form differential equation bridge. This method, which is named Direct Discrete Method, was applied in static state, for a cylindrical geometry in one group energy. The validity of the results from this new method are tested with MCNP-4B code with a one group energy library. One energy group direct discrete equation produces excellent results, which can be compared with the results of MCNP-4B
International Nuclear Information System (INIS)
Dawahra, S.; Khattab, K.
2012-01-01
The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 k W. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 k W. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively. (author)
The new MCNP6 depletion capability
International Nuclear Information System (INIS)
Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.
2012-01-01
The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)
The New MCNP6 Depletion Capability
International Nuclear Information System (INIS)
Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.
2012-01-01
The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.
Energy Technology Data Exchange (ETDEWEB)
Galicia A, J.; Francois L, J. L.; Bastida O, G. E. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Esquivel E, J., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2016-09-15
The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)
International Nuclear Information System (INIS)
Boulaich, Y.; El Bardouni, T.; Erradi, L.; Chakir, E.; Boukhal, H.; Nacir, B.; El Younoussi, C.; El Bakkari, B.; Merroun, O.; Zoubair, M.
2011-01-01
Highlights: → In the present work, we have analyzed the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. → Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values. → In order to specify the source of the relatively large discrepancy in the case of ENDF-BVII nuclear data evaluation, the k eff discrepancy between ENDF-BVII and JENDL3.3 was decomposed by using sensitivity and uncertainty analysis technique. - Abstract: In the present work, we analyze the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. This experiment performed in the EOLE critical facility located at CEA/Cadarache, was mainly dedicated to the RTC studies for both UO 2 and UO 2 -PuO 2 PWR type lattices covering the whole temperature range from 20 deg. C to 300 deg. C. We have developed an accurate 3D model of the EOLE reactor by using the MCNP5 Monte Carlo code which guarantees a high level of fidelity in the description of different configurations at various temperatures taking into account their consequence on neutron cross section data and all thermal expansion effects. In this case, the remaining error between calculation and experiment will be awarded mainly to uncertainties on nuclear data. Our own cross section library was constructed by using NJOY99.259 code with point-wise nuclear data based on ENDF-BVII, JEFF3.1 and JENDL3.3 evaluation files. The MCNP model was validated through the axial and radial fission rate measurements at room and hot temperatures. Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values; the discrepancy is
International Nuclear Information System (INIS)
Braga, Mario R.M.S.S.; Oliveira, Arno H.; Lima, Claubia P.B.
2013-01-01
The aim of this work is to evaluate the behavior of the variation the elements: Mg, Ca, Fe in the soils composition on a nuclear probe to measure the density of porous materials nondestructive in testing based on coherent Compton Effect, the effect Rayleigh. To study the effect of composition in soil was used nuclear code MCNP4X where was simulated two sources, a source 14mCi americium-241 and other source 4mCi cesium-137, lead shielding and volume scintillator. To avoid problems with geometries were simulated spheres with 1.00 meters of diameter filled with soil to be evaluated. Data analysis allowed establishing correction parameters for nuclear probe. (author)
Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao
2018-05-17
To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Khattab, K; Sulieman, I
2009-04-01
The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.
International Nuclear Information System (INIS)
Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van
2015-01-01
This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.
MCNP Version 6.2 Release Notes
Energy Technology Data Exchange (ETDEWEB)
Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, C. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McKinney, Gregg Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Roger Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cox, Lawrence James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zukaitis, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forster, Robert Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-02-05
Monte Carlo N-Particle or MCNP^{®} is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guide for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).
Energy Technology Data Exchange (ETDEWEB)
Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-13
This presentation describes how to build MCNP 6.2. MCNP®* 6.2 can be compiled on Macs, PCs, and most Linux systems. It can also be built for parallel execution using both OpenMP and Messing Passing Interface (MPI) methods. MCNP6 requires Fortran, C, and C++ compilers to build the code.
Soliton coding for secured optical communication link
Amiri, Iraj Sadegh; Idrus, Sevia Mahdaliza
2015-01-01
Nonlinear behavior of light such as chaos can be observed during propagation of a laser beam inside the microring resonator (MRR) systems. This Brief highlights the design of a system of MRRs to generate a series of logic codes. An optical soliton is used to generate an entangled photon. The ultra-short soliton pulses provide the required communication signals to generate a pair of polarization entangled photons required for quantum keys. In the frequency domain, MRRs can be used to generate optical millimetre-wave solitons with a broadband frequency of 0?100 GHz. The soliton signals are multi
MCNP application for the 21 century
International Nuclear Information System (INIS)
McKinney, G.W.
2000-01-01
The Los Alamos National Laboratory (LANL) Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron, photon, and electron radiation transport applications. The latest version of the code, MCNP 4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000. This paper describes the code development philosophy, new features and capabilities, applicability to various problems, and future directions
Samarin, S. N.; Saramad, S.
2018-05-01
The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.
Energy Technology Data Exchange (ETDEWEB)
Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)
2015-07-01
In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)
International Nuclear Information System (INIS)
Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.
2015-01-01
In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)
Using MCNP-4C code for design of the thermal neutron beam for neutron radiography at the MNSR
International Nuclear Information System (INIS)
Shaaban, I.
2009-11-01
Studies were carried out for determination of the parameters of a thermal neutron beam at the MNSR reactor (MNSR-30 kW) for neutron radiography in the vertical beam port by using the MCNP-4C (Monte Carlo Neutron - Photon transport). Thermal, epithermal and fast neutron energy ranges were selected as 10 keV respectively. To produce a good neutron beam in terms of intensity and quality, several materials Lead (Pb), Bismuth (Bi), Borated polyethelyene and Alumina Oxide (Al 2 O 3 ) were used as neutron and photon filters. Based on the current design, the L/D of the facility ranges between 125, 110 and 90. The thermal neutron flux at the beam exit is 1.436x10 5 n/cm2 .s ,1.843x10 5 n/cm2 .s and 2.845x10 5 n/cm2 .s respectively, middots with a Cd-ratio of ∼ 2.829, 2.766, 3.191 for the L/D = 125, 110, 90 respectively. The estimated values for gamma doses are 6.705x10 -2 Rem/h and 1.275x10 -1 Rem/h and 2.678x10 -1 Rem/ h with bismuth. The divergent angle of the collimator is 1.348 degree - 2.021 degree. Such neutron beams, if built into the Syrian MNSR reactor, could support the application of NRG in Syria. (author)
Neutronics modeling of TRIGA reactor at the University of Utah using agent, KENO6 and MCNP5 codes
International Nuclear Information System (INIS)
Yang, X.; Xiao, S.; Choe, D.; Jevremovic, T.
2010-01-01
The TRIGA reactor at the University of Utah is modelled in 2D using the AGENT state-of-the-art methodology based on the Method of Characteristics (MOC) and R-function theory supporting detailed reactor analysis of reactor geometries of any type. The TRIGA reactor is also modelled using KENO6 and MCNP5 for comparison. The spatial flux and reaction rates distribution are visualized by AGENT graphics support. All methodologies are in use in to study the effect of different fuel configurations in developing practical educational exercises for students studying reactor physics. At the University of Utah we train graduate and undergraduate students in obtaining the Nuclear Regulatory Commission license in operating the TRIGA reactor. The computational models as developed are in support of these extensive training classes and in helping students visualize the reactor core characteristics in regard to neutron transport under various operational conditions. Additionally, the TRIGA reactor is under the consideration for power uprate; this fleet of computational tools once benchmarked against real measurements will provide us with validated 3D simulation models for simulating operating conditions of TRIGA. (author)
Full Core Criticality Modeling of Gas-Cooled Fast Reactor Using the SCALE6.0 and MCNP5 Code Packages
International Nuclear Information System (INIS)
Matijevic, M.; Jecmenica, R.; Pevec, D.; Trontl, K.
2012-01-01
The Gas-Cooled Fast Reactor (GFR) is one of the reactor concepts selected by the Generation IV International Forum (GIF) for the next generation of innovative nuclear energy systems. It was selected among a group of more than 100 prototypes and his commercial availability is expected by 2030. GFR has common goals of the rest GIF advanced reactor types: economy, safety, proliferation resistance, availability and sustainability. Several GFR fuel design concepts such as plates, rod pins and pebbles are currently being investigated in order to meet the high temperature constraints characteristic for a GFR working enviroment. In the previous study we have compared the fuel depletion results for heterogeneous GFR fuel assembly (FA), obtained with TRITON6 sequence of SCALE6.0 code system, with the MCNPX-CINDER90 and TRIPOLI-4-D codes. Present work is a continuation of neutronic criticality analysis of heterogeneous FA and full core configurations of a GFR concept using 3-D Monte Carlo codes KENO-VI/SCALE6.0 and MCNP5. The FA is based on a hexagonal mesh of fuel rods (uranium and plutonium carbide fuel, silicon carbide clad, helium gas coolant) with axial reflector thickness being varied for the purpose of optimization. Three reflector materials were analysed: zirconium carbide (ZrC), silicon carbide (SiC) and natural uranium. ZrC has been selected as a reflector material, having the best contribution to the neutron economy and to the reactivity of the core. The core safety parameters were also analysed: a negative temperature coefficient of reactivity was verified for the heavy metal fuel and coolant density loss. Criticality calculations of different FA active heights were performed and the reflector thickness was also adjusted. Finally, GFR full core criticality calculations using different active fuel rod heights and fixed ZrC reflector height were done to find the optimal height of the core. The Shannon entropy of the GFR core fission distribution was proved to be
MCNP4A: Features and philosophy
International Nuclear Information System (INIS)
Hendricks, J.S.
1993-01-01
This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ''Quality, Value and New Features.'' Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, new photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs
Calculation of power density with MCNP in TRIGA reactor
International Nuclear Information System (INIS)
Snoj, L.; Ravnik, M.
2006-01-01
Modern Monte Carlo codes (e.g. MCNP) allow calculation of power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. To normalize MCNP calculation by the steady-state thermal power of a reactor, one must use appropriate scaling factors. The description of the scaling factors is not adequately described in the MCNP manual and requires detailed knowledge of the code model. As the application of MCNP for power density calculation in TRIGA reactors has not been reported in open literature, the procedure of calculating power density with MCNP and its normalization to the power level of a reactor is described in the paper. (author)
International Nuclear Information System (INIS)
Pierre, J.R.M.
1996-01-01
Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.
Muratov, V. G.; Lopatkin, A. V.
An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.
Energy Technology Data Exchange (ETDEWEB)
Mendonça, Dalila Souza Costa; Santos, William S.; Perini, Ana Paula, E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlândia (INFIS/UFU), MG (Brazil). Instituto de Física; Neves, Lucio Pereira; Caldas, Linda V. E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Belinato, Walmir [Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA), Vitória da Conquista, BA (Brazil)
2017-07-01
Ionization chambers are widely used in diagnostic radiology dosimetry. In this work, a special pencil-type ionization chamber, with different dimensions, configuration and materials in relation to commercial ones, was studied computationally. For this, the MCNP-4C Monte Carlo code and different radiation spectra were used to determine the influence of its components on its response. It was possible to observe that the highest influence was for the PVC wall. (author)
Status of electron transport in MCNP trademark
International Nuclear Information System (INIS)
Hughes, H.G.
1997-01-01
The latest version of MCNP, the Los Alamos Monte Carlo transport code, has now been officially released. MCNP4B has been sent to the Radiation Safety Information Computational Center (RSICC), in Oak Ridge, Tennessee, which is responsible for the further distribution of the code within the US. International distribution of MCNP is done by the Nuclear Energy Agency (ECD/NEA), in Paris, France. Readers with access to the World-Wide-Web should consult the MCNP distribution site http://www-xdiv.lanl.gov/XTM/mcnp/about.html for specific information about contacting RSICC and OECD/NEA. A variety of new features are available in MCNP4B. Among these are differential operator perturbations, cross-section plotting capabilities, enhanced diagnostics for transport in repeated structures and lattices, improved efficiency in distributed-memory multiprocessing, corrected particle lifetime and lifespan estimators, and expanded software quality assurance procedures and testing, including testing of the multigroup Boltzmann-Fokker-Planck capability. New and improved cross section sets in the form of ENDF/B-VI evaluations have also been recently released and can be used in MCNP4B. Perhaps most significant for the interests of this special session, the electron transport algorithm has been improved, especially in the collisional energy-loss straggling and the angular-deflection treatments. In this paper, the author concentrates on a fairly complete documentation of the current status of the electron transport methods in MCNP
High data rate coding for the space station telemetry links.
Lumb, D. R.; Viterbi, A. J.
1971-01-01
Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.
International Nuclear Information System (INIS)
Fonseca, Telma Cristina Ferreira
2009-01-01
The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C ++ programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)
TRACMAB. A computer code to form part of the link between the codes TRAC and MABEL
International Nuclear Information System (INIS)
Newbon, S.
1982-05-01
This report describes the function of the link program TRACMAB and provides a guide for users. The program is required to convert the thermal disequilibrium data output by the transient code TRAC into equilibrium data in a format compatible with the input data required by the code CAIN which in turn produces input data for MABEL. (author)
Linking CATHENA with other computer codes through a remote process
Energy Technology Data Exchange (ETDEWEB)
Vasic, A.; Hanna, B.N.; Waddington, G.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Girard, R. [Hydro-Quebec, Montreal, Quebec (Canada)
2005-07-01
'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program
Linking CATHENA with other computer codes through a remote process
International Nuclear Information System (INIS)
Vasic, A.; Hanna, B.N.; Waddington, G.M.; Sabourin, G.; Girard, R.
2005-01-01
'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program starts, ends
International Nuclear Information System (INIS)
Daures, J.; Gouriou, J.; Bordy, J.M.
2010-01-01
The authors report calculations performed using the MNCP and PENELOPE codes to determine the Hp(3)/K air conversion coefficient which allows the Hp(3) dose equivalent to be determined from the measured value of the kerma in the air. They report the definition of the phantom, a 20 cm diameter and 20 cm high cylinder which is considered as representative of a head. Calculations are performed for an energy range corresponding to interventional radiology or cardiology (20 keV-110 keV). Results obtained with both codes are compared
Directory of Open Access Journals (Sweden)
Kabach Ouadie
2017-12-01
Full Text Available To validate the new Evaluated Nuclear Data File (ENDF/B-VIII.0β4 library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016. The results obtained with the ENDF/B-VIII.0β4 library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X code. All the MCNP(X calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.
Energy Technology Data Exchange (ETDEWEB)
Nagao, Y. E-mail: nagao@jmtr.oarai.jaeri.go.jp; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H
2000-11-01
To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of {sup 6}Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high {sup 6}Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10{sup 13} n cm{sup -2} per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2.
Energy Technology Data Exchange (ETDEWEB)
Avilan Puertas, Eddie, E-mail: epuertas@nuclear.ufrj.br [Universidad Central de Venezuela (UCV), Facultad de Ingenieria, Departamento de Fisica Aplicada, Caracas (Venezuela, Bolivarian Republic of); Braz, Delson, E-mail: delson@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Brandao, Luis E.; Salgado, Cesar M., E-mail: brandao@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The use radioactive tracers for flow rate measurement is applied to a great variety of situations, however the accuracy of the technique is highly dependent of the adequate choice of the experimental measurement conditions. To measure flow rate of fluids in ducts partially filled, is necessary to measure the fluid flow velocity and the fluid height. The flow velocity can be measured with the cross correlation function and the fluid level, with a fluid level meter system. One of the error factors when measuring flow rate, is on the correct setting of the source-detector of the fluid level meter system. The goal of the present work is to establish by mean of MCNP-X code simulations the experimental parameters to measure the fluid level. The experimental tests will be realized in a flow rate system of 10 mm of diameter of acrylic tube for water and oil as fluids. The radioactive tracer to be used is the {sup 82}Br and for the detection will be employed two 1″ NaI(Tl) scintillator detectors, shielded with collimators of 0.5 cm and 1 cm of circular aperture diameter. (author)
International Nuclear Information System (INIS)
Nagao, Y.; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H.
2000-01-01
To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of 6 Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high 6 Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10 13 n cm -2 per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2
Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H
2008-09-01
Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.
Energy Technology Data Exchange (ETDEWEB)
Dam, Roos Sophia de F.; Salgado, César M., E-mail: rsophia.dam@gmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
Agitators or mixers are highly used in the chemical, food, pharmaceutical and cosmetic industries. During the fabrication process, the equipment may fail and compromise the appropriate stirring or mixing procedure. Besides that, it is also important to determine the right point of homogeneity of the mixture. Thus, it is very important to have a diagnosis tool for these industrial units to assure the quality of the product and to keep the market competitiveness. The radioactive particle tracking (RPT) technique is widely used in the nuclear field. In this paper, a method based on the principles of the RPT technique is presented. Counts obtained by an array of detectors properly positioned around the unit will be correlated to predict the instantaneous positions occupied by the radioactive particle by means of an appropriate mathematical search location algorithm. Detection geometry developed employs eight NaI(Tl) scintillator detectors and a Cs-137 (662 keV) source with isotropic emission of gamma-rays. The modeling of the detection system is performed using the Monte Carlo Method, by means of the MCNP-X code. In this work a methodology is presented to predict the position of a radioactive particle to evaluate the performance of agitators in industrial units by means of an Artificial Neural Network (ANN). (author)
TET_2MCNP: A conversion program to implement tetrahearal-mesh models in MCNP
International Nuclear Information System (INIS)
Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong
2016-01-01
Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET_2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET_2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET_2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET_2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET_2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code
TET{sub 2}MCNP: A conversion program to implement tetrahearal-mesh models in MCNP
Energy Technology Data Exchange (ETDEWEB)
Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)
2016-12-15
Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET{sub 2}MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET{sub 2}MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET{sub 2}MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET{sub 2}MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET{sub 2}MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.
Energy Technology Data Exchange (ETDEWEB)
Coelho, Talita S.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, Marco A.R., E-mail: tasallesc@gmail.co [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina. Servico de Radioterapia; Louzada, Mario J.Q. [UNESP, Aracatuba, SP (Brazil). Curso de Medicina Veterinaria
2011-07-01
Although they are no longer manufactured, the applicators of {sup 90}Sr + {sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been re calibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr + {sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radio chromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radio chromium films for this type of dosimetry. (author)
Energy Technology Data Exchange (ETDEWEB)
Coelho, T.S.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, M.A.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Servico de Radioterapia; Louzada, M.J.Q. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Aracatuba, SP (Brazil). Curso de Medicina Veterinaria
2010-07-01
Although they are no longer manufactured, the applicators of {sup 90}Sr +{sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been recalibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr+{sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radiochromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radiochromium films for this type of dosimetry. (author)
The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes
Energy Technology Data Exchange (ETDEWEB)
Jafari, Naser; Talebi, Saeed [Amirkabir Univ. of Technology, Tehran Polytechnic (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics
2017-07-15
In this paper, the effect of boron dilution transient, as a consequence of the malfunction of the boron control system, was investigated in a VVER-1000 reactor, and then an appropriate setpoint was determined for the actuation of the emergency protection system to the reactor shutdown. In order to simulate the boron dilution, first, the whole reactor core was simulated by MCNPX code to compute the radial and axial power distribution. Then, the COBRA-EN code was employed using calculated power distribution for analyzing the thermal-hydraulic of hot fuel assembly and for extracting the safety parameters. For the safe operation of the reactor, certain parameters must be in defined specified ranges. Comparison between our results and FSARs data shows that the present modeling provides a good prediction of boron dilution transient with the maximum relative difference about 4%.
Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code
International Nuclear Information System (INIS)
Dong, M.G.; El-Mallawany, R.; Sayyed, M.I.; Tekin, H.O.
2017-01-01
Gamma ray shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses, where A n O m is Nb 2 O 5 = 0.01, 5, Nd 2 O 3 = 3, 5 and Er 2 O 3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy. - Highlights: • The shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses were evaluated. • WinXCom program and MCNP simulation codes were used in the calculations. • Good agreement was noticed between the WinXCom and MCNP5 code results.
Further Analysis of Motorcycle Helmet Effectiveness Using CODES Linked Data
1998-01-01
Linked data from the Crash Outcome Data Evaluation System (CODES) in seven : states was used by the National Highway Traffic Safety Administration as the : basis of a 1996 Report to Congress on the Benefits of Safety Belts and : Motorcycle Helmets (D...
Directory of Open Access Journals (Sweden)
M Moeinifar
2017-02-01
Full Text Available One important factor in using an High Purity Germanium (HPGe detector is its efficiency that highly depends on the geometry and absorption factors, so that when the configuration of source-detector geometry is changed, the detector efficiency must be re-measured. The best way of determining the efficiency of a detector is measuring the efficiency of standard sources. But considering the fact that standard sources are hardly available and it is time consuming to find them, determinig the efficiency by simulation which gives enough efficiency in less time, is important. In this study, the dead layer thickness and the full-energy peak efficiency of an HPGe detector was obtained by Monte Carlo simulation, using MCNPX code. For this, we first measured gamma–ray spectra for different sources placed at various distances from the detector and stored the measured spectra obtained. Then the obtained spectra were simulated under similar conditions in vitro.At first, the whole volume of germanium was regarded as active, and the obtaind spectra from calculation were compared with the corresponding experimental spectra. Comparison of the calculated spectra with the measured spectra showed considerable differences. By making small variations in the dead layer thickness of the detector (about a few hundredths of a millimeter in the simulation program, we tried to remove these differences and in this way a dead layer of 0.57 mm was obtained for the detector. By incorporating this value for the dead layer in the simulating program, the full-energy peak efficiency of the detector was then obtained both by experiment and by simulation, for various sources at various distances from the detector, and both methods showed good agreements. Then, using MCNP code and considering the exact measurement system, one can conclude that the efficiency of an HPGe detector for various source-detector geometries can be calculated with rather good accuracy by simulation method
International Nuclear Information System (INIS)
Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.; Mayo, Douglas R.
2016-01-01
To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicability for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.
Installation and validation of MCNP-4A
International Nuclear Information System (INIS)
Marks, N.A.
1997-01-01
MCNP-4A is a multi-purpose Monte Carlo program suitable for the modelling of neutron, photon, and electron transport problems. It is a particularly useful technique when studying systems containing irregular shapes. MCNP has been developed over the last 25 years by Los Alamos, and is distributed internationally via RSIC at Oak Ridge. This document describes the installation of MCNP-4A (henceforth referred to as MCNP) on the Silicon Graphics workstation (bluey.ansto.gov.au). A limited number of benchmarks pertaining to fast and thermal systems were performed to check the installation and validate the code. The results are compared to deterministic calculations performed using the AUS neutronics code system developed at ANSTO. (author)
Depleted Reactor Analysis With MCNP-4B
International Nuclear Information System (INIS)
Caner, M.; Silverman, L.; Bettan, M.
2004-01-01
Monte Carlo neutronics calculations are mostly done for fresh reactor cores. There is today an ongoing activity in the development of Monte Carlo plus burnup code systems made possible by the fast gains in computer processor speeds. In this work we investigate the use of MCNP-4B for the calculation of a depleted core of the Soreq reactor (IRR-1). The number densities as function of burnup were taken from the WIMS-D/4 cell code calculations. This particular code coupling has been implemented before. The Monte Carlo code MCNP-4B calculates the coupled transport of neutrons and photons for complicated geometries. We have done neutronics calculations of the IRR-1 core with the WIMS and CITATION codes in the past Also, we have developed an MCNP model of the IRR-1 standard fuel for a criticality safety calculation of a spent fuel storage pool
International Nuclear Information System (INIS)
Corral B, J. R.
2015-01-01
Humans should avoid exposure to radiation, because the consequences are harmful to health. Although there are different emission sources of radiation, generated by medical devices they are usually of great interest, since people who attend hospitals are exposed in one way or another to ionizing radiation. Therefore, is important to conduct studies on radioactive levels that are generated in hospitals, as a result of the use of medical equipment. To determine levels of exposure speed of a radioactive facility there are different methods, including the radiation detector and computational method. This thesis uses the computational method. With the program MCNP5 was determined the speed of the radiation exposure in the radiotherapy room of Cancer Center of ABC Hospital in Mexico City. In the application of computational method, first the thicknesses of the shields were calculated, using variables as: 1) distance from the shield to the source; 2) desired weekly equivalent dose; 3) weekly total dose equivalent emitted by the equipment; 4) occupation and use factors. Once obtained thicknesses, we proceeded to model the bunker using the mentioned program. The program uses the Monte Carlo code to probabilistic ally determine the phenomena of interaction of radiation with the shield, which will be held during the X-ray emission from the linear accelerator. The results of computational analysis were compared with those obtained experimentally with the detection method, for which was required the use of a Geiger-Muller counter and the linear accelerator was programmed with an energy of 19 MV with 500 units monitor positioning the detector in the corresponding boundary. (Author)
Analysis of gamma dose for 4,8 gU/cm3 density silicide core at the RSG-GAS reactor using MCNP code
International Nuclear Information System (INIS)
Ardani
2011-01-01
Radiation safety analysis should be done following of substitution of fuel density of 2.96 gU/cc to density of 4,8 gU/cc silicide fuels for the RSG-GAS reactor. MCNP-5 code has been used to perform gamma dose calculation of the RSG-GAS reactor. Gamma radiation source at reactor consists of capture gamma rays, prompt fission gamma rays, and gamma rays of decay of fission and activation products. The strength of the prompt fission gamma rays is obtained by gamma releases of fission process of U-235 and reactor power of 30 MWt., during 46,6 days operation. Radiation dose is calculated at the experimental hall by detection point at the surface of outer of biological shielding and the operation hall by detection point at the top of the pool. The calculation is conducted at reactor on the normal operation and on the worst postulated accident causing the water level at the pool decreases. Calculation result shows that the biggest source strength of gamma rays come from the decay process. The highest calculated dose at the experiment hall is 4,07x10 -3 μSv/h, far from the maximum external dose permitted 25 μSv/h. The highest calculated dose at the operation hall is 19.98 μSv/h. Even though the calculated dose is still acceptable but this is close to the maximum permitted dose for worker. It concluded that loading of 4,8 gU/cc silicide fuel for the RSG-GAS still safe. (author)
Neutron-induced photon production in MCNP
International Nuclear Information System (INIS)
Little, R.C.; Seamon, R.E.
1983-01-01
An improved method of neutron-induced photon production has been incorporated into the Monte Carlo transport code MCNP. The new method makes use of all partial photon-production reaction data provided by ENDF/B evaluators including photon-production cross sections as well as energy and angular distributions of secondary photons. This faithful utilization of sophisticated ENDF/B evaluations allows more precise MCNP calculations for several classes of coupled neutron-photon problems
Capacity-Approaching Superposition Coding for Optical Fiber Links
DEFF Research Database (Denmark)
Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso
2014-01-01
We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive......-SCM) is employed in the framework of bit-interleaved coded modulation with iterative decoding (BICM-ID) for forward error correction. The fiber transmission system is characterized in terms of signal-to-noise ratio for back-to-back case and correlated with simulated results for ideal transmission over additive...... white Gaussian noise channel. Thereafter, successful demodulation and decoding after dispersion-unmanaged transmission over 240-km standard single mode fiber of dual-polarization 6-Gbaud 16-, 32- and 64-ary SCM-PSM is experimentally demonstrated....
Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra
2016-10-01
X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. We studied some different X-ray sources and exposure factors that affect the MGD. "Midi-future" digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD.
Visualization of geometry and tally data using MCNP and Justine
International Nuclear Information System (INIS)
Cox, L.J.; Favorite, J.A.
1999-01-01
The Monte Carlo N-Particle (MCNP) transport code is a general-purpose code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for neutron-multiplying systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. Justine is the graphical user interface and problem setup tool for the Los Alamos Radiation Modeling Interactive Environment (LARAMIE). Its purpose is to serve as a convenient and very general interface for setting up physics calculations and linking together the disparate radiation transport codes under a single front-end. Currently, the LARAMIE system includes MCNP and the deterministic transport code suit DANTSYS (ONEDANT, TWODANT, and THREEDANT, for one-, two-, and three-dimensional geometries, respectively). Justine is currently available through the Radiation Safety Information Computational Center to members of the criticality safety community for evaluation and use. The authors will demonstrate the capabilities of both codes for visualization of geometries and results from a variety of criticality problems
Criticality calculations with MCNP trademark: A primer
International Nuclear Information System (INIS)
Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.
1994-01-01
With the closure of many experimental facilities, the nuclear criticality safety analyst increasingly is required to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. However, in many cases, the analyst has little experience with the specific codes available at his/her facility. This primer will help you, the analyst, understand and use the MCNP Monte Carlo code for nuclear criticality safety analyses. It assumes that you have a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with MCNP in particular. Appendix A gives an introduction to Monte Carlo techniques. The primer is designed to teach by example, with each example illustrating two or three features of MCNP that are useful in criticality analyses. Beginning with a Quickstart chapter, the primer gives an overview of the basic requirements for MCNP input and allows you to run a simple criticality problem with MCNP. This chapter is not designed to explain either the input or the MCNP options in detail; but rather it introduces basic concepts that are further explained in following chapters. Each chapter begins with a list of basic objectives that identify the goal of the chapter, and a list of the individual MCNP features that are covered in detail in the unique chapter example problems. It is expected that on completion of the primer you will be comfortable using MCNP in criticality calculations and will be capable of handling 80 to 90 percent of the situations that normally arise in a facility. The primer provides a set of basic input files that you can selectively modify to fit the particular problem at hand
MCNP capabilities for nuclear well logging calculations
International Nuclear Information System (INIS)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.; Hendricks, J.S.
1990-01-01
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo neutron photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data
Application of MCNP in the criticality calculation for reactors
International Nuclear Information System (INIS)
Zhong Zhaopeng; Shi Gong; Hu Yongming
2003-01-01
The criticality calculation is carried out with 3-D Monte Carlo code (MCNP). The author focuses on the introduction of modelling of the core and reflector. The core description is simplified by using repetition structure function of MCNP. k eff in different control rods positions are calculated for the case of JRR3, and the results is consistent with that of the reference. This work shows that MCNP is applicable for reactor criticality calculation
Development of visual platform of MCNP4B
International Nuclear Information System (INIS)
Fan Jiajin; Wang Yi; Cheng Jianping
2002-01-01
For convenience of using MCNP, the authors successfully developed a new code named McnpClient. With friend man-machine interface, the users can create input files very easily. If any error occurs during running process, McnpClient will give detailed fatal error or bad trouble messages. When the running is done, all the data can be obtained and in the mean time the curves associated with the data can be displayed
MCNP5 development, verification, and performance
International Nuclear Information System (INIS)
Forrest B, Brown
2003-01-01
MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)
MCNP5 development, verification, and performance
Energy Technology Data Exchange (ETDEWEB)
Forrest B, Brown [Los Alamos National Laboratory (United States)
2003-07-01
MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)
Radiation shielding calculation using MCNP
International Nuclear Information System (INIS)
Masukawa, Fumihiro
2001-01-01
To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)
Development of a coupling code for PWR reactor cavity radiation streaming calculation
International Nuclear Information System (INIS)
Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.
2012-01-01
PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)
Recent developments in the Los Alamos radiation transport code system
International Nuclear Information System (INIS)
Forster, R.A.; Parsons, K.
1997-01-01
A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results
Validation of MCNP4A for repository scattered radiation analysis
International Nuclear Information System (INIS)
Haas, M.N.; Su, S.
1998-02-01
Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions
Elaborate SMART MCNP Modelling Using ANSYS and Its Applications
Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng
2017-09-01
An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.
International Nuclear Information System (INIS)
Romdhani, Ibtissem
2014-01-01
As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.
Development of automatic editing system for MCNP library 'autonj'
International Nuclear Information System (INIS)
Maekawa, Fujio; Sakurai, Kiyoshi; Kume, Etsuo; Nomura, Yasushi; Kosako, Kazuaki; Kawasaki, Nobuo; Naito, Yoshitaka
1999-12-01
As an activity of the MCNP High-Temperature Library Production Working Group under the Nuclear Code Evaluation Special Committee of Nuclear Code Committee, the automatic editing system for MCNP library 'autonj' was developed. The autonj includes the NJOY-97 code as its main body, and is a system that enables us to easily produce cross section libraries for MCNP from evaluated nuclear data files such as JENDL-3.2. A temperature dependent library at six temperature points based on JENDL-3.2 was produced by using autonj. The autonj system and the temperature dependent library were installed on the JAERI AP3000 computer. (author)
MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to
SABRINA, Geometry Plot Program for MCNP
International Nuclear Information System (INIS)
SEIDL, Marcus
2003-01-01
1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required
Methodology for converting CT medical images to MCNP input using the Scan2MCNP system
International Nuclear Information System (INIS)
Boia, L.S.; Silva, A.X.; Cardoso, S.C.; Castro, R.C.
2009-01-01
This paper develops a methodology for the application software Scan2MCNP, which converts medical images DICOM (Digital Imaging and Communications in Medicine) for MCNP input file. The Scan2MCNP handles, processes and executes the medical images generated by CT equipment, allowing the user to perform the selection and parameterization of the study area in question (tissues and organs). The details of these worked in medical imaging software, therefore, will be converted to equity to the process of language analysis of MCNP radiation transport, through the generation of a code input file. With this file, it is possible to simulate any situation/problem of the type and level of radiation to the proposed treatment chosen by the medical staff responsible for the patient. Within a computational process oriented, the Scan2MCNP can contribute along with other software that has been used recently in the area of medical physics, to improve the levels of quality and precision of radiotherapy treatments. In this work, medical images DICOM of the Anthropomorphic Rando Phantom were used in the process of analysis and development of computer software Scan2MCNP. However, it emphasized that the software is successful in certain situations, depending upon a number of auxiliary procedures and software that can help in the solution of certain problems in the natural radiation treatment or express agility by the team of medical physics. (author)
Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code
Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.
2017-12-01
Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.
Directory of Open Access Journals (Sweden)
Huseyin Ozan Tekin
2016-01-01
Full Text Available Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC method has become one of the most popular tools in detector studies. An NaI(Tl detector has been modeled, and, for a validation study of the modeled NaI(Tl detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0 and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.
International Nuclear Information System (INIS)
Irhas; Andang Widi Harto; Yohannes Sardjono
2014-01-01
Boron Neutron Capture Therapy (BNCT) using physics principle when B 10 (Boron-10) irradiated by low energy neutron (thermal neutron). Boron and thermal neutron reaction produced B 11m (Boron-11m) (t 1/2 =10 -2 s). B 11m decay emitted alpha, Li 7 (Lithium-7) particle and gamma ray. Irradiated time needed to ensure cancer dose enough. Liver cancer was primary malignant who located in liver (Hepatocellular carcinoma). Malignant in liver were different to metastatic from Breast, Colon Cancer, and the other. This condition was Metastatic Liver Cancer. Monte Carlo method used by Monte Carlo N-Particle (MCNP) Software. Probabilistic approach used for probability of interaction occurred and record refers to characteristic of particle and material. In this case, thermal neutron produced by model of Collimated Thermal Column Kartini Research Nuclear Reactor, Yogyakarta. Modelling organ and source used liver organ that contain of cancer tissue and research reactor. Variation of boron concentration was 20, 25, 30, 35, 40, 45, and 47 µg/g cancers. Output of MCNP calculation were neutron scattering dose, gamma ray dose and neutron flux from reactor. Neutron flux used to calculate alpha, proton and gamma ray dose from interaction of tissue material and thermal neutron. Variation of boron concentration result dose rate to every variation were 0,059; 0,072; 0,084; 0,098; 0.108; 0,12; 0,125 Gy/sec. Irradiation time who need to every concentration were 841,5 see (14 min 1 sec); 696,07 sec(11 min 36 sec); 593.11 sec (9 min 53 sec); 461,35 sec (8 min 30 sec); 461,238 sec (7 min 41 sec); 414,23 sec (6 min 54 sec); 398,38 sec (6 min 38 sec). Irradiating time could shortly when boron concentration more high. (author)
Estimation and interpretation of keff confidence intervals in MCNP
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-01-01
The Monte Carlo code MCNP has three different, but correlated, estimators for calculating k eff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined k eff estimator, is shown to be the best k eff estimator available in MCNP for estimating k eff confidence intervals. Theoretically, the Gauss-Markov theorem provides a solid foundation for MCNP's three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the estimator with the smallest variance. Empirically, MCNP examples for several physical systems demonstrate the three-combined estimator's superiority over each of the three individual estimators and its correct coverage rates. Additionally, the importance of MCNP's statistical checks is demonstrated
Use of McCad for the conversion of ITER CAD data to MCNP geometry
International Nuclear Information System (INIS)
Tsige-Tamirat, H.; Fischer, U.; Serikov, A.; Stickel, S.
2008-01-01
The program McCad provides a CAD interface for the Monte Carlo transport code MCNP. It is able to convert CAD data into MCNP input geometry description and provides GUI components for modeling, visualization, and data exchange. It performs sequences of tests on CAD data to check its validity and neutronics appropriateness including completion of the final MCNP model by void geometries. McCad has been used to convert a 40 deg. ITER torus sector CAD model to a suitable MCNP geometry model. Results of MCNP calculations performed to validate the converted geometry are presented
Criticality Calculations with MCNP6 - Practical Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3)
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.
Criticality Calculations with MCNP6 - Practical Lectures
International Nuclear Information System (INIS)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2016-01-01
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.
Directory of Open Access Journals (Sweden)
Hammam Oktajianto
2014-12-01
Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality
Geographic Information Systems using CODES linked data (Crash outcome data evaluation system)
2001-04-01
This report presents information about geographic information systems (GIS) and CODES linked data. Section one provides an overview of a GIS and the benefits of linking to CODES. Section two outlines the basic issues relative to the types of map data...
Directory of Open Access Journals (Sweden)
Mehdi Zehtabian
2010-09-01
Full Text Available Introduction: Brachytherapy is the use of small encapsulated radioactive sources in close vicinity of tumors. Various methods are used to obtain the dose distribution around brachytherapy sources. TG-43 is a dosimetry protocol proposed by the AAPM for determining dose distributions around brachytherapy sources. The goal of this study is to update this protocol for presence of bone and air inhomogenities. Material and Methods: To update the dose rate constant parameter of the TG-43 formalism, the MCNP4C simulations were performed in phantoms composed of water-bone and water-air combinations. The values of dose at different distances from the source in both homogeneous and inhomogeneous phantoms were estimated in spherical tally cells of 0.5 mm radius using the F6 tally. Results: The percentages of dose reductions in presence of air and bone inhomogenities for the Cs-137 source were found to be 4% and 10%, respectively. Therefore, the updated dose rate constant (Λ will also decrease by the same percentages. Discussion and Conclusion: It can be easily concluded that such dose variations are more noticeable when using lower energy sources such as Pd-103 or I-125.
Development of automatic cross section compilation system for MCNP
International Nuclear Information System (INIS)
Maekawa, Fujio; Sakurai, Kiyoshi
1999-01-01
A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)
International Nuclear Information System (INIS)
Goorley, John T.
2012-01-01
We, the development teams for MCNP, NJOY, and parts of ENDF, would like to invite you to a proposed 3 day workshop October 30, 31 and November 1 2012, to be held at Los Alamos National Laboratory. At this workshop, we will review new and developing missions that MCNP6 and the underlying nuclear data are being asked to address. LANL will also present its internal plans to address these missions and recent advances in these three capabilities and we will be interested to hear your input on these topics. Additionally we are interested in hearing from you additional technical advances, missions, concerns, and other issues that we should be considering for both short term (1-3 years) and long term (4-6 years)? What are the additional existing capabilities and methods that we should be investigating? The goal of the workshop is to refine priorities for mcnp6 transport methods, algorithms, physics, data and processing as they relate to the intersection of MCNP, NJOY and ENDF.
Energy Technology Data Exchange (ETDEWEB)
Fonseca, Telma Cristina Ferreira
2009-07-01
The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)
Energy Technology Data Exchange (ETDEWEB)
Fonseca, Telma Cristina Ferreira
2009-07-01
The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)
MOCUP: MCNP-ORIGEN2 coupled utility program
International Nuclear Information System (INIS)
Moore, R.L.; Schnitzler, B.G.; Wemple, C.A.
1995-01-01
MOCUP is a system of external processors that allow for a limited treatment of the temporal composition of the user-selected MCNP cells in a time-dependent flux environment. The ORIGEN2 code computes the time-dependent compositions of these individually selected MCNP cells. All data communication between the two codes is accomplished through the MCNP and ORIGEN2 input/output files, the MOCUP Processor Output files, and two user supplied tables. MOCUP is either command line or interactively driven. The interactive interface is based on the portable XII window environment and the Motif tool kit. MOCUP was constructed so that no modifications to either MCNP or ORIGEN2 were necessary. Section 4 of the writeup contains the input instructions needed to set up the MOCUP run. MOCUP is extremely useful for analysts who perform isotope production, material transformation, and depletion and isotope analyses on complex, non-lattice geometries, and uniform and non-uniform lattices
Importance sampling techniques and treatment of electron transport in MCNP 4A
International Nuclear Information System (INIS)
Ueki, K.
1994-01-01
The continuous energy Monte Carlo code MCNP was developed by the Radiation Transport Group at Los Alamos National Laboratory and the MCNP 4A version is available, now. The MCNP 4A is able to do the coupled neutron-secondary gamma-ray-electron-bremsstrahlung calculation. The calculated results, such as energy spectra, tally fluctuation chart, and geometrical input data can be displayed by using a work station. The document of the MCNP 4A code has no description on the subroutines, except few ones of 'SOURCE', 'TALLYX'. However, when we want to improve the MCNP Monte Carlo sampling techniques to get more accuracy or efficiency results for some problems, some subroutines are required or needed to revised. Three subroutines have been revised and built in the MCNP 4A code. (author)
Lecture note on neutron and photon transport calculation with MCNP
International Nuclear Information System (INIS)
Sakurai, Kiyoshi
2003-01-01
This paper is a lecture note on the continuous energy Monte Carlo method. The contents are as follows; history of the Monte Carlo study, continuous energy Monte Carlo codes, libraries, evaluation method for calculation results, integral emergent particle density equation, pseudorandom number, random walk, variance reduction techniques, MCNP weight window method, MCNP weight window generator, exponential transform, estimators, criticality problem and research subjects. This paper is a textbook for beginners on the Monte Carlo calculation. (author)
Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde
2010-05-01
The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.
MOCUP, MCNP/ORIGEN Coupling Utility Programs
International Nuclear Information System (INIS)
SEIDL, Marcus
2003-01-01
1 - Description of program or function: MOCUP is a series of utility and data manipulation programs to solve time and space-dependent coupled neutronics/isotopics problems. 2 - Methods: The neutronics calculation is performed by the Los Alamos National Laboratory code system, version 4a or later (CCC-200 or CCC-660),and the depletion and isotopics calculation is performed by CCC-371/ORIGEN2.1 developed at Oak Ridge National Laboratory. MCNP and ORIGEN2.1 are NOT included in this package. MOCUP consists of three utility programs (mcnpPRO, origenPRO, compPRO) to, respectively, search the MCNP output and tally files for relevant cell and tally parameters, prepare ORIGEN2.1 input files and execute the ORIGEN2.1 runs, and search ORIGEN2.1 punch files for relevant isotope concentrations and produce new MCNP input files. A graphical user interface is provided for execution convenience. 3 - Restrictions on the complexity of the problem: At present, no mechanism exists for automatic serial execution of the program modules. The user must interface with the GUI to run each of the modules
Semi-Analytical Benchmarks for MCNP6
Energy Technology Data Exchange (ETDEWEB)
Grechanuk, Pavel Aleksandrovi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-07
Code verification is an extremely important process that involves proving or disproving the validity of code algorithms by comparing them against analytical results of the underlying physics or mathematical theory on which the code is based. Monte Carlo codes such as MCNP6 must undergo verification and testing upon every release to ensure that the codes are properly simulating nature. Specifically, MCNP6 has multiple sets of problems with known analytic solutions that are used for code verification. Monte Carlo codes primarily specify either current boundary sources or a volumetric fixed source, either of which can be very complicated functions of space, energy, direction and time. Thus, most of the challenges with modeling analytic benchmark problems in Monte Carlo codes come from identifying the correct source definition to properly simulate the correct boundary conditions. The problems included in this suite all deal with mono-energetic neutron transport without energy loss, in a homogeneous material. The variables that differ between the problems are source type (isotropic/beam), medium dimensionality (infinite/semi-infinite), etc.
Suitability study of MCNP Monte Carlo program for use in medical physics
International Nuclear Information System (INIS)
Jeraj, R.
1998-01-01
MCNP is widely used Monte Carlo program in reactor and nuclear physics. However, an option of simulating electrons was added into the code a few years ago. With this extension MCNP became a code, potentially applicable for applications in medical physics. In 1997, a new version of the code, named MCNP4B was released, which contains several improvements in electron transport modeling. To test suitability of the code, several important issues were considered and examined. Default sampling in MCNP electron transport was found to be inappropriate, because it gives wrong depth dose curves for electron energies of interest in radiotherapy (Me V range). The problem can be solved if ITS-style energy sampling is used instead. One of the most difficult problems in electron transport is simulation of electron backscattering, which MCNP predicts well for all, low and high Z materials. One of the potential drawbacks, if somebody wanted to use MCNP for dosimetry on real patient geometries is that MCNP lattice calculation (e.g. when calculating dose distributions) becomes very slow for large number of scoring voxels. However, if just one scoring voxel is used, the number of geometry voxels only slightly affects the speed. In the study it was found that MCNP could be reliability used for many applications in medical physics. However, the established limitations should be taken into account when MCNP is used for a particular application.(author)
E language based on MCNP modeling software for autonomous
International Nuclear Information System (INIS)
Li Fei; Ge Liangquan; Zhang Qingxian
2010-01-01
MCNP (Monte Carlo N-Particle Code) is based on the Monte Carlo method for computing neutron, photon and other particles as the object of the movement simulation computer program. Because of its powerful computing simulation, flexible and universal features in many fields has been widely used, but due to a software professional in the operating area has been greatly restricted, so that in later development has been greatly hindered. E-language was used in order to develop the autonomy of MCNP modeling software, used to address users not familiar with MCNP and can not create object model, get rid of dull red tape 'notebook' type of program type and built a new MCNP modeling system. (authors)
Particle Track Visualization using the MCNP Visual Editor
International Nuclear Information System (INIS)
Schwarz, Randolph A.; Carter, Lee; Brown, Wendi A.
2001-01-01
The Monte Carlo N-Particle (MCNP) visual editor1,2,3 is used throughout the world for displaying and creating complex MCNP geometries. The visual editor combines the Los Alamos MCNP Fortran code with a C front end to provide a visual interface. A big advantage of this approach is that the particle transport routines for MCNP are available to the visual front end. The latest release of the visual editor by Pacific Northwest National Laboratory enables the user to plot transport data points on top of a two-dimensional geometry plot. The user can plot source points, collisions points, surface crossings, and tally contributions. This capability can be used to show where particle collisions are occurring, verify the effectiveness of the particle biasing, or show which collisions contribute to a tally. For a KCODE (criticality source) calculation, the visual editor can be used to plot the source points for specific cycles
International Nuclear Information System (INIS)
Federico, Claudio A.; Vieira, Wilson J.; Rigolon, Leda S.Y.; Geraldo, Luiz P.
2000-01-01
In this paper are presented the results of a Monte Carlo calculation for the energy deposition rate in aluminum plates, when a collimated beam of gamma-rays produced by thermal neutrons capture in nickel target passes through them. The absorbed dose rate as a function of the aluminum thickness crossed by the gamma beam has been measured by using CaSO e :Dy thermoluminescent dosimeters. The capture gamma ray beam was extracted from a tangential beam tube of the IPEN's IEA-R1 2MW research reactor. The absorbed dose calculation was performed employing the Monte Carlo N-particle transport code (MCNP) and two methods of calculation: the simulated gamma ray flux multiplied by a dose conversion factor, and the simulated electron flux multiplied by the collision linear energy loss. The calculation results obtained by the electron transport have shown a good agreement with the experimental measurements. For deeper layers (more than 10 mm aluminum thickness), the calculation using the gamma ray flux multiplied by dose conversion factors, as well the calculation employing the electron transport, exhibit the same decreasing trade observed in experimental data, differing by a normalization factor of approximately 1.4. However, for layers nearer the material surface, the calculation using photon flux produces an overestimation of that using the electron transport as well as of the experimental results. (author)
The octopus burnup and criticality code system
Energy Technology Data Exchange (ETDEWEB)
Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de
1996-09-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)
The OCTOPUS burnup and criticality code system
Energy Technology Data Exchange (ETDEWEB)
Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.
1996-06-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).
The octopus burnup and criticality code system
International Nuclear Information System (INIS)
Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.
1996-01-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)
The OCTOPUS burnup and criticality code system
International Nuclear Information System (INIS)
Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de
1996-06-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)
Low complexity source and channel coding for mm-wave hybrid fiber-wireless links
DEFF Research Database (Denmark)
Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan
2014-01-01
We report on the performance of channel and source coding applied for an experimentally realized hybrid fiber-wireless W-band link. Error control coding performance is presented for a wireless propagation distance of 3 m and 20 km fiber transmission. We report on peak signal-to-noise ratio perfor...
MCNP4c JEFF-3.1 Based Libraries. Eccolib-Jeff-3.1 libraries
International Nuclear Information System (INIS)
Sublet, J.Ch.
2006-01-01
Continuous-energy and multi-temperatures MCNP Ace types libraries, derived from the Joint European Fusion-Fission JEFF-3.1 evaluations, have been generated using the NJOY-99.111 processing code system. They include the continuous-energy neutron JEFF-3.1/General Purpose, JEFF-3.1/Activation-Dosimetry and thermal S(α,β) JEFF-3.1/Thermal libraries and data tables. The processing steps and features are explained together with the Quality Assurance processes and records linked to the generation of such multipurpose libraries. (author)
Energy Technology Data Exchange (ETDEWEB)
Corral B, J. R.
2015-07-01
Humans should avoid exposure to radiation, because the consequences are harmful to health. Although there are different emission sources of radiation, generated by medical devices they are usually of great interest, since people who attend hospitals are exposed in one way or another to ionizing radiation. Therefore, is important to conduct studies on radioactive levels that are generated in hospitals, as a result of the use of medical equipment. To determine levels of exposure speed of a radioactive facility there are different methods, including the radiation detector and computational method. This thesis uses the computational method. With the program MCNP5 was determined the speed of the radiation exposure in the radiotherapy room of Cancer Center of ABC Hospital in Mexico City. In the application of computational method, first the thicknesses of the shields were calculated, using variables as: 1) distance from the shield to the source; 2) desired weekly equivalent dose; 3) weekly total dose equivalent emitted by the equipment; 4) occupation and use factors. Once obtained thicknesses, we proceeded to model the bunker using the mentioned program. The program uses the Monte Carlo code to probabilistic ally determine the phenomena of interaction of radiation with the shield, which will be held during the X-ray emission from the linear accelerator. The results of computational analysis were compared with those obtained experimentally with the detection method, for which was required the use of a Geiger-Muller counter and the linear accelerator was programmed with an energy of 19 MV with 500 units monitor positioning the detector in the corresponding boundary. (Author)
Using Machine Learning to Predict MCNP Bias
Energy Technology Data Exchange (ETDEWEB)
Grechanuk, Pavel Aleksandrovi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-09
For many real-world applications in radiation transport where simulations are compared to experimental measurements, like in nuclear criticality safety, the bias (simulated - experimental k_{eff}) in the calculation is an extremely important quantity used for code validation. The objective of this project is to accurately predict the bias of MCNP6 [1] criticality calculations using machine learning (ML) algorithms, with the intention of creating a tool that can complement the current nuclear criticality safety methods. In the latest release of MCNP6, the Whisper tool is available for criticality safety analysts and includes a large catalogue of experimental benchmarks, sensitivity profiles, and nuclear data covariance matrices. This data, coming from 1100+ benchmark cases, is used in this study of ML algorithms for criticality safety bias predictions.
International Nuclear Information System (INIS)
Hendricks, J.S.; Frankle, S.C.; Court, J.D.
1994-01-01
We report here for the first time the availability of an official set of ENDF/B-VI neutron data for MCNP(trademark). The LANL Radiation Transport group engaged the Nuclear Theory and Applications Group to construct a complete library based on ENDF/B-VI Release in the Spring of 1994. A new and thorough set of quality assurance tests was established and data passing those tests were subject only to a limited set of benchmarking tests. All nuclides were subjected to infinite medium calculations. The fissionable materials were benchmarked against critical assemblies, and 28 nuclides were benchmarked against the LLNL pulsed sphere experiments
Allen, Alice; Teuben, Peter J.; Ryan, P. Wesley
2018-05-01
We examined software usage in a sample set of astrophysics research articles published in 2015 and searched for the source codes for the software mentioned in these research papers. We categorized the software to indicate whether the source code is available for download and whether there are restrictions to accessing it, and if the source code is not available, whether some other form of the software, such as a binary, is. We also extracted hyperlinks from one journal’s 2015 research articles, as links in articles can serve as an acknowledgment of software use and lead to the data used in the research, and tested them to determine which of these URLs are still accessible. For our sample of 715 software instances in the 166 articles we examined, we were able to categorize 418 records as according to whether source code was available and found that 285 unique codes were used, 58% of which offered the source code for download. Of the 2558 hyperlinks extracted from 1669 research articles, at best, 90% of them were available over our testing period.
International Nuclear Information System (INIS)
Randolph Schwarz; Leland L. Carter; Alysia Schwarz
2005-01-01
Monte Carlo N-Particle Transport Code (MCNP) is the code of choice for doing complex neutron/photon/electron transport calculations for the nuclear industry and research institutions. The Visual Editor for Monte Carlo N-Particle is internationally recognized as the best code for visually creating and graphically displaying input files for MCNP. The work performed in this grant was used to enhance the capabilities of the MCNP Visual Editor to allow it to read in both 2D and 3D Computer Aided Design (CAD) files, allowing the user to electronically generate a valid MCNP input geometry
Spectral measurements in critical assemblies: MCNP specifications and calculated results
Energy Technology Data Exchange (ETDEWEB)
Stephanie C. Frankle; Judith F. Briesmeister
1999-12-01
Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k{sub eff} measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a {sup 252}Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented.
Spectral measurements in critical assemblies: MCNP specifications and calculated results
International Nuclear Information System (INIS)
Frankle, Stephanie C.; Briesmeister, Judith F.
1999-01-01
Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k eff measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a 252 Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented
Coding for Parallel Links to Maximize the Expected Value of Decodable Messages
Klimesh, Matthew A.; Chang, Christopher S.
2011-01-01
When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from
International Nuclear Information System (INIS)
Ezzati, A.O.; Sohrabpour, M.
2013-01-01
In this study, azimuthal particle redistribution (APR), and azimuthal particle rotational splitting (APRS) methods are implemented in MCNPX2.4 source code. First of all, the efficiency of these methods was compared to two tallying methods. The APRS is more efficient than the APR method in track length estimator tallies. However in the energy deposition tally, both methods have nearly the same efficiency. Latent variance reduction factors were obtained for 6, 10 and 18 MV photons as well. The APRS relative efficiency contours were obtained. These obtained contours reveal that by increasing the photon energies, the contours depth and the surrounding areas were further increased. The relative efficiency contours indicated that the variance reduction factor is position and energy dependent. The out of field voxels relative efficiency contours showed that latent variance reduction methods increased the Monte Carlo (MC) simulation efficiency in the out of field voxels. The APR and APRS average variance reduction factors had differences less than 0.6% for splitting number of 1000. -- Highlights: ► The efficiency of APR and APRS methods was compared to two tallying methods. ► The APRS is more efficient than the APR method in track length estimator tallies. ► In the energy deposition tally, both methods have nearly the same efficiency. ► Variance reduction factors of these methods are position and energy dependent.
Monte Carlo importance sampling for the MCNP trademark general source
International Nuclear Information System (INIS)
Lichtenstein, H.
1996-01-01
Research was performed to develop an importance sampling procedure for a radiation source. The procedure was developed for the MCNP radiation transport code, but the approach itself is general and can be adapted to other Monte Carlo codes. The procedure, as adapted to MCNP, relies entirely on existing MCNP capabilities. It has been tested for very complex descriptions of a general source, in the context of the design of spent-reactor-fuel storage casks. Dramatic improvements in calculation efficiency have been observed in some test cases. In addition, the procedure has been found to provide an acceleration to acceptable convergence, as well as the benefit of quickly identifying user specified variance-reduction in the transport that effects unstable convergence
Generating and verification of ACE-multigroup library for MCNP
International Nuclear Information System (INIS)
Chen Chaobin; Hu Zehua; Chen Yixue; Wu Jun; Yang Shouhai
2012-01-01
The Monte Carlo code MCNP can handle multigroup calculations and a sample multigroup set based on ENDF/B-V, MGXSNP, is available for MCNP for coupled neutron-photon transport. However, this library is not suit- able for all problems, and there is a need for users to be able to generate multigroup libraries tailored to their specific applications. For these purposes CSPT (cross section processing tool) is created to generate multigroup library for MCNP from deterministic multigroup cross sections (GENDF or ANISN format at present). Several ACE-multigroup libraries based on ENDF/B-VII.0 converted and verified in this work, we drawn the conclusion that the CSPT code works correctly and the libraries produced are credible. (authors)
Coding/modulation trade-offs for Shuttle wideband data links
Batson, B. H.; Huth, G. K.; Trumpis, B. D.
1974-01-01
This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.
KENO2MCNP, Version 5L, Conversion of Input Data between KENOV.a and MCNP File Formats
International Nuclear Information System (INIS)
2008-01-01
1 - Description of program or function: The KENO2MCNP program was written to convert KENO V.a input files to MCNP Format. This program currently only works with KENO Va geometries and will not work with geometries that contain more than a single array. A C++ graphical user interface was created that was linked to Fortran routines from KENO V.a that read the material library and Fortran routines from the MCNP Visual Editor that generate the MCNP input file. Either SCALE 5.0 or SCALE 5.1 cross section files will work with this release. 2 - Methods: The C++ binary executable reads the KENO V.a input file, the KENO V.a material library and SCALE data libraries. When an input file is read in, the input is stored in memory. The converter goes through and loads different sections of the input file into memory including parameters, composition, geometry information, array information and starting information. Many of the KENO V.a materials represent compositions that must be read from the KENO V.a material library. KENO2MCNP includes the KENO V.a FORTRAN routines used to read this material file for creating the MCNP materials. Once the file has been read in, the user must select 'Convert' to convert the file from KENO V.a to MCNP. This will generate the MCNP input file along with an output window that lists the KENO V.a composition information for the materials contained in the KENO V.a input file. The program can be run interactively by clicking on the executable or in batch mode from the command prompt. 3 - Restrictions on the complexity of the problem: Not all KENO V.a input files are supported. Only one array is allowed in the input file. Some of the more complex material descriptions also may not be converted
Whole core burnup calculations using 'MCNP'
International Nuclear Information System (INIS)
Haran, O.; Shaham, Y.
1996-01-01
Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)
Whole core burnup calculations using `MCNP`
Energy Technology Data Exchange (ETDEWEB)
Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev
1996-12-01
Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).
An Electron/Photon/Relaxation Data Library for MCNP6
Energy Technology Data Exchange (ETDEWEB)
Hughes, III, H. Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-07
The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.
Accelerating Pseudo-Random Number Generator for MCNP on GPU
Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu
2010-09-01
Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.
Comparisons between MCNP, EGS4 and experiment for clinical electron beams.
Jeraj, R; Keall, P J; Ostwald, P M
1999-03-01
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.
Comparisons between MCNP, EGS4 and experiment for clinical electron beams
International Nuclear Information System (INIS)
Jeraj, R.; Keall, P.J.; Ostwald, P.M.
1999-01-01
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high- Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high- Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation. (author)
MCNP load balancing and fault tolerance with PVM
International Nuclear Information System (INIS)
McKinney, G.W.
1995-01-01
Version 4A of the Monte Carlo neutron, photon, and electron transport code MCNP, developed by LANL (Los Alamos National Laboratory), supports distributed-memory multiprocessing through the software package PVM (Parallel Virtual Machine, version 3.1.4). Using PVM for interprocessor communication, MCNP can simultaneously execute a single problem on a cluster of UNIX-based workstations. This capability provided system efficiencies that exceeded 80% on dedicated workstation clusters, however, on heterogeneous or multiuser systems, the performance was limited by the slowest processor (i.e., equal work was assigned to each processor). The next public release of MCNP will provide multiprocessing enhancements that include load balancing and fault tolerance which are shown to dramatically increase multiuser system efficiency and reliability
Lecture Notes on Criticality Safety Validation Using MCNP & Whisper
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-11
Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C_{k}'s, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usage are discussed.
Radiation calculations using LAHET/MCNP/CINDER90
International Nuclear Information System (INIS)
Waters, L.
1994-01-01
The LAHET monte carlo code system has recently been expanded to include high energy hadronic interactions via the FLUKA code, while retaining the original Los Alamos versions of HETC and ISABEL at lower energies. Electrons and photons are transported with EGS4 or ITS, while the MCNP coupled neutron/photon monte carlo code provides analysis of neutrons with kinetic energies less than 20 MeV. An interface with the CINDER activation code is now in common use. Various other changes have been made to facilitate analysis of high energy accelerator radiation environments and experimental physics apparatus, such as those found at SSC and RHIC. Current code developments and applications are reviewed
A DRAGON-MCNP comparison of void reactivity calculations
Energy Technology Data Exchange (ETDEWEB)
Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)
1996-12-31
The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.
A DRAGON-MCNP comparison of void reactivity calculations
International Nuclear Information System (INIS)
Marleau, G.
1995-01-01
The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs
Parallel MCNP Monte Carlo transport calculations with MPI
International Nuclear Information System (INIS)
Wagner, J.C.; Haghighat, A.
1996-01-01
The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected
Preliminary evaluation of pin power distribution for fuel assemblies of SMART by MCNP
International Nuclear Information System (INIS)
Kim, Kyo Youn
1998-08-01
Monte Carlo transport code MCNP can describe an object sophisticately by use of three-dimensional modelling and can adopt a continuous energy cross-section library. Therefore MCNP has been widely utilized in the field of radiation physics to estimate fluxes and dose rates for nuclear facilities and to review results from conventional methods such a as discrete ordinates method and point kernel method. The Monte Carlo method has recently been introduced to estimated the neutron multiplication factor and pin power distribution in the fuel assembly of a reactor core. The operating thermal power of SMART core is 330 MWt and there are 57 fuel assemblies in the core. In this study it was assumed that the core has 4 types of fuel assemblies. In this study, MCNP4a was used to perform to estimate criticality and normalized pin power distribution in a fuel assembly of SMART core. The results from MCNP4a calculations are able to be used review those from nuclear design/analysis code. It is very complicated to pick up interested data from MCNP output list and to normalize pin power distribution in a fuel assembly because MCNP is not only a nuclear design/analysis code. In this study a program FAPIN was developed to generated a generate a normalized pin power distribution from the MCNP output list. (author). 11 refs
International Nuclear Information System (INIS)
Cox, Lawrence J.; Barrett, Richard F.; Booth, Thomas Edward; Briesmeister, Judith F.; Brown, Forrest B.; Bull, Jeffrey S.; Giesler, Gregg Carl; Goorley, John T.; Mosteller, Russell D.; Forster, R. Arthur; Post, Susan E.; Prael, Richard E.; Selcow, Elizabeth Carol; Sood, Avneet
2002-01-01
The Monte Carlo transport workhorse, MCNP, is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP Version 5 (V5) (expected to be released to RSICC in Spring, 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, and improved parallelism support (PVM, MPI, OpenMP).
Links between N-modular redundancy and the theory of error-correcting codes
Bobin, V.; Whitaker, S.; Maki, G.
1992-01-01
N-Modular Redundancy (NMR) is one of the best known fault tolerance techniques. Replication of a module to achieve fault tolerance is in some ways analogous to the use of a repetition code where an information symbol is replicated as parity symbols in a codeword. Linear Error-Correcting Codes (ECC) use linear combinations of information symbols as parity symbols which are used to generate syndromes for error patterns. These observations indicate links between the theory of ECC and the use of hardware redundancy for fault tolerance. In this paper, we explore some of these links and show examples of NMR systems where identification of good and failed elements is accomplished in a manner similar to error correction using linear ECC's.
MCNP evaluation of top node control rod depletion below the core in KKL
International Nuclear Information System (INIS)
Beran, Tâm; Seltborg, Per; Lindahl, Sten-Örjan; Bieli, Roger; Ledergerber, Guido
2014-01-01
In previous studies, there has been identified a significant discrepancy in the BWR control rod top node depletion between the two core simulator nodal codes POLCA7 and PRESTO-2, which indicates that there is a large general uncertainty in nodal codes in calculating the top node depletion of fully withdrawn control rods. In this study, the stochastic Monte Carlo code MCNP has been used to calculate the top node control rod depletion for benchmarking the nodal codes. By using the TIP signal obtained from an extended TIP campaign below the core performed in the KKL reactor, the MCNP model has been verified by comparing the axial profile between the TIP data and the gamma flux calculated by MCNP. The MCNP results have also been compared with calculations from POLCA7, which was found to yield slightly higher depletion rates than MCNP. It was also found that the 10 B depletion in the top node is very sensitive to the exact axial location of the control rod top when it is fully withdrawn. By using the MCNP results, the neutron flux model below the core in the nodal codes can be improved by implementing an exponential function for the neutron flux. (author)
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Hayward, William G; Ewing, Louise
2014-06-01
Despite their similarity as visual patterns, we can discriminate and recognize many thousands of faces. This expertise has been linked to 2 coding mechanisms: holistic integration of information across the face and adaptive coding of face identity using norms tuned by experience. Recently, individual differences in face recognition ability have been discovered and linked to differences in holistic coding. Here we show that they are also linked to individual differences in adaptive coding of face identity, measured using face identity aftereffects. Identity aftereffects correlated significantly with several measures of face-selective recognition ability. They also correlated marginally with own-race face recognition ability, suggesting a role for adaptive coding in the well-known other-race effect. More generally, these results highlight the important functional role of adaptive face-coding mechanisms in face expertise, taking us beyond the traditional focus on holistic coding mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Digitized forensics: retaining a link between physical and digital crime scene traces using QR-codes
Hildebrandt, Mario; Kiltz, Stefan; Dittmann, Jana
2013-03-01
The digitization of physical traces from crime scenes in forensic investigations in effect creates a digital chain-of-custody and entrains the challenge of creating a link between the two or more representations of the same trace. In order to be forensically sound, especially the two security aspects of integrity and authenticity need to be maintained at all times. Especially the adherence to the authenticity using technical means proves to be a challenge at the boundary between the physical object and its digital representations. In this article we propose a new method of linking physical objects with its digital counterparts using two-dimensional bar codes and additional meta-data accompanying the acquired data for integration in the conventional documentation of collection of items of evidence (bagging and tagging process). Using the exemplary chosen QR-code as particular implementation of a bar code and a model of the forensic process, we also supply a means to integrate our suggested approach into forensically sound proceedings as described by Holder et al.1 We use the example of the digital dactyloscopy as a forensic discipline, where currently progress is being made by digitizing some of the processing steps. We show an exemplary demonstrator of the suggested approach using a smartphone as a mobile device for the verification of the physical trace to extend the chain-of-custody from the physical to the digital domain. Our evaluation of the demonstrator is performed towards the readability and the verification of its contents. We can read the bar code despite its limited size of 42 x 42 mm and rather large amount of embedded data using various devices. Furthermore, the QR-code's error correction features help to recover contents of damaged codes. Subsequently, our appended digital signature allows for detecting malicious manipulations of the embedded data.
SUPERIMPOSED MESH PLOTTING IN MCNP
Energy Technology Data Exchange (ETDEWEB)
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
MCNP output data analysis with ROOT (MODAR)
Carasco, C.
2010-12-01
file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Reasons for new version: For applications involving the Associate Particle Technique, a large number of gamma rays are produced by the fast neutrons interactions. To study the energy spectra, it is useful to identify the gamma-ray energy peaks in a straightforward way. Therefore, the
MCNP speed advances for boron neutron capture therapy
International Nuclear Information System (INIS)
Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.
1998-04-01
The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers
Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium and Plutonium Benchmarks
International Nuclear Information System (INIS)
Mosteller, R.D.; Little, R.C.
1999-01-01
A probability-table treatment recently has been incorporated into an intermediate version of the MCNP Monte Carlo code named MCNP4XS. This paper presents MCNP4XS results for a variety of uranium and plutonium criticality benchmarks, calculated with and without the probability-table treatment. It is shown that the probability-table treatment can produce small but significant reactivity changes for plutonium and 233 U systems with intermediate spectra. More importantly, it can produce substantial reactivity increases for systems with large amounts of 238 U and intermediate spectra
Comparison of MCNP5 and experimental results on neutron shielding effects for materials
Energy Technology Data Exchange (ETDEWEB)
Torres, D. A. (Daniel A.); Mosteller, R. D. (Russell D.); Sweezy, J. E. (Jeremy E.)
2004-01-01
The MCNP Radiation-Shielding Validation Suite was created to assess the impact on dose rates and attenuation factors of future improvements in the MCNP Monte Carlo code or its nuclear data libraries. However, it does not currently contain any deep-penetration cases. For this reason, a set of deep-penetration benchmarks has been investigated for possible inclusion in the Suite. Overall, the MCNP5 results match the measured values quite well. Furthermore, with the exception of Resin-F, there is no systematic trend in the ratio of calculated to measured results.
MCNP-REN a Monte Carlo tool for neutron detector design
Abhold, M E
2002-01-01
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...
International Nuclear Information System (INIS)
Chung, Bub Dong; Jeong, Jae Jun; Lee, Won Jae
1998-01-01
The two independent codes, MARS 1.3 and CONTEMPT4/MOD5/PCCS, have been coupled using the method of dynamic-link-library (DLL) technique. Overall configuration of the code system is designed so that MARS will be a main driver program which use CONTEMPT as associated routines. Using Digital Visual Fortran compiler, DLL was generated from the CONTEMPT source code with the interfacing routine names and arguments. Coupling of MARS with CONTEMPT was realized by calling the DLL routines at the appropriate step in the MARS code. Verification of coupling was carried out for LBLOCA transient of a typical plant design. It was found that the DLL technique is much more convenient than the UNIX process control techniques and effective for Window operating system. Since DLL can be used by more than one application and an application program can use many DLLs simultaneously, this technique would enable the existing codes to use more broadly with linking others
Energy Technology Data Exchange (ETDEWEB)
Chung, Bub Dong; Jeong, Jae Jun; Lee, Won Jae [KAERI, Taejon (Korea, Republic of)
1998-10-01
The two independent codes, MARS 1.3 and CONTEMPT4/MOD5/PCCS, have been coupled using the method of dynamic-link-library (DLL) technique. Overall configuration of the code system is designed so that MARS will be a main driver program which use CONTEMPT as associated routines. Using Digital Visual Fortran compiler, DLL was generated from the CONTEMPT source code with the interfacing routine names and arguments. Coupling of MARS with CONTEMPT was realized by calling the DLL routines at the appropriate step in the MARS code. Verification of coupling was carried out for LBLOCA transient of a typical plant design. It was found that the DLL technique is much more convenient than the UNIX process control techniques and effective for Window operating system. Since DLL can be used by more than one application and an application program can use many DLLs simultaneously, this technique would enable the existing codes to use more broadly with linking others.
MCNP capabilities at the dawn of the 21st century: Neutron-gamma applications
International Nuclear Information System (INIS)
Selcow, E.C.; McKinney, G.W.
2000-01-01
The Los Alamos National Laboratory Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron-gamma radiation transport applications. These include nuclear criticality safety, radiation shielding, nuclear safeguards, nuclear well-logging, fission and fusion reactor design, accelerator target design, detector design and analysis, health physics, medical radiation therapy and imaging, radiography, decontamination and decommissioning, and waste storage and disposal. The latest version of the code, MCNP4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000.This paper described the new features and capabilities of the code, and discusses the specific applicability to neutron-gamma problems. We will also discuss the future directions for MCNP code development, including rewriting the code in Fortran 90
Utilization of new 150-MeV neutron and proton evaluations in MCNP
International Nuclear Information System (INIS)
Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.
1997-01-01
MCNP trademark and LAHET trademark are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized
MCNP perturbation technique for criticality analysis
International Nuclear Information System (INIS)
McKinney, G.W.; Iverson, J.L.
1995-01-01
The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and/or second order terms of the Taylor Series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Criticality analyses can benefit from this technique in that predicted changes in the track-length tally estimator of K eff may be obtained for multiple perturbations in a single run. A key advantage of this method is that a precise estimate of a small change in response (i.e., < 1%) is easily obtained. This technique can also offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response
Performance of scientific computing platforms with MCNP4B
International Nuclear Information System (INIS)
McLaughlin, H.E.; Hendricks, J.S.
1998-01-01
Several computing platforms were evaluated with the MCNP4B Monte Carlo radiation transport code. The DEC AlphaStation 500/500 was the fastest to run MCNP4B. Compared to the HP 9000-735, the fastest platform 4 yr ago, the AlphaStation is 335% faster, the HP C180 is 133% faster, the SGI Origin 2000 is 82% faster, the Cray T94/4128 is 1% faster, the IBM RS/6000-590 is 93% as fast, the DEC 3000/600 is 81% as fast, the Sun Sparc20 is 57% as fast, the Cray YMP 8/8128 is 57% as fast, the sun Sparc5 is 33% as fast, and the Sun Sparc2 is 13% as fast. All results presented are reproducible and allow for comparison to computer platforms not included in this study. Timing studies are seen to be very problem dependent. The performance gains resulting from advances in software were also investigated. Various compilers and operating systems were seen to have a modest impact on performance, whereas hardware improvements have resulted in a factor of 4 improvement. MCNP4B also ran approximately as fast as MCNP4A
MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies
Energy Technology Data Exchange (ETDEWEB)
Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-22
MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.
MCNP/X TRANSPORT IN THE TABULAR REGIME
Energy Technology Data Exchange (ETDEWEB)
HUGHES, H. GRADY [Los Alamos National Laboratory
2007-01-08
The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.
A photoneutron production option for MCNP4A
International Nuclear Information System (INIS)
Gallmeier, F.X.
1996-01-01
A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three dimensional geometries. Subroutines were developed to calculate the probability of the photoneutron production at the photon collision sites and the energy and flight direction of the created photoneutrons with the help of user supplied data. These subroutines are accessed through subroutine colidp which processes the photon collisions
MCNP6 fragmentation of light nuclei at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)
2014-11-11
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.
Henry, R; Tiselj, I; Snoj, L
2015-03-01
New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.
The ENSDF based radionuclide source for MCNP
International Nuclear Information System (INIS)
Berlizov, A.N.; Tryshyn, V.V.
2003-01-01
A utility for generating source code of the Source subroutine of MCNP (a general Monte Carlo NxParticle transport code) on the basis of ENSDF (Evaluated Nuclear Structure Data File) is described. The generated code performs statistical simulation of processes, accompanying radioactive decay of a chosen radionuclide through a specified decay branch, providing characteristics of emitted correlated particles on its output. At modeling the following processes are taken into account: emission of continuum energy electrons at beta - -decay to different exited levels of a daughter nucleus; annihilation photon emission accompanying beta + -decay; gamma-ray emission; emission of discrete energy electrons resulted from internal conversion process on atomic K- and L I,II,III -shells; K and LX-ray emission at single and double fluorescence, accompanying electron capture and internal conversion processes. Number of emitted particles, their types, energies and emission times are sampled according to characteristics of a decay scheme of a particular radionuclide as well as characteristics of atomic shells of mother and daughter nuclei. Angular correlations, calculated for a particular combination of nuclear level spins, mixing ratios and gamma-ray multipolarities, are taken into account at sampling of directional cosines of emitted gamma-rays. The paper contains examples of spectrometry system response simulation at measurements with real radionuclide sources. (authors)
International Nuclear Information System (INIS)
Krotov, A.D.; Son'ko, A.V.
2009-01-01
Calculation of neutron-physical properties and radiation protection of space power reactor was made by means of the MCNP code allowing simulation of neutron, γ- and electron transport by the Monte Carlo method in the systems with combined geometry. Universality of the MCNP code has been demonstrated both for the calculation of reactor-converter so for the optimization of radiation protection that allows to reserve a new level of complex simulation of SNPS [ru
Developing an interface between MCNP and McStas for simulation of neutron moderators
DEFF Research Database (Denmark)
Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik
2012-01-01
Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using MCNP/X whereas simulations of neutron transport and instrument performance are carried out by neutron ray tracing codes such as McStas. The coupling between the two simulations suites...... typically consists of providing analytical fits from MCNP/X neutron spectra to McStas. This method is generally successful, but as will be discussed in the this paper, there are limitations and a more direct coupling between MCNP/X andMcStas could allow for more accurate simulations of e.g. complex...... moderator geometries, interference between beamlines as well as shielding requirements along the neutron guides. In this paper different possible interfaces between McStas and MCNP/X are discussed and first preliminary performance results are shown....
MCNP4c JEFF-3.1 Based Libraries. Eccolib-Jeff-3.1 libraries; Les bibliotheques Eccolib-Jeff-3.1
Energy Technology Data Exchange (ETDEWEB)
Sublet, J.Ch
2006-07-01
Continuous-energy and multi-temperatures MCNP Ace types libraries, derived from the Joint European Fusion-Fission JEFF-3.1 evaluations, have been generated using the NJOY-99.111 processing code system. They include the continuous-energy neutron JEFF-3.1/General Purpose, JEFF-3.1/Activation-Dosimetry and thermal S({alpha},{beta}) JEFF-3.1/Thermal libraries and data tables. The processing steps and features are explained together with the Quality Assurance processes and records linked to the generation of such multipurpose libraries. (author)
LEU-fueled SLOWPOKE-2 modelling with MCNP4A
International Nuclear Information System (INIS)
Pierre, J.R.M.; Bonin, H.W.J.
1996-01-01
Following the commissioning of the Low Enrichment Uranium (LEU) Fueled SLOWPOKE-2 research reactor at Royal Military College,excess reactivity measurements were conducted over a range of temperature and power. Given the advance in computer technology, the use of Monte Carlo N-Particle Transport Code System MCNP 4A appeared possible for the simulation of the LEU-fueled SLOWPOKE-2 reactor core, and this work demonstrates that this is indeed the case. MCNP 4A is a full three dimensional program allowing the user to enter a large amount of complexity. The limit on the geometry complexity is the computing time required to achieve a reasonable standard deviation. To this point several models of the SLOWPOKE-2 have been developed giving some insight on the sensitivity of the code. MCNP4A can use various cross section libraries. The aim of this work is to calculate accurately the reactivity of the core and reproduce The temperature trend of the reactivity. The model preserved as much as possible the details of the core and facility in order to allow further study in the flux mapping
Criticality safety validation of MCNP5 using continuous energy libraries
International Nuclear Information System (INIS)
Salome, Jean A.D.; Pereira, Claubia; Assuncao, Jonathan B.A.; Veloso, Maria Auxiliadora F.; Costa, Antonella L.; Silva, Clarysson A.M. da
2013-01-01
The study of subcritical systems is very important in the design, installation and operation of various devices, mainly nuclear reactors and power plants. The information generated by these systems guide the decisions to be taken in the executive project, the economic viability and the safety measures to be employed in a nuclear facility. Simulating some experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments, the code MCNP5 was validated to nuclear criticality analysis. Its continuous libraries were used. The average values and standard deviation (SD) were evaluated. The results obtained with the code are very similar to the values obtained by the benchmark experiments. (author)
Electron/Photon Verification Calculations Using MCNP4B
Energy Technology Data Exchange (ETDEWEB)
D. P. Gierga; K. J. Adams
1999-04-01
MCNP4BW was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. The impact of several MCNP tally options and physics parameters was explored in detail. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors. Furthermore, sub-step artifacts for bremsstrahlung production were shown to be mitigated. A detailed suite of electron depth dose calculations in water is also presented. Areas for future code development have also been explored and include the dependence of cell and detector tallies on different bremsstrahlung angular models and alternative variance reduction splitting schemes for bremsstrahlung production.
A fast, automated, semideterministic weight windows generator for MCNP
International Nuclear Information System (INIS)
Mickael, M.W.
1995-01-01
A fast automated method is developed to estimate particle importance in the Los Alamos Carlo code MCNP. It provides an automated and efficient way of predicting and setting up an important map for the weight windows technique. A short analog simulation is first performed to obtain effective group parameters based on the input description of the problem. A solution of the multigroup time-dependent adjoint diffusion equation is then used to estimate particle importance. At any point in space, time, and energy, the particle importance is determined, based on the calculated parameters, and used as the lower limit of the weight window. The method has been tested for neutron, photon, and coupled neutron-photon problems. Significant improvement in the simulation efficiency is obtained using this technique at no additional computer time and with no prior knowledge of the nature of the problem. Moreover, time and angular importance that are not available yet in MCNP are easily implemented in this method
MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program
International Nuclear Information System (INIS)
Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.
1993-01-01
Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors
Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.
Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S
2012-10-01
A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.
MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program
Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.
1993-01-01
Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.
Development of a Fully-Automated Monte Carlo Burnup Code Monteburns
International Nuclear Information System (INIS)
Poston, D.I.; Trellue, H.R.
1999-01-01
Several computer codes have been developed to perform nuclear burnup calculations over the past few decades. In addition, because of advances in computer technology, it recently has become more desirable to use Monte Carlo techniques for such problems. Monte Carlo techniques generally offer two distinct advantages over discrete ordinate methods: (1) the use of continuous energy cross sections and (2) the ability to model detailed, complex, three-dimensional (3-D) geometries. These advantages allow more accurate burnup results to be obtained, provided that the user possesses the required computing power (which is required for discrete ordinate methods as well). Several linkage codes have been written that combine a Monte Carlo N-particle transport code (such as MCNP TM ) with a radioactive decay and burnup code. This paper describes one such code that was written at Los Alamos National Laboratory: monteburns. Monteburns links MCNP with the isotope generation and depletion code ORIGEN2. The basis for the development of monteburns was the need for a fully automated code that could perform accurate burnup (and other) calculations for any 3-D system (accelerator-driven or a full reactor core). Before the initial development of monteburns, a list of desired attributes was made and is given below. o The code should be fully automated (that is, after the input is set up, no further user interaction is required). . The code should allow for the irradiation of several materials concurrently (each material is evaluated collectively in MCNP and burned separately in 0RIGEN2). o The code should allow the transfer of materials (shuffling) between regions in MCNP. . The code should allow any materials to be added or removed before, during, or after each step in an automated fashion. . The code should not require the user to provide input for 0RIGEN2 and should have minimal MCNP input file requirements (other than a working MCNP deck). . The code should be relatively easy to use
International Nuclear Information System (INIS)
Schwarz, Randy A.; Carter, Leeland L.
2004-01-01
Monte Carlo N-Particle Transport Code (MCNP) (Reference 1) is the code of choice for doing complex neutron/photon/electron transport calculations for the nuclear industry and research institutions. The Visual Editor for Monte Carlo N-Particle (References 2 to 11) is recognized internationally as the best code for visually creating and graphically displaying input files for MCNP. The work performed in this grant enhanced the capabilities of the MCNP Visual Editor to allow it to read in a 2D Computer Aided Design (CAD) file, allowing the user to modify and view the 2D CAD file and then electronically generate a valid MCNP input geometry with a user specified axial extent
The comparison of MCNP perturbation technique with MCNP difference method in critical calculation
International Nuclear Information System (INIS)
Liu Bin; Lv Xuefeng; Zhao Wei; Wang Kai; Tu Jing; Ouyang Xiaoping
2010-01-01
For a nuclear fission system, we calculated Δk eff , which arise from system material composition changes, by two different approaches, the MCNP perturbation technique and the MCNP difference method. For every material composition change, we made four different runs, each run with different cycles or each cycle generating different neutrons, then we compared the two Δk eff that are obtained by two different approaches. As a material composition change in any particular cell of the nuclear fission system is small compared to the material compositions in the whole nuclear fission system, in other words, this composition change can be treated as a small perturbation, the Δk eff results obtained from the MCNP perturbation technique are much quicker, much more efficient and reliable than the results from the MCNP difference method. When a material composition change in any particular cell of the nuclear fission system is significant compared to the material compositions in the whole nuclear fission system, both the MCNP perturbation technique and the MCNP difference method can give satisfactory results. But for the run with the same cycles and each cycle generating the same neutrons, the results obtained from the MCNP perturbation technique are systemically less than the results obtained from the MCNP difference method. To further confirm our calculation results from the MCNP4C, we run the exact same MCNP4C input file in MCNP5, the calculation results from MCNP5 are the same as the calculation results from MCNP4C. We need caution when using the MCNP perturbation technique to calculate the Δk eff as the material composition change is large compared to the material compositions in the whole nuclear fission system, even though the material composition changes of any particular cell of the fission system still meet the criteria of MCNP perturbation technique.
Status Report on the MCNP 2020 Initiative
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-02
The discussion below provides a status report on the MCNP 2020 initiative. It includes discussion of the history of MCNP 2020, accomplishments during 2013-17, priorities for near-term development, other related efforts, a brief summary, and a list of references for the plans and work accomplished.
International Nuclear Information System (INIS)
Hussein, M.S.; Bonin, H.W.; Lewis, B.J.
2013-01-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)
2013-07-01
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); MacQuigg, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-21
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k_{eff}.
International Nuclear Information System (INIS)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
2016-01-01
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff .
TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR
International Nuclear Information System (INIS)
Kurosawa, M.
2005-01-01
For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54 Mn and 60 Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. (authors)
TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.
Kurosawa, Masahiko
2005-01-01
For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.
International Nuclear Information System (INIS)
Deng, B; He, M; Chen, J; Guo, D; Hou, S; Teng, P-K; Li, X; Liu, C; Xiang, A C; Ye, J; Gong, D; Liu, T; You, Y
2014-01-01
We propose a line code that has fast resynchronization capability and low latency. Both the encoder and decoder have been implemented in FPGAs. The encoder has also been implemented in an ASIC. The latency of the whole optical link (not including the optical fiber) is estimated to be less than 73.9 ns. In the case of radiation-induced link synchronization loss, the decoder can recover the synchronization in 25 ns. The line code will be used in the ATLAS liquid argon calorimeter Phase-I trigger upgrade and can also be potentially used in other LHC experiments
A comparative study of MONTEBURNS and MCNPX 2.6.0 codes in ADS simulations
International Nuclear Information System (INIS)
Barros, Graiciany P.; Pereira, Claubia; Veloso, Maria A.F.; Velasquez, Carlos E.; Costa, Antonella L.
2013-01-01
The possible use of the MONTEBURNS and MCNPX 2.6.0 codes in Accelerator-driven systems (ADSs) simulations for fuel evolution description is discussed. ADSs are investigated for fuel breeding and long-lived fission product transmutation so simulations of fuel evolution have a great relevance. The burnup/depletion capability is present in both studied codes. MONTEBURNS code links Monte Carlo N-Particle Transport Code (MCNP) to the radioactive decay burnup code ORIGEN2, whereas MCNPX depletion/ burnup capability is a linked process involving steady-state flux calculations by MCNPX and nuclide depletion calculations by CINDER90. A lead-cooled accelerator-driven system fueled with thorium was simulated and the results obtained using MONTEBURNS code and the results from MCNPX 2.6.0 code were compared. The system criticality and the variation of the actinide inventory during the burnup were evaluated and the results indicate a similar behavior between the results of each code. (author)
Modeling of LVRF critical experiments in ZED-2 using WIMS9A/PANTHER and MCNP5
International Nuclear Information System (INIS)
Sissaoui, M.T.; Carlson, P.A.; Lebenhaft, J.R.
2009-01-01
The accuracy of WIMS9A/PANTHER and MCNP5 in modeling D 2 O-moderated, and H 2 O-, D 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters was demonstrated using Low Void Reactivity Fuel (LVRF) substitution experiments in the ZED-2 critical facility. MCNP5 with ENDF/B-VI (Release 5) underpredicted k eff but gave excellent coolant void reactivity (CVR) bias values. WIMS9A/PANTHER with JEF-2.2 overpredicted k eff and underpredicted the CVR bias relative to MCNP5 by 100-200 pcm. Both codes reproduced the measured axial and radial flux shapes accurately
Application of wavelets to image coding in an rf-link communication system
Liou, C. S. J.; Conners, Gary H.; Muczynski, Joe
1995-04-01
The joint University of Rochester/Rochester Institute of Technology `Center for Electronic Imaging Systems' (CEIS) is designed to focus on research problems of interest to industrial sponsors, especially the Rochester Imaging Consortium. Compression of tactical images for transmission over an rf link is an example of this type of research project which is being worked on in collaboration with one of the CEIS sponsors, Harris Corporation/RF Communications. The Harris digital video imagery transmission system (DVITS) is designed to fulfill the need to transmit secure imagery between unwired locations at real-time rates. DVITS specializes in transmission systems for users who rely on hf equipment operating at the low end of the frequency spectrum. However, the inherently low bandwidth of hf combined with transmission characteristics such as fading and dropout severely restrict the effective throughput. The problem at designing a system such as DVITS is particularly challenging because of bandwidth and signal/noise limitations, and because of the dynamic nature of the operational environment. In this paper, a novel application of wavelets in tactical image coding is proposed to replace the current DCT compression algorithm in the DVITS system. THe effects of channel noise on the received image are determined and various design strategies combining image segmentation, compression, and error correction are described.
LINK codes TRAC-BF1/PARCSv2.7 in LINUX without external communication interface
International Nuclear Information System (INIS)
Barrachina, T.; Garcia-Fenoll, M.; Abarca, A.; Miro, R.; Verdu, G.; Concejal, A.; Solar, A.
2014-01-01
The TRAC-BF1 code is still widely used by the nuclear industry for safety analysis. The plant models developed using this code are highly validated, so it is advisable to continue improving this code before migrating to another completely different code. The coupling with the NRC neutronic code PARCSv2.7 increases the simulation capabilities in transients in which the power distribution plays an important role. In this paper, the procedure for the coupling of TRAC-BF1 and PARCSv2.7 codes without PVM and in Linux is presented. (Author)
MCNP Perturbation Capability for Monte Carlo Criticality Calculations
International Nuclear Information System (INIS)
Hendricks, J.S.; Carter, L.L.; McKinney, G.W.
1999-01-01
The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of k eff in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward
Energy Technology Data Exchange (ETDEWEB)
Jung, B. D.; Jung, J. J.; Ha, K. S.; Hwang, M. K.; Lee, Y. S.; Lee, W. J. [KAERI, Taejon (Korea, Republic of)
1999-10-01
The readability of MARS code has been enhanced greatly by replacing the bit-packed word with several logical words and integer words and recoding the related subroutines, which have the complicated bit operations and packed words. Functional improvements of code has been achieved through the multiple uses of dynamic link libraries(DLL) for containment analysis module CONTEMPT4 and multidimensional kinetics analysis module MASTER. The establishment of integrated analysis system, MARS/CONTEMPT/MASTER, was validated through the verification calculation for a postulated problem. MARS user-friendly features are also improved by displaying the 2D contour map of 3 D module data on-line. In addition to the on-line-graphics, the MARS windows menus were upgraded to include the on-line-manual, pre-view of input and output, and link to MARS web site. As a result, the readability, applicability, and user-friendly features of MARS code has been greatly enhanced.
International Nuclear Information System (INIS)
Jung, B. D.; Jung, J. J.; Ha, K. S.; Hwang, M. K.; Lee, Y. S.; Lee, W. J.
1999-01-01
The readability of MARS code has been enhanced greatly by replacing the bit-packed word with several logical words and integer words and recoding the related subroutines, which have the complicated bit operations and packed words. Functional improvements of code has been achieved through the multiple uses of dynamic link libraries(DLL) for containment analysis module CONTEMPT4 and multidimensional kinetics analysis module MASTER. The establishment of integrated analysis system, MARS/CONTEMPT/MASTER, was validated through the verification calculation for a postulated problem. MARS user-friendly features are also improved by displaying the 2D contour map of 3 D module data on-line. In addition to the on-line-graphics, the MARS windows menus were upgraded to include the on-line-manual, pre-view of input and output, and link to MARS web site. As a result, the readability, applicability, and user-friendly features of MARS code has been greatly enhanced
QR Codes as Finding Aides: Linking Electronic and Print Library Resources
Kane, Danielle; Schneidewind, Jeff
2011-01-01
As part of a focused, methodical, and evaluative approach to emerging technologies, QR codes are one of many new technologies being used by the UC Irvine Libraries. QR codes provide simple connections between print and virtual resources. In summer 2010, a small task force began to investigate how QR codes could be used to provide information and…
MCNP-REN: a Monte Carlo tool for neutron detector design
International Nuclear Information System (INIS)
Abhold, M.E.; Baker, M.C.
2002-01-01
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions
Effect of the MCNP model definition on the computation time
International Nuclear Information System (INIS)
Šunka, Michal
2017-01-01
The presented work studies the influence of the method of defining the geometry in the MCNP transport code and its impact on the computational time, including the difficulty of preparing an input file describing the given geometry. Cases using different geometric definitions including the use of basic 2-dimensional and 3-dimensional objects and theirs combinations were studied. The results indicate that an inappropriate definition can increase the computational time by up to 59% (a more realistic case indicates 37%) for the same results and the same statistical uncertainty. (orig.)
Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans
2006-02-01
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.
MCNP analysis of the nine-cell LWR gadolinium benchmark
International Nuclear Information System (INIS)
Arkuszewski, J.J.
1988-01-01
The Monte Carlo results for a 9-cell fragment of the light water reactor square lattice with a central gadolinium-loaded pin are presented. The calculations are performed with the code MCNP-3A and the ENDF-B/5 library and compared with the results obtained from the BOXER code system and the JEF-1 library. The objective of this exercise is to study the feasibility of BOXER for the analysis of a Gd-loaded LWR lattice in the broader framework of GAP International Benchmark Analysis. A comparison of results indicates that, apart from unavoidable discrepancies originating from different data evaluations, the BOXER code overestimates the multiplication factor by 1.4 % and underestimates the power release in a Gd cell by 4.66 %. It is hoped that further similar studies with use of the JEF-1 library for both BOXER and MCNP will help to isolate and explain these discrepancies in a cleaner way. (author) 4 refs., 9 figs., 10 tabs
Compilation of MCNP data library based on JENDL-3T and test through analysis of benchmark experiment
International Nuclear Information System (INIS)
Sakurai, K.; Sasamoto, N.; Kosako, K.; Ishikawa, T.; Sato, O.; Oyama, Y.; Narita, H.; Maekawa, H.; Ueki, K.
1989-01-01
Based on an evaluated nuclear data library JENDL-3T, a temporary version of JENDL-3, a pointwise neutron cross section library for MCNP code is compiled which involves 39 nuclides from H-1 to Am-241 which are important for shielding calculations. Compilation is performed with the code system which consists of the nuclear data processing code NJOY-83 and library compilation code MACROS. Validity of the code system and reliability of the library are certified by analysing benchmark experiments. (author)
Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.
Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y
2003-10-01
A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.
MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides
Hendriks, Peter; Maucec, M; de Meijer, RJ
gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the
Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data
Energy Technology Data Exchange (ETDEWEB)
Kahler, Albert Comstock [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-14
We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.
Installation of MCNP on 64-bit parallel computers
International Nuclear Information System (INIS)
Meginnis, A.B.; Hendricks, J.S.; McKinney, G.W.
1995-01-01
The Monte Carlo radiation transport code MCNP has been successfully ported to two 64-bit workstations, the SGI and DEC Alpha. We found the biggest problem for installation on these machines to be Fortran and C mismatches in argument passing. Correction of these mismatches enabled, for the first time, dynamic memory allocation on 64-bit workstations. Although the 64-bit hardware is faster because 8-bytes are processed at a time rather than 4-bytes, we found no speed advantage in true 64-bit coding versus implicit double precision when porting an existing code to the 64-bit workstation architecture. We did find that PVM multiasking is very successful and represents a significant performance enhancement for scientific workstations
The OKE Corral : Code organisation and reconfiguration at runtime using active linking
Bos, Herbert; Samwel, Bart
2002-01-01
The OKE Corral is an active network environment which allows third-party active code to configure an active node’s code organisation at any level, including the kernel. Using the safety properties of an open kernel environment and a simple ‘Click-like’ software model, third parties are able to load
International Nuclear Information System (INIS)
Mark Dennis Usang; Mohd Hairie Rabir; Mohd Amin Sharifuldin Salleh; Mohamad Puad Abu
2012-01-01
MPI parallelism are implemented on a SUN Workstation for running MCNPX and on the High Performance Computing Facility (HPC) for running MCNP5. 23 input less obtained from MCNP Criticality Validation Suite are utilized for the purpose of evaluating the amount of speed up achievable by using the parallel capabilities of MPI. More importantly, we will study the economics of using more processors and the type of problem where the performance gain are obvious. This is important to enable better practices of resource sharing especially for the HPC facilities processing time. Future endeavours in this direction might even reveal clues for best MCNP5/ MCNPX coding practices for optimum performance of MPI parallelisms. (author)
MONTEBURNS 2.0: An Automated, Multi-Step Monte Carlo Burnup Code System
International Nuclear Information System (INIS)
2007-01-01
A - Description of program or function: MONTEBURNS Version 2 calculates coupled neutronic/isotopic results for nuclear systems and produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. MONTEBURNS is a fully automated tool that links the LANL MCNP Monte Carlo transport code with a radioactive decay and burnup code. Highlights on changes to Version 2 are listed in the transmittal letter. Along with other minor improvements in MONTEBURNS Version 2, the option was added to use CINDER90 instead of ORIGEN2 as the depletion/decay part of the system. CINDER90 is a multi-group depletion code developed at LANL and is not currently available from RSICC, nor from the NEA Databank. This MONTEBURNS release was tested with various combinations of CCC-715/MCNPX 2.4.0, CCC-710/MCNP5, CCC-700/MCNP4C, CCC-371/ORIGEN2.2, ORIGEN2.1 and CINDER90. Perl is required software and is not included in this distribution. MCNP, ORIGEN2, and CINDER90 are not included. The following changes have been made: 1) An increase in the number of removal group information that must be provided for each material in each step in the feed input file. 2) The capability to use CINDER90 instead of ORIGEN2.1 as the depletion/decay part of the code. 3) ORIGEN2.2 can also be used instead of ORIGEN2.1 in Monteburns. 4) The correction of including the capture cross sections to metastable as well as ground states if applicable for an isotope (i.e. Am-241 and Am-243 in particular). 5) The ability to use a MCNP input file that has a title card starting with 'm' (this was a bug in the first version of Monteburns). 6) A decrease in run time for cases involving decay-only steps (power of 0.0). Monteburns does not run MCNP to calculate cross sections for a step unless it is an irradiation step. 7) The ability to change the cross section libraries used each step. If different cross section libraries are desired for multiple steps. 8
International Nuclear Information System (INIS)
Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.
2014-01-01
Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator
Link adaptation algorithm for distributed coded transmissions in cooperative OFDMA systems
DEFF Research Database (Denmark)
Varga, Mihaly; Badiu, Mihai Alin; Bota, Vasile
2015-01-01
This paper proposes a link adaptation algorithm for cooperative transmissions in the down-link connection of an OFDMA-based wireless system. The algorithm aims at maximizing the spectral efficiency of a relay-aided communication link, while satisfying the block error rate constraints at both...... adaptation algorithm has linear complexity with the number of available resource blocks, while still provides a very good performance, as shown by simulation results....
Conversion of Input Data between KENO and MCNP File Formats for Computer Criticality Assessments
International Nuclear Information System (INIS)
Schwarz, Randolph A.; Carter, Leland L.; Schwarz Alysia L.
2006-01-01
KENO is a Monte Carlo criticality code that is maintained by Oak Ridge National Laboratory (ORNL). KENO is included in the SCALE (Standardized Computer Analysis for Licensing Evaluation) package. KENO is often used because it was specifically designed for criticality calculations. Because KENO has convenient geometry input, including the treatment of lattice arrays of materials, it is frequently used for production calculations. Monte Carlo N-Particle (MCNP) is a Monte Carlo transport code maintained by Los Alamos National Laboratory (LANL). MCNP has a powerful 3D geometry package and an extensive cross section database. It is a general-purpose code and may be used for calculations involving shielding or medical facilities, for example, but can also be used for criticality calculations. MCNP is becoming increasingly more popular for performing production criticality calculations. Both codes have their own specific advantages. After a criticality calculation has been performed with one of the codes, it is often desirable (or may be a safety requirement) to repeat the calculation with the other code to compare the important parameters using a different geometry treatment and cross section database. This manual conversion of input files between the two codes is labor intensive. The industry needs the capability of converting geometry models between MCNP and KENO without a large investment in manpower. The proposed conversion package will aid the user in converting between the codes. It is not intended to be used as a ''black box''. The resulting input file will need to be carefully inspected by criticality safety personnel to verify the intent of the calculation is preserved in the conversion. The purpose of this package is to help the criticality specialist in the conversion process by converting the geometry, materials, and pertinent data cards
Analysis of Topaz-II reactor performance using MCNP and TFEHX
International Nuclear Information System (INIS)
Lee, H.H.; Klein, A.C.
1993-01-01
Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances
Biasing secondary particle interaction physics and production in MCNP6
International Nuclear Information System (INIS)
Fensin, M.L.; James, M.R.
2016-01-01
Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP
Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.
2018-05-01
Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.
Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS
International Nuclear Information System (INIS)
Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.
2012-01-01
The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.
Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS
Energy Technology Data Exchange (ETDEWEB)
Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory
2012-08-14
The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.
International Nuclear Information System (INIS)
Craig, D.S.
1989-03-01
The Monte Carlo code MCNP was used to check the accuracy of the WIMS calculation of the resolved resonance capture rate in CANDU-type lattices. Reactivities, relative conversion ratios, and fast fission factors are compared with experiments. Values of ρ 28 and reaction rates for U-238 are given as a function of position in the fuel bundle. A check was made on the correction made in WIMS to allow for endcaps on the fuel bundles. (26 refs)
CTEx Beowulf cluster for MCNP performance
International Nuclear Information System (INIS)
Gonzaga, Roberto N.; Amorim, Aneuri S. de; Balthar, Mario Cesar V.
2011-01-01
This work is an introduction to the CTEx Nuclear Defense Department's Beowulf Cluster. Building a Beowulf Cluster is a complex learning process that greatly depends upon your hardware and software requirements. The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built in Red Hat's Fedora Linux operating system personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation transport calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. The pre compiled parallel binary version of MCNP uses the Message-Passing Interface (MPI) protocol. The use of this pre compiled parallel version of MCNP5 with the MPI protocol on a small, heterogeneous computing cluster built from Red Hat's Fedora Linux operating system PCs is the subject of this work. (author)
MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS
International Nuclear Information System (INIS)
Finfrock, S.H.
2009-01-01
The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL(reg s ign) processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 (le) H/Fissile (le) 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k eff ) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k eff is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately ± 0.001. For the cases where the reported benchmark k eff was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k eff is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k eff limit for calculations of the intermediate enriched uranium type systems.
An improved algorithm to convert CAD model to MCNP geometry model based on STEP file
International Nuclear Information System (INIS)
Zhou, Qingguo; Yang, Jiaming; Wu, Jiong; Tian, Yanshan; Wang, Junqiong; Jiang, Hai; Li, Kuan-Ching
2015-01-01
Highlights: • Fully exploits common features of cells, making the processing efficient. • Accurately provide the cell position. • Flexible to add new parameters in the structure. • Application of novel structure in INP file processing, conveniently evaluate cell location. - Abstract: MCNP (Monte Carlo N-Particle Transport Code) is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport. Its input file, the INP file, has the characteristics of complicated form and is error-prone when describing geometric models. Due to this, a conversion algorithm that can solve the problem by converting general geometric model to MCNP model during MCNP aided modeling is highly needed. In this paper, we revised and incorporated a number of improvements over our previous work (Yang et al., 2013), which was proposed and targeted after STEP file and INP file were analyzed. Results of experiments show that the revised algorithm is more applicable and efficient than previous work, with the optimized extraction of geometry and topology information of the STEP file, as well as the production efficiency of output INP file. This proposed research is promising, and serves as valuable reference for the majority of researchers involved with MCNP-related researches
International Nuclear Information System (INIS)
Karriem, Z.; Zamonsky, O.M.
2014-01-01
The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)
Adjoint-Based Uncertainty Quantification with MCNP
Energy Technology Data Exchange (ETDEWEB)
Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States)
2011-09-01
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.
Validation of MCNP and WIMS-AECL/DRAGON/RFSP for ACR-1000 applications
International Nuclear Information System (INIS)
Bromley, Blair P.; Adams, Fred P.; Zeller, Michael B.; Watts, David G.; Shukhman, Boris V.; Pencer, Jeremy
2008-01-01
This paper gives a summary of the validation of the reactor physics codes WIMS-AECL, DRAGON, RFSP and MCNP5, which are being used in the design, operation, and safety analysis of the ACR-1000 R . The standards and guidelines being followed for code validation of the suite are established in CSA Standard N286.7-99 and ANS Standard ANS-19.3-2005. These codes are being validated for the calculation of key output parameters associated with various reactor physics phenomena of importance during normal operations and postulated accident conditions in an ACR-1000 reactor. Experimental data from a variety of sources are being used for validation. The bulk of the validation data is from critical experiments in the ZED-2 research reactor with ACR-type lattices. To supplement and complement ZED-2 data, qualified and applicable data are being taken from other power and research reactors, such as existing CANDU R units, FUGEN, NRU and SPERT research reactors, and the DCA critical facility. MCNP simulations of the ACR-1000 are also being used for validating WIMS-AECL/ DRAGON/RFSP, which involves extending the validation results for MCNP through the assistance of TSUNAMI analyses. Code validation against commissioning data in the first-build ACR-1000 will be confirmatory. The code validation is establishing the biases and uncertainties in the calculations of the WIMS-AECL/DRAGON/RFSP suite for the evaluation of various key parameters of importance in the reactor physics analysis of the ACR-1000. (authors)
DANDE-a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1986-01-01
This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1986-01-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1985-06-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem
Using MCNP for in-core instrument calibration in CANDU
Energy Technology Data Exchange (ETDEWEB)
Taylor, D.C. [Point Lepreau Generating Station, NB Power, Lepreau, New Brunswick (Canada); Anghel, V.N.P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
2002-07-01
The calibration of in-core instruments is important for safe and economical CANDU operation. However, in-core detectors are not normally suited to bench calibration procedures. This paper describes the use and validation of detailed neutron transport calculations for the purpose of calibrating the response of in-core neutron flux detectors. The Monte-Carlo transport code, MCNP, was used to model the thermal neutron flux distribution in the region around self-powered in-core flux detectors (ICFDs), and in the vicinity of the calandria edge. The ICFD model was used to evaluate the reduction in signal of a given detector (the 'detector shading factor') due to neutron absorption in surrounding materials, detectors, and lead-cables. The calandria edge model was used to infer the accuracy of the calandria edge position from flux scans performed by AECL's traveling flux detector (TFD) system. The MCNP results were checked against experimental results on ICFDs, and also against shading factors computed by other means. The use of improved in-core detector calibration factors obtained by this new methodology will improve the accuracy of spatial flux control performance in CANDU-6 reactors. The accurate determination of TFD based calandria edge position is useful in the quantitative measurement of changes in in-core component dimensions and position due to aging, such as pressure tube sag. (author)
MCNP modelling of a combined neutron/gamma counter
Bourva, L C A; Ottmar, H; Weaver, D R
1999-01-01
A series of Monte Carlo neutron calculations for a combined gamma/passive neutron coincidence counter has been performed. This type of device, part of a suite of non-destructive assay instruments utilised for the enforcement of the Euratom nuclear safeguards within the European Union, is to be used for high accuracy measurements of the plutonium content of small samples of nuclear materials. The multi-purpose Monte Carlo N-particle (MCNP) code version 4B has been used to model in detail the neutron coincidence detector and to investigate the leakage self-multiplication of PuO sub 2 and mixed U-Pu oxide (MOX) reference samples used to calibrate the instrument. The MCNP calculations have been used together with a neutron coincidence counting interpretative model to determine characteristic parameters of the detector. A comparative study to both experimental and previous numerical results has been performed. Sensitivity curves of the variation of the detector's efficiency, epsilon, to, alpha, the ratio of (alpha...
Chibani, Omar; Li, X Allen
2002-05-01
Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (MCNP results depend significantly on the electron energy-indexing method.
International Nuclear Information System (INIS)
Park, M; Kim, G; Ji, Y; Kim, K; Park, S; Jung, H
2015-01-01
Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm 3 , respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). The shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm 3 . The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom
Energy Technology Data Exchange (ETDEWEB)
Noelle, P
2006-12-15
In vivo lung counting, one of the preferred methods for monitoring people exposed to the risk of actinide inhalation, is nevertheless limited by the use of physical calibration phantoms which, for technical reasons, can only provide a rough representation of human tissue. A new approach to in vivo measurements has been developed to take advantage of advances in medical imaging and computing; this consists of numerical phantoms based on tomographic images (CT) or magnetic resonance images (R.M.I.) combined with Monte Carlo computing techniques. Under laboratory implementation of this innovative method using specific software called O.E.D.I.P.E., the main thrust of this thesis was to provide answers to the following question: what do numerical phantoms and new techniques like O.E.D.I.P.E. contribute to the improvement in calibration of low-energy in vivo counting systems? After a few developments of the O.E.D.I.P.E. interface, the numerical method was validated for systems composed of four germanium detectors, the most widespread configuration in radio bioassay laboratories (a good match was found, with less than 10% variation). This study represents the first step towards a person-specific numerical calibration of counting systems, which will improve assessment of the activity retained. A second stage focusing on an exhaustive evaluation of uncertainties encountered in in vivo lung counting was possible thanks to the approach offered by the previously-validated O.E.D.I.P.E. software. It was shown that the uncertainties suggested by experiments in a previous study were underestimated, notably morphological differences between the physical phantom and the measured person. Some improvements in the measurement procedure were then proposed, particularly new bio-metric equations specific to French measurement configurations that allow a more sensible choice of the calibration phantom, directly assessing the thickness of the torso plate to be added to the Livermore phantom based on the weight and height of the measured person. Lastly, the study underlined the interest of numerical phantoms and Monte Carlo simulation through actual contamination cases of lungs or wounds, which are impossible to study using traditional methods. In the case of contaminated wounds, this method was used to adjust the level of the retained activity in an actual injury on a hand and should improve the determination of source geometry, thereby refining the dose calculation. Personalized calibration of counting systems (for morphological purposes or distribution of radionuclides in the body) appears possible thanks to this innovative method and represents an important step towards implementation of personalized dosimetry. (author)
International Nuclear Information System (INIS)
Cenerino, G.; Marbeuf, A.; Vahlas, C.
1992-01-01
Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs
Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.
Yoriyaz, H; Stabin, M G; dos Santos, A
2001-04-01
This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)
Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+
International Nuclear Information System (INIS)
Cardoni, Jeffrey Neil; Rizwan-uddin
2011-01-01
The MCNP5 Monte Carlo particle transport code has been coupled to the computational fluid dynamics code, STAR-CCM+, to provide a high fidelity multi-physics simulation tool for pressurized water nuclear reactors. The codes are executed separately and coupled externally through a Perl script. The Perl script automates the exchange of temperature, density, and volumetric heating information between the codes using ASCII text data files. Fortran90 and Java utility programs assist job automation with data post-processing and file management. The MCNP5 utility code, MAKXSF, pre-generates temperature dependent cross section libraries for the thermal feedback calculations. The MCNP5–STAR-CCM+ coupled simulation tool, dubbed MULTINUKE, was applied to a steady state, PWR cell model to demonstrate its usage and capabilities. The demonstration calculation showed reasonable results that agree with PWR values typically reported in literature. Temperature and fission reaction rate distributions were realistic and intuitive. Reactivity coefficients were also deemed reasonable in comparison to historically reported data. The demonstration problem consisted of 9,984 CFD cells and 7,489 neutronic cells. MCNP5 tallied fission energy deposition over 3,328 UO_2 cells. The coupled solution converged within eight hours and in three MULTINUKE iterations. The simulation was carried out on a 64 bit, quad core, Intel 2.8 GHz microprocessor with 1 GB RAM. The simulations on a quad core machine indicated that a massively parallelized implementation of MULTINUKE can be used to assess larger multi-million cell models. (author)
Benchmark of WIMS-IST against MCNP for CANDU pressure tube fast fluxes
International Nuclear Information System (INIS)
Donders, R.E.; Douglas, S.R.
2002-01-01
Pressure tube fast-flux data in CANDU are currently calculated using the multi-group neutron transport code WIMS-IST. In this study, the WIMS-IST fast flux calculations are benchmarked against MCNP calculations (a Monte Carlo particle transport code), over the range of fuel burnup and coolant density in CANDU. The comparison shows good agreement between WIMS and MCNP, with WIMS fast fluxes being 1.5% to 4% lower than the MCNP values. The difference is smallest for fresh fuel, and increases with burnup. The fast flux gradient across the pressure tube (factor of 1.23 from inner edge to outer edge) is accurately calculated by WIMS. When reporting fast fluxes in pressure tubes, these are generally given as >1.000 MeV fluxes. For WIMS, this requires an extra conversion step, since the WIMS ENDF/B libraries do not have a group boundary at 1 MeV. The conversion step is based on a fictitious isotope ONEMEV in the WIMS nuclear data library. The conversion factor in WIMS was found to be about one percent too high. When providing >1 MeV fluxes from WIMS, this partially compensates for the slight under prediction of the fast flux. Pressure tube >1 MeV fluxes from WIMS are therefore 0.5% to 3% lower than MCNP values. To obtain accurate fast flux data, neutron transport calculations must be performed on a critical cell. For this study, all calculations were performed with radial albedo boundary conditions giving a critical cell. This required the use of an albedo version of MCNP, developed at AECL. (author)
A graphical user interface for diagnostic radiology dosimetry using Monte Carlo (MCNP) simulation
International Nuclear Information System (INIS)
Collins, P.J.; Gorbatkov, D.; Schultz, F.W.
2000-01-01
Monte Carlo methods (for example, MCNP, EGGS4) are the 'gold standard' for both external and internal dosimetry in humans. These powerful simulation tools are, however, general-purpose codes and consequently do not provide a simple user interface for specific dosimetry tasks. We have developed a graphical user interface, for external radiation dosimetry (diagnostic radiology) using MCNP and an anthropomorphic mathematical phantom (Adam/Eva), which enables convenient modification and processing of the MCNP input and output files. The input form displays a colour coded, 3D representation of the phantom with a superimposed 'beam' for the required x-ray projection. The phantom can be rotated through 360 degrees and a transverse section at the level of the mid-point of the beam is also displayed. Text fields enable entry of input data (beam dimensions, source position, kVp, total filtration, focus-to-skin distance). A pull-down menu enables the user to select from 22 standard radiographic views. A standard projection can be modified, or new projection data entered if required. The input program modifies the MCNP input file and initiates processing. An output form displays the organ doses, normalised to unit skin entrance dose (with backscatter) (SED). The user can also enter the SED (calculated or measured) for a particular machine, to obtain the effective dose. To validate the program, the results for a PA Chest study (80 kVp, 2.5 mm Al total filtration) were compared with NRPB data (Jones and Wall, 1985). In conclusion, a convenient and reliable graphical user interface has been developed for MCNP, which enables dosimetry calculation for a full range of diagnostic radiological studies. (author)
Hoelzer, Simon; Schweiger, Ralf K; Dudeck, Joachim
2003-01-01
With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or "semantically associated" parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach.
Optimal space-energy splitting in MCNP with the DSA
International Nuclear Information System (INIS)
Dubi, A.; Gurvitz, N.
1990-01-01
The Direct Statistical Approach (DSA) particle transport theory is based on the possibility of obtaining exact explicit expressions for the dependence of the second moment and calculation time on the splitting parameters. This allows the automatic optimization of the splitting parameters by ''learning'' the bulk parameters from which the problem dependent coefficients of the quality function (second moment time) are constructed. The above procedure was exploited to implement an automatic optimization of the splitting parameters in the Monte Carlo Neutron Photon (MCNP) code. This was done in a number of steps. In the first instance, only spatial surface splitting was considered. In this step, the major obstacle has been the truncation of an infinite series of ''products'' of ''surface path's'' leading from the source to the detector. Encouraging results from the first phase led to the inclusion of full space/energy phase space splitting. (author)
MCNP and visualization of neutron flux and power distributions
International Nuclear Information System (INIS)
Snoj, L.; Lengar, I.; Zerovnik, G.; Ravnik, M.
2009-01-01
The visualization of neutron flux and power distributions in two nuclear reactors (TRIG A type research reactor and typical PWR) and one thermonuclear reactor (tokamak type) are treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. The remembrance of most of the people is better, if they visualize a process. Therefore a representation of the reactor and neutron transport parameters is a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for core and irradiation planning. (authors)
BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling
International Nuclear Information System (INIS)
Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.
2008-01-01
MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)
BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling
Energy Technology Data Exchange (ETDEWEB)
Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)
2008-07-01
MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)
MCNP simulation of a Theratron 780 radiotherapy unit.
Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G
2005-01-01
A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.
Fuel element transfer cask modelling using MCNP technique
International Nuclear Information System (INIS)
Rosli Darmawan
2009-01-01
Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)
Fuel Element Transfer Cask Modelling Using MCNP Technique
International Nuclear Information System (INIS)
Darmawan, Rosli; Topah, Budiman Naim
2010-01-01
After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.
MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies
Energy Technology Data Exchange (ETDEWEB)
Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)
2015-08-24
Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
MCNP and MATXS cross section libraries based on JENDL-3.3
International Nuclear Information System (INIS)
Kosako, Kazuaki; Konno, Chikara; Fukahori, Tokio; Shibata, Keiichi
2003-01-01
The continuous energy cross section library for the Monte Carlo transport code MCNP-4C, FSXLIB-J33, has been generated from the latest version of JENDL-3.3. The multigroup cross section library with the MATXS format, MATXS-J33, has been generated also from JENDL-3.3. Both libraries contain all nuclides in JENDL-3.3 and are processed at 300 K by the nuclear data processing system NJOY99. (author)
MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.
Hendriks, P H G M; Maucec, M; de Meijer, R J
2002-09-01
gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.
International Nuclear Information System (INIS)
Kim Jung-Do; Gil Choong-Sup
1996-01-01
JEF-1-based 50-group cross section library for fast reactor applications and point data library for continuous-energy Monte Carlo code MCNP have been generated using NJOY91.38 system. They have been examined by analyzing measured integral quantities such as criticality and central reaction rate ratios for 8 small fast critical assemblies. (author). 9 refs, 2 figs, 10 tabs
Comparative Analysis of the Dalat Nuclear Research Reactor with HEU Fuel Using SRAC and MCNP5
Directory of Open Access Journals (Sweden)
Giang Phan
2017-01-01
Full Text Available Neutronics analysis has been performed for the 500 kW Dalat Nuclear Research Reactor loaded with highly enriched uranium fuel using the SRAC code system. The effective multiplication factors, keff, were analyzed for the core at criticality conditions and in two cases corresponding to the complete withdrawal and the full insertion of control rods. MCNP5 calculations were also conducted and compared to that obtained with the SRAC code. The results show that the difference of the keff values between the codes is within 55 pcm. Compared to the criticality conditions established in the experiments, the maximum differences of the keff values obtained from the SRAC and MCNP5 calculations are 119 pcm and 64 pcm, respectively. The radial and axial power peaking factors are 1.334 and 1.710, respectively, in the case of no control rod insertion. At the criticality condition these values become 1.445 and 1.832 when the control rods are partially inserted. Compared to MCNP5 calculations, the deviation of the relative power densities is less than 4% at the fuel bundles in the middle of the core, while the maximum deviation is about 7% appearing at some peripheral bundles. This agreement indicates the verification of the analysis models.
Davidson, R W
1985-01-01
The increasing need to communicate to exchange data can be handled by personal microcomputers. The necessity for the transference of information stored in one type of personal computer to another type of personal computer is often encountered in the process of integrating multiple sources of information stored in different and incompatible computers in Medical Research and Practice. A practical example is demonstrated with two relatively inexpensive commonly used computers, the IBM PC jr. and the Apple IIe. The basic input/output (I/O) interface chip for serial communication for each computer are joined together using a Null connector and cable to form a communications link. Using BASIC (Beginner's All-purpose Symbolic Instruction Code) Computer Language and the Disk Operating System (DOS) the communications handshaking protocol and file transfer is established between the two computers. The BASIC programming languages used are Applesoft (Apple Personal Computer) and PC BASIC (IBM Personal computer).
International Nuclear Information System (INIS)
Cashwell, E.D.; Schrandt, R.G.
1980-01-01
The current state of the art of calculating flux at a point with MCNP is discussed. Various techniques are touched upon, but the main emphasis is on the fast improved version of the once-more-collided flux estimator, which has been modified to treat neutrons thermalized by the free gas model. The method is tested on several problems on interest and the results are presented
Improved photon production data for MCNP trademark
International Nuclear Information System (INIS)
Adams, A.A.; Frankle, S.C.; Little, R.C.
1998-04-01
Computer simulations with MCNP are often used to obtain information from measurements of neutron induced gamma-ray spectra. For such simulations to be useful, the complicated spectra produced by a wide variety of nuclides must be reproduced, requiring high quality nuclear data. A previous assessment of the neutron induced photon production data in the MCNP data libraries indicated a need for improvement. The photon production data were often based on outdated experiments and binned in such wide energy groups as to be of limited value for some applications. This paper describes the work that is underway at Los Alamos National Laboratory to improve the photon production data for thermal neutron capture reactions. To date, high quality photon production data for each stable isotope of chlorine, chromium, iron, copper, and nickel have been obtained. The improved spectra have been incorporated into ENDF formatted evaluations and processed into corresponding MCNP data files. Similar improvements for aluminum, manganese, silicon, calcium, and vanadium are also planned. The methodology used to produce the spectra is discussed, and sample results for chlorine are presented
Reduced-Rank Chip-Level MMSE Equalization for the 3G CDMA Forward Link with Code-Multiplexed Pilot
Directory of Open Access Journals (Sweden)
Goldstein J Scott
2002-01-01
Full Text Available This paper deals with synchronous direct-sequence code-division multiple access (CDMA transmission using orthogonal channel codes in frequency selective multipath, motivated by the forward link in 3G CDMA systems. The chip-level minimum mean square error (MMSE estimate of the (multiuser synchronous sum signal transmitted by the base, followed by a correlate and sum, has been shown to perform very well in saturated systems compared to a Rake receiver. In this paper, we present the reduced-rank, chip-level MMSE estimation based on the multistage nested Wiener filter (MSNWF. We show that, for the case of a known channel, only a small number of stages of the MSNWF is needed to achieve near full-rank MSE performance over a practical single-to-noise ratio (SNR range. This holds true even for an edge-of-cell scenario, where two base stations are contributing near equal-power signals, as well as for the single base station case. We then utilize the code-multiplexed pilot channel to train the MSNWF coefficients and show that adaptive MSNWF operating in a very low rank subspace performs slightly better than full-rank recursive least square (RLS and significantly better than least mean square (LMS. An important advantage of the MSNWF is that it can be implemented in a lattice structure, which involves significantly less computation than RLS. We also present structured MMSE equalizers that exploit the estimate of the multipath arrival times and the underlying channel structure to project the data vector onto a much lower dimensional subspace. Specifically, due to the sparseness of high-speed CDMA multipath channels, the channel vector lies in the subspace spanned by a small number of columns of the pulse shaping filter convolution matrix. We demonstrate that the performance of these structured low-rank equalizers is much superior to unstructured equalizers in terms of convergence speed and error rates.
ENDF/B-VI data for MCNP trademark
International Nuclear Information System (INIS)
Hendricks, J.S.; Frankle, S.C.; Court, J.D.
1994-12-01
Nuclear and atomic data are the foundation upon which the radiation transport codes are built. For neutron transport the international standard is the Evaluated Nuclear Data File from Brookhaven National Laboratory. The latest version, ENDF/B-VI release 2, has recently become available for use in the Monte Carlo N-Particle (MCNP) radiation transport code. These neutron cross-section data are designated by ZAID identifiers ending in .60c and are referred to as the ENDF60 library. The ENDF60 data library was processed from the ENDF/B-VI evaluations using the NJOY code. Fifty-two percent of the data evaluations are translations from ENDF/B-V. The remaining 48% are new evaluations which have sometimes changed significantly. The RSIC release package contains the ENDF60 neutron library, a new photon library MCPLIB02, the electron library EL1, and an updated XSDIR file. The authors report here the work done by the LANL Radiation Transport Group (X-6) in testing and validating the ENDF60 data library and in developing the necessary new sampling and detector schemes. When the ENDF60 library should be used in preference to the previous libraries, is also considered. The development of the new photon library MCPLIB02 is also discussed
International Nuclear Information System (INIS)
Halimi, B.; Suh, Kune Y.
2012-01-01
Highlights: ► A nonlinearity characteristic compensation is proposed of the steam turbine control valve. ► A steady state and transient analyzer is developed of Ulchin Units 3 and 4 OPR1000 nuclear plants. ► MARS code and Matlab Simulink are used to verify the compensation concept. ► The results show the concept can compensate for the nonlinearity characteristic very well. - Abstract: Steam turbine control valves play a pivotal role in regulating the output power of the turbine in a commercial power plant. They thus have to be operated linearly to be run by an automatic control system. Unfortunately, the control valve has inherently nonlinearity characteristics. The flow increases more significantly near the closed end than near the open end of the stem travel given the valve position signal. The steam flow should nonetheless be proportional to the final desired quantity, output power, of the turbine to obtain a linear operation. This paper presents the valve engineering linked analysis (VELA) for nonlinearity characteristic compensation of the steam turbine control valve by using a linked two existing commercial software. The Multi-dimensional Analysis of Reactor Safety (MARS) code and Matlab Simulink have been selected for VELA to develop a steady state and transient analyzer of Ulchin Units 3 and 4 powered by the Optimized Power Reactor 1000 MWe (OPR1000). MARS is capable of modeling a wide range of systems from single pipes to full nuclear power plants. As one of standard nuclear power plant thermal hydraulic analysis software tools, MARS simulates the primary and secondary sides of the nuclear power plant. To simulate the electric power flow part, Matlab Simulink is chosen as the standard analysis software. Matlab Simulink having an interactive environment to model analyzes and simulates a wide variety of engineering dynamic systems including multimachine power systems. Based on the MARS code result, Matlab Simulink analyzes the power flow of the
International Nuclear Information System (INIS)
Karriem, Z.; Ivanov, K.; Zamonsky, O.
2011-01-01
This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori
2001-01-01
Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)
Modeling of LVRF Critical Experiments in ZED-2 Using WIMS9A/PANTHER and MCNP5
International Nuclear Information System (INIS)
Sissaoui, M.T.; Lebenhaft, J.R; Carlson, P.A.
2008-01-01
The accuracy of WIMS9A/PANTHER and MCNP5 in modeling D 2 O-moderated, and H 2 O-, D 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters was demonstrated using Low Void Reactivity Fuel (LVRF) substitution experiments in the ZED-2 critical facility. MCNP5 with ENDF/B-VI (Release 5) under-predicted k eff but gave excellent coolant void reactivity (CVR) bias values. WIMS9A/PANTHER with JEF-2.2 over-predicted k eff and under-predicted the CVR bias relative to MCNP5 by 100 pcm to 200 pcm. Both codes reproduced the measured axial and radial flux shapes accurately. (authors)
Vectorization, parallelization and porting of nuclear codes. 2001
International Nuclear Information System (INIS)
Akiyama, Mitsunaga; Katakura, Fumishige; Kume, Etsuo; Nemoto, Toshiyuki; Tsuruoka, Takuya; Adachi, Masaaki
2003-07-01
Several computer codes in the nuclear field have been vectorized, parallelized and transported on the super computer system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 10 codes in fiscal 2001. In this report, the parallelization of Neutron Radiography for 3 Dimensional CT code NR3DCT, the vectorization of unsteady-state heat conduction code THERMO3D, the porting of initial program of MHD simulation, the tuning of Heat And Mass Balance Analysis Code HAMBAC, the porting and parallelization of Monte Carlo N-Particle transport code MCNP4C3, the porting and parallelization of Monte Carlo N-Particle transport code system MCNPX2.1.5, the porting of induced activity calculation code CINAC-V4, the use of VisLink library in multidimensional two-fluid model code ACD3D and the porting of experiment data processing code from GS8500 to SR8000 are described. (author)
Energy Technology Data Exchange (ETDEWEB)
Cha, Kyoon Ho; Lee, Eun Ki [KEPRI, Taejon (Korea, Republic of)
2004-07-01
MCNP code is a general-purpose Monte Carlo radiation transport code that can numerically simulate neutron, photon, and electron transport. Increasing the speed of computing machine is making numerical transport simulation more attractive and has led to the widespread use of such code. This code can be used for general radiation shielding and criticality accident alarm system related dose calculations, so that the version 4C2 of this code was used to evaluate the shielding effect against neutron and gamma ray experiments. The Ueki experiments were used for neutron shielding effects for materials, and the Kansas State University (KSU) photon skyshine experiments of 1977 were tested for gamma ray shielding effects.
Monte Carlo parameter studies and uncertainty analyses with MCNP5
International Nuclear Information System (INIS)
Brown, F. B.; Sweezy, J. E.; Hayes, R.
2004-01-01
A software tool called mcnp p study has been developed to automate the setup, execution, and collection of results from a series of MCNP5 Monte Carlo calculations. This tool provides a convenient means of performing parameter studies, total uncertainty analyses, parallel job execution on clusters, stochastic geometry modeling, and other types of calculations where a series of MCNP5 jobs must be performed with varying problem input specifications. (authors)
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.
Singh, Jaswinder
2010-03-10
A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.
Validation of MCNP: SPERT-D and BORAX-V fuel
International Nuclear Information System (INIS)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D 1,2 fuel elements and BORAX-V 3-8 fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assemblies or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods
Use experiences of MCNP in nuclear energy study. 2. Review of variance reduction techniques
Energy Technology Data Exchange (ETDEWEB)
Sakurai, Kiyoshi; Yamamoto, Toshihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.
1998-03-01
`MCNP Use Experience` Working Group was established in 1996 under the Special Committee on Nuclear Code Evaluation. This year`s main activity of the working group has been focused on the review of variance reduction techniques of Monte Carlo calculations. This working group dealt with the variance reduction techniques of (1) neutron and gamma ray transport calculation of fusion reactor system, (2) concept design of nuclear transmutation system using accelerator, (3) JMTR core calculation, (4) calculation of prompt neutron decay constant, (5) neutron and gamma ray transport calculation for exposure evaluation, (6) neutron and gamma ray transport calculation of shielding system, etc. Furthermore, this working group started an activity to compile `Guideline of Monte Carlo Calculation` which will be a standard in the future. The appendices of this report include this `Guideline`, the use experience of MCNP 4B and examples of Monte Carlo calculations of high energy charged particles. The 11 papers are indexed individually. (J.P.N.)
Use experiences of MCNP in nuclear energy study. 2. Review of variance reduction techniques
International Nuclear Information System (INIS)
Sakurai, Kiyoshi; Yamamoto, Toshihiro
1998-03-01
''MCNP Use Experience'' Working Group was established in 1996 under the Special Committee on Nuclear Code Evaluation. This year''s main activity of the working group has been focused on the review of variance reduction techniques of Monte Carlo calculations. This working group dealt with the variance reduction techniques of (1) neutron and gamma ray transport calculation of fusion reactor system, (2) concept design of nuclear transmutation system using accelerator, (3) JMTR core calculation, (4) calculation of prompt neutron decay constant, (5) neutron and gamma ray transport calculation for exposure evaluation, (6) neutron and gamma ray transport calculation of shielding system, etc. Furthermore, this working group started an activity to compile ''Guideline of Monte Carlo Calculation'' which will be a standard in the future. The appendices of this report include this ''Guideline'', the use experience of MCNP 4B and examples of Monte Carlo calculations of high energy charged particles. The 11 papers are indexed individually. (J.P.N.)
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-17
The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi
International Nuclear Information System (INIS)
Noelle, P.
2006-12-01
In vivo lung counting, one of the preferred methods for monitoring people exposed to the risk of actinide inhalation, is nevertheless limited by the use of physical calibration phantoms which, for technical reasons, can only provide a rough representation of human tissue. A new approach to in vivo measurements has been developed to take advantage of advances in medical imaging and computing; this consists of numerical phantoms based on tomographic images (CT) or magnetic resonance images (R.M.I.) combined with Monte Carlo computing techniques. Under laboratory implementation of this innovative method using specific software called O.E.D.I.P.E., the main thrust of this thesis was to provide answers to the following question: what do numerical phantoms and new techniques like O.E.D.I.P.E. contribute to the improvement in calibration of low-energy in vivo counting systems? After a few developments of the O.E.D.I.P.E. interface, the numerical method was validated for systems composed of four germanium detectors, the most widespread configuration in radio bioassay laboratories (a good match was found, with less than 10% variation). This study represents the first step towards a person-specific numerical calibration of counting systems, which will improve assessment of the activity retained. A second stage focusing on an exhaustive evaluation of uncertainties encountered in in vivo lung counting was possible thanks to the approach offered by the previously-validated O.E.D.I.P.E. software. It was shown that the uncertainties suggested by experiments in a previous study were underestimated, notably morphological differences between the physical phantom and the measured person. Some improvements in the measurement procedure were then proposed, particularly new bio-metric equations specific to French measurement configurations that allow a more sensible choice of the calibration phantom, directly assessing the thickness of the torso plate to be added to the Livermore phantom based on the weight and height of the measured person. Lastly, the study underlined the interest of numerical phantoms and Monte Carlo simulation through actual contamination cases of lungs or wounds, which are impossible to study using traditional methods. In the case of contaminated wounds, this method was used to adjust the level of the retained activity in an actual injury on a hand and should improve the determination of source geometry, thereby refining the dose calculation. Personalized calibration of counting systems (for morphological purposes or distribution of radionuclides in the body) appears possible thanks to this innovative method and represents an important step towards implementation of personalized dosimetry. (author)
Comparison of ATTILA{sup TM} and MCNP{sup TM} for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Loughlin, M. [UKAEA Fusion, Culham Science Centre, Abingdon, Oxfordshire, OX (United Kingdom); Wareing, T.; Barnett, A.; Failla, G.; McGhee, J. [Transpire Inc., Gig Harbor WA (United States)
2005-07-01
This paper describes comparison of the results of neutron transport calculations using two very different codes. ATTILA{sup TM} is a discrete ordinates radiation transport code which models complex 3-D geometries using arbitrary tetrahedra. MCNP{sup TM} is a Monte-Carlo radiation transport code which models the geometry using a combinatorial representation. This code is more widely known within the fusion community where it has been extensively used. In contrast, this is the first reporting of the use of ATTILA for fusion applications. The purpose of the work described herein was to compare calculations by each code of the neutron spectra at points around a greatly simplified representation of a typical fusion experiment. Spectra, in twenty-seven energy groups, were calculated at five locations which are typical of fusion neutronics problems; these are i) within the torus wall, ii) opposite a port, iii) near the torus hall floor, iv) at a straight penetration through the torus hall roof, and v) at the exit of a labyrinth through the wall. A solution was obtained from ATTILA in one 24 hour run on a single processor. An MCNP run of a similar duration was required on 18 parallel processors. Excellent agreement was obtained at all locations with only some minor disparities at thermal neutron energies. (authors)
International Nuclear Information System (INIS)
De Matteis, A.
1987-01-01
This report describes the fully automatic linkage between the finite difference, two-dimensional code EDGE2D, based on the classical Braginskii partial differential equations of ion transport, and the Monte Carlo code NIMBUS, which solves the integral form of the stationary, linear Boltzmann equation for neutral transport in a plasma. The coupling has been performed for the real poloidal geometry of JET with two belt-limiters and real magnetic configurations with or without a single-null point. The new integrated system starts from the magnetic geometry computed by predictive or interpretative equilibrium codes and yields the plasma and neutrals characteristics in the edge
On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.
Eakins, Jonathan
2009-02-01
The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.
Development and improvement for MCNP-3B interactive plotter
International Nuclear Information System (INIS)
Gao Yanfeng
1996-01-01
The author briefly explains the development and improvement for the MCNP-3B interactive plotter. It describes the functions of geometry visualization and tally result plot, and introduces the progresses in user interface, process display and surface matching. The construction of MCNP-3B/PC is given
Estimation and interpretation of keff confidence intervals in MCNP
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-01-01
MCNP has three different, but correlated, estimators for Calculating k eff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined k eff estimator, is shown to be the best k eff estimator available in MCNP for estimating k eff confidence intervals. Theoretically, the Gauss-Markov Theorem provides a solid foundation for MCNP's three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the individual estimator with the smallest variance. The importance of MCNP's batch statistics is demonstrated by an investigation of the effects of individual estimator variance bias on the combination of estimators, both heuristically with the analytical study and emprically with MCNP
An assessment of the MCNP4C weight window
International Nuclear Information System (INIS)
Culbertson, Christopher N.; Hendricks, John S.
1999-01-01
A new, enhanced weight window generator suite has been developed for MCNP version 4C. The new generator correctly estimates importances in either a user-specified, geometry-independent, orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. The new generator is applied in a set of five variance reduction problems. The improved generator is compared with the weight window generator applied in MCNP4B. The benefits of the new methodology are highlighted, along with a description of its limitations. The authors also provide recommendations for utilization of the weight window generator
Hot Cell Window Shielding Analysis Using MCNP
International Nuclear Information System (INIS)
Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd
2009-01-01
The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.
New Neutron, Proton, and S(α,β) MCNP Data Libraries Based on ENDF/B-VII
International Nuclear Information System (INIS)
Little, Robert C.; Trellue, Holly R.; MacFarlane, Robert E.; Kahler, A.C.; Lee, Mary Beth; White, Morgan C.
2008-01-01
The general-purpose Evaluated Nuclear Data File ENDF/B-VII.0 was released in December 2006. A number of sub-libraries were included in ENDF/B-VII.0 such that data were provided for incident neutrons, photons, and charged particles. This paper describes the creation of MCNP data libraries at Los Alamos National Laboratory based on three ENDF/B-VII.0 sub-libraries: neutrons, protons, and thermal scattering. An ACE-formatted continuous-energy neutron data library called ENDF70 for MCNP has been produced. This library provides data for 390 materials at five temperatures: 293.6, 600, 900, 1200, and 2500 K. The library was processed primarily with Version 248 of NJOY99. Extensive checking and quality-assurance tests were applied to the data. Improvements to the processing code were made and certain evaluations were modified as a result of these tests. ENDF/B-VII.0 included proton evaluations for 48 target materials. Forty-seven proton evaluations (all except for 13 C) were processed at room temperature and combined into the MCNP library ENDF70PROT. Neutron thermal S(α,β) scattering data exist for twenty different materials in ENDF/B-VII.0. All twenty of these evaluations were processed at all applicable temperatures (these vary for each evaluation), and combined into the MCNP library ENDF70SAB. All of these ENDF/B-VII.0 based MCNP libraries (ENDF70, ENDF70PROT, and ENDF70SAB) are available as part of the MCNP5 1.50 release. (authors)
Current status of ACE format libraries for MCNP at nuclear date center of KAERI
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Gil, Choong Sup; Lee, Young Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-09-15
The current status of ACE format MCNP/MCNPX libraries by NDC of KAERI is presented with a short description of each library. Validation calculations with recent nuclear data evaluations ENDF/B-VII.0, ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 have been carried out by the MCNP5 code for 119 criticality benchmark problems taken from the expanded criticality validation suite supplied by LANL. The overall performances of the ACE format KN-libraries have been analyzed in comparison with the results calculated with the ENDF/B-VII.0-based ENDF70 library of LANL. It was confirmed that the ENDF/B-VII.1-based KNE71 library showed better performances than the others by comparing the RMS errors and χ2 values for five benchmark categories as well as whole benchmark problems. ENDF/B-VII.1 and JEFF-3.2 have a tendency to yield more reliable MCNP calculation results within certain confidence intervals regarding the total uncertainties for the keff values. It is found that the adoption of the latest evaluated nuclear data might ensure better outcomes in various research and development areas.
MCNP6 simulation of reactions of interest to FRIB, medical, and space applications
International Nuclear Information System (INIS)
Mashnik, Stepan G.
2015-01-01
The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes. (author)
An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.
Demarco, John J; Wallace, Robert E; Boedeker, Kirsten
2002-04-21
Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.
Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5
International Nuclear Information System (INIS)
Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.
2008-01-01
This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)
Au-coated X-ray Anti-scattering Grid Performance Test by MCNP
Energy Technology Data Exchange (ETDEWEB)
Bae, JunWoo; Yoo, Dong Han; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2014-10-15
It is required to protect individual against the dangers of ionizing radiation from medical exposure. And increasing of resolution for x-ray radiography tools can give radiation protectoral benefits. Because the image device has higher resolution in same energy source, it requires low energy level source and it can reduce individual dose. The anti-scattering grid is sub-device that is attached in front of detector (direction of source). It is square lattice shape generally. It is composed of penetration parts and shielding parts. Penetration part is generally air (the void) and in some studies it uses wood or aluminum. Shielding part is composed of various materials such as lead or copper. In this study, it is focused on the gold as one of X-ray grid materials, where gold is generally known as excellent shielding material and the performance test on the gold coated anti-scattering grid is carried out by MCNP simulation. X-ray grid was simulated by using MCNP code and its performance was investigated. It was understood that glass based and Au-coated grid could lessen the scattered photons more where the reduction was about two third. In further study, geometry optimization or material selection will be conducted by MCNP simulation for giving benefits to design proper grid for various instruments.
Modeling of the YALINA booster facility by the Monte Carlo code MONK
International Nuclear Information System (INIS)
Talamo, A.; Gohar, Y.; Kondev, F.; Kiyavitskaya, H.; Serafimovich, I.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2007-01-01
The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics arameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.
A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics
Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger
2017-09-01
Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.
International Nuclear Information System (INIS)
Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.
1991-09-01
The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)
Nakamura, M; Kitayama, K
1998-05-10
Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.
International Nuclear Information System (INIS)
Kim, Jong Woon; Lee, Young Ouk
2016-01-01
When we use MCNP code for a deep shielding problem, we prefer to use variance reduction technique such as geometry splitting, or weight window, or source biasing to have relative error within reliable confidence interval. To generate importance map for geometry splitting in MCNP calculation, we should know the track entering number and previous importance on each cells since a new importance is calculated based on these information. If a problem is deep shielding problem such that we have zero tracks entering on a cell, we cannot generate new importance map. In this case, discrete ordinates code can provide information to generate importance map easily. In this paper, we use AETIUS code as a discrete ordinates code. Importance map for MCNP is generated based on a zone average flux of AETIUS calculation. The discretization of space, angle, and energy is not necessary for MCNP calculation. This is the big merit of MCNP code compared to the deterministic code. However, deterministic code (i.e., AETIUS) can provide a rough estimate of the flux throughout a problem relatively quickly. This can help MCNP by providing variance reduction parameters. Recently, ADVANTG code is released. This is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 v1.60
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Ewing, Louise
2013-11-01
Our ability to discriminate and recognize thousands of faces despite their similarity as visual patterns relies on adaptive, norm-based, coding mechanisms that are continuously updated by experience. Reduced adaptive coding of face identity has been proposed as a neurocognitive endophenotype for autism, because it is found in autism and in relatives of individuals with autism. Autistic traits can also extend continuously into the general population, raising the possibility that reduced adaptive coding of face identity may be more generally associated with autistic traits. In the present study, we investigated whether adaptive coding of face identity decreases as autistic traits increase in an undergraduate population. Adaptive coding was measured using face identity aftereffects, and autistic traits were measured using the Autism-Spectrum Quotient (AQ) and its subscales. We also measured face and car recognition ability to determine whether autistic traits are selectively related to face recognition difficulties. We found that men who scored higher on levels of autistic traits related to social interaction had reduced adaptive coding of face identity. This result is consistent with the idea that atypical adaptive face-coding mechanisms are an endophenotype for autism. Autistic traits were also linked with face-selective recognition difficulties in men. However, there were some unexpected sex differences. In women, autistic traits were linked positively, rather than negatively, with adaptive coding of identity, and were unrelated to face-selective recognition difficulties. These sex differences indicate that autistic traits can have different neurocognitive correlates in men and women and raise the intriguing possibility that endophenotypes of autism can differ in males and females. © 2013 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Tömösközi, Máté; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2014-01-01
Video surveillance and similar real-time applications on wireless networks require increased reliability and high performance of the underlying transmission layer. Classical solutions, such as Reed-Solomon codes, increase the reliability, but typically have the negative side-effect of additional ...
Modelling of a proton spot scanning system using MCNP6
International Nuclear Information System (INIS)
Ardenfors, O; Gudowska, I; Dasu, A; Kopeć, M
2017-01-01
The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R 90 and R 80 , and within 0.2 mm for R 50 . The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons. (paper)
1999-09-01
A deterministic algorithm was developed which allowed data from Department of Transportation motor vehicle crash records, state mortality registry records, and hospital admission and emergency department records to be linked for analysis of the impac...
1998-10-01
This report uses police-reported motor vehicle crash data linked to Emergency Medical Services data and hospital discharge data to evaluate the relative risk of injury posed by specific roadside objects in Pennsylvania. The report focuses primarily o...
1999-09-01
A deterministic algorithm was developed which allowed data from Department of Transportation motor vehicle crash records, state mortality registry records, and hospital admission and emergency department records to be linked for analysis of the finan...
1998-10-01
The report uses police-reported crash data that have been linked to hospital discharge data to evaluate charges for hospital care provided to motor vehicle crash victims in Pennsylvania. Approximately 17,000 crash victims were hospitalized in Pennsyl...