WorldWideScience

Sample records for cobalt-free hardfacing alloys

  1. Cobalt reduction of NSSS valve hardfacings for ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hak; Lee, Sang Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author).

  2. Cobalt reduction of NSSS valve hardfacings for ALARA

    International Nuclear Information System (INIS)

    Kim, Joo Hak; Lee, Sang Sub

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author)

  3. The use of hardfacing alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Saarinen, K.; Aaltonen, P.

    1987-08-01

    In this report the structure and applications of cobalt-, nickel- and iron-based hardfacing alloys are reviewed. Cobalt-based hardfacing alloys are widely used in nuclear power plant components due to their good wear and corrosion resistance. However, the wear and corrosion products of the cobalt-containing alloys are released into the primary cooling water and transported to the reactor core where cobalt (Co-59) is transmuted to the radioactive isotope Co-60. It has been estimated that cobalt-based hardfacing alloys are responsible for up to 90% of the total cobalt released to the primary water circuit. The cobalt based hardfacing alloys are used in such components as valves, control blade pins and pumps, etc. In the Finnish nuclear power plants they are not used in in-core components. The replacement of cobalt-containing alloys in primary cooling system components is studied in many laboratories, but substitutes for the cobalt-based alloys in the complete range of nuclear hardfacing applications have so far not been found. However, the modified austenitic stainless steels have showed good resistance to galling wear and are therefore considered substitutes for cobalt-based alloys

  4. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  5. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  6. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  7. Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Indira, R.; Albert, S.K.; Rao, B.P.S.; Jain, S.C.; Asokkumar, S.

    2004-01-01

    Nickel-base hardfacing alloys have been chosen to replace cobalt-base alloys as hardfacing material for components of the Indian Prototype Fast Breeder Reactor, for minimising the dose rate to personnel during maintenance and decommissioning, and to reduce the shielding thickness required for component handling. Induced activity, dose rate and shielding computations showed that replacing cobalt-base alloys with nickel-base alloys for hardfacing of components would result in a marked reduction in both the dose rate from the components and the thickness of lead handling flasks. Long-term ageing studies on the nickel-base hardface deposits on austenitic stainless steel showed that the hardface deposit would retain adequate hardness at the end of the components' design service-life of 40 years of exposure at 823 K

  8. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  9. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  10. Aspects of a Co-free hardfacing Materials Development to Reduce the Radioactivity in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Suh, Jeong Hun [Inss Tek Co., Daejeon (Korea, Republic of)

    2007-07-01

    For the last one or two decades, active researches to develop Co-free hardfacing materials in order to replace Co-base stellite alloys have been done to reduce the radioactivity in the primary systems in nuclear power plants(NPPs). However, Co-free materials having superior mechanical properties to stellite alloys have not been developed up to now. There are two ways to increase the performance characteristics of the key parts needed to be coated with hardfacing materials, thus resulting in replacing the Co-base stellite alloys with superior mechanical properties; one of them is to develop new Co-free materials with a better quality in performance than that of satellite alloys. The other is to use new coating techniques developed to increase the coated surface properties of already developed Co-free materials. In this study, the aspect of newly developed Co-free materials is reviewed and the necessity of the development of new Co-free materials is emphasized for the replacement of Co-base satellite alloys. In addition, a new coating technique, which is called a laser hardfacing(cladding) technique(LHT), is introduced and its advantage and applicability to the key parts in NPPs are discussed using our experimental results to improve the properties of a surface coated with existing Co-free hardfacing materials. The coating technique using a laser beam having a high energy density has unique advantages to obtain various microstructures such as crystalline, amorphous, porous, and nano structures and also to get coating layers having high a hardness to result in an excellent resistance to erosion corrosion and wear.

  11. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  12. Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe–Cr–B hardfacing alloy

    International Nuclear Information System (INIS)

    Gou, Junfeng; Lu, Pengpeng; Wang, You; Liu, Saiyue; Zou, Zhiwei

    2016-01-01

    Graphical abstract: Wear rate of the hardfacing layers with different nano-additives content and the counterpart GCr15 steel balls under conditions: normal load = 15 N, rotating speed = 400 rpm, total sliding time = 20 min. - Highlights: • Nano-additives remarkably improved the microstructure of hardfacing layers. • The hardness of hardfacing layers increased linearly with the increase of nano-additives. • The wear rate of the hardfacing layer with 0.65 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. • According to observation of wear tracks of hardfacing layers, the main wear mechanism was adhesion wear. - Abstract: Fe–Cr–B hardfacing alloys with different nano-additives content were investigated. The effects of nano-additives on the microstructures of hardfacing alloy were studied by using optical microscope, scanning electron microscope, X-ray diffractometer. The hardness and the fracture toughness of hardfacing alloys were measured, respectively. The sliding wear tests were carried out using a ball-on-disc tribometer. The experimental results showed that primary carbide of hardfacing alloys was refined and its distribution became uniform with content of nano-additives increased. The hardfacing alloys are composed of Cr_7C_3, Fe_7C_3, α-Fe and Fe_2B according to the results of X-ray diffraction. The hardness of hardfacing alloys increased linearly with the increase of nano-additives. The hardness of the hardfacing alloy with 1.5 wt.% nano-additives increased 54.8% than that of the hardfacing alloy without nano-additives and reached to 1011HV. The K_I_C of the hardfacing alloy with 0.65 wt.% nano-additives was 15.4 MPam"1"/"2, which reached a maximum. The value increased 57.1% than that of the hardfacing alloy without nano-additives. The wear rates of the hardfacing layer with 0.65 wt.% and 1.0 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. The main

  13. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages

    International Nuclear Information System (INIS)

    Piquer Caballero, J.

    2014-01-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  14. Modelling of residual stresses in valves Norem hard-facing alloys: a material characterization issue

    International Nuclear Information System (INIS)

    Mathieu, J.P.; Arnoldi, F.; Gauthier, E.; Beaurin, G.

    2011-01-01

    Replacement of cobalt-based hard-facing alloys (Stellite) is of high interest within the topic of reduction of human radiation exposure during field-work. Iron-based hard-facing alloys, such as Norem, are considered as good replacement candidates. Their wear characteristics are known to be quite equivalent to Stellite but are counter-balanced by lack of feedback in the field, especially about their resistance/toughness to brutal thermal shocks (60 C - 280 C for primary water). Norem alloys show a solid-solution strengthened austenitic dendrites matrix with a continuous network of eutectic and non-eutectic carbides at the grain boundaries. Toughness evaluation also requires information about residual stresses due to the welding (deposition) process: this work aims at furnishing tools for this purpose. First part of the work involved a microstructural study in order to compare the as-received material to other Norem samples previously observed in EDF's works and literature. A characterization of the different phase evolutions after heating and fast cooling of Norem is then made, in order to characterize whether metallurgical aspects have to be considered in the mechanical part during welding modelling: it appears that no strong solid-solid phase transformation may occur in welding situation. Tensile characterization is then performed on bulk PTAW (Plasma Transferred Arc Welding) specimens. A simplified welding simulation is eventually conducted on different axis-symmetric geometry and on real valve geometry in order to define a representative sample that will be used for further investigation on residual stresses. (authors)

  15. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  16. Hardfacing materials and processes for valve applications

    International Nuclear Information System (INIS)

    Matthews, S.J.; Crook, P.

    1982-01-01

    The subject of hardfacing is a very high technology effort especially in the valve industry. The technology is manifested by the need for sophisticated high performance hardfacing alloys required to resist the demanding environments of fluid flow control valve service. High technology is also found in the automated methods currently being used to efficiently deposit high quality hardfacing overlays. 3 figures, 3 tables

  17. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  18. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  19. Laser cladding of tungsten carbides (Spherotene) hardfacing alloys for the mining and mineral industry

    International Nuclear Information System (INIS)

    Amado, J.M.; Tobar, M.J.; Alvarez, J.C.; Lamas, J.; Yanez, A.

    2009-01-01

    The abrasive nature of the mechanical processes involved in mining and mineral industry often causes significant wear to the associated equipment and derives non-negligible economic costs. One of the possible strategies to improve the wear resistance of the various components is the deposition of hardfacing layers on the bulk parts. The use of high power lasers for hardfacing (laser cladding) has attracted a great attention in the last decade as an alternative to other more standard methods (arc welding, oxy-fuel gas welding, thermal spraying). In laser cladding the hardfacing material is used in powder form. For high hardness applications Ni-, Co- or Fe-based alloys containing hard phase carbides at different ratios are commonly used. Tungsten carbides (WC) can provide coating hardness well above 1000 HV (Vickers). In this respect, commercially available WC powders normally contain spherical micro-particles consisting of crushed WC agglomerates. Some years ago, Spherotene powders consisting of spherical-fused monocrystaline WC particles, being extremely hard, between 1800 and 3000 HV, were patented. Very recently, mixtures of Ni-based alloy with Spherotene powders optimized for laser processing were presented (Technolase). These mixtures have been used in our study. Laser cladding tests with these powders were performed on low carbon steel (C25) substrates, and results in terms of microstructure and hardness will be discussed

  20. Laser cladding of tungsten carbides (Spherotene) hardfacing alloys for the mining and mineral industry

    Energy Technology Data Exchange (ETDEWEB)

    Amado, J.M. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain); Tobar, M.J. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain)], E-mail: cote@udc.es; Alvarez, J.C.; Lamas, J.; Yanez, A. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain)

    2009-03-01

    The abrasive nature of the mechanical processes involved in mining and mineral industry often causes significant wear to the associated equipment and derives non-negligible economic costs. One of the possible strategies to improve the wear resistance of the various components is the deposition of hardfacing layers on the bulk parts. The use of high power lasers for hardfacing (laser cladding) has attracted a great attention in the last decade as an alternative to other more standard methods (arc welding, oxy-fuel gas welding, thermal spraying). In laser cladding the hardfacing material is used in powder form. For high hardness applications Ni-, Co- or Fe-based alloys containing hard phase carbides at different ratios are commonly used. Tungsten carbides (WC) can provide coating hardness well above 1000 HV (Vickers). In this respect, commercially available WC powders normally contain spherical micro-particles consisting of crushed WC agglomerates. Some years ago, Spherotene powders consisting of spherical-fused monocrystaline WC particles, being extremely hard, between 1800 and 3000 HV, were patented. Very recently, mixtures of Ni-based alloy with Spherotene powders optimized for laser processing were presented (Technolase). These mixtures have been used in our study. Laser cladding tests with these powders were performed on low carbon steel (C25) substrates, and results in terms of microstructure and hardness will be discussed.

  1. Hardfacing materials used in valves for seating and wear surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, W.G.

    1996-12-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity.

  2. Hardfacing materials used in valves for seating and wear surfaces

    International Nuclear Information System (INIS)

    Knecht, W.G.

    1996-01-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity

  3. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  4. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    International Nuclear Information System (INIS)

    Ray, S.; Sarker, B.; Bhattacharya, S.

    1989-01-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 μm average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste

  5. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  6. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages; Recargues Duros por Soldadura en la Fabricacion de Valvulas ; el Problema del Cobalto, alternativas, ventajas, inconvenientes

    Energy Technology Data Exchange (ETDEWEB)

    Piquer Caballero, J.

    2014-07-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  7. Evaluation of cobalt and nickel base materials for sliding and static contact applications in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.; Chang, J.Y.; Galioto, T.A.; Miller, R.L.; Schrock, S.L.; Whitlow, G.A.; Wilson, W.L.; Johnson, R.N.

    1976-01-01

    The paper covers pertinent metallurgical and tribological aspects of three alloys that are being considered for surfaces that must rub while immersed in liquid sodium coolant within a fast breeder reactor system. The alloys are cobalt-base hardfacing alloy type 6, Tribaloy 700, and Inconel 718. Topics discussed include chemistry and microstructure, hardness, and behavior in high-temperature sodium with respect to dynamic friction, diffusion bonding, and corrosion

  8. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  9. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  10. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  11. Hardfacing and welding rods by P/M

    International Nuclear Information System (INIS)

    Nayar, H.S.

    1977-01-01

    Certain hardfacing and welding rods are very hard and non-deformable. They are, as it is well known, generally produced by casting processes. Airco has developed a P/M process for producing these rods. The process is already practiced on a semi-production scale. In this process, the powder is poured into suitably designed and prepared molds, vibrated to pack the powder, and sintered at a temperature between the solidus and the liquidus temperatures of the alloy to produce rods with 85% or more of the theoretical density. The P/M process has some distinct advantages over the conventional casting processes. These advantages are highlighted. The process is suitable for producing Fe-, Ni-, Co-, and Cu-base hardfacing and welding rods with and without second phase hard particles such as WC. Microstructures, dimensional and density controls, weld-evaluations and hardness data are included to present evidence that the rods produced by the P/M process are suitable for various welding and hardfacing applications

  12. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  13. APPLICATION OF QC TOOLS FOR CONTINUOUS IMPROVEMENT IN AN EXPENSIVE SEAT HARDFACING PROCESS USING TIG WELDING

    Directory of Open Access Journals (Sweden)

    Mohammed Yunus

    2016-09-01

    Full Text Available The present study is carried out to improve quality level by identifying the prime reasons of the quality related problems in the seat hardfacing process involving the deposition of cobalt based super alloy in I.C. Engine valves using TIG welding process. During the Process, defects like stellite deposition overflow, head melt, non-uniform stellite merging, etc., are observed and combining all these defects, the rejection level was in top position in Forge shop. We use widely referred QC tools of the manufacturing field to monitor the complete operation and continuous progressive process improvement to ensure ability and efficiency of quality management system of any firm. The work aims to identify the various causes for the rejection by the detailed study of the operation, equipment, materials and the various process parameters that are very important to get defects-free products. Also, to evolve suitable countermeasures for reducing the rejection percentage using seven QC tools. To further understand and validate the obtained results, we need to address other studies related to motivations, advantages, and disadvantages of applying quality control tools.

  14. Effect of Laser Power on Metallurgical, Mechanical and Tribological Characteristics of Hardfaced Surfaces of Nickel-Based Alloy

    Science.gov (United States)

    Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.

    2017-12-01

    In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.

  15. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  16. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  17. Tribological research of cobalt alloys used as biomaterials

    Directory of Open Access Journals (Sweden)

    Robert Karpiński

    2015-12-01

    Full Text Available This study provides information about the cobalt alloys used in dentistry and medicine. The work includes a review of the literature describing the general properties of cobalt alloys. In addition it describes the impact of the manufacturing conditions and alloy additives used , on the structure and mechanical properties of these alloys. The research methodology and the results obtained has been presented in the study. Two cobalt-based alloys Co-CrMo-W and Co-Cr-Ni-Mo were selected for the tests. The first one was prepared with the use of casting technique whereas the second was obtained due to plastic forming. An analysis of the chemical composition and in vitro tribological tests with the use of tribotester of "ball-on-disc" type was conducted. Comparative tribological characteristics of these alloys has been presented.

  18. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  19. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    International Nuclear Information System (INIS)

    Balouiri, Mounyr; Bouhdid, Samira; Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar; Ibnsouda, Saad Koraichi; Harki, El Houssaine

    2017-01-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  20. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Balouiri, Mounyr, E-mail: b.mounyr@gmail.com [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Bouhdid, Samira [Faculté des Sciences de Tétouan, Université Abdelmalek Essaadi, Avenue de Sebta, Mhannech II, 93002 Tétouan (Morocco); Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Ibnsouda, Saad Koraichi [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Cité de l' innovation, Université Sidi Mohamed Ben Abdellah, BP 2626, 30007 Fez (Morocco); Harki, El Houssaine [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco)

    2017-02-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  1. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun; Kim, Sun Jin

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  2. Hot corrosion of low cobalt alloys

    Science.gov (United States)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  3. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  4. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  5. Derivative spectrophotometry of cobalt alloys

    International Nuclear Information System (INIS)

    Spitsyn, P.K.

    1985-01-01

    The method of derivative spectrophotometry is briefly described, and derivative absorption spectra are presented for samarium, cobalt, and commercial Sm-Co alloys. It is shown that the use of derivative spectrophotometry not only improves the accuracy and selectivity of element determinations but also simplifies the analysis of alloys. Results of a statistical evaluation of the metrological characteristics of the analytical procedure described here are presented. 8 references

  6. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Directory of Open Access Journals (Sweden)

    Józwik Jerzy

    2017-01-01

    Full Text Available The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  7. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Science.gov (United States)

    Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej

    2017-10-01

    The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  8. Tungsen--nickel--cobalt alloy and method of producing same

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Riley, R.E.

    1977-01-01

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing this tungsten--nickel--cobalt alloy is further described and comprises coating the tungsten particles with a nickel--cobalt alloy, pressing the coated particles into a compact shape, heating the compact in hydrogen to a temperature in the range of 1400 0 C and holding at this elevated temperature for a period of about 2 hours, increasing this elevated temperature to about 1500 0 C and holding for 1 hour at this temperature, cooling to about 1200 0 C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1 / 2 hour, and cooling the resulting alloy to room temperature in this argon atmosphere

  9. Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kai Kerber

    2012-12-01

    Full Text Available In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys’ mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

  10. Preparation of rare earth-cobalt magnet alloy by reduction-diffusion process

    International Nuclear Information System (INIS)

    Krishnan, T.S.

    1980-01-01

    Preparation of rare earth-cobalt alloys by reduction-diffusion (R-D) process is described. The process essentially involves mixing of the rare earth oxide and cobalt/cobalt oxide powders in proper proportion and high temperature reduction of the charge in hydrogen atmosphere, followed by aqueous leaching of the reduced mass to yield the alloy powder. Comparison is made of the magnetic properties of the R-D powder with those of the powder prepared by the direct melting (DM) route and it is observed from the reported values for SmCo 5 that the energy product of the R-D powder (approximately 22 MGOe) is only marginally lower than that of the directly melted alloy (approximately 25 MGOe). The paper also includes the results of studies carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of misch metal-cobalt alloy by the R-D process. (auth.)

  11. Thermomagnetic method to determine cobalt content in solid WC-Co alloys

    International Nuclear Information System (INIS)

    Tumanov, V.I.; Loshakov, A.L.; Korchakova, E.A.

    1980-01-01

    A thermomagnetic method of cobalt amount determination in tungsten solid alloys is suggested. The method consists in the following: a sample of solid alloy is placed in a magnetic field sufficient to achieve technical saturation (not less than 10 kOe), and specific magnetization of saturation of the alloy σ is determined, then the sample is heated and according to the curves of magnetic permeability dependence on the temperature the Curie point of the alloy THETA is determined and cobalt amount is calculated by the formula qsub(Co)=σ100/(kTHETA+b). The analysis duration is approximately 30 min. Comparative data of cobalt amount determination in solid alloys WC-Co using thermonagnetic and potentiometric methods are presented. Results obtained by thermomagnetic and chemical method are in good agreement. Efficiency of the thermomagnetic method is much higher

  12. PTA hardfacing of Nb/Al coatings Revestimentos Nb/Al depositados por PTA

    Directory of Open Access Journals (Sweden)

    Karin Graf

    2012-06-01

    Full Text Available Hardfacing is widely applied to components yet the majority of the welding techniques available restrain the variety of hard alloys that can be deposited. Plasma Transferred Arc hardfacing offsets this drawback by using powdered feedstock offering the ability to tailor the chemical composition of the coating and as a consequence its properties. The high strength and chemical inertia of aluminide alloys makes them very suitable to protect components. However, the strong interaction with the substrate during hardfacing requires analysis of each alloy system to optimize its properties and weldability. This work analyzed coatings processed with a cast and ground Nb40wt%Al alloy and the effect of Fe and C on the coatings features. It confirmed that sound Nb aluminide coatings can be processed by plasma Transferred arc hardfacing and will have a strong interaction with the substrate, which determines the final microstructure and properties of coatings. Final remarks point out that during Nb-Al coating tailoring the interaction with the substrate has to be considered at the early stages of design process.Revestimentos soldados são amplamente usados para proteger componentes mecânicos entretanto a maioria das técnicas de soldagem disponíveis restringe a variedade de ligas de alta resistência que podem ser depositadas. O processo de plasma por arco transferido permite ultrapassar esta limitação ao utilizar material de adição na forma de pó, oferecendo a possibilidade de se customizar a composição dos revestimentos e em consequências as suas propriedades. A elevada resistência mecânica e inercia química das ligas de aluminetos tornam estas ligas atrativas para a proteção de componentes diversos. Entretanto a grande interação com o substrato que ocorre quando do processamento exige que para a otimização das propriedades e soldabilidade seja realizada uma a análise de cada sistema liga e substrato. Neste trabalho foram processados e

  13. Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2017-09-01

    Full Text Available The paper presents an analysis of the surface layer of Fe-Mn-C-B-Si-Ni-Cr alloy coating after friction with C45 steel. The coatings were obtained by arc welding (GMA. Flux-cored wires were used as a welding material. The flux-cored wires had a diameter of 2,4 mm. The tribological assessment was performed with the Amsler tribotester under dry friction conditions at unit pressures 10 MPa. The use of XPS spectroscopy allowed deep profile analysis of the surface layer. Based on the obtained results developed model of the surface layer for friction couple, hardfaced coating obtained from Fe-Mn-C-B-Si-Ni-Cr alloy – C45 steel. It was observed that the operational surface layer (OSL of hardfaced coatings contained oxides (B2O3, SiO2, NiO, Cr2O3, FeO, Fe3O4, Fe2O3, carbides (Fe3C, Cr7C3 and borides (FeB, Fe2B.

  14. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  15. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  16. Substitution of cobalt alloying in PWR primary circuit gate valves

    International Nuclear Information System (INIS)

    Cachon, L.; Sudreau, F.; Brunel, L.

    1995-01-01

    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  17. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  18. Hardfacing and packings for improved valve performance

    International Nuclear Information System (INIS)

    Aikin, J.A.; Patrick, J.N.F.; Inglis, I.

    2003-01-01

    The CANDU Owners Group (COG), Chemistry, Materials and Components (CMC) Program has supported an ongoing program on valve maintenance and performance for several years. An overview is presented of recent work on iron-based hardfacing, packing qualification, friction testing of polytetrafluoroethylene (PTFE) packings, and an investigation of re-torquing valve packing. Based on this program, two new valve-packing materials have been qualified for use in CANDU stations. By doing this, CANDU maintenance can avoid having only one packing qualified for station use, as well as assess the potential impact of the industry trend towards using lower gland loads. The results from corrosion tests by AECL and the coefficient of friction studies at Battelle' s tribology testing facilities on Delcrome 910, an iron-based hardfacing alloy, indicate it is an acceptable replacement for Stellite 6 under certain conditions. This information can be used to update in-line valve purchasing specifications. The renewed interest in friction characteristics, and environmental qualification (EQ) of packing containing PTFE has resulted in a new test program in these areas. The COG-funded valve programs have resulted in modifications to design specifications for nuclear station in-line valves and have led to better maintenance practices and valve reliability. In the end, this means lower costs and cheaper electricity. (author)

  19. Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Directory of Open Access Journals (Sweden)

    S. Rakic

    2012-09-01

    Full Text Available In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ are being leveled by annealing and what also partially reduces the residual internal stresses.

  20. Synthesis of cobalt alloy through smelting method and its characterization as prosthesis bone implant

    International Nuclear Information System (INIS)

    Aminatun,; Putri, N.S Efinda; Indriani, Arista; Himawati, Umi; Hikmawati, Dyah; Suhariningsih

    2014-01-01

    Cobalt-based alloys are widely used as total hip and knee replacements because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility. In this work, cobalt alloys with variation of Cr (28.5; 30; 31.5; 33, and 34.5% wt) have been synthesized by smelting method began with the process of compaction, followed by smelting process using Tri Arc Melting Furnace at 200A. Continued by homogenization process at recrystallization temperature (1250° C) for 3 hours to allow the atoms diffuses and transform into γ phase. The next process is rolling process which is accompanied by heating at 1200° C for ± 15 minutes and followed by quenching. This process is repeated until the obtained thickness of ± 1 mm. The evaluated material properties included microstructure, surface morphology, and hardness value. It was shown that microstructure of cobalt alloys with variation of Cr is dominant by γ phase, thus making the entire cobalt alloys have high hardness. It was also shown from the surface morphology of entire cobalt alloys sample indicated the whole process of synthesis that had good solubility were at flat surface area. Hardness value test showed all of cobalt alloys sample had high hardness, just variation of 33% Cr be in the range of ASTMF75, it were 345,24 VHN which is potential to be applied as an implant prosthesis

  1. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  2. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  3. Brightness coatings of zinc-cobalt alloys by electrolytic way

    International Nuclear Information System (INIS)

    Julve, E.

    1993-01-01

    Zinc-cobalt alloys provide corrosion resistance for the ferrous based metals. An acidic electrolyte for zinc-cobalt electrodeposition is examined in the present work. The effects of variations in electrolyte composition, in electrolyte temperature, pH and agitation on electrodeposit composition have been studied, as well as the current density influence. It was found that the following electrolyte gave the optimum results: 79 g.1''-1 ZnCl 2 , 15.3 g.1''-1 CoCl 2 .6H 2 O, 160 g.1''-1 KCl, 25 g.1''-1 H 3 BO 3 and 5-10 cm''3.1''-1 of an organic additive (caffeine, coumarin and sodium lauryl-sulphonate). The operating conditions were: pH=5,6 temperature: 30 degree centigree, current density: 0,025-0,035 A. cm''2, anode: pure zinc, agitation: slowly with air and filtration: continuous. The throwing power and cathode current efficiency of the electrolyte were also studied. This electrolyte yielded zinc-cobalt alloys white and lustrous and had a cobalt content of 0,5-0,8% (Author) 3 refs. 5 fig

  4. Incentives and opportunities for reducing the cobalt content in reactor core components

    International Nuclear Information System (INIS)

    Ocken, H.

    1985-01-01

    Cobalt in core components contributes to radiation field buildup on out-of-core surfaces. Core components containing cobalt-base alloys and cobalt as an impurity are identified. The use of cobalt-free wear-resistant alloys and construction materials with lower impurity levels of cobalt is disused. It is argued that such measures are cost effective. Lower radiation fields and disposal costs will offset higher raw material costs. Component performance will not be affected. (author)

  5. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  6. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    Science.gov (United States)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  7. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  8. Abrasion of Polymeric Composites on Basis of Machining Splinters from Hardfacing Alloys – Usable in Agrocomplex

    Directory of Open Access Journals (Sweden)

    Petr Valášek

    2014-01-01

    Full Text Available A paper focuses on a description of two-body and three-body abrasion wear of polymeric particle composites with fillers on a basis of machining splinters from hardfacing alloys. The abrasive wear is typical for functional surfaces of agricultural machines processing the soil. One of possibilities of the functional surface renovation is an application of resistant layers in a form of composite systems. Just the inclusion of hard inorganic particles into a polymeric matrix significantly increases its wear resistance. So long as the primary filler is replaced by the waste – by particles from the material machining – the matrix in which the filler is dispersed is a bearer of a material recyclation. This way of the recyclation is inexpensive, economic and sensitive to environment. The paper focuses on the experimental description of the two-body and three-body abrasion and the composites hardness, it describes a production of a prototype for field tests with the functional surface on the basis of the investigated composite system at the same time.

  9. Prevention of crack initiation in valve bodies under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, J.; Coppolani, P.

    1996-12-01

    On site and testing experience has shown that cracking in valves affects mainly the stellite hardfacing on seats and discs but may also be a concern for valve bodies. Metallurgical investigations conducted by EDF laboratories on many damaged valves have shown that most of the damage had either a chemical, manufacturing, or operating origin with a strong correlation between the origins and the type of damage. The chemical defects were either excess ferritic dilution of stellite or excess carburizing. Excess carburizing leads to a too brittle hardfacing which cracks under excessive stresses induced on the seating surfaces, via the stem, by too high operating thrusts. The same conditions can also induce cracks of the seats in the presence, in the hardfacing, of hidden defects generated during the welding process. Reduction of the number of defects results first from controls during manufacturing, mainly in the thickness of stellite. On the other hand, maintenance must be fitted to the type of defect. In-situ lapping may lead to release of cobalt, resulting in contamination of the circuit. Furthermore, it is ineffectual in the case of a crack through the seating surface, as is often found on globe valves. The use of new technologies of valves with removable seats and cobalt-free alloys solves permanently this kind of problem.

  10. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  11. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  12. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    Science.gov (United States)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  13. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy

    International Nuclear Information System (INIS)

    Mayer, E.

    1965-10-01

    We describe experiments along which has been studied the anisotropy of γ radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV γ radiation was measured in function of the sample temperature, using as thermometer the anisotropy of γ radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 ± 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo 5 ). The field at the cobalt in NdCo 5 has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds 5 ) [fr

  14. Materials and methods for hard-facing of power engineering valves

    International Nuclear Information System (INIS)

    Frumin, I.I.; Gladkii, P.V.; Eremeev, V.B.; Perepliotchikov, E.F.

    1980-01-01

    In the Soviet Union a large experience in hard-facing for the water and steam valves has been accumulated. A workability of valves largely depends upon materials used and a technology of their deposition. Mechanized methods have been recently successfully developed, new hard-facing materials created are considered

  15. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    Alloys 20. ABSTRACT (Continue on revet -se tside lf necessary and identify by block number) ~ lThe sodium sulfate-induced hot corrosion of cobalt and...Figures 12 and 13. The Na2 SO 4 was observed to form puddles on the oxide-covered specimen surface. An oxide slag was usually suspended in the... slag (black arrows) were suspended (30 sees at 1000°C in air). b) After washing the Na2SO 4 from the specimen, the exposed oxide surface was highly

  16. [Comparison of the clinical effects of selective laser melting deposition basal crowns and cobalt chromium alloy base crowns].

    Science.gov (United States)

    Li, Jing-min; Wang, Wei-qian; Ma, Jing-yuan

    2014-06-01

    To evaluate the clinical effects of selective laser melting (SLM) deposition basal crowns and cobalt chromium alloy casting base crowns. One hundred and sixty eight patients treated with either SLM deposition basal crowns (110 teeth) or cobalt chromium alloy casting basal crowns (110 teeth) were followed-up for 1 month, 6 months, 12 months and 24 months. The revised standard of American Public Health Association was used to evaluate the clinical effect of restoration, including the color of porcelain crowns, gingival inflammation, gingival margin discoloration, and crack or fracture. Data analysis was conducted with SPSS 20 software package for Student's t test and Chi-square test. Six cases were lost to follow-up. The patients who were treated with SLM deposition basal crowns (104 teeth) and cobalt chromium alloy casting base crowns (101 teeth) completed the study. Patients were more satisfied with SLM deposition cobalt chromium alloy porcelain crowns. There was 1 prosthesis with poor marginal fit after 24 months of restoration in SLM crowns. There were 6 prostheses with edge coloring and 8 with poor marginal fit in cobalt chromium alloy casting base crowns, which was significantly different between the 2 groups(P<0.05). The SLM deposition copings results in smaller edge coloring and better marginal fit than those of cobalt-chrome copings. Patients are pleased with short-term clinical results.

  17. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  18. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  19. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    Science.gov (United States)

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  20. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  1. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  2. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  3. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Hwang, S. S.; Lim, Y. S.

    1999-08-01

    A technology of laser hardfacing of amorphous materials on materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a power feeding system for the primary system. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phase of the clad. 5) Evaluation of the mechanical properties of the clad. 6) Development of an ultrasonic vibrator for VSR. (author)

  4. Microstructure And Functional Properties Of Prosthetic Cobalt Alloys CoCrW

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2015-09-01

    Full Text Available The material subject to investigation was two commercial alloys of cobalt CoCrW (No. 27 and 28 used in prosthodontics. The scope of research included performing an analysis of microstructure and functional properties (microhardness, wear resistance and corrosion resistance, as well as dilatometric tests. The examined alloys were characterized by diverse properties, which was considerably influenced by the morphology of precipitates in these materials. Alloy No. 27 has a higher corrosion resistance, whereas alloy No. 28 shows higher microhardness, better wear resistance and higher coefficient of linear expansion. Lower value of the expansion coefficient indicates less probability of initiation of a crack in the facing ceramic material.

  5. Standard specification for cobalt-chromium-nickel-molybdenum-tungsten alloy (UNS R31233) plate, sheet and strip. ASTM standard

    International Nuclear Information System (INIS)

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 818-91. Last previous edition was B 818-93

  6. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  7. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    Science.gov (United States)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  8. Evaluation and comparison of shear bond strength of porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ananya Singh

    2017-01-01

    Conclusion: It could be concluded that newer nickel and beryllium free Co-Cr alloys and titanium alloys with improved strength to weight ratio could prove to be good alternatives to the conventional nickel-based alloys when biocompatibility was a concern.

  9. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  10. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  11. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  12. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  13. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  14. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  15. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  16. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  17. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  18. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    Science.gov (United States)

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  19. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    Science.gov (United States)

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  20. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.

    Science.gov (United States)

    Zeng, Li; Xiang, Nan; Wei, Bin

    2014-11-01

    A cobalt-chromium-molybdenum alloy fabricated by selective laser melting is a promising material; however, there are concerns about the change in its corrosion behavior. The purpose of this study was to evaluate the changes in corrosion behavior of a cobalt-chromium-molybdenum alloy fabricated by the selective laser melting technique before and after ceramic firing, with traditional processing of cobalt-chromium-molybdenum alloy serving as a control. Two groups of specimens were designated as group selective laser melting and group traditional. For each group, 20 specimens with a cylindrical shape were prepared and divided into 4 cells: selective laser melting as-cast, selective laser melting fired in pH 5.0 and 2.5, traditional as-cast, and traditional fired in pH 5.0 and 2.5. Specimens were prepared with a selective laser melting system for a selective laser melting alloy and the conventional lost wax technique for traditional cast alloy. After all specimen surfaces had been wet ground with silicon carbide paper (1200 grit), each group of 10 specimens was put through a series of ceramic firing cycles. Microstructure, Vickers microhardness, surface composition, oxide film thickness, and corrosion behavior were examined for specimens before and after ceramic firing. Three-way ANOVA was used to evaluate the effect of porcelain firing and pH values on the corrosion behavior of the 2 alloys (α=.05). Student t tests were used to compare the Vickers hardness. Although porcelain firing changed the microstructure, microhardness, and x-ray photoelectron spectroscopy results, it showed no significant influence on the corrosion behavior of the selective laser melting alloy and traditional cast alloy (P>.05). No statistically significant influence was found on the corrosion behavior of the 2 alloys in different pH value solutions (P>.05). The porcelain firing process had no significant influence on the corrosion resistance results of the 2 alloys. Compared with traditional

  1. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.

    Science.gov (United States)

    Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S

    1997-01-01

    The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.

  2. Magnetic properties of exchange-coupled trilayers of amorphous rare-earth-cobalt alloys

    International Nuclear Information System (INIS)

    Wuechner, S.; Toussaint, J.C.; Voiron, J.

    1997-01-01

    From amorphous thin films from alloys of rare earths (Gd, Sm), yttrium or zirconium with cobalt we have prepared trilayers with very clean interfaces appropriate for the study of magnetic coupling. The sandwiches were typically Y-Co/Gd-Co/Y-Co and Sm-Co/X/Sm-Co ' (X=Gd-Co, Co-Zr, Co). The three individual layers are coupled magnetically by exchange interactions between cobalt moments throughout the entire sample. This coupling associated with the specific properties of the given alloy (magnetic moment, anisotropy, coercivity) leads to ferrimagnetic or ferromagnetic structures of the magnetization of adjacent layers and to novel magnetization processes. For systems consisting of magnetically hard external layers with different coercivities and a soft central layer (Sm-Co/X/Sm-Co ' , X=Gd-Co, Co-Zr), the influence of the central layer close-quote s thickness and type of the material on coupling and magnetization processes have been studied quantitatively. Numerical simulations using a one-dimensional model for describing the magnetization processes observed in sandwich systems fit the magnetization curves of these model systems particularly well. copyright 1997 The American Physical Society

  3. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  4. Modeling and experimental study of residual stresses in NOREM hardfacing coatings used in valve parts

    International Nuclear Information System (INIS)

    Beaurin, G.

    2012-01-01

    Hardfacing coatings are widely used on the surfaces of parts subjected to drastic loadings. Norem02 alloy, Fe-based, is used in PWR nuclear power plants on valves seating surfaces. Its microstructure consists of a dendritic austenite structure with ferrite islets and carbides. This work tends to demonstrate that for this alloy, metallurgical evolution during the welding process has very little influence on mechanical properties. Tensile behavior was characterized and completed by dilatometry tests in welding process temperature range until 1000 Celsius degrees, in order to identify an elastoplastic model with non linear kinematic hardening rule. Temperature, displacements, distortions and residual stresses were measured during the PTAW (Plasma Transferred Arc Welding) process and used to identify an equivalent thermal loading by solving an inverse problem. Finally, the numerical simulation of the whole process using the EDF FEM software Code-Aster is presented. Predicted temperatures are consistent with experimental ones. In the same way, predicted displacements, residual distortions and residual stresses at the end of the cooling phase are close to experimental measures, validating the modeling strategy presented in this work. (author)

  5. Dental implant suprastructures using cobalt-chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years.

    Science.gov (United States)

    Teigen, Kyrre; Jokstad, Asbjørn

    2012-07-01

    An association between the long-term success and survival of implant-supported prostheses as a function of biomaterial combinations has not been established. The use of cast cobalt-chromium for the suprastructure framework may be an alternative to the conventional approach of using type 3 gold alloys. A retrospective chart audit of all patients who had received implant-supported fixed dental prostheses (FDP) before 1996 was identified in a private practice clinic. Data were recorded for FDPs made from four combinations of alloy frameworks and veneering material, i.e. type 3 gold and cobalt-chromium with ceramic or prefabricated acrylic teeth. The extracted data from the charts were subjected to explorative statistical tests including Kaplan-Meier survival analyses. Patients (n=198) with 270 short and extensive FDPs supported entirely by 1117 implants were identified. The average follow-up observation periods varied between 4 and 220 months, with an average of 120 months. The success and survival, as well as event rates and types of biological and technical complications, were similar for implant-supported FDPs using cobalt-chromium and type 3 gold alloy frameworks veneered with ceramics or prefabricated acrylic teeth. An influence of the suprastructure biomaterial combination on the clinical performance of the individual supporting implants could not be established. Implant-supported FDPs made from type 3 gold or cobalt-chromium frameworks and veneered with ceramic or prefabricated acrylic teeth demonstrate comparable clinical performance. The biomaterial combinations do not appear to influence the success or survival of the individual implants. © 2011 John Wiley & Sons A/S.

  6. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  7. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  8. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  9. Trunnion Failure of the Recalled Low Friction Ion Treatment Cobalt Chromium Alloy Femoral Head.

    Science.gov (United States)

    Urish, Kenneth L; Hamlin, Brian R; Plakseychuk, Anton Y; Levison, Timothy J; Higgs, Genymphas B; Kurtz, Steven M; DiGioia, Anthony M

    2017-09-01

    Gross trunnion failure (GTF) is a rare complication in total hip arthroplasty (THA) reported across a range of manufacturers. Specific lots of the Stryker low friction ion treatment (LFIT) anatomic cobalt chromium alloy (CoCr) V40 femoral head were recalled in August 2016. In part, the recall was based out of concerns for disassociation of the femoral head from the stem and GTF. We report on 28 patients (30 implants) with either GTF (n = 18) or head-neck taper corrosion (n = 12) of the LFIT CoCr femoral head and the Accolade titanium-molybdenum-zirconium-iron alloy femoral stems. All these cases were associated with adverse local tissue reactions requiring revision of the THA. In our series, a conservative estimate of the incidence of failure was 4.7% (n = 636 total implanted) at 8.0 ± 1.4 years from the index procedure. Failures were associated with a high-offset 127° femoral stem neck angle and increased neck lengths; 43.3% (13 of 30) of the observed failures included implant sizes outside the voluntary recall (27.8% [5 of 18] of the GTF and 75.0% [8 of 12] of the taper corrosion cases). Serum cobalt and chromium levels were elevated (cobalt: 8.4 ± 7.0 μg/mL; chromium: 3.4 ± 3.3 μ/L; cobalt/chromium ratio: 3.7). The metal artifact reduction sequence magnetic resonance imaging demonstrated large cystic fluid collections typical with adverse local tissue reactions. During revision, a pseudotumor was observed in all cases. Pathology suggested a chronic inflammatory response. Impending GTF could be diagnosed based on aspiration of black synovial fluid and an oblique femoral head as compared with the neck taper on radiographs. In our series of the recalled LFIT CoCr femoral head, the risk of impending GTF or head-neck taper corrosion should be considered as a potential diagnosis in a painful LFIT femoral head and Accolade titanium-molybdenum-zirconium-iron alloy THA with unknown etiology. Almost half of the failures we observed included sizes outside of the

  10. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  11. The influence of x-rays radiation on the kinetic electrocrystallization of nickel and cobalt alloys

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Val'ko, N.G.; Moroz, N.I.; Vorontsov, A.S.; Vojna, V.V.

    2009-01-01

    In the work research kinetic electrocrystallization of nickel and cobalt coatings of coverings from sulfate electrolyte under the influence of x-ray radiation. It has been revealed that under the influence of radiation the thickness coatings alloy and the alloy exit on a current increases in comparison with control samples. It is caused by increase in streams diffusion ions of restored metal to cathodes and formation intermediate Co xN i 1-1 in irradiated electrolytes. Thus, on the above stated processes essential influence is rendered by length of a wave of operating radiation. (authors)

  12. Contribution to the replacement of cobalt-free hardfacing coating by laser cladding in fast neutron reactors

    International Nuclear Information System (INIS)

    De-Tran, Van

    2014-01-01

    This thesis contributes to the replacement of the coating of Stellite 6 which is used in friction areas for the primary circuit of the fast neutron reactor. It contains three parts: 1) A literature review for selecting the materials and the deposition process 2) A parametric study to get healthy deposits (good adhesion with the substrate, little porosity, no cracks, low dilution) 3) A study wear behavior of deposits obtained, at high temperature (200 C) under an atmosphere inert gas, to determine the wear resistance of materials selected without the influence of an eventual oxidation layer. From the literature review, it appears the following choices implemented in our study: * the method laser cladding with advantages such as: - Good adhesion (metallurgical) - High cooling speed - Low dilution rate - Wide parametric range * two nickel-based alloys: Colmonoy-52 and Tribaloy-700. These alloys have good dry wear behavior and could be deposited by the laser. In the manufacturing part of the healthy deposit, firstly, we characterized the metal powder. Then, a parametric study was performed to look for a good parametric range that makes us getting a healthy deposit of Stellite 6 (reference) of Colmonoy-52 and Tribaloy-700. In this case, relationships among three main process parameters laser cladding (laser beam power, surface scanning speed, rate of powder) with the microstructure and chemical composition of the deposit are studied. In study the wear behavior, a pin-on-disc type of tribological was used and tests were carried out in argon at room temperature and 200 C. We investigated the wear mechanism of the best deposition of Stellite 6, Colmonoy-52 and Tribaloy-700. The wear resistance of these materials were thoroughly compared. (author) [fr

  13. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    Science.gov (United States)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  14. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy; Realisation d'un appareil pour des mesures d'orientation nucleaire a basse temperature. Application a l'alliage neodyme-cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-10-01

    We describe experiments along which has been studied the anisotropy of {gamma} radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV {gamma} radiation was measured in function of the sample temperature, using as thermometer the anisotropy of {gamma} radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 {+-} 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo{sub 5}). The field at the cobalt in NdCo{sub 5} has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds < Heff(NdCo{sub 5}) < 220000 oersteds. (author) [French] Nous decrivons des experiences au cours desquelles nous avons etudie l'anisotropie de rayonnements {gamma} emis par des noyaux orientes. Nous avons utilise les grands champs hyperfins agissant sur las noyaux dans les metaux ferromagnetiques pour produire l'alignement a basse temperature. Par irradiation nous avons obtenu quelques noyaux de cobalt 60 dans nos echantillons qui furent ensuite refroidis a 0,01 K. Le degre d'anisotropie du rayonnement {gamma} de 1,33 MeV fut mesure en fonction de la temperature de l'echantillon en utilisant l'anisotropie du rayonnement {gamma} de noyaux de cobalt 60 dans un monocristal de cobalt metallique utilise comme thermometre. Le cobalt 60 a ete aligne dans un alliage de cobalt-nickel (40% Ni). Le champ hyperfin au niveau du cobalt a ete mesure par rapport au champ effectif dans le cobalt metallique

  15. Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing

    International Nuclear Information System (INIS)

    Babu, S.; Balasubramanian, V.; Madhusudhan Reddy, G.; Balasubramanian, T.S.

    2010-01-01

    This investigation describes about improving the ballistic immunity of armour steel joints which are fabricated by sandwiching of plasma transferred arc (PTA) hardfaced interlayers in between soft austenitic stainless steel (ASS) welds. From the results, the welds with sandwiched interlayer stopped all the projectiles successfully, irrespective of processes used, whereas welds without sandwiched interlayer were failed. In order to know the cause of failure, a detailed metallographic examination was carried out. The variation in microstructure and hardness at various zones of the weld are discussed. For the first time, it was found that the armour steel could be hardfaced by the PTA process with tungsten carbide powder.

  16. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  17. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  18. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  19. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  20. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  1. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  2. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  3. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  4. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  5. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  6. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2003-01-01

    Iron–cobalt alloys supported on carbon were investigated as ammonia synthesis catalysts. Barium was found to have a promoting effect for Fe with an optimum atomic ratio Ba/Fe of 0.35. At this Ba loading, a local maximum for the NH3 synthesis activity was found at 4 wt% Co by varying the Fe/Co ratio....... Samples containing only Co and no Fe, however, yielded by far the most active catalysts (7.0 μmol (NH3) g−1 s−1, 673 K, 10 bar). Barium was a very efficient promoter for Co, increasing the NH3 synthesis activity by more than two orders of magnitude compared to the unpromoted Co samples, while...

  7. Effect of co-free valve on activity reduction in PWR

    International Nuclear Information System (INIS)

    Bahn, C.B.; Han, B.C.; Bum, J.S.; Hwang, I.S.; Lee, C.B.

    2002-01-01

    Radioactive nuclei, such as 68 Co and 60 Co, deposited on out-of-core surfaces in a pressurized water reactor (PWR) primary coolant system, are major sources of occupational radiation exposure to plant maintenance personnel and act as costly impediment to prompt and effective repairs. Valve hardfacing alloys exposed to primary coolant are considered as one of the main Co sources. To evaluate the Co-free valve, such as NOREM 02 and Deloro 50, the candidates for the alternative to Stellite 6, in a simulated PWR primary condition, SNU corrosion test loop (SCOTL) was constructed. For gate valves hard-faced with made of NOREM 02 and Deloro 50 hot cycling tests were conducted for up to 2,000 on-off cycles with cold leak tests at 1,000 cycle interval. It was observed that the leak rate of NOREM 02 (Fe-base) did not satisfy the nuclear grade valve leak criteria. After 1000 cycles test, while there was no leakage in case of Deloro 50 (Ni-base). Also, Deloro 50 showed no leakage after 2000 cycles. To estimate the activity reduction effect, we modified CRUDSIM-MIT which modeled the effects of coolant chemistry on the crud transport and activity buildup in the primary system of PWR. In the new code, crud evaluation and assessment (CREAT), 60 Co activity buildup prediction includes 1) Co-base valve replacement effect, 2) Co-base valve maintenance effect, and 3) control rod drive mechanism (CRDM) and main coolant pump (MCP) shaft contribution. CREAT predicted that the main contributor of Co activity buildup was the corrosion-induced release of Co from the steam generator (SG) tubing. With new SG's tubed with alloy 690, Korean Next Generation Reactor (APR-1400) is expected to have about 64% lower Co activity on SG surface. The use of all Co-free valves is expected to cut additional 8% of activity which is only marginal. (authors)

  8. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  9. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  10. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    Science.gov (United States)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  11. Mass-selected iron-cobalt alloy clusters. Correlation of magnetic and structural properties; Massenselektierte Eisen-Kobalt-Legierungscluster. Korrelation magnetischer und struktureller Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Furkan

    2008-10-13

    In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)

  12. Comparative metallurgical study of thick hard coatings without cobalt

    International Nuclear Information System (INIS)

    Clemendot, F.; Van Duysen, J.C.; Champredonde, J.

    1992-07-01

    Wear and corrosion of stellite type hard coatings for valves of the PWR primary system raise important problems of contamination. Substitution of these alloys by cobalt-free hard coatings (Colmonoy 4 and 4.26, Cenium 36) should allow to reduce this contamination. A comparative study (chemical, mechanical, thermal, metallurgical), as well as a corrosion study of these coatings were carried out. The results of this characterization show that none of the studied products has globally characteristics as good as those of grade 6 Stellite currently in service

  13. Plasma Transferred ARC (PTA Hardfacing of Recycled Hardmetal Reinforced Nickel-matrix Surface Composites

    Directory of Open Access Journals (Sweden)

    Arkadi ZIKIN

    2012-03-01

    Full Text Available The aim of this work was to apply coarse recycled hardmetal particles in combination with Ni-based matrix to produce wear resistant metal matrix composite (MMC thick coatings using plasma transferred arc hardfacing (PTA technology. Assignment of hardmetal waste as initial material can significantly decrease the production costs and improve the mechanical properties of coatings and, consequently, increase their wear resistance. The microstructure of MMC fabricated from a recycled powder was examined by optical and SEM/EDS microscopes, whereas quantitative analyses were performed by image analysis method. Micro-mechanical properties, including hardness and elastic modulus of features, were measured by nanoindentation. Furthermore, behaviour of materials subjected to abrasive and impact conditions was studied. Results show the recycled powder provides hardfacings of high quality which can be successfully used in the fabrication of wear resistant MMC coatings by PTA-technology.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1334

  14. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  15. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    OpenAIRE

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation ...

  16. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors

    Science.gov (United States)

    Chang, Jie; Sun, Jing; Xu, Chaohe; Xu, Huan; Gao, Lian

    2012-10-01

    Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni : Co = 2) outperform pure NiO and Co3O4. The Ni-Co-O-1 and Ni-Co-O-2 possess high specific capacities of 778.2 and 867.3 F g-1 at 1 A g-1 and capacitance retentions of 84.1% and 92.3% at 10 A g-1, respectively. After full activation, the Ni-Co-O-1 and Ni-Co-O-2 could achieve a maximum value of 971 and 1550 F g-1 and remain at ~907 and ~1450 F g-1 at 4 A g-1, respectively. Also, the nickel cobalt oxides show high capacity retention when fast charging.Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni

  17. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  18. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  19. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  20. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  1. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  2. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  3. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy.

    Science.gov (United States)

    Gupta, Sharad; Mehta, Aruna S

    2012-01-01

    Remelting previously cast base metal alloy can adversely affect the mechanical properties of the alloy and necessitates addition of new alloy. To study the effect of remelting different combinations of new and used cobalt-chromium (Co-Cr) alloy on its mechanical properties and microstructure. Using induction casting, 24 tensile test specimens were prepared for eight different combinations of new and used Co-Cr alloy. The test specimens were assessed for yield strength and percentage elongation. Microhardness was evaluated using Vickers's hardness tester. The tensile testing was carried out on a 50 kN servo-hydraulic universal testing machine. Microstructure analysis was done using an optical photomicroscope on the fractured samples after acid etching. The mean values (±standard deviation) and coefficient of variation were calculated. Student's 't' test was used for statistical analysis. Statistical significance was assumed at P=.05. The mean yield strength of eight different combination groups were as follows: group A: 849 MPa, group B ₁ : 834 MPa, group B ₂ : 915 MPa, group B ₃ : 897 MPa, group C ₁ : 874 MPa, group C ₂ : 859 MPa, group D ₁ : 845 MPa, and group D ₂ : 834 MPa. The mean percentage elongation for the different groups were as follows: group A: 7%, group B ₁ : 7%, group B ₂ : 8%, group B ₃ : 7%, group C ₁ : 8%, group C ₂ : 7%, group D ₁ : 7%, and group D 2 : 8%. The mean hardness values were as follows: group A: 373 VHN, group B ₁ : 373 VHN, group B ₂ : 346 VHN, group B ₃ : 346 VHN, group C ₁ : 364 VHN, group C ₂ : 343 VHN, group D ₁ : 376 VHN, and group D ₂ : 373 VHN. Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight) of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in

  4. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  5. Cobalt metabolism and toxicology—A brief update

    International Nuclear Information System (INIS)

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul

    2012-01-01

    with a significant long-term retention in tissues for several years. In serum cobalt (Co 2+ ) binds to albumin, and the concentration of free, ionized Co 2+ is estimated at 5–12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co 2+ ) uptake appears to be shared with calcium (Ca 2+ ), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt–chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the concept of nanotoxicology a crucial, new

  6. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  7. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  8. Introduction of Nickel Coated Silicon Carbide Particles in Aluminum Metal Matrix Hardfaced by MIG/TIG Processes on Precoated Flux Layer

    Directory of Open Access Journals (Sweden)

    V. Kamburov

    2018-03-01

    Full Text Available The aim of the study was to investigate an aluminium metal matrix surface layer hardfaced by shielded gas metal arc welding processes applying either metal inert gas (MIG or tungsten inert gas (TIG, with standard wire filler onto the precoated flux layer - a baked resistant film containing electroless nickel coated micro/nano SiC particles. During baking, the components of the flux (MgCl2, NaCl, KCl and Na3AlF6 form a low melting eutectic, which: protects the hardfaced surface from oxidation, provides electrical conductance and keeps the particles on the surface during welding, as well as facilitates particles wettability and their interfacial bonding with the molten metal into the weld puddle.

  9. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  10. Effect of cobalt on microstructural parameters and mechanical properties of Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Suzuki, Takanobu; Imai, Hachiro; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Koizumi, Yutaka; Harada, Hiroshi

    2007-01-01

    The alloying effect of Cobalt (Co) to microstructural parameters and mechanical properties, such as partitioning ratios of alloying elements and creep strength, of Re-bearing Ni-base single crystal superalloys have been investigated. The second generation single crystal superalloys, TMS-82+, Ni-7.8Co-4.9Cr-1.9Mo-8.7W-5.3Al-6.0Ta-2.4Re-0.1Hf, in mass% (8Co) was compared to a Co-free (0Co) and 15 mass% Co (15Co) alloy which had the same chemical composition as TMS-82+ except that Co was changed. It was shown that the partitioning ratios of alloying elements trend to k(=X γ /X' γ )=1, as the content of Co was increased. Furthermore, it was found that there was suitable content of Co for the creep strength under various temperature-stress conditions. (author)

  11. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  12. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  13. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  14. Gibbs free energy of formation of liquid lanthanide-bismuth alloys

    International Nuclear Information System (INIS)

    Sheng Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2001-01-01

    The linear free energy relationship developed by Sverjensky and Molling provides a way to predict Gibbs free energies of liquid Ln-Bi alloys formation from the known thermodynamic properties of aqueous trivalent lanthanides (Ln 3(5(6+ ). The Ln-Bi alloys are divided into two isostructural families named as the LnBi 2 (Ln=La, Ce, Pr, Nd and Pm) and LnBi (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb). The calculated Gibbs free energy values are well agreed with experimental data

  15. Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys

    International Nuclear Information System (INIS)

    Wang, W.Z.; Jin, T.; Jia, J.H.; Liu, J.L.; Hu, Z.Q.

    2015-01-01

    The influences of cobalt (Co) on creep rupture lives and dislocation structures in nickel base superalloys with and without rhenium (Re) are investigated. The creep rupture test conditions were high temperature low stress (1100 °C/150 MPa), intermediate temperature and stress (982 °C, 1010 °C) and low temperature high stress (850 °C/586 MPa). The results show that increasing Co content could enhance the creep rupture lives at low and intermediate temperature, and does not degrade the creep rupture lives of alloys at high temperature. In Re-containing alloys, at high temperature low stress (1100 °C/150 MPa), the effects of Co on the dislocation structures are negligible, while at low temperature high stress (850 °C/586 MPa), stacking faults are generated in alloy with 12% Co, and in alloy with 3% Co and free of Co, gamma prime particles are sheared by dislocation pairs. In Re-free alloys, at intermediate temperature and stress (1010 °C/248 MPa), large quantities of stacking faults appear in alloy without Co, while in alloy having 12% Co, gamma prime particles are sheared by dislocation pairs coupled by anti-phase boundary (APB). The gamma prime sheared by stacking faults or by dislocation pairs coupled by APB depends on the competition of stacking faults energy and APB energy which is affected by temperature and the interaction of Re and Co

  16. Cobalt metabolism and toxicology-A brief update

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Lars Ole, E-mail: LOSimonsen@dadlnet.dk; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    phase lasting several weeks, and with a significant long-term retention in tissues for several years. In serum cobalt (Co{sup 2+}) binds to albumin, and the concentration of free, ionized Co{sup 2+} is estimated at 5-12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co{sup 2+}) uptake appears to be shared with calcium (Ca{sup 2+}), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt-chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the

  17. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  18. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  19. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    Science.gov (United States)

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical

  20. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  1. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  2. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  3. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  4. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grabias, A., E-mail: agnieszka.grabias@itme.edu.pl [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Kopcewicz, M. [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Latuch, J.; Oleszak, D. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Kowalczyk, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-07-15

    Highlights: • Nanocomposite alloys were formed by annealing of the rapidly quenched alloys. • Magnetically hard L1{sub 0} (Fe,Co)Pt and soft (Fe,Co){sub 2}B or (Fe,Co)B were formed. • Mössbauer spectra revealed Co substitution for Fe in L1{sub 0} FePt, FeB and Fe{sub 2}B phases. • Annealed alloys exhibit hard magnetic properties which depend on phase compositions. • Co addition was found to decrease the magnetization and the energy product. - Abstract: The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} (x = 0–26) and Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} (y = 0–40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840–880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L1{sub 0} tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20}) or (Fe,Co){sub 2}B (for Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15}). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L1{sub 0} phase and in iron borides. The nanocomposite Fe{sub 60−y}Co{sub y

  5. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  6. Predicting the morphologies of {\\gamma}' precipitates in cobalt-based superalloys

    OpenAIRE

    Jokisaari, Andrea M.; Naghavi, Shahab S.; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.

    2017-01-01

    Cobalt-based alloys with {\\gamma}/{\\gamma}' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-princip...

  7. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  8. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  9. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  10. Regulatory actions towards dose reduction at Atucha 1 NPS

    International Nuclear Information System (INIS)

    Spano, F.; Curti, A.R.; Telleria, D.M.; Rudelli, M.D.

    1998-01-01

    Atucha 1, a nuclear power plant designed in the late sixties, is in commercial operation since June 1974. In some internal components such as the coolant channels, the station has Stellite-6, a high cobalt content alloy (up to 60%) for hard-facing application. The erosion and corrosion processes on the surfaces of the piping components of the primary coolant and moderator systems generate a varied type of particles oxides called 'crud'. The crud and cobalt 60 produced by neutron activation of cobalt are transferred by the water along the circuit of the coolant and moderator systems, producing deposits on internal surfaces. The cobalt deposits are dominant in radiation fields at working locations. For years, the Authority allowed a considerable number of station workers incurring doses near the limit since that installation had been built previously to introduction of the optimisation concept by ICRP publication 26. The recommendations included in ICRP publication 60 made more than difficult the radiological situation at the Atucha 1. For the facility, to comply with the new limit established by the Authority in January 1995, meant to carry out a substantial modification of the radiological conditions, specially the radiation fields due to cobalt 60. Some options to reduce individual and collective doses were analysed by the Authority. To carry out the evaluation of the deposit mechanisms and the real activity level of cobalt 60, a model of compartments connected by means of constant transfer coefficients was designed. It was concluded that there was a necessity to the change of coolant channels by new ones free of cobalt. It has been shown experimentally that radiation fields and occupational doses were reduced, due to the replacement programme carried out by the utility, in a similar way to the model predictions. At present after more than three years from the beginning of the application of the new limits, and after carrying out partially the tasks for the

  11. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    Science.gov (United States)

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  12. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  13. Separation and purification of carrier-free cobalt-58 from neutron irradiated nickel foil for electrochemical studies

    International Nuclear Information System (INIS)

    Egamediev, S.; Nurbaeva, D.; Rakhmanov, A.

    2004-01-01

    Full text: Cobalt-58 will be used for tracer studies of the behaviour of cobalt radionuclides in no- carrier-added form during electrochemical deposition on metal backing. The 58 Co can be produced by using 58 Ni(n,p) 58 Co nuclear reaction in nuclear reactor. 58 Co (T 1/2 =71 days) decays by positron emitting (15%) and electron capture (85%) with simultaneous γ -irradiation. In this study, we have developed the simple method for separation and purification of 58 Co in no- carrier-added form from neutron irradiated nickel foil. Previously, we have studied the dissolution of nickel foil in various media to find best conditions for rapid dissolution of nickel target. It was found that nickel foil dissolved completely without heating in 6.3 M hydrobromic acid with addition a few drops of hydrogen peroxide. After dissolution of the target material, the cobalt-58 is separated from nickel, copper, iron and other elements by extraction chromatography. The solution in 6.3 M hydrobromic acid is passed through a column containing suspension of polytetrafluoroethylene powder with 0.5 M trioctylamine in xylene, equilibrated with the same acid. Nickel is not extracted and passed through column. Cobalt is retained and finally eluted with 3 M HBr in the one free column volume. The cobalt fraction is percolated through a column filled with suspension of pure polytetrafluoroethylene powder to purify from the admixture of extractant. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with aqua regia. After treatment the damp residue is dissolved in electrolyte and the obtained solution is used to study of 58 Co electrochemical deposition procedure. The yield of cobalt-58 was higher than 93% and the radiochemical purity was more than 99%. This method will be used for separation and purification of cobalt-57 to make of sealed sources for X-ray fluorescence analysis

  14. Improved Cycling Stability of Cobalt-free Li-rich Oxides with a Stable Interface by Dual Doping

    International Nuclear Information System (INIS)

    Xie, Dongjiu; Li, Guangshe; Li, Qi; Fu, Chaochao; Fan, Jianming; Li, Liping

    2016-01-01

    Highlights: • Cobalt-free Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 oxides are prepared by a sol-gel method. • Dual-doping strengthens the covalence of Mn-O bonds and suppresses the side reactions between cathode and electrolyte. • Doped cathode has a capacity retention over 92.2% after 100 cycles at a high temperature of 55 °C. - Abstract: Li-rich cobalt-free oxides, popularly used as a cathode with high capacity in lithium ion battery, always suffer from poor cycling stability between 2.0 and 4.8 V vs Li"+/Li, especially when cycled at high temperatures (>50 °C). To overcome this issue, Na"+ and Al"3"+ dual-doped Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 Li-rich cathode is prepared in this study. It is shown that the side reactions between cathode and electrolyte during cycling are suppressed. The improved cycling performance is observed for all of the doped samples, among which the sample with x = 0.03 exhibits the highest capacity retention of 86.1% after 200 cycles between 2.0 and 4.8 V at 2C (1C = 200 mA g"−"1) and shows a remarkable cycling stability, even at a high temperature of 55 °C (a capacity retention of 92.2% after 100 cycles). Moreover, the average voltage of the sample with x = 0.03 after 100 cycles at 0.5C remains at 3.11 V with a retention ratio of 86.6%. This work provides a new strategy to develop Li-rich cobalt-free cathodes with excellent cycling stability for lithium ion batteries at high temperatures.

  15. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  16. Chemical sensitive interfacial free volume studies of nanophase Al-rich alloys

    International Nuclear Information System (INIS)

    Lechner, W.; Puff, W.; Wuerschum, R.; Wilde, G.

    2006-01-01

    Full text: Al-based nanocrystalline alloys have attracted substantial interest due to their outstanding mechanical properties. These alloys can be obtained by crystallization of melt-spun amorphous precursors or by grain refinement upon repeated cold-rolling of elemental layers. For both synthesis routes, the nanocrystallization process is sensitively affected by interfacial chemistry and free volumes. In order to contribute to an atomistic understanding of the interfacial structure and processes during nanocrystallization, the present work deals with studies of interfacial free volumes by means of positron-annihilation-spectroscopy. In addition to positron lifetime spectroscopy which yields information on the size of free volumes, coincident Doppler broadening of the positron-electron annihilation photons is applied as novel technique for studying the chemistry of interfaces in nanophase materials on an atomistic scale. Al-rich alloys of the above mentioned synthesis routes were studied in this work. (author)

  17. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    Science.gov (United States)

    Tulga, Ayca

    2018-04-01

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  19. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    International Nuclear Information System (INIS)

    Abd Malek, N M S; Mohamed, S R; Che Ghani, S A; Wan Harun, W S

    2015-01-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition (paper)

  20. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys.

    Science.gov (United States)

    Chen, Hao; Sago, Alan; West, Shari; Farina, Jeff; Eckert, John; Broadley, Mark

    2011-01-01

    We present a comparative analysis between biocompatibility test results of wrought and Metal Injection Molded (MIM) ASTM F562-02 UNS R30035 (MP35N) and F1537 UNS R31538 (CCM) alloy samples that have undergone the same generic orthopedic implant's mechanical, chemical surface pre-treatment, and a designed pre-testing sample preparation method. Because the biocompatibility properties resulting from this new MIM cobalt alloy process are not well understood, we conducted tests to evaluate cytotoxicity (in vitro), hemolysis (in vitro), toxicity effects (in vivo), tissue irritation level (in vivo), and pyrogenicity count (in vitro) on such samples. We show that our developed MIM MP35N and CCM materials and treatment processes are biocompatible, and that both the MIM and wrought samples, although somewhat different in microstructure and surface, do not show significant differences in biocompatibility.

  1. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  2. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    International Nuclear Information System (INIS)

    Diaz Barriga-Arceo, L; Orozco, E; Garibay-Febles, V; Bucio-Galindo, L; Mendoza Leon, H; Castillo-Ocampo, P; Montoya, A

    2004-01-01

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 μm in length and 20-200 nm in diameter and 0.6-1.2 μm in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process

  3. Performance analysis of STT-RAM with cross shaped free layer using Heusler alloys

    Science.gov (United States)

    Bharat Kumary, Tangudu; Ghosh, Bahniman; Awadhiya, Bhaskar; Verma, Ankit Kumar

    2016-01-01

    We have investigated the performance of a spin transfer torque random access memory (STT-RAM) cell with a cross shaped Heusler compound based free layer using micromagnetic simulations. We have designed a free layer using a Cobalt based Heusler compound. Simulation results clearly show that the switching time from one state to the other state has been reduced, also it has been found that the critical switching current density (to switch the magnetization of the free layer of the STT RAM cell) is reduced.

  4. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.

    Science.gov (United States)

    Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan

    2018-02-01

    Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.

  5. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  6. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  7. Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis

    International Nuclear Information System (INIS)

    Park, Na-Ra; Ahn, Dong-Gyu; Oh, Jin-Woo

    2014-01-01

    The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm

  8. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  9. Study of thermodynamic properties of binary and ternary liquid alloys of aluminium with the elements iron, cobalt, nickel and oxygen; Etude des proprietes thermodynamiques des alliages liquides binaires et ternaires de l'aluminium avec les elements fer, cobalt, nickel et l'oxygene

    Energy Technology Data Exchange (ETDEWEB)

    Vachet, F [CEA Vallee du Rhone, 26-Pierrelatte (France)

    1966-07-01

    The present work deals with the thermodynamic study of aluminium liquid alloys with the metals iron, cobalt and nickel. The experiments carried out lead to the activity, at 1600 deg C, of aluminium in the (Al, Fe), (Al, Co), (Al, Ni) liquid alloys. The experimental method used consists in studying the partition of aluminium between the liquid immiscible phases made up with the pairs of metals (Fe, Ag), (Co, Ag), (Ni, Ag). The informations so obtained are used for drawing the isothermal equilibrium phases diagrams sections of (Al, Fe, Ag), (Al, Co, Ag), (Al, Ni, Ag) systems. The study of the partition of silver between lead and aluminium joined with the determinations of several authors allows us to determine the aluminium activity, analytically presented, in the metal M (iron cobalt and nickel). The Wagner's interaction parameters of aluminium in metal M are determined. The results obtained as the equilibrium phases diagrams of (Al, M) systems allow to compare the thermodynamic properties of the Al Fe system in liquid and solid states and to estimate the enthalpies of melting of the AlCo and AlNi intermetallic compounds. The activity, at 1600 deg C, of aluminium in (Al, Fe, Co), (Al, Fe, Ni), (Al, Co, Ni) liquid alloys is estimated through thermodynamic properties of binary components systems by application of several methods leading to results in good agreement. The study of aluminium-oxygen interactions in the liquid metallic solvants M allows us to propose an explanation for the shape of the deoxidation equilibrium line of iron, cobalt and nickel by aluminium and to compare the de-oxidizing power of aluminium toward iron, cobalt and nickel oxides. (author) [French] Le travail presente se rapporte a l'etude thermodynamique des alliages liquides de l'aluminium avec les metaux fer, cobalt et nickel. Les experiences effectuees ont pour but de determiner l'activite, a 1600 C, de l'aluminium dans les alliages liquides (Al, Fe), (Al, Co), (Al, Ni). La methode

  10. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  11. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    Science.gov (United States)

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  12. Development of welding and hardfacing technology for the fast reactor programme in India

    International Nuclear Information System (INIS)

    Bhaduri, Arun Kumar

    2013-01-01

    Prior to the start of construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR), extensive research backed technology development was planned and implemented for materials, welding consumables, fabrication of stringent-specification components and finalisation of quality assurance procedures of fabricated components. With close interaction amongst design, materials and non-destructive evaluation engineers, materials and welding consumable manufactures, and the fabrication industries, it has been possible to overcome the challenges during fabrication of all the structural welds and pipes. This paper presents a comprehensive experience of the development of welding and hardfacing technology for PFBR. (author)

  13. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  14. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  15. Low-Temperature Thermoelectric Properties of Fe2VAl with Partial Cobalt Doping

    Science.gov (United States)

    Liu, Chang; Morelli, Donald T.

    2012-06-01

    Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300 K to 850 K were reported. In this research, efforts were made to extend the investigation on (Fe1- x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80 K to room temperature. The effects of cobalt doping on the material's electronic and thermal properties are discussed.

  16. Synthesis and characterization of palladium-cobalt alloy for new medical micro-devices

    Science.gov (United States)

    Kafrouni, Lina

    According to Canadian Cancer Statistics, it is estimated that 196,900 Canadians will develop cancer and 78,000 will die of cancer in 2015. Given that tumor cells are more sensitive to a temperature increase than healthy ones, this property can be used in vivo to destroy the cancerous cells by elevation of body temperature, otherwise known as hyperthermia. Magnetic hyperthermia is a promising technique for cancer treatment because of ease in targeting the cancerous cells using magnetic nanoparticles (MNPs) and hence having fewer side effects than chemotherapy and radiotherapy. Despite the use of magnetic hyperthermia to treat cancer for thousands of years, the challenge of only heating malignant cells remains daunting. Thus, oncologists often use the heat treatment in combination with radiotherapy or chemotherapy or both. The combined approach results in eliminating many cancer cells in addition to making the resistant cancer cells more vulnerable to other treatments. To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic particles for selective uptake by cancerous cells and stability as well as magnetic properties for high heating capacity (> 1000 W/g) must be overcome. The ultimate objective of this thesis is to synthesize an excellent candidate for a powerful magnetic hyperthermia. Due to rapid advances in nanotechnology, a synthesis method of nanoparticles (NPs) with the ability to rigorously control the structure and morphology, such as size, shape and crystallinity, is needed. Electrodeposition is a versatile method for the synthesis of metal NPs directly and selectively onto conductive substrates, simply by regulating applied current or voltage. Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown that the electrodeposition technique is of great utility in the fabrication of nanocrystalline palladium-cobalt (PdCo) alloys. The primary goal of this project is to synthesize

  17. Spectrographic analysis of uranium-based alloys; Analyse spectrographique d'alliages a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G.; Blum, P.

    1959-07-01

    The authors describe a spectrographic method for dosing cobalt in cobalt-uranium alloys with cobalt content from 0.05 to 10 per cent. They describe sample preparation, alloy solution, spectrographic conditions, and photometry operations. In a second part, they address the dosing of boron in uranium borides. They implement the so-called 'porous cup' method. Boride is dissolved by fusion with Co{sub 3}-NaK [French] Uranium-Cobalt: il est decrit une methode spectrographique de dosage de cobalt dans des alliages cobalt-uranium pour des teneurs de 0,05 pour cent a 10 pour cent de Co. On opere sur solution avec le fer comme standard interne. Borure d'Uranium: ici encore on opere par la methode dite 'porous cup', le fer etant conserve comme standard interne. Le borure est mis en solution par fusion avec Co{sub 3}NaK. (auteurs)

  18. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    OpenAIRE

    J. Kozana; St. Rzadkosz; M. Piękoś

    2010-01-01

    Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation ...

  19. Cobalt-Free Permanent Magnet Alloys.

    Science.gov (United States)

    1984-10-01

    ThC Ferrites (Zn, Mn. Cu, Fe)O A12O. Al TiC Kaolin Al203.Si02-Fe2O3 Fe2O3 Li B4C Spodumene LiAI (SiOs) 2 ThO2 Ni UC Rhodonite NtnO. SiO2 MnOs Fe TaC...minutes. X-ray diffraction pattern indicated the presence of magnetic T phase. Hysteresis loop was measured on the heat treated powder dispersed in wax...fmgei * T phse Hysersi loo was mesue on the. heat - treated ,--". " powder dispersed in wax... The’ result wer as"- follows: • , " • "• . I TABLE 6

  20. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  1. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  2. Diffusion of $^{56}$Co in GaAs and SiGe alloys

    CERN Multimedia

    Koskelo, O K

    2007-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of cobalt in GaAs and SiGe alloys under intrinsic conditions. In the literature only three previous studies for Co diffusion in GaAs may be found and the results differ by over four orders of magnitude from each other. For Co diffusion in SiGe alloys no previous data is available in the literature. For Co diffusion in Ge one study may be found but the results have been obtained with material having increased dislocation density. For dislocation-free material no previous measurements are available. For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{56}$Co$^{+}$ ion beam.

  3. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  4. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...

  5. A novel cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-07-01

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2} and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF were fabricated and characterized using complex impedance technique from 600 to 700 C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm{sup -2}, and a low electrode polarization resistance of 0.18 {omega} cm{sup 2} were achieved at 700 C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF cell is a promising functional material system for solid oxide fuel cells. (author)

  6. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  7. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  8. Interfacial properties of immiscible Co-Cu alloys

    DEFF Research Database (Denmark)

    Egry, I.; Ratke, L.; Kolbe, M.

    2010-01-01

    Using electromagnetic levitation under microgravity conditions, the interfacial properties of an Cu75Co25 alloy have been investigated in the liquid phase. This alloy exhibits a metastable liquid miscibility gap and can be prepared and levitated in a configuration consisting of a liquid cobalt-ri...

  9. Characterization of Cobalt F-75 powder for biomedical application

    International Nuclear Information System (INIS)

    Zuraidawani, C.D.; Shamsul, J.B.; Fazlul, B.; Nur Hidayah, A.Z.

    2007-01-01

    Cobalt F-75 alloys is commonly used for surgical implants because of their strength, corrosion resistance, non-magnetic behaviour and biocompatibility. In this paper, gas atomized of Cobalt F-75 powders were selected for evaluation. These powders supplied by Sandvik Osprey Ltd. The characteristics of these powders were investigated by using particle size analysis, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM). Two different powder sizes (8.8 μm and 11.5 μm) have showed spherical morphology and the value of densities are 7.9 and 7.6 g/cm 3 respectively. (author)

  10. Chemical and phase composition of powders obtained by electroerosion dispersion from alloys WC-Co

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2004-01-01

    A consideration is given to the dependence of chemical and phase compositions of dispersed powders on the conditions, the medium of electroerosion dispersing and the content of cobalt in an initial alloy. It is shown that dissociation of carbon from tungsten carbide proceeds even on dispersing in liquid hydrocarbon-containing media (kerosene and machine oil). The phase composition is determined to a large extent by a medium of dispersing and a cobalt content in the initial alloy. In all powders complex tungsten-cobalt carbides and even Co 7 W 6 intermetallic compounds are found [ru

  11. Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys

    Science.gov (United States)

    Putintseva, M. N.

    2004-03-01

    The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.

  12. TEM INVESTIGATIONS OF WC-Co ALLOYS AFTER CREEP EXPERIMENTS

    OpenAIRE

    Lay , S.; Osterstock , F.; Vicens , J.

    1986-01-01

    Carbide tungsten cobalt alloys were deformed in compression or in three point bending in a temperature range 1000-1350°C and in a stress domain 30-1000MPa. In these conditions, the stress exponent n of WC-Co alloys is a function of only the cobalt volumic ratio and tends towards n = 1 for pure carbide. The apparent activation energy is 550 kj mole-1. T.E.M. investigations on pure carbide deformed at 1450°C show an extensive intragranular deformation. Analysis of these defects have been perfor...

  13. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  14. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase family of enzymes. All of these NHases possess a gene organization of , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of , was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K(2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K(2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K(2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a order. Our findings expand the general features of self-subunit swapping maturation.

  15. Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, Allagui [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Borges, Joao P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Ben Haj Amara, Abdesslam [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Dakhlaoui-Omrani, Amel, E-mail: dakhlaoui_amel@yahoo.fr [Department of Chemistry, Faculty of Sciences and Arts-Khulais, University of Jeddah, Khulais, P. O. Box 355, Postal Code 21921 (Saudi Arabia); Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP 73, 8027 Soliman (Tunisia)

    2017-03-01

    Sub-micrometric Co fibers were prepared via a modified polyol process at 90 °C under an external magnetic field of about 550 Oe, using ethelyne glycol as solvent and hydrazine as reducing agent. The structure, the size and the morphology of the as-elaborated products were highly controlled through properly monitoring the synthesis parameters (amount of NaOH added, the amount of the reducing agent, precursor’ concentration and precursors mixing protocol). The XRD characterization confirmed the formation of pure cobalt powders with either hexagonal compact (hcp) or face-centered-cubic (fcc) structure depending on the concentration of the metal precursor and sodium hydroxide. The scanning electron microscopy observations of the powders shows sub-micrometric fibers with about 0.4–0.6 µm in diameter and a length that could reach 15 µm. Fibers prepared at high reducing ratio were constituted of flower-like spheres that coalesce in the direction of the applied magnetic field. For their high contact surface, these fibers offer new opportunities for catalysis applications. The hysteresis loop measurements show an enhancement of the Hc of the as-obtained fibers compared to their bulk counterparts and permit to confirm the relationship between the structure and the magnetic properties of the materials. - Highlights: • Template free synthesis of cobalt sub-micrometric fibers. • High control of the structure the structure, the size and the morphology of the products through properly monitoring the synthesis parameters. • cobalt sub-micrometric fibers with enhanced magnetic properties compared to bulk cobalt.

  16. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  17. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  18. Low-Cobalt Powder-Metallurgy Superalloy

    Science.gov (United States)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  19. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  20. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  1. Influences of the matrix effect in the sensibility of cobalt measurement by atomic absorption

    International Nuclear Information System (INIS)

    Avila, L.A. d'.

    1977-06-01

    The interferences caused by iron, aluminium, calcium, magnesium, manganese, copper, nickel, zinc, sodium and potassium in the determination of cobalt by atomic absorption, were studied. The concentrations of cobalt were varied in the range of 1 to 800 μg/ml and the concentrations of the interferents in the proportions occuring normally in soils, rocks, sediments, geological material in general, alloys, caustic liquors etc. To study the flame composition effect, the flame region effect and also the effect of different interferent concentrations on the cobalt for each selected spectral line, an air-acetilene flame was utilized. As an application of this study the effect was shown of 'simulated soil matrices' with respect to the interference of iron on cobalt [pt

  2. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  3. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    Science.gov (United States)

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Speciation analysis of cobalt in foods by high-performance liquid chromatography and neutron activation analysis

    International Nuclear Information System (INIS)

    Muto, Toshio; Koyama, Motoko

    1994-01-01

    A combined method by coupling high-performance liquid chromatography (HPLC, as a separation method) with neutron activation analysis (as a detection method) have been applied to the speciation analysis of cobalt in daily foods (e.g. egg, fish and milk). Cobalt species including free cobalt, vitamin B 12 and protein-bound cobalt were separated with a preparative HPLC and a centrifuge. Subsequently, the determination of cobalt in the separated species was made by neutron activation analysis. The results showed that the content of the total cobalt in the foods was found to lie in the range 0.4-11ng/g(0.4-11ppb) based on wet weight. The compositions of free cobalt, vitamin B 12 and protein-bound cobalt were ranged 16-43%, 55-73%, 2.3-17%, respectively. These experimental evidences suggest that the combination of HPLC and neutron activation analysis is expected to be a useful tool for speciation analysis of trace elements in biological as well as environmental materials. (author)

  5. Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances

    Science.gov (United States)

    Xiao, Yuanhua; Zhang, Aiqin; Liu, Shaojun; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng

    2012-12-01

    Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite (Co3O4) nanowalls have been successfully synthesized in large scale by calcining three dimensional (3D) hierarchical nanostructures consisting of single crystalline cobalt carbonate hydroxide hydrate - Co(CO3)0.5(OH)·0.11H2O nanowalls prepared with a solvothermal method. The step-by-step decomposition of the precursor can generate porous Co3O4 nanowalls with BET surface area of 88.34 m2 g-1. The as-prepared Co3O4 nanoarchitectures show superior specific capacitance to the most Co3O4 supercapacitor electrode materials to date. After continuously cycled for 1000 times of charge-discharge at 4 A g-1, the supercapacitors can retain ca 92.3% of their original specific capacitances. The excellent performances of the devices can be attributed to the porous and hierarchical 3D nanostructure of the materials.

  6. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  7. Structural relaxation in an amorphous rapidly quenched cobalt-based alloy

    International Nuclear Information System (INIS)

    Fradin, V.; Grynszpan, R.I.; Alves, F.; Houzali, A.; Perron, J.C.

    1995-01-01

    An amorphous melt-spun Co-based alloy (Metglas 2705 MN) is investigated by Doppler Broadening and Positron Lifetime techniques in order to follow the microstructural changes yielded by isochronal annealings before crystallization. The results are correlated with those of Differential Scanning Calorimetry and Coercive Field measurements. The quenched empty spaces underlined by Lifetime measurements are less than one atomic volume in size and migrate without clustering in larger voids. Both Positron Annihilation and Coercive Field investigations suggest that the overall decrease of free volume related to structural relaxation in this amorphous material, proceeds mainly via compositional short-range ordering. These local chemical rearrangements which lead to a partial disorientation of the magnetic moments act as strong pinning points for Bloch Walls. (orig.)

  8. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    Science.gov (United States)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  9. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  10. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  11. Cobalt Cardiomyopathy Secondary to Hip Arthroplasty: An Increasingly Prevalent Problem

    Directory of Open Access Journals (Sweden)

    Russel Tilney

    2017-01-01

    Full Text Available A forty-year-old man experienced worsening heart failure four years following bilateral complicated total hip replacement. His condition was extensively worked up but no underlying pathology was immediately evident. Given the cobalt-chromium alloy component present in the hip arthroplasties, the raised cobalt blood levels, and a fitting clinical picture coupled with radiological findings, the patient underwent right hip revision. Evidence of biotribocorrosion was present on direct visualisation intraoperatively. The patient subsequently experienced symptomatic improvement (NYHA class III to class I and echocardiography showed recovery of ejection fraction. Cobalt exists as a bivalent and trivalent molecule in circulation and produces a cytotoxicity profile similar to nanoparticles, causing neurological, thyroid, and cardiological pathology. Blood levels are not entirely useful as there is no identifiable conversion factor for levels in whole blood, serum, and erythrocytes which seem to act independently of each other. Interestingly cobalt cardiomyopathy is frequently compounded by other possible causes of cardiomyopathy such as alcohol and a link has been postulated. Definitive treatment is revision of the arthroplasty as other treatments are unproven.

  12. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  13. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  14. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  15. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  16. Magnetic properties of three pseudobinary RCo5 alloy systems

    International Nuclear Information System (INIS)

    Heinrich, J.P.

    1976-01-01

    The field dependence of the magnetization was measured in the magnetically easy and hard directions as a function of composition and temperature in the pseudobinary systems Pr/sub x-/ Sm/sub 1-x/Co 5 , Y/sub x/Nd/sub 1-x/Co 5 , and Gd/sub x/Nd/sub 1-x/Co 5 . The saturation magnetization was determined and the anisotropy constants K 1 and K 2 were calculated from hard direction magnetization data. It was assumed that the net magnetization and anisotropy of the alloys could be divided into components representing the cobalt-cobalt, rare earth-cobalt, and rare earth-rare earth interactions. Data on YCo 5 was employed to account for the effect of the first interaction and the remaining two interactions were separated by means of some simple and physically reasonable assumptions. The resulting rare earth-rare earth magnetization and anisotropy data was then tested to see if it could be described by the single ion model. It was concluded that the single ion model did not describe the rare earth-rare earth interaction well in these alloys. This conclusion is in agreement with published results on light rare earth metals and alloys. It was further observed that some of the characteristics of the rare earth-rare earth interaction could be accounted for by assuming the existence of a band-type interaction between the rare earth atoms. All the alloys which contained Nd were found to exhibit low-temperature magnetization anomalies which were thought to be due to the existence of relatively strong basal plane anisotropy in these alloys

  17. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Laskawiec, J.; Michalik, R.

    2001-01-01

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  18. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder- Free Current Collectors of Li Ion Batteries

    NARCIS (Netherlands)

    Lu, Liqiang; Andela, Paul; De Hosson, J.T.M.; Pei, Yutao T.

    2018-01-01

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth.

  19. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  1. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  2. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  3. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  4. Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gupta Hari Om

    2009-01-01

    Full Text Available Abstract Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M particle size, d XRDis ~3.5 nm, while for high cobalt concentration (>0.05 M particle size decreases abruptly (~2 nm as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.

  5. Integrated Computational Materials Engineering Development of Alternative Cu-Be Alloys

    Science.gov (United States)

    2012-08-01

    metastable FCC state @ Room temp.  Alloying to suppress martensitic transformation  Significant work-hardening associated with the phase... transformation  Existing CoCr alloy rely upon cold- or warm- work to achieve high strength (size dependent!) ● No equivalent to L12- strengthened Ni... strengthened Copper and Cobalt alloy VIM/VAR melting Homogen- ization Hot working >4” dia. Solution treatment Machining Tempering Processing

  6. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  7. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  8. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  9. Vergleichende Untersuchungen zum Verbund von Cobalt-Basis-Legierungen und Metall-Keramik-Verbundsystemen

    OpenAIRE

    Herms-Westendorf, Lea Maria

    2017-01-01

    This thesis aims to answer the question: Does the use of bonding agents and cobalt chromium alloys with variable degrees of rigidity have an effect on the bonding strength of metal fused to ceramic systems? The 3 point flexural test of SCHWICKERATH (DIN EN ISO 9693) served as the basis for the studies. Test samples included omitting or including the bonding agent NP Bond® (VITA) and choosing either a more stable (Wirobond® 280) or more flexible dental alloy (Wirobond® C) (BEGO). The used c...

  10. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  11. Creep property of carbon and nitrogen free high strength new alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muneki, S., E-mail: ABE.Fujio@nims.go.j [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan); Okubo, H.; Abe, F. [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan)

    2010-06-15

    The carbon and nitrogen free new alloys which were composed of supersaturated martensitic microstructure with high dislocation density before the creep test have been investigated systematically. These alloys were produced from the new approach which raised creep strength by the utilization of the reverse transformed austenite phase as a matrix and intermetallic compounds such as Laves phase and mu-phase as precipitates during heating before the creep test. It is important that these alloys are independent of any carbides and nitrides as strengthening factors. The high temperature creep test over 700 {sup o}C exceeds 50,000 h, and the test is continuous. Creep behavior of the alloys is found to be different from that of the conventional high-Cr ferritic steels. The addition of boron to the alloy pulled the recrystallization temperature up in the high temperature, and it became a creep test in the un-recrystallization condition, and the creep property of high temperature over 700 {sup o}C was drastically improved. The minimum creep rates of Fe-Ni alloys at 700 {sup o}C are found to be much lower than those of the conventional high Cr ferritic heat resistant steels, which is due to fine dispersion strengthening useful even at 700 {sup o}C in these alloys. As a result it became clear that the value for 100,000 h was exceeded at 700 {sup o}C and 100 MPa calculated from the Larson-Miller parameter at C = 20.

  12. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    Science.gov (United States)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  13. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    International Nuclear Information System (INIS)

    Koch, F; Brinkmann, J; Lindig, S; Mishra, T P; Linsmeier, Ch

    2011-01-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  14. Diffusion of samarium into cobalt in the reduction-diffusion process

    International Nuclear Information System (INIS)

    Freitas Nogueira, P. de; Neto, F.B.; Landgraf, F.J.G.

    1998-01-01

    The presence of metallic cobalt in samarium-cobalt powders is a major cause for low magnetic properties in magnets. This paper intends to investigate the effect of time and temperature in the microstructure of powders produced by reduction-diffusion. This process, developed for the production of rare earth-transition metal alloys, consists on the reduction of the rare earth oxide with metallic calcium (or calcium hydride) and its subsequent diffusion into the cobalt particle. In the present work, a mixture of samarium oxide, cobalt powder and metallic calcium was heated to 1100 or 1200 C for 2 or 4 hours in a tubular furnace under one atmosphere of purified argon. The material thereof obtained, a sintered mass is disintegrated by aqueous crepitation. The powder was evaluated in terms of its chemical composition, its samarium yield and the intermetallic compounds present. The samarium, oxygen and calcium content of the powders produced were adequate for magnet production. However, despite the massive formation of the SmCo 5 compound after 2 hours at 1100 C, final homogeneity is attained only after 4 hours at 1200 C, with the presence of SmCo 5 and Sm 2 Co 7 and the absence of the Sm 5 Co 19 compound. Also, metallic cobalt and Sm 2 Co 17 were observed in the materials produced after 2 hours at 1100 or 1200 C. (orig.)

  15. The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys

    Science.gov (United States)

    Gosslar, D.; Günther, R.

    2014-02-01

    γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.

  16. Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys

    International Nuclear Information System (INIS)

    Kaiser, R; Browne, D J; Williamson, K

    2012-01-01

    The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.

  17. Discontinuous precipitation in cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Zieba, P.; Cliff, G.; Lorimer, G.W.

    1997-01-01

    Discontinuous precipitation in a Co32 wt% W alloy aged in the temperature range from 875 K to 1025 K has been investigated. Philips EM 430 STEM has been used to characterize the microstructure and to measure the composition profiles across individual lamellae of ε Co and Co 3 W phases in partially transformed specimens. Two kinds of cellular precipitates have been found in the alloy. The initial transformation product, identified as primary lamellae with spacing of a few nanometers is replaced during prolonged ageing by secondary lamellae with a much larger interlamellar spacing, typically a few tens of nm. Line scans across cell boundaries of the primary lamellae revealed that, just behind the advancing cell boundary, the solute content is far from the equilibrium state. This solute excess within the cells is quickly removed at the ageing temperature. Calculations show that the diffusion process was too rapid to be identified as ordinary volume diffusion. Investigation of the kinetics showed that discontinuous precipitation is controlled by diffusion processes at the advancing cell boundary. This proposal has been confirmed by STEM analysis of tungsten profiles in the depleted ε Co lamellae

  18. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  19. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  20. Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.

    Science.gov (United States)

    Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira

    2018-03-24

    Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.

  1. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel;Sintesis y caracterizacion de mezclas de oxidos de cobalto y titanio por aleado mecanico y Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M., E-mail: rafael.basurto@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO{sub 3}. With the first technique was used Co{sub 3}O{sub 4} obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO{sub 3}, the obtained Co{sub 3}O{sub 4} was mixed with TiO{sub 2} on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  2. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A., E-mail: catledge@uab.edu

    2015-02-15

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B{sub 2}H{sub 6}) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  3. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  4. Tribological coatings for liquid metal and irradiation environments

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1986-01-01

    Several metallurgical coatings have been developed that provide good tribological performances in high-temperature liquid sodium and that are relatively unaffected by neutron fluences to 6 X 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). The coatings that have consistently provided the best tribological performance have been the nickel aluminide diffusion coatings created by the pack cementation process, chromium carbide or Tribaloy 700 trade mark (a nickel-base hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing materials applied by the electro-spark deposition process. The latter process is a relatively recent development for nuclear applications and is expected to find wide usage. Other coating processes, such as plasma-spray coating, sputtering, and chemical vapor deposition, were candidates for use on various components, but the coatings did not pass the required qualification tests or were not economically competitive. The advantages and limitations of the three selected processes are discussed, the tribological performance of the coatings is reviewed, and representative applications and their performance requirements are described

  5. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  6. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Science.gov (United States)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  7. Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1992-01-01

    The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.

  8. Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

    OpenAIRE

    R. Alipour; F.Najarian

    2011-01-01

    Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 al...

  9. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  10. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  11. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  12. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    Science.gov (United States)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  13. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  14. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Chang, Shiuan-Ho; Niu, Liyuan; Su, Yichang; Wang, Wenquan; Tong, Xian; Li, Guangyu

    2016-01-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  15. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shiuan-Ho, E-mail: 1802186169@qq.com [College of Electronic Information and Mechatronic Engineering, Zhaoqing University, Zhaoqing Road, Duanzhou District, Zhaoqing, Guangdong, 526061 (China); Niu, Liyuan [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Su, Yichang [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Wang, Wenquan [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Tong, Xian [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China)

    2016-03-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  16. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  17. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DAEA cellulose to the groundwater to remove humic material, also removed the majority of organic species which absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the completed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (author)

  18. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DEAE cellulose to the groundwater to remove humic material, also removed the majority of organic species with absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the complexed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (orig.)

  19. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    OpenAIRE

    Patrice Berthod

    2017-01-01

    For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated wit...

  20. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  1. Corrosion fatigue and stress corrosion cracking of magnesium alloys in a simulated physiological environment

    OpenAIRE

    Jafari, Sajjad

    2017-01-01

    Magnesium (Mg) alloys have attracted great attention as potential materials for temporary implants in uses such as pins, screws, plates and stents. The usage of Mg alloys is appealing as it avoids the need for a follow-up surgery commonly undertaken when implants are constructed out of traditional materials such as titanium alloys, stainless steels and cobalt-chromium alloys. This reduces health care costs and inconvenience for patients. However, the poor corrosion resistanc...

  2. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  3. Relationship of microstructure to fracture topography in orthopedic alloys

    International Nuclear Information System (INIS)

    Gilbertson, L.N.

    1976-01-01

    Two major alloys used for orthopedic implants are 316L stainless steel and a cast cobalt--chromium--molybdenum alloy similar to Haynes Stellite 21. Another alloy that is just being introduced is Ti--6Al--4V. All three of these alloys are used in different conditions with different microstructures. Standard specimens with typical microstructures encountered in orthopedic applications were loaded to fracture in both overload and fatigue modes. Different rates of loading were also used in some cases. The fracture surfaces of these standard samples were analyzed in the Scanning Electron Microscope. An attempt was made to relate the fracture behavior, as evidenced by the fracture typography, to the microstructure of the alloy as revealed by metallography

  4. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  5. Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery

    Science.gov (United States)

    2011-11-01

    Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...can short circuit the anode and cathode . Anode- cathode short circuits are especially dangerous when a flammable organic solvent is used as the

  6. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  7. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  8. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  9. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  10. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  11. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  12. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, B.E. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Roszell, L.E. [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States); Murr, L.E.; Ramirez, D.A. [Department of Metallurgical and Materials Engineering, University of Texas, El Paso, TX 79968 (United States); Demaree, J.D. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Klotz, B.R. [Dynamic Science Inc., Aberdeen Proving Ground, MD 21005‐5609 (United States); Rosencrance, A.B.; Dennis, W.E. [U.S. Army Center for Environmental Health Research, Department of Chemistry, Ft. Detrick, MD 21702‐5010 (United States); Bao, W. [SAS Institute, Inc. SAS Campus Drive, Cary, NC 27513 (United States); Perkins, E.J. [U.S. Army Engineer Research and Development Center, 3909 Hall Ferry Road, Vicksburg MS 39180 (United States); Dillman, J.F. [U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010‐5400 (United States); Bannon, D.I., E-mail: desmond.bannon@us.army.mil [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States)

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  13. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    International Nuclear Information System (INIS)

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-01-01

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  14. Constitution, structure and magnetic properties of some rare-earth - cobalt-aluminium alloys

    International Nuclear Information System (INIS)

    Evans, J.; Harris, I.R.

    1982-01-01

    The constitution and structure of the alloys represented by the formulae Cesub(1-x)Alsub(x)Co 5 and Prsub(1-x)Alsub(x)Co 5 (where 0 = 5 produces a mixture of the 1:5 and 2:17 phases based on CeCo 5 and Ce 2 Co 17 ; there are two variations of the 2:17 phase which are isostructural with the hexagonal Th 2 Ni 17 -type and rhombohedral Th 2 Zn 17 -type phases. At the composition Cesub(0.76)Alsub(0.24)Co 5 (4 at % Al) the alloy consists only of the 2:17-type phases and metallographically the alloy is one phase in appearance. Further substitution of Al results in the precipitation of an fcc phase, based on the Co-Al solid solution, in the 2:17 matrix. The crystal structures of the Prsub(1-x)Alsub(x)Co 5 alloys are very similar to those of the equivalent cerium alloys. The metallographic structures of the Pr alloys in the composition range 1 to 3 at % Al show significant differences from the corresponding Ce alloys. Determination of the Curie temperatures of the Rsub(1-x)Alsub(x)Co 5 alloys (R = Ce and Pr) in the composition range 0 = 5 and PrCo 5 phases. (author)

  15. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-12-01

    Full Text Available Ni-based alloy powders with different contents of cobalt (Co have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM, an electron probe microanalyzer (EPMA, X-ray diffraction (XRD, a hardness tester, and a wear tester. The results show that the phases in the cladding layers are mainly γ, M7(C, B3, M23(C, B6, and M2B. With the increase in Co content, the amounts of M7(C, B3, M23(C, B6, and M2B gradually decrease, and the width of the eutectic structure in the cladding layer also gradually decreases. The microhardness decreases but the wear resistance of the cladding layer gradually improves with the increase of Co content. The wear resistance of the NiCo30 cladding layer is 3.6 times that of the NiCo00 cladding layer. With the increase of Co content, the wear mechanism of the cladding layer is changed from abrasive wear to adhesive wear.

  16. Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air

    Science.gov (United States)

    Strnat, R. M. W.; Liu, S.; Strnat, K. J.

    1982-03-01

    Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.

  17. Long range ordered alloys modified by addition of niobium and cerium

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    A long range ordered alloy composition is described consisting essentially of iron, nickel, cobalt, vanadium and a ductility enhancing metal, having the nominal composition (Fe, Ni,Co)/sub 3/(V,M) where M is the ductility enhancing metal selected from the group Ti, Zr, Hf and mixtures thereof. Effective amounts of creep property enhance elements selected from the group cerium, niobium and mixtures thereof sufficient to enhance creep properties in the resulting alloy without adversely affecting the fabrication of the alloy

  18. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  19. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  20. Friction and wear behavior of Colmonoy and Stellite alloys in sodium environment

    International Nuclear Information System (INIS)

    Kanoh, S.; Mizobuchi, S.; Atsumo, H.

    1976-01-01

    A description is given of a series of experiments in sodium environment for the research and development of friction and wear resistant material used for the sliding components of sodium cooled fast breeder reactor. The study relates to the friction and wear characteristics of nickel-base alloy, Colmonoy, and cobalt-base alloy, Stellite, with respect to temperature, load, sliding velocity, sliding mode, and sodium flushing. The friction behavior of these alloys in sodium is compared with that in argon

  1. Selected aspects of the action of cobalt ions in the human body.

    Science.gov (United States)

    Czarnek, Katarzyna; Terpiłowska, Sylwia; Siwicki, Andrzej K

    2015-01-01

    Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.

  2. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO{sub 2}/graphite lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia; Wang, Guangxu; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • The idea of “waste + waste → resources.” was used on this study. • Based on thermodynamic analysis, the possible reaction between LiCoO{sub 2} and graphite was obtained. • The residues of oxygen-free roasting are cobalt, lithium carbonate and graphite. • The recovery rate of Co and Li is 95.72% and 98.93% after wet magnetic separation. • It provides the rationale for environmental-friendly recycling spent LIBs in industrial-scale. - Abstract: The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of “waste + waste → resources.” After mechanical scraping the mixed electrode materials enrich powders of LiCoO{sub 2} and graphite. The possible reaction between LiCoO{sub 2} and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO{sub 2} and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs.

  3. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-09-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors.

  4. Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates

    International Nuclear Information System (INIS)

    Amore, S.; Ricci, E.; Borzone, G.; Novakovic, R.

    2008-01-01

    The present work was carried out in the framework of the study of new lead-free solder alloys for technical applications in electronic devices. In the focus of this characterisation the wetting behaviour of several Sn-rich alloys belonging to the In-Sn, Au-Sn and Cu-Sn systems has been studied by measuring the contact angle variations on Cu and Ni substrates as a function of time and temperature. The interface between the alloy and the substrate has been analysed by the use of optical microscopy and scanning electron microscopy combined with energy-dispersive X-ray spectrometry in order to study the reaction between the alloy and the solid substrate and the possible formation of different compounds at the interface. A remarkable effect of the two different substrates on the behaviour of the contact angle as a function of temperature and on the morphology of the interface between the liquid solder and the solid substrate was observed for the In-Sn and Cu-Sn, while the Au-Sn system shows a very similar wetting behaviour on Cu and Ni

  5. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    -ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig......Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  6. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  7. Electron transfer reactions of macrocyclic compounds of cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1978-08-01

    The kinetics and mechanisms of reduction of H/sub 2/O/sub 2/, Br/sub 2/, and I/sub 2/ by various macrocyclic tetraaza complexes of cobalt(II), including Vitamin B/sub 12r/, were studied. The synthetic macrocycles studied were all 14-membered rings which varied in the degree of unsaturation,substitution of methyl groups on the periphery of the ring, and substitution within the ring itself. Scavenging experiments demonstrated that the reductions of H/sub 2/O/sub 2/ produce free hydroxyl radicals only in the case of Co((14)ane)/sup 2 +/ but with none of the others. In the latter instances apparently H/sub 2/O/sub 2/ simultaneously oxidizes the metal center and the ligand. The reductions of Br/sub 2/ and I/sub 2/ produce an aquohalocobalt(III) product for all reductants (except B/sub 12r/ + Br/sub 2/, which was complicated by bromination of the corrin ring). The mechanism of halogen reduction was found to involve rate-limiting inner-sphere electron transfer from cobalt to halogen to produce a dihalide anion coordinated to the cobalt center. This intermediate subsequently decomposes in rapid reactions to halocobalt(III) and halogen atom species or reacts with another cobalt(II) center to give two molecules of halocobalt(III). The reductions of halomethylcobaloximes and related compounds and diamminecobaloxime by Cr/sup 2 +/ were also studied. The reaction was found to be biphasic in all cases with the reaction products being halomethane (for the halomethylcobaloximes), Co/sup 2 +/ (in less than 100 percent yield), a Cr(III)-dimethylglyoxime species, a small amount of free dmgH/sub 2/, and a highly-charged species containing both cobalt and chromium. The first-stage reaction occurs with a stoichiometry of 1:1 producing an intermediate with an absorption maximum at 460 nm for all starting reagents. The results were interpreted in terms of inner-sphere coordination of the cobaloxime to the Cr(II) and electron transfer through the oxime N-O bond.

  8. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  9. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  10. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  11. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  12. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  13. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  14. Qualification of tribological materials and coatings for use in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    This paper describes some essential performance measures and summarizes relative properties of some of newer tribological materials qualified for use in sodium systems. Tribaloy 700 is a nickel-base hardfacing alloy that combines low friction, galling resistance, and corrosion resistance. 14 refs

  15. Mechanical and tribological properties of newly developed Tribaloy alloys

    International Nuclear Information System (INIS)

    Xu, W.; Liu, R.; Patnaik, P.C.; Yao, M.X.; Wu, X.J.

    2007-01-01

    Outstanding combination of mechanical, wear and corrosion performance has been achieved in Laves intermetallic materials, termed Tribaloy alloys. In these two-phase alloys the solid solution provides high mechanical strength and fracture toughness while the Laves intermetallic phase offers excellent wear resistance. However, conventional Tribaloy alloys usually have low tensile strength and fracture toughness compared with ductile materials due to the large volume fraction of Laves phase, which has limited their application in many cases. The present research is aimed at developing advanced Tribaloy alloys with increasing ductility. Two new cobalt base alloys were developed in this research. The specimens were fabricated with a centrifugal casting technique. The material characterization was performed using the differential scanning calorimetry (DSC), scanning electron microscope (SEM), indentation and ball-on-disc tribological techniques

  16. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  17. Creep fatigue of low-cobalt superalloys: Waspalloy, PM U 700 and wrought U 700

    Science.gov (United States)

    Leis, B. N.; Rungta, R.; Hopper, A. T.

    1983-01-01

    The influence of cobalt content on the high temperature creep fatigue crack initiation resistance of three primary alloys was evaluated. These were Waspalloy, Powder U 700, and Cast U 700, with cobalt contents ranging from 0 up to 17 percent. Waspalloy was studied at 538 C whereas the U 700 was studied at 760 C. Constraints of the program required investigation at a single strain range using diametral strain control. The approach was phenomenological, using standard low cycle fatigue tests involving continuous cycling tension hold cycling, compression hold cycling, and symmetric hold cycling. Cycling in the absence of or between holds was done at 0.5 Hz, whereas holds when introduced lasted 1 minute. The plan was to allocate two specimens to the continuous cycling, and one specimen to each of the hold time conditions. Data was taken to document the nature of the cracking process, the deformation response, and the resistance to cyclic loading to the formation of small cracks and to specimen separation. The influence of cobalt content on creep fatigue resistance was not judged to be very significant based on the results generated. Specific conclusions were that the hold time history dependence of the resistance is as significant as the influence of cobalt content and increased cobalt content does not produce increased creep fatigue resistance on a one to one basis.

  18. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  19. Lead-free bearing alloys for engine applications

    Science.gov (United States)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  20. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  1. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloys * neutron diffraction * cobalt alloys Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  2. Proceedings of the sixth international workshop on rare earth-cobalt permanent magnets and their applications, August 31 - September 2, 1982, and third international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys, September 3, 1982

    International Nuclear Information System (INIS)

    Fidler, J.

    1982-01-01

    The first part (workshop) is concerned specifically with applications of rare earth-cobalt permanent magnets. The session headings are 1) electro-mechanical applications 2) electronic and miscellaneous applications 3) magneto-mechanical applications plus workshop on measurement methods 4) new materials and processes 5) industrial applications of REPM and future aspects. The second part (symposium) is concerned with physical properties of specific rare earth-transition metal alloys. (G.Q.)

  3. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  4. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  5. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  6. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  7. Water-assisted and surfactant-free synthesis of cobalt ferrite nanospheres via solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yiqing [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Ren, Yanan [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Bi, Feng [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); He, Tao, E-mail: het@nanoctr.cn [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-10-15

    With ethylene glycol as the solvent, monodispersed cobalt ferrite nanospheres were prepared via a solvothermal method assisted by water. The samples were mainly characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The size of as-prepared products ranges from 10 nm to 200 nm. Size distribution and chemical composition were controlled by the amount of water and pH value in the reaction system. More important, suitable amount of water can avoid the use of surfactant. - Highlights: • Cobalt ferrite nanospheres were synthesized via solvothermal method assisted by water. • An introduction of suitable amount of water can avoid the use of surfactant. • The pH value of the precursor can be used to adjust the product composition.

  8. Detonation wear-resistant coatings, alloy powders based on Cr-Si

    Directory of Open Access Journals (Sweden)

    А.Г. Довгаль

    2009-03-01

    Full Text Available  Coatings from composition material Cr-Si-B on steel by detonation spraying method are obtained. Composition, structure and tribotechnical characteristics of coatings in comparison with traditional materials on the basis of Ni-Cr and alloy of tungsten and cobalt are investigated.

  9. Overlay metallic-cermet alloy coating systems

    International Nuclear Information System (INIS)

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  10. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  11. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  13. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  14. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  15. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  16. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  17. Microstructure Characterization and Corrosion Resistance Behavior of New Cobalt-Free Maraging Steel Produced Through ESR Techniques

    Science.gov (United States)

    Seikh, Asiful H.; Halfa, Hossam; Baig, Muneer; Khan, Sohail M. A.

    2017-04-01

    In this study, two different grades (M23 and M29) of cobalt-free low nickel maraging steel have been produced through electroslag remelting (ESR) process. The corrosion resistance of these ESR steels was investigated in 1 M H2SO4 solution using linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) techniques. The experiments were performed for different immersion time and solution temperature. To evaluate the corrosion resistance of the ESR steels, some significant characterization parameters from LPP and EIS curves were analyzed and compared with that of conventional C250 maraging steel. Irrespective of measurement techniques used, the results show that the corrosion resistance of the ESR steels was higher than the C250 steel. The microstructure of ESR steels was composed of uniform and well-distributed martensite accompanied with little amount of retained austenite in comparison with C250 steel.

  18. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  20. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages.

    Science.gov (United States)

    Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K

    2007-09-11

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  1. Low cost AB{sub 5}-type hydrogen storage alloys for a nickel-metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Lijun [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Zhan Feng [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Bao Deyou [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Qing Guangrong [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Li Yaoquan [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Wei Xiuying [General Res. Inst. for Non-Ferrous Metals, Beijing (China)

    1995-12-15

    The studies have been carried out on utilizing Ml(NiAl){sub 5}-based alloys as a low cost negative battery electrode. The replacement of nickel by copper improved the cycle lifetime to some extent without a decrease in capacity. Using Ml(NiAlCu){sub 5} alloys, hydrogen storage alloys with good overall characteristics and low cost were obtained through substituting cobalt or silicon for nickel. The discharge capacity was further increased by increasing the lanthanum content in lanthanum-rich mischmetal. (orig.)

  2. Determination of tungsten in high-alloy steels and heat resisting alloys by isotope dilution-spark source mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa; Yamada, Kei; Okochi, Haruno; Hirose, Fumio

    1983-01-01

    Tungsten in high-alloy steels and heat-resisting alloys was determined by isotope dilution method combined with spark source mass spectrometry by using 183 W enriched tungsten. The spike solution was prepared by fusing tungsten trioxide in sodium carbonate. A high-alloy steel sample was dissolved in the mixture of sulfuric acid and phosphoric acid together with the spike solution; a sample of heat resisting alloy was similarly dissolved in the mixture of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The solution was evaporated to give dense white fumes. Tungsten was separated from the residue by a conventional cinchonine salt-precipitation method. The salt was ignited, and the residue was mixed with graphite powder and pressed into electrodes. The isotope 183 W and 184 W were measured. The method was applied to the determination of tungsten in JSS and NBS standard high-alloy steels and JAERI standard nickel- and NBS standard cobalt-base heat resisting alloys containing more than 0.05% tungsten. The results were obtained with satisfactory precision and accuracy. However, the results obtained for JSS standard high- speed steels containing molybdenum tended to be significantly lower than the certified values. (author)

  3. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    Science.gov (United States)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  4. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  5. Effect of cold plastic deformation on the properties of semihard-magnetic alloys

    International Nuclear Information System (INIS)

    Kovalev, P.M.; Khazanov, S.A.; Chernyak, A.A.

    1982-01-01

    The effect of pass and overall reduction during cold plastic deformation on magnetic properties of the 25KKh15 and 25KFN14 iron-cobalt alloys has been studied. It has been found out that gamma-α transformation which intensity id defined by the deformation temperature occurs during the 25KFN14 and 25KKh15 alloy cold rolling. The pass reduction decrease fostering complete proceeding of #betta#-α transformation is equivalent to the increase of overall reduction

  6. Cast-in hardfacing composite

    International Nuclear Information System (INIS)

    Ji, Jia-Lin; Wang, Hua-Ming.

    1991-01-01

    Tungsten carbide and chromium ferroalloy particles in binderless state were placed on a vacuum sealed mold surface, and a wear resistant surface was formed by pouring high temperature liquid steel into the mold cavity. Higher surface hardness HRC 65-69 and increased toughness were obtained by this composite material. It is shown that a strengthened martensitic matrix alloyed by tungsten and chromium supports tungsten carbide particles as well as reformed carbides (M6C, M7C3). 3 refs

  7. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  8. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  9. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  10. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kane, R.D.; Greer, J.B.; Jacobs, D.F.; Berkowitz, B.J.

    1983-01-01

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  11. Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires

    International Nuclear Information System (INIS)

    Hsieh, Yi-Ting; Lai, Mei-Chun; Huang, Hsin-Liang; Sun, I.-Wen

    2014-01-01

    Highlights: • Template-free electrodeposition of cobalt nanowires arrays can be achieved from Lewis acidic CoCl 2 -EMIC ionic liquids. • SEM and TEM images reveal the diameter of the nanowire is around 200 nm, and the XPS data shows that cobalt oxide is formed at the surface of the nanowire. • MALDI-TOF-MS, XAS, and UV-vis spectroscopy results show that the coordination number and the mean Co-Cl bond length are depending on the molar ratio of CoCl 2 and EMIC. - Abstract: The speciation and coordination of cobalt-chloride-based ionic liquids with various mole percentages of CoCl 2 were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), X-ray absorption spectroscopy (XAS), ultraviolet-visible absorption spectroscopy, and cyclic voltammetry. The coordination number and the mean Co-Cl bond length decreases with increasing CoCl 2 concentration, indicating that various Co(II) chloride compounds such as CoCl 4 2- , Co 2 Cl 5 - , and Co 3 Cl 7 − are formed depending on the molar ratio of CoCl 2 and EMIC in the melt. While the [CoCl 4 ] 2− complex formed in the Lewis basic melts and is electrochemically inactive within the electrochemical window of the melt, the other coordination-unsaturated cobalt chloride compounds formed in Lewis acidic melts can be electrochemically reduced to cobalt metal. The template-free electrodeposition of Co nanowires can be achieved from 40-60 mol% and 50-50 mol% CoCl 2 -EMIC (1-ethyl-3-methylimidazolium chloride) ionic liquids without any additives. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of the deposits

  12. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  13. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  15. The Influence of Chemical Alloying on the High Temperature Wear Resistance of H-Free DLC Coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.T.M. De; Cavaleiro, A.; Chandra, T; Tsuzaki, K; Militzer, M; Ravindran, C

    2007-01-01

    A commercial RF-sputtering deposition rig was employed to deposit H-free diamond-like carbon (DLC) coatings. The influence of alloying elements such as Ti and Si on the structure, mechanical and tribological properties of the coatings was investigated. The coating was observed in cross section and

  16. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  17. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  18. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  19. Coating with overlay metallic-cermet alloy systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  20. Laser cladding Co-based alloy/SiCp composite coatings on IF steel

    International Nuclear Information System (INIS)

    Li Mingxi; He Yizhu; Sun Guoxiong

    2004-01-01

    Hardfacing coatings, made of Co-Cr-W-Ni-Si alloy + 20% SiCp, deposited by laser cladding on IF steel is introduced. Cross-section of such coatings has been examined to reveal their microstructure using optical microscope, scanning electron microscope (SEM) and X-ray diffractometer (XRD). MM-200 type wear tester is used to examine wear resistance of the coatings. The results showed that SiCp is dissolved completely during laser cladding process under this conditions, the primary phase γ-Co dendrite and Si 2 W, CoWSi, Cr 3 Si, CoSi 2 formed by C, Si reacting with other elements existed in the coatings. There existed some crystallization morphologies in different regions, such as planar (at the interface), followed cellular and dendrite crystallization from interface to the surface. The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad. The results also showed that the wear resistance of the clad improved by adding SiCp

  1. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    Science.gov (United States)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  2. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e

  3. Optimum schedules of difficult-to-form heat-resistant alloys forging

    International Nuclear Information System (INIS)

    Majzengel'ter, V.A.; Shuvalov, A.A.; Perevozov, A.S.

    2000-01-01

    The process of manufacturing half finished discs for hydroturbine engines from heat resistant difficulty deformed nickel, iron-nickel and cobalt alloys (EI435, EI868, VZh145-ID, EK79-ID, EK152-ID, EI826, EP648-VI) is described. The recommendations on the modes of forging the single-phase nonaging and double phase aging alloys are developed. The conclusion is made, that the first compressions of ingots shoved be accomplished by small press runs. The subsequent compressions should constituted not less than 8% during one run. The total compression of the ingot during one heating should be within the concrete alloy properties. With the purpose of obtaining uniform fine-grain structure the ingot heating during the last manufacturing cycle should be accomplished within the range of 1100-1130 deg C for the majority of heat resistant alloys [ru

  4. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  5. Microstructural evolution and creep behaviour of the modified 9% Cr steel with boron and cobalt

    International Nuclear Information System (INIS)

    Nowakowski, P.; Spiradek-Hahn, K.; Brabetz, M.; Zeiler, G.

    1998-01-01

    In the present study the microstructural evolution of the new 9% Cr with boron and cobalt is shown during creep at 650 o C. The minimum creep rates of the new alloy are significantly lower than those of conventional 12 % Cr steel. This is due to the high stability of M 23 C 6 precipitates with respect to the coarsening and the preservation of high dislocation density in the course of creep exposure. (author)

  6. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Science.gov (United States)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  7. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Levesque, M.

    2010-11-01

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  8. Investigations of the high-temperature corrosion of cobalt and cobalt alloys using radioactive isotopes

    International Nuclear Information System (INIS)

    Winterhager, H.; Krug, H.P.; Widmayer, H.

    1977-01-01

    High-temperature oxidation tests with Co, Co-Fe and Co-Fe-Cr alloys have been made by means of the S 35 method and by measuring the thickness of the oxidation coating. In any case, several different coatings formed by oxidation were found and described generally. The compact surface consists of sulfides of the pentlandite-type; indirection to the metal sore there follow several heterogeneous layers. The measured activity-distribution excludes any lattice-diffusion sulfur defects in the scale-coating enable the oxidation to permeate to the metal core. (orig./IHOE) [de

  9. Base-metal dental casting alloy biocompatibility assessment using a human-derived 3D oral mucosal model

    OpenAIRE

    MORAN, GARY; MC GINLEY, EMMA LOUISE; FLEMING, GARRY

    2012-01-01

    PUBLISHED Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV nickel-induced hypersensitivity. We hypothesized the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into mechanisms of nickel-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm? and maintained until full-thickness was achieved prior to Ni-Cr and cobalt-chr...

  10. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  11. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    bulk. It led us to evidence that these cobalt complexes, as cobaloximes and other cobalt salts do, decompose under turnover conditions where they are free in solution. Of note, this process generates in aqueous phosphate buffer a nanoparticulate film consisting of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte. This novel material, H2-CoCat, mediates H2 evolution from neutral aqueous buffer at low overpotentials. Finally, the potential of diimine-dioxime cobalt complexes for light-driven H2 generation has been attested both in water/acetonitrile mixtures and in fully aqueous solutions. All together, these studies hold promise for the construction of molecular-based photoelectrodes for H2 evolution and further integration in dye-sensitized photoelectrochemical cells (DS-PECs) able to achieve overall water splitting.

  12. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  13. Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria.

    Science.gov (United States)

    Mystkowska, Joanna

    2016-01-01

    Degradation processes of metallic biomaterials in the oral cavity limit the stability and reliability of dental materials. The influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of Co-Cr-Mo and Ti-6Al-4V alloys was assessed. After 28 and 56 days of contact of the materials with the bacterial environment, the surfaces of the biomaterials tested were observed by means of confocal scanning laser microscopy (CSLM), and their chemical composition was studied using X-Ray Photoelectron Spectrometry (XPS). Corrosive changes and the presence of sulfur (with medium atomic concentration of 0.5% for Co-Cr-Mo and 0.3% for Ti-6AL-4V) were observed on the surface of the biomaterials. Image analysis conducted using Aphelion software indicated that corrosion pits took up approx. 2.3% and 1.8% (after 28 days) and 4.2% and 3.1% (after 56 days) of the total test surfaces of cobalt and titanium alloys respectively. The greatest number of corrosion pits had a surface area within the range of 1-50 m2. They constituted from 37% up to 83% of all changes, depending on the type of material. An evident influence of the SRB on the surfaces of cobalt and titanium alloys was observed. Significant corrosive losses caused by the activity of microorganisms were observed on the metallic surfaces under study. The results of this study have much cognitive and utilitarian significance.

  14. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  15. Removable partial denture alloys processed by laser-sintering technique.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  16. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  17. Cobalt accumulation and circulation by blackgum trees

    International Nuclear Information System (INIS)

    Thomas, W.A.

    1975-01-01

    Blackgum (Nyssa sylvatica Marsh.) trees accumulate far greater concentrations of cobalt in mature foliage than do other species on the same site (363 ppM in ash of blackgum, compared with about 3 ppM by mockernut hickory and about 1 ppM by red maple, tulip tree, and white oak). Cobalt concentrations in dormant woody tissues of blackgum also significantly exceed those in the other four species. Inoculation of six blackgums with 60 Co revealed that cobalt remains mobile in the trees for at least 3 years. Foliar concentrations of stable cobalt increase uniformly until senescence. In late August, foliage accounts for only 9 percent of total tree weight but 57 percent of total tree cobalt. Losses of cobalt from trees occur almost entirely by leaf abscission, and the loss rates of weight and cobalt from decomposing litter are similar. Retention of cobalt in the biologically active soil layers perpetuates zones of cobalt concentration created by this species in woodlands

  18. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  19. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  20. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: Differentiating cobalt abuse from supplementation.

    Science.gov (United States)

    Hillyer, L L; Ridd, Z; Fenwick, S; Hincks, P; Paine, S W

    2018-05-01

    While cobalt is an essential micronutrient for vitamin B 12 synthesis in the horse, at supraphysiological concentrations, it has been shown to enhance performance in human subjects and rats, and there is evidence that its administration in high doses to horses poses a welfare threat. Animal sport regulators currently control cobalt abuse via international race day thresholds, but this work was initiated to explore means of potentially adding to application of those thresholds since cobalt may be present in physiological concentrations. To devise a scientific basis for differentiation between presence of cobalt from bona fide supplementation and cobalt doping through the use of ratios. Six Thoroughbred horses were given 10 mL vitamin B 12 /cobalt supplement (Hemo-15 ® ; Vetoquinol, Buckingham, Buckinghamshire, UK., 1.5 mg B 12 , 7 mg cobalt gluconate = 983 μg total Co) as an i.v. bolus then an i.v. infusion (15 min) of 100 mg cobalt chloride (45.39 mg Co) 6 weeks later. Pre-and post-administration plasma and urine samples were analysed for cobalt and vitamin B 12 . Urine and plasma samples were analysed for vitamin B 12 using an immunoassay and cobalt concentrations were measured via ICP-MS. Baseline concentrations of cobalt in urine and plasma for each horse were subtracted from their cobalt concentrations post-administration for the PK analysis. Compartmental analysis was used for the determination of plasma PK parameters for cobalt using commercially available software. On administration of a vitamin B 12 /cobalt supplement, the ratio of cobalt to vitamin B 12 in plasma rapidly increased to approximately 3 and then rapidly declined below a ratio of 1 and then back to near baseline over the next week. On administration of 100 mg cobalt chloride, the ratio initially exceeded 10 in plasma and then declined with the lower 95% confidence interval remaining above a ratio of 1 for 7 days. For two horses with extended sampling, the plasma ratio remained above one for

  1. Dipyridine cobalt chloride as an efficient and chemoselective catalyst for the synthesis of 1,1-diacetates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sobhan Rezayati

    2014-02-01

    Full Text Available 1,1-Diacetates(acylals were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2 as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common organic solvents, and low toxic and, above all, it is reusable. CoPy2Cl2 can be recycled after a simple work-up and reused at least five runs without appreciable loss of its catalytic activity. High chemo-selectivity toward aldehyde in the presence of ketones is another advantage of the present method which provides selective protection of aldehydes in their mixtures with ketones.

  2. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  3. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  4. NEW SERDP Project: Copper- Beryllium Alternatives Alloys Development

    Science.gov (United States)

    2011-02-10

    Nitronic60, HBN 304 stainless steel , as well as low friction coating\\liner systems on PH stainless steel substrates • Compression strength and...ChemistryRefining Lath Martensite : Ms≥200°C Nickel: Cleavage Resistance Cobalt: SRO Recovery Resistance Chromium: Corrosion Resistance σuts > 280 ksi σys...against representative steels ). o Compression testing from each of the Cu- and Co-based alloys will be performed per ASTM E 9 o Pin-on-Disk test per

  5. Impedance evaluation of permeability and corrosion of Al-2024 aluminum alloy coated with a chromate free primer

    NARCIS (Netherlands)

    Foyet, A; Wu, T.H.; Kodentsov, A.; Ven, van der L.G.J.; With, de G.; Benthem, van R.A.T.M.

    2009-01-01

    The corrosion of AA-2024 aluminum alloy protected with a chromate free primer is investigated afterimmersion in a 0.5MNaCl aqueous solution. Thewater uptake by the coating increases continuouslywhenthe film, applied on an aluminum AA-2024 substrate, is placed in the 0.5MNaCl solution. This increase

  6. Study of high coercive force films made by vacuum deposition of cobalt onto chromium

    International Nuclear Information System (INIS)

    Randet, Denis

    1969-01-01

    A new method to make high coercive force films, by successive evaporations of chromium and cobalt, was demonstrated in 1966 at the 'Laboratoire d'Electronique et de Technologie de l'Informatique'. This work first contains a description of the magnetic properties of these films according to the conditions of preparation. These properties, which are isotropic in the plane of the film, are then related to the crystallographic structure of chromium and cobalt, in particular through electron microscopy. It is concluded that the coercive force is essentially due to the high magneto-crystalline anisotropy of cobalt in its hexagonal phase and depends, altogether with the shape of the hysteresis loop, on the magnetostatic coupling between the grains, which varies according to their dimensions. The chromium underlayer, if its surface is free enough of oxygen contamination, induces the growth of the hexagonal phase and influences the grain size of cobalt by a sort of epitaxy. At last, the behaviour of the Co/Cr films as a magnetic recording material is briefly examined and discussed. (author) [fr

  7. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    Science.gov (United States)

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  8. Engineering Defect-Free Nanoporous Pd from Optimized Pd-Ni Precursor Alloy by Understanding Palladium-Hydrogen Interactions During Dealloying

    Science.gov (United States)

    Schoop, Julius; Balk, T. John

    2014-04-01

    Thin films of nanoporous palladium (np-Pd) were produced from binary palladium-nickel (Pd-Ni) precursor alloys. A suitable precursor alloy and a method of dealloying to yield optimum nanoporosity (average pore/ligament size of 7 nm) were developed by studying the effects of various processing parameters on final microstructure. To obtain crack-free np-Pd, a 100 nm thin film of 20 at. pct Pd (80 at. pct Ni) can be dealloyed for ~5 hours in a 1 M solution of sulfuric acid, with oleic acid and oleylamine added as surfactants. Both shorter and longer dealloying times, as well as heating, inhibit the formation of crack-free np-Pd. Stress measurements at different stages of dealloying revealed that the necessary dealloying time is determined by the diffusion-controlled corrosion reaction occurring within the thin film during dealloying. Strong interaction between hydrogen and np-Pd was reflected in the stress evolution during dealloying. A mechanism is proposed for the formation of a Ni-rich dense top layer that results from H-induced swelling during initial dealloying and permits the development of defect-free np-Pd beneath, by limiting the speed of dealloying.

  9. Electronic and magnetic properties of the Co{sub 2}MnAl/Au interface: Relevance of the Heusler alloy termination

    Energy Technology Data Exchange (ETDEWEB)

    Makinistian, L., E-mail: lmakinistian@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina)

    2015-07-01

    We present ab initio calculations of electronic and magnetic properties of the ferromagnetic metal/normal metal (F/N) interface of the Heusler alloy Co{sub 2}MnAl and gold. Two structural models are implemented: one with the ferromagnet slab terminated in a pure cobalt plane (“Co{sub 2}-t”), and the other with it terminated with a plane of MnAl (“MnAl-t”). The relaxed optimum distance between the slabs is determined for the two models before densities of states, magnetic moments, and the electric potential are resolved and analyzed layer by layer through the interface. Complementary, calculations for the free surfaces of gold and the Heusler alloy (for both models, Co{sub 2}-t and MnAl-t) are performed for a better interpretation of the physics of the interface. We predict important differences between the two models, suggesting that both terminations are to be expected to display sensibly different spin injection performances. - Highlights: • Ab initio electronic and magnetic properties of the interface Co{sub 2}MnAl/Au. • Two terminations were studied: Co{sub 2} and MnAl terminated. • The termination of the Heusler alloy sensibly determines the interface properties. • The Co{sub 2} terminated interface displays a higher spin polarization.

  10. A mineralogical investigation of samples from the Eenzaamheid cobalt-molybdenum deposit

    International Nuclear Information System (INIS)

    De Nooy, C.D.

    1987-01-01

    The cobalt-molybdenum deposit on the farm Eenzaamheid, near Balmoral, is situated in gabbroic dykes in the higly altered quartzites and shales of the Pretoria beds in the Transvaal Supergroup. The mineralogy of both unmineralized and mineralized samples from the deposit was studied. The main minerals in the host rock are tremolite, albite, quartz and prehnite. Safflorite and molybdenite are the main ore minerals, with minor cobaltite, niccolite, and gersdorffite. The mineralization is associated with quartz- and albite-rich host rocks, whereas the tremolite- and albite-rich rocks are usually unmineralized. A cobalt content of 1,76 per cent and a molybdenum content of 0,20 per cent were determined by the chemical analysis of a representative sample. Owing to the coarse-grained and interstitial nature of the ore minerals, the ore should be free milling, and liberation is expected at a fairly coarse grain size (about 0,5 mm). The cobalt minerals and the molybdenite should be easily concentrated by gravity methods and flotation methods respectively. 18 figs., 4 tabs., 3 refs

  11. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  12. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  13. Cobalt-60 production in CANDU reactors

    International Nuclear Information System (INIS)

    Ross, Michel; Lemire, Christian

    2002-01-01

    CANDU reactors can produce cobalt-60 very efficiently and with an interesting return on investment. This paper discusses what is needed to convert a CANDU reactor into a cobalt-60 producer: what are the different phases, the safety studies required, the physical modifications needed, and what is the minimum involvement of the utility owning the plant. The past ten years of experience of Hydro-Quebec as a cobalt-60 producer will be reviewed, including the management of the risk of both incident and electricity generation loss, and including the benefits for the utility and its personnel. Originally a simple metal used for centuries as a pigment, cobalt-59 today is transformed into cobalt-60, a radioactive element of unprecedented value. Well known in medicine for cancer treatment, cobalt-60 is also used to sterilize a wide range of disposable medical products used in hospitals and to sanitize pharmaceutical and cosmetic products. Cobalt-60 is proving to be a new and effective solution, in the food sector, for preserving harvests and controlling food-borne diseases, or to advantageously replace certain gases and chemical products which are suspected of being harmful or carcinogenic. There are also other applications, such as: hardening of some plastics, treatment of sewage sludge and elimination of harmful insect populations. With a half-life of 5,3 years, cobalt-60 is a metal not found in nature. It is a radioactive isotope produced by exposing stable nuclei of cobalt-59 to neutrons. One of the best places to find such an important neutron source is a nuclear reactor. High energy gamma rays are then emitted during the process of radioactive decay, where cobalt-60 seeks again its stable state

  14. Synthesis and magnetic properties of rare-earth free MnBi alloy: A high-energy hard magnetic material

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Prakash, H. R.; Ram, S.; Pradhan, D.

    2018-04-01

    MnBi is a rare-earth free high-energy magnetic material useful for the permanent magnet based devices. In a simple method, a MnBi alloy was prepared by arc melting method using Mn and Bi metals in 60:40 atomic ratio. In terms of the X-ray diffraction, a crystalline MnBi phase is formed with Bi as impurity phase of the as-prepared alloy. FESEM image of chemically etched sample shows small grains throughout the alloy. SEAD pattern and lattice image were studied to understand the internal microstructure of the alloy. The thermomagnetic curves measured in ZFC-FC cycles over 5-380 K temperatures at 500 Oe field, shows the induced magnetization of 5-25 % in the sample. The coercivity values, 7.455 kOe (13.07 emu/g magnetization) at 380 K, and 5.185k Oe (14.75 emu/g magnetization) at 300 K, are observed in the M-H hysteresis loops. A decreased value 0.181kOe (18.05 emu/g magnetization) appears at 100 K due to the change in the magnetocrystalline anisotropy. The results are useful to fabricate small MnBi magnets for different permanent magnets based devices.

  15. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  16. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  17. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  18. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction

    Science.gov (United States)

    Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, Eunjin; Go, Changsik; Suryawanshi, M. P.; Pawar, S. M.; Kim, Jin Hyeok

    2018-01-01

    The development of an inexpensive, stable, and highly active electrocatalyst for oxygen evolution reaction (OER) is essential for the practical application of water splitting. Herein, we have synthesized an electrodeposited cobalt hydroxide on nickel foam and subsequently annealed in an air atmosphere at 400 °C for 2 h. In-depth characterization of all the films using X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques, which reveals major changes for their structural, morphological, compositional and electrochemical properties, respectively. The cobalt hydroxide nanosheet film shows high catalytic activity with 290 mV overpotential at 10 mA cm-2 and 91 mV dec-1 Tafel slope and robust stability (24 h) for OER in 1 M KOH electrolyte compared to cobalt oxide (340 mV). The better OER activity of cobalt hydroxide in comparison to cobalt oxide originated from high active sites, enhanced surface, and charge transport capability.

  19. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...

  20. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  1. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  2. Cytocompatibility of a free machining titanium alloy containing lanthanum.

    Science.gov (United States)

    Feyerabend, Frank; Siemers, Carsten; Willumeit, Regine; Rösler, Joachim

    2009-09-01

    Titanium alloys like Ti6Al4V are widely used in medical engineering. However, the mechanical and chemical properties of titanium alloys lead to poor machinability, resulting in high production costs of medical products. To improve the machinability of Ti6Al4V, 0.9% of the rare earth element lanthanum (La) was added. The microstructure, the mechanical, and the corrosion properties were determined. Lanthanum containing alloys exhibited discrete particles of cubic lanthanum. The mechanical properties and corrosion resistance were slightly decreased but are still sufficient for many applications in the field of medical engineering. In vitro experiments with mouse macrophages (RAW 264.7) and human bone-derived cells (MG-63, HBDC) were performed and revealed that macrophages showed a dose response below and above a LaCl3 concentration of 200 microM, while MG-63 and HBDC tolerated three times higher concentrations without reduction of viability. The viability of cells cultured on disks of the materials showed no differences between the reference and the lanthanum containing alloy. We therefore propose that lanthanum containing alloy appears to be a good alternative for biomedical applications, where machining of parts is necessary.

  3. Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xu, G.F., E-mail: csuxgf660302@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China. (China); Xiao, D.; Zhou, L.Q. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Deng, Y.; Yin, Z.M. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China. (China)

    2015-01-29

    A refined microstructure of Al–Mg–Sc–Zr alloy with an average grain size of ∼3.7 μm and a portion of high angle boundaries of 69.2% was produced by free forging. Excellent superplastic ductility of ≥500% was achieved at a wide temperature range of 450∼500 °C and relatively high strain rate range of 1×10{sup −3}∼5×10{sup −2} s{sup −1} in the Al–Mg–Sc–Zr alloy. A maximum elongation of 1593% was obtained at 475 °C and 1×10{sup −3} s{sup −1}. Moreover, the electron back scattered diffraction (EBSD) and the transmission electron microscopy (TEM) analyses showed that the excellent superplasticity can be attributed to the high fraction of high angle grain boundaries and the presence of Al{sub 3}(Sc,Zr) dispersoids in the Al–Mg–Sc–Zr alloy microstructure. The analyses on the superplastic data revealed the presence of threshold stress, the coefficient of strain rate sensitivity of 0.5, and an activation energy of 83.9 kJ/mol{sup –1}. It indicated that the dominant deformation mechanism was grain boundary sliding. Based on this notion, a constitutive equation for Al–Mg–Sc–Zr alloy has been developed.

  4. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Ogundipe, A.; Greenberg, B.; Braida, W.; Christodoulatos, C.; Dermatas, D.

    2006-01-01

    Tungsten-based alloys have been used in a wide variety of industrial and military applications. These alloys are composed mainly of tungsten (88-95%) with various combinations of nickel, cobalt, iron and copper usually making up the remaining fraction. The corrosion behaviours of five munitions grade tungsten alloys of interest have been examined using immersion tests and wet-dry cycle tests to determine the mechanisms involved in the release of the metallic components. Analyses carried out using SEM, EDS and grazing incidence XRD techniques, show the release of tungsten as well as alloying elements due to galvanic corrosion resulting from the difference in electrode potential between the tungsten phase and the binder phase in all cases studied. The extent of corrosion was directly related with the dissolution of tungsten in the binder phase during the sintering stage of manufacture. In W-Ni-Co-Fe alloys binder phase corrosion was observed while the relatively noble tungsten phase was less affected. The reverse was observed for a W-Cu alloy

  5. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  6. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    Science.gov (United States)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  7. Production of SmCo5 alloy by calciothermic reduction of samarium oxide

    International Nuclear Information System (INIS)

    Krishnan, T.S.; Gupta, C.K.

    1988-01-01

    Among the established permanent magnets, SmCo 5 magnet occupies the foremost position as it offers a unique combination of high energy product, coercivity and curie temperature. The SmCo 5 magnets are thus extensively used for high field applications. These are also best suited for use in environments where high demagnetizing field and high temperature are operative. Also, for applications where high performance and miniaturization are the over-riding considerations, the choice again falls on SmCo 5 magnets. The main deterrent to the widespread use of SmCo 5 magnet is its high cost. Both samarium and cobalt metals are high priced, and the magnets prepared from their directly melted alloy are thus naturally very expensive. An alternate process involving calcium reduction of their oxide intermediates has, therefore, been studied and the alloy prepared by this process has been evaluated and found satisfactory for magnet production. The process essentially involves compaction of the charge mix containing samarium oxide, cobalt oxide (or metal) and calcium metal and reduction of the charge compact at 1000-1300 degrees C in hydrogen atmosphere, followed by water and acid leaching, drying and classification

  8. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  9. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    International Nuclear Information System (INIS)

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-01-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl 2 doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl 2 doses for prolonged time points. Furthermore, CoCl 2 treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes

  10. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  11. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  12. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  13. Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material

    Czech Academy of Sciences Publication Activity Database

    Zaarour, M.; Pérez, O.; Boullay, P.; Martens, J.; Mihailova, B.; Karaghiosoff, K.; Palatinus, Lukáš; Mintova, S.

    2017-01-01

    Roč. 19, č. 34 (2017), s. 5100-5105 ISSN 1466-8033 Institutional support: RVO:68378271 Keywords : cobalt aluminophosphate * cobalt methylphosphonate * layered materials * crystallic structure * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.474, year: 2016

  14. Radio cobalt in French rivers

    International Nuclear Information System (INIS)

    Lambrechts, A.; Baudin-Jaulent, Y.

    1996-01-01

    The isotopes 58 and 60 of cobalt present in liquid wastes from nuclear plants or from fuel reprocessing plant of Marcoule are fixed in the different compartments of French rivers. The activity levels of radio-cobalt vary according to the sampled compartments nature (bryophyta > immersed plants > sediment > fish). Elsewhere, laboratory experimentations show that the contamination of fish occurs essentially from the water way rather than from food. Cobalt is mainly fixed by kidneys; muscles is no more than 30 % of the total fish activity. (author)

  15. Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials

    International Nuclear Information System (INIS)

    Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guegan, A.

    2005-01-01

    Multi-substituted LaNi 5 -type alloys (AB 5+ x ) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07 Mn 0.63 Al 0.2 M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process

  16. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  17. Short Communication on “Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature”

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemant, E-mail: hemant@igcar.gov.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramakrishnan, V.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India)

    2017-02-15

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  18. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties

    International Nuclear Information System (INIS)

    Li, Bingyun; Mukasyan, Alexander; Varma, Arvind

    2003-01-01

    Because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility, cobalt-based alloys are widely used in total hip and knee replacements, dental devices and support structures for heart valves. In this work, CoCrMo alloys were synthesized using a novel method based on combustion synthesis (CS), an advanced technique to produce a wide variety of materials including alloys and near-net shape articles. This method possesses several advantages over conventional processes, such as low energy requirements, short processing times and simple equipment. The evaluated material properties included density and yield measurements, composition and microstructure analysis, hardness, friction and tensile tests. It was shown that microstructure of CS-material is finer and more uniform as compared to the conventional standard. It was also found that among various additives, Cr 3 C 2 is the most effective one for increasing material hardness. In addition, synthesized CoCrMo alloys exhibited good friction and mechanical properties. (orig.)

  19. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  20. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    Science.gov (United States)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  1. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  2. DETERMINATION OF THE OPTIMAL TEMPERING TEMPERATURE IN HARD FACING OF THE FORGING DIES

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-06-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures.

  3. Determination of the optimal tempering temperature in hard facing of the forging dies

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-05-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures. 

  4. Adhesive wear of iron chromium nickel silicon manganese molybdenum niobium alloys with duplex structure

    International Nuclear Information System (INIS)

    Lugscheider, E.; Deppe, E.; Ambroziak, A.; Melzer, A.

    1991-01-01

    Iron nickel chromium manganese silicon and iron chromium nickel manganese silicon molybdenum niobium alloys have a so-called duplex structure in a wide concentration range. This causes an excellent resistance to wear superior in the case of adhesive stress with optimized concentrations of manganese, silicon, molybdenum and niobium. The materials can be used for welded armouring structures wherever cobalt and boron-containing alloy systems are not permissible, e.g. in nuclear science. Within the framework of pre-investigations for manufacturing of filling wire electrodes, cast test pieces were set up with duplex structure, and their wear behavior was examined. (orig.) [de

  5. A new three-dimensional cobalt phosphate: Co 5(OH 2) 4(HPO 4) 2(PO 4) 2

    Science.gov (United States)

    Han, Zhangang; Tian, Aixiang; Peng, Jun; Zhai, Xueliang

    2006-10-01

    A three-dimensional (3D) cobalt phosphate: Co 5(OH 2) 4(HPO 4) 2(PO 4) 2 ( 1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs.

  6. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  7. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  8. Evaluation of mechanical properties of recasted dental base metal alloys for considering their reusability in dentistry and engineering field

    Directory of Open Access Journals (Sweden)

    Nandish Bantarahalli Thopegowda

    2014-01-01

    Full Text Available Background: Base metal casting alloys are extensively used in dentistry to fabricate many oral appliances and a huge amount is wasted in the form of sprues and buttons during the casting procedure. Recycling and reusing these alloys by clean technologies may save our natural resources from being depleted and as well reduce the cost of the treatment of the patients. Objectives: To study the mechanical properties of recasted dental base metal alloys, and explore possible ways to recycle and reuse in dentistry and other fields of science and technology. Materials and Methods: Two beryllium-free Cobalt-Chromium (Co-Cr dental casting alloys, Wironit and Wirobond-C, were used for this study. Six groups of specimen (melted once, twice, five, ten, fifteen and twenty times per each alloy were casted. The tensile strength and hardness of these samples were measured by using universal testing machine and Vickers hardness number (VHN tester. Results: Tensile strength decreased from 850 MPa to 777 MPa after 5 th recasting and to 674 MPa at the end of 20 th recasting procedure for the Wironit samples. For Wirobond-C samples, tensile strength decreased from 720 MPa to 678 MPa after 5 th recasting and further reduced to 534 MPa at the end of 20 th recasting procedure. Hardness decreased from 380VHN to 335VHN at the end of 20 th recasting for Wironit samples and 328VHN to 247VHN for Wirobond-C samples after 20 th recasting procedure. The slight decrease in their mechanical properties will not have any impact on the clinical performance for dental applications. Conclusion: There is no major degradation in the mechanical properties after recycling, and hence, the left over alloys after casting procedures can be reused in dentistry with a condition to satisfy cytotoxicity tests.

  9. The Role of External Inputs and Internal Cycling in Shaping the Global Ocean Cobalt Distribution: Insights From the First Cobalt Biogeochemical Model

    Science.gov (United States)

    Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.

    2018-04-01

    Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.

  10. Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongqing University of Arts and Science, Chongqing 402160 (China); Xiong, Xiang, E-mail: xiangxiong88@qq.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, J.P., E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Deng, Ling [Chengdu Chengliang Tool Group Co., Ltd., Chengdu 610056 (China); Tu, M.J. [Chongqing University of Arts and Science, Chongqing 402160 (China)

    2015-01-05

    Highlights: • Nanoscale precursor β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O can be prepared by mechanical solid phase reaction. • Growth mechanism, morphology and crystal structure of β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O have been studied. • Internal energy reserves of precursor making it directly generate β-Co in the thermal decomposition reaction. • Martensitic transformation of Co has been studied. • The Co powder will inherit the morphology of its precursor. - Abstract: The face-centered cubic crystal structure β-Co has excellent performance. As the main material to produce high toughness hard alloys and metal cermet, its morphology and structure will have an important impact on the performance of the alloy. This study, based on solid-phase reaction, starting from the crystal structure studied, discussed the effection of the mechanical solid-phase chemical reactions on the morphology of the cobalt precursor structure, researched the cobalt phase change mechanism, and presented a method to prepare nano β-Co. With H{sub 2}C{sub 2}O{sub 4}⋅2H{sub 2}O and Co(NO{sub 3}){sub 2}·6H{sub 2}O as raw materials, nano-crystalline cobalt oxalate powders with nearly spherical shape have been prepared by using solid-phase chemical reactions in high-speed ball milling, and then by decomposing at 400–450 °C, the target was prepared. The thermodynamical and IR analysis has been studied. The microstructure of the powders was characterized by XRD, SEM, TEM. It has been identified that a spherical, fcc structure, 100 nm β-Co powders was synthesized successfully, which confirmed the theoretical feasibility of this study.

  11. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  12. Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy.

    Science.gov (United States)

    Ramesh, Ganesh; Padmanabhan, T V; Ariga, Padma; Subramanian, R

    2011-01-01

    Since 1907 casting restorations have been in use in dentistry. Numerous companies have been manufacturing and marketing base metal alloys. Gold was a major component of casting alloys. But alloys with less than 65% gold tarnished easily and the increase in cost of gold post-1970s lead to the revival of base metal alloys such as nickel-chromium and cobalt-chromium alloys which were in use since 1930s. This study was conducted to evaluate and compare the castability between an indigenous alloy and an imported alloy, as imported base metal alloys are considered to be expensive for fabrication of crowns and bridges. This study was conducted to evaluate and compare the castability (for the accurate fabrication of crowns and bridges) between an indigenous base metal alloy-Non-ferrous Materials Technology Development Centre (NFTDC), Hyderabad (Alloy A) -and an imported base metal alloys (Alloy B). Castability measurement was obtained by counting the number of completely formed line segments surrounding the 81 squares in the pattern and later calculating the percentage values. The percentage obtained was taken as the castability value for a particular base metal alloy. The percentage of castability was determined by counting only the number of completely cast segments in a perfect casting (81 × 2 = 162), and then multiplying the resulting fraction by 100 to give the percentage completeness. The Student t-test was used. When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 indigenous alloy is on par with the imported alloy.

  13. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz; Belasri, A. [Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, LPPMCA (Algeria)

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  14. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  15. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    Science.gov (United States)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  16. Experimental evidence for cobalt(III)-carbene radicals: key intermediates in cobalt(II)-based metalloradical cyclopropanation

    NARCIS (Netherlands)

    Lu, H.; Dzik, W.I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X.P.

    2011-01-01

    New and conclusive evidence has been obtained for the existence of cobalt(III)-carbene radicals that have been previously proposed as the key intermediates in the underlying mechanism of metalloradical cyclopropanation by cobalt(II) complexes of porphyrins. In the absence of olefin substrates,

  17. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    Science.gov (United States)

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  18. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  19. Removal of Cobalt Ions by Precipitate Foam Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was tested by precipitate flotation using a sodium lauryl sulfate as a collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% H{sub 2}O{sub 2} prior to precipitate flotation made shift of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, flotation time 30 min. The simulate ion was formed to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested. The presence of 0.1 M of SO{sub 4}{sup 2-} ion decreased removal efficiency of cobalt to 90% while the cobalt were almost entirely removed in the absence of sulfate ion. (author). 11 refs., 8 figs.

  20. Recent progresses in the understanding of the elastic and anelastic properties of H-free, H-doped and H-contaminated NiTi based alloys

    Directory of Open Access Journals (Sweden)

    Giovanni Mazzolai

    2011-12-01

    Full Text Available This review is focused on the influence of interstitial hydrogen and alloy compositional changes on the internal friction (IF spectrum and elastic Young's modulus (E of NiTi based shape memory alloys. In the martensitically transforming binary alloys Ni50+xTi50-x (x≤1.3 vacuum annealed and furnace cooled (H-free, besides the well known IF peak associated with the martensitic transition two additional non-thermally activated peaks (P150K and P200K′ are present due to some sort of second-order phase transitions. In martensitically transforming Ni50+xTi50-x and Ti50Ni50-yCuy alloys doped with hydrogen two thermally activated peaks, PTWH and PH, appear which originate from stress-assisted motions of H-twin boundary complexes and isolated H-elastic dipoles (Snoek effect, respectively. In a H-free martensitically non-trasforming alloy (x=2, besides the non-thermally activated peak P150K, a frequency dependent dip is observed in the E(T curves at a temperature Tg. This dip is similar to that reported in the literature for two other non-transforming alloys (x=1.5 and x=2.5, which, however, were also found to exhibit a thermally activated IF peak just below Tg. Most likely, these two alloys were contaminated with hydrogen during the preliminary solubilization in argon atmosphere and subsequent water quenching treatments given to them. The Young's modulus dip and the lower temperature IF peak have been both attributed to a novel type of phase transition reported in the literature as “strain glass transition”. The introduction of hydrogen into the non-transforming alloy with x=2 enhances the Young's modulus dip and gives rise to the H-Snoek peak PH just below Tg, which clearly appears to be the counterpart of the peak observed in the alloys (x=1.5 and x=2.5 solubilized in argon atmosphere and water quenched. The conclusion was reached in the present work that this last peak is not related to the strain glass transition but is rather an H

  1. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  2. Red-free light for measurement of intraocular pressure using Goldmann applanation tonometer without fluorescein.

    Science.gov (United States)

    Ghoneim, Ehab M

    2014-01-01

    To evaluate the use of red-free light for the measurement of intraocular pressure (IOP) using a Goldmann applanation tonometer without fluorescein. This cross-sectional study was carried out on 500 eyes in 250 patients attending the Ophthalmology Outpatient Clinic at Suez Canal University Hospital. The IOP was measured using a Goldmann applanation tonometer mounted on a Haag-Streit slit-lamp. The measurements were performed first using red-free light without fluorescein. Then the measurements were repeated with cobalt blue light and topical fluorescein on the same eyes. The mean IOP was 15.23 ± 3.3 (SD) mm Hg using the red-free light without fluorescein, whereas it was 15.78 ± 3.7 (SD) mm Hg when measured using cobalt blue light after the application of fluorescein to the conjunctival sac. This difference was not statistically significant. Measurement of IOP with a Goldmann applanationtonometer with red-free light and without the use of fluorescein is simple, saves time, and gives an accurate IOP measurement relative to the traditional measurement technique with cobalt blue light and topical fluorescein.

  3. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  4. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  5. Microstructures and mechanical properties of age-formed 7050 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, J.F.; Zhen, L.; Jiang, J.T.; Yang, L.; Shao, W.Z.; Zhang, B.Y.

    2012-01-01

    Highlights: ► Age-forming leads to the grain elongation in 7050 alloy. ► Age-forming varies the texture components in 7050 alloy. ► Age-forming promotes precipitates growth and PFZ enlargement in 7050 alloy. ► Age-forming induces to descend apparently elongation in 7050 alloy. ► The effect of age-forming on microstructure and properties is discussed in-depth. - Abstract: The effects of age-forming on microstructures and mechanical properties of 7050 Al alloy were investigated in this work. The alloy was subjected to age-forming as well as stress-free ageing at 160 °C for 6, 12, 18 and 24 h, and its microstructures were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). It was shown that creep might lead to grain elongation during age-forming, and the applied stress induces the coarsening of precipitates in 7050 Al alloy. The texture in the alloy was also influenced by age-forming. Consequently, the differences in microstructures result in differences in mechanical properties of age-forming versus traditional stress-free ageing. The ultimate tensile strength of age-formed samples were slightly lower than that of stress-free aged samples, while the yield strength of age-formed samples were apparently lower than that of stress-free aged samples. Specifically, the elongation of samples age-formed displays apparently decrease.

  6. Spectrophotometric Determination of Iron(II and Cobalt(II by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    Directory of Open Access Journals (Sweden)

    V. S. Anusuya Devi

    2012-01-01

    Full Text Available Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH reacts with iron(II and cobalt(II to form reddish-brown and yellow-coloured [Fe(II-HNAHBH] and [Co(II-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II-HNAHBH], Beer’s law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II-HNAHBH] complex obeys Beer’s law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content.

  7. Lead-Free Electronics: Impact for Space Electronics

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    Pb is used as a constituent in solder alloys used to connect and attach electronic parts to printed wiring boards (PWBs). Similar Pbbearing alloys are electroplated or hot dipped onto the terminations of electronic parts to protect the terminations and make them solderable. Changing to Pb-free solders and termination finishes has introduced significant technical challenges into the supply chain. Tin/lead (Sn/Pb) alloys have been the solders of choice for electronics for more than 50 years. Pb-free solder alloys are available but there is not a plug-in replacement for 60/40 or 63/37 (Sn/Pb) alloys, which have been the industry workhorses.

  8. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content

    Directory of Open Access Journals (Sweden)

    Angeliki Lekatou

    2016-02-01

    Full Text Available Hypereutectic Al-Co alloys of various Co contents (7–20 weight % (wt.% Co were prepared by vacuum arc melting, aiming at investigating the influence of the cobalt content on the microstructure and corrosion behavior. Quite uniform and directional microstructures were attained. The obtained microstructures depended on the Co content, ranging from fully eutectic growth (7 wt.% and 10 wt.% Co to coarse primary Al9Co2 predominance (20 wt.% Co. Co dissolution in Al far exceeded the negligible equilibrium solubility of Co in Al; however, it was hardly uniform. By increasing the cobalt content, the fraction and coarseness of Al9Co2, the content of Co dissolved in the Al matrix, and the hardness and porosity of the alloy increased. All alloys exhibited similar corrosion behavior in 3.5 wt.% NaCl with high resistance to localized corrosion. Al-7 wt.% Co showed slightly superior corrosion resistance than the other compositions in terms of relatively low corrosion rate, relatively low passivation current density and scarcity of stress corrosion cracking indications. All Al-Co compositions demonstrated substantially higher resistance to localized corrosion than commercially pure Al produced by casting, cold rolling and arc melting. A corrosion mechanism was formulated. Surface films were identified.

  9. Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1993-01-01

    The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.

  10. Effect of stacking fault energy on high-temperature creep parameters of nickel-cobalt alloys

    International Nuclear Information System (INIS)

    Nerodenko, L.M.; Dabizha, E.V.

    1982-01-01

    Results of creep investigation are discussed for two alloys of the Ni-Co system. In terms of the structural creep model an analysis is made for the effect of stacking fault energy on averaged parameters of the dislocation structure: inovable dislocation density subgrain size, activation volume. The rate of steady-state creep is determined by the process of dislocation passing through the subgrain boundaries with activation energy of 171.0 and 211.5 kJ/mol for the Ni-25% Co and Ni-65% Co alloys, respectively

  11. Protective coatings for high temperature alloys state of technology

    International Nuclear Information System (INIS)

    Goward, G.W.

    1976-01-01

    Coatings used on nickel- and cobalt-base superalloy blades and vanes in gas turbine engines typify the state of coating technology for high temperature alloys. Coatings formed by interdiffusion of aluminum with the alloys to form layers consisting mainly of intermetallic compounds, such as NiAl and CoAl, were the first systems used for protection of gas turbine airfoils. The protectivity of these systems is derived from the formation of protective alumina scales. In a general way, coating degradation occurs by cyclic oxidation, molten salt hot corrosion and, at higher temperatures, interdiffusion with the substrate. Thermal fatigue properties are governed by the brittle-ductile transition behavior of the intermetallic compounds NiAl and CoAl. Both positive and negative effects occur, depending on the shapes of thermal strain-temperature curves for particular applications. Significant increases in hot corrosion and oxidation resistance have been obtained by the incorporation of noble metals, such as platinum, in aluminide coatings. The so-called MCrAlY overlay coatings, based on nickel, cobalt, iron and combinations thereof with chromium, aluminum and yttrium can be formulated over a wide range of compositions nominally independent of those of substrate alloys. Improved oxidation resistance and, in part, hot corrosion resistance is derived from yttrium which enhances protective oxide adherence. Mechanical properties, principally ductility, and therefore thermal fatigue resistance, can be adjusted to the requirements of specific applications. Incremental improvements in performance of the MCrAlY coatings are expected as research programs define degradation mechanisms in greater detail and more complex compositions are devised. More basic evaluations of mixed metal-ceramic insulative coatings have been initiated to determine if these systems are capable of effecting further increases in airfoil durability

  12. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  13. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  14. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  15. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  16. The effects of zinc on cobalt deposition in PWRs: summary report

    International Nuclear Information System (INIS)

    Bennet, Peter

    1996-01-01

    An experiment has been performed in a PWR loop of the Halden reactor to investigate the effects of the addition of 50 ppb zinc to the coolant on the incorporation of cobalt into the oxide films on primary circuit constructional materials. This report summarises the results from the three phases of the test. It was shown that zinc addition inhibits the corrosion of both new metal surfaces and surfaces with well-established oxides; this results in thinner oxide layers and reduced incorporation of cobalt into the oxide. Generally, there were no significant differences between the deposition of cobalt-60 onto pre-oxidised and new metal surfaces. In Phase 1 of the experiment, Co-60 deposition rates (normalised to the circulating Co-60 concentration) were lower than those measured in previous experiments in the loop by factors in the range from 5 to 10. In Phase 2, differences were observed in the behaviour of iron- and nickel-based alloys: larger decreases in the deposition rate compared with Phase 1 took place for stainless steel samples (i.e. factors > 20), whilst decreases on nickel-based coupons were generally less than a factor of 5. Co-60 deposition rates onto stainless steel coupons newly installed for Phase 3 of the experiment were greater by an order of magnitude than on coupons which had been exposed for all three phases; i.e. they were similar to those observed in Phase 1. The mechanisms by which zinc acts to inhibit corrosion and the incorporation of activity into oxide layers are not fully understood. More experimental data are required to resolve this issue, including information on the chemical form of the zinc within the oxide layer. (author)

  17. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    Directory of Open Access Journals (Sweden)

    Patrice Berthod

    2017-01-01

    Full Text Available For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated with atomically equivalent quantities in M element (among Ti, Ta, Nb, Hf, or Zr and in C. Script-like eutectic TiC, TaC, NbC, HfC, and ZrC carbides were successfully obtained in the interdendritic spaces. Unfortunately, only one type, HfC, demonstrated high morphological stability during about 50 hours at 1200°C. The concerned alloy, of the Co-25Cr-0.5C-7.4Hf type (in wt.%, was further characterized in flexural creep resistance and air-oxidation resistance at the same temperature. The creep behaviour was very good, notably by comparison with a more classical Co-25Cr-0.5C-7.5Ta alloy, proving that the interest of HfC is higher than the TaC one. In contrast the oxidation by air was faster and its behaviour not really chromia-forming. Significant improvements of this chemical resistance are expected before taking benefit from the mechanical superiority of this alloy.

  18. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  19. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  20. Manufacturing method of hydrogen storage alloy powder for battery; Denchiyo suiso kyuzo gokin funmatsu no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.

    1997-04-04

    To produce hydrogen storage alloy powder for battery, ingot of a hydrogen storage alloy is crushed to coarse grains of a suitable size with a crusher and then, finely pulverized to a certain particle size with a ball mill or some other tools. In this pulverization process, the surface of the pulverized alloy powder is oxidized and the surface activity is partially lost to cause a problem of a decrease of the characteristics of the produced hydrogen storage alloy electrode. In this invention, ingot of hydrogen storage alloy is crushed to coarse alloy grains in a non-oxidizing atmosphere followed by mechanical pulverization in a state contact with a solution of sulfites, hypophosphites, hydrogen phosphates or dihydrogen phosphates. This treatment method prevents surface oxidation of the alloy powder during the pulverization process. As a result, the initial activity of the battery is improved and an increase of the internal pressure of the battery on overcharge is suppressed. The use of an aqueous alkaline solution containing cobalt instead of the above-mentioned solution gives a similar effect. 2 tabs.

  1. Mechanical alloying of Cu-xCr (x = 3, 5 and 8 wt.%) alloys

    International Nuclear Information System (INIS)

    Aguilar, C.; Ordonez, S.; Guzman, D.; Rojas, P.A.

    2010-01-01

    This work studies the structural evolution of Cu-xCr (x = 3, 5 and 8 wt.%) alloys processed by mechanical alloying using X-ray diffraction profiles, scanning microscopy and microhardness analysis. X-ray diffraction analysis using the modified Williamson-Hall and Warren-Averbach methods were used to determine structural properties, such as crystallite size, stacking fault probability and energy, dislocation density, lattice parameters and crystallite size distribution of metallic powder as a function of Cr amount and milling time. Lattice defects increase the Gibbs free energy and the Gibbs free energy curves shift upward, therefore the solubility limit change.

  2. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  3. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  4. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  5. Effect of long-term aging at 8150C on the tensile properties and microstructural stability of four cobalt- and nickel-base superalloys

    International Nuclear Information System (INIS)

    Hammond, J.P.

    1976-08-01

    Two heats of Haynes alloy 25 and one heat each of Haynes alloy 188, Hastelloy N, and Inconel 625 were tensile tested after aging for 11,000 h at 816 0 C. Yield strength, ultimate tensile strength, and elongation were determined 24, 316, 760, and 982 0 C and compared with typical properties for these materials in the solution annealed condition. Toughness values were determined for these materials from their engineering stress-strain curves. The long-term aging treatment degraded ductility and toughness at room temperature but, contrary to behavior expected for overaging, enhanced them over those for the solution annealed condition in tests at 760 0 C. The tensile properties of the aged superalloys were correlated with mode of fracture and the amounts, identity, and morphology of the precipitates. Aging substantially depleted the hardener tungsten from the matrix in the cobalt-base alloys

  6. The physiological effect of cobalt on watermelon cultivation

    International Nuclear Information System (INIS)

    Yao Naihua; Jin Yafang; Sun Yaochen; Huang Yiming

    1993-01-01

    Cobalt has essential physiological action on both animals and plants. For the latter it can raise plant's nitrogen-fixing ability and saccharine content. Spray of cobalt mixed with other nutritive elements can improve the germinatit of seeds and the yield of fruit. For specifying the nutritive function of cobalt upon watermelon, isotope 60 Co was mixed into a complex leaf nutritive aqua and the regularity of transferring and absorbing cobalt in the watermelon's body was investigated

  7. Electrochemical and corrosion behavior of two chromium dental alloys in artificial bioenvironments

    Directory of Open Access Journals (Sweden)

    Banu Alexandra

    2017-01-01

    Full Text Available The purpose of this study is to compare the corrosion and tarnish behavior of NiCrMo and CoCrMo cast dental alloys in artificial bio environments. The cobalt chromium alloys are known and used in dentistry for many years, but its difficult machinability because of the strength and hardness, is an argument for scientists to study alternative materials with comparable biocompatibility. On the other hand, for dentistry devices beside corrosion behavior is important the aesthetic so, the used alloys have to preserve their shining and do not stain. The corrosion resistance has been evaluated using the Atomic mass spectroscopy method for ion release determination, the anodic polarization curves and the open circuit potential – time monitoring for corrosion behavior evaluation and optical microscopy for the structure analysis. The tarnish tendency of alloys was estimated using the method of cyclic immersion with frequency of 10 seconds for each minute during 72 hours in Na2S containing solution. The most important conclusion is that the alloys are comparable from corrosion and tarnish point of view, but we recommend to use the nickel base alloy only for orthodontic devices implanted for short periods of time, because of higher quantity of released ions.

  8. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  9. Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys

    International Nuclear Information System (INIS)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2014-01-01

    We determined the effects of carbon concentration on the microstructures and tensile properties of the Ni-free Co–29Cr–9W–1Si–C (mass%) cast alloys used in dental applications. Alloy specimens prepared with carbon concentrations in the range 0.01–0.27 mass% were conventionally cast. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) revealed that precipitates had formed in all the alloy specimens. The σ phase, a chromium-rich intermetallic compound, had formed in the region between the dendrite arms of the low-carbon-content (e.g., 0.01C) alloys. Adding carbon to the alloys increased the amount of interdendritic precipitates that formed and changed the precipitation behavior; the precipitated phase changed from the σ phase to the M 23 C 6 carbide with increasing carbon concentration. Adding a small amount of carbon (i.e., 0.04 mass%) to the alloys dramatically enhanced the 0.2% proof stress, which subsequently gradually increased with increasing content of carbon in the alloys. Elongation-to-failure, on the other hand, increased with increasing carbon content and showed a maximum at carbon concentrations of ∼ 0.1 mass%. The M 23 C 6 carbide formed at the interdendritic region may govern the tensile properties of the as-cast Co–Cr–W alloys similar to how it governed those of the hot-rolled alloys prepared in our previous study. - Highlights: • Microstructure and tensile properties of C-doped Co–Cr–W cast alloys was studied. • Adding carbon stabilized the γ matrix and changed the precipitation behavior. • Formation of carbide precipitates strengthened C-doped Co–Cr–Mo alloys. • A maximum tensile elongation was obtained at carbon concentrations of ∼0.1 mass%

  10. Performance and Thrust-to-Weight Optimization of the Dual-Expander Aerospike Nozzle Upper Stage Rocket Engine

    Science.gov (United States)

    2012-06-01

    for chamber cooling jacket, structural jacket, and O2 plumbing INCONEL ® 625 (Annealed) Aluminum 7075 T6 Not compatible with O2 or H2 / Useable for...Special Metals. INCONEL (R) alloy 625 . Publication Number SMC-063. Special Metals Corporation, 2006. [20] Haynes International. "Heat-Resistant Alloy...Copper (C17000 TH04) Oxygen-Free Copper (C10100 1180 Temper) Cobalt (Forged Electrolytic) INCONEL ® 718 (Annealed & Aged) Compatible with O2 / Useable

  11. Heating-induced inner-sphere substitution and reduction-oxidation reactions of the solid phenanthroline containing cobalt (2) and cobalt (3) complexes

    International Nuclear Information System (INIS)

    Palade, D.M.

    1996-01-01

    The results of the differential thermal and thermogravimetric analyses of solid phenanthroline-containing complexes of cobalt (2) and cobalt (3) in the atmosphere of the air have been analyzed. Mechanism of redox reactions occurring when cobalt (3) complexes are heated has been discussed. It is shown that some of gaseous products of the redox processes appear as a result of secondary reactions and not the processes of the ligands oxidation by Co 3+ . The influence of certain inner-sphere and coordinated anions (of I, inclusively) on cobalt (3) complexes behaviour during heating has been considered

  12. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  13. A new three-dimensional cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2

    International Nuclear Information System (INIS)

    Han Zhangang; Tian Aixiang; Peng Jun; Zhai Xueliang

    2006-01-01

    A three-dimensional (3D) cobalt phosphate: Co 5 (OH 2 ) 4 (HPO 4 ) 2 (PO 4 ) 2 (1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs. - Graphical abstract: A 3D cobalt phosphate with a neutral framework: Co 5 (OH 2 ) 4 (HPO 4 ) 2 (PO 4 ) 2 (1), has been synthesized and characterized. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. Its magnetic property was researched

  14. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  15. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.

    2010-12-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize the strategy for metal dosage and to prevent unnecessary losses of resources. This paper describes the relation between the initial immobilization of cobalt in anaerobic granular sludge cobalt dosage into the reactor and the evolution of methanogenic activity during the subsequent weeks. An operationally defined parameter (A0· B0) was found to combine the amount of cobalt immobilized instantaneously upon the pulse (B0) and the amount of cobalt immobilized within the subsequent 24. h (A0). In contrast with the individual parameters A0 and B0, the parameter A0· B0 correlated significantly with the methanogenic activity of the sludge during the subsequent 16 or 35. days. This correlation between metal retention and activity evolution is a useful tool to implement trace metal dosing strategies for biofilm-based biotechnological processes. © 2010.

  16. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  17. Mechanical Alloying Synthesis of Co9S8 Particles as Materials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Li

    2016-06-01

    Full Text Available Cobalt sulfide (Co9S8 particles are compounded as the electrode materials of supercapacitors by a mechanical alloying method. They show excellent properties including good cycling stability and high specific capacitance. A supercapacitor is assembled using Co9S8 as the anode and activated carbon (AC as the cathode. It gains a maximum specific capacitance of 55 F·g−1 at a current density of 0.5 A·g−1, and also an energy density of 15 Wh·kg−1. Those results show that the novel and facile synthetic route may be able to offer a new way to synthesize alloy compounds with excellent supercapacitive properties.

  18. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  19. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    Science.gov (United States)

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  20. Laboratory study on individual and combined effects of cobalt- and zinc-spiked sediment on meiobenthic nematodes.

    Science.gov (United States)

    Beyrem, Hamouda; Boufahja, Fehmi; Hedfi, Amor; Essid, Naceur; Aïssa, Patricia; Mahmoudi, Ezzeddine

    2011-12-01

    Free-living nematodes are the most abundant taxa among the meiobenthos and the predominant prey for bottom-feeding fishes. They are able to accumulate toxicants from sediments which explain their use in this study as possible tools in nutritional quality assessment of fishes. Nematodes from sediments of Ghar El Melh lagoon (Tunisia) were subjected to cobalt and/or zinc enrichment in a microcosm experiment for 30 days. Three levels (low, medium, and high) of each treatment were used. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that all treatments were significantly different from the control. Both univariate and multivariate analyses of the data showed that the differential response occurred in all treatments, but the assemblages from microcosms contaminated with zinc alone were much more negatively affected compared with those exposed to cobalt alone. The presence of cobalt simultaneously with zinc seems to reduce its impact on nematode species composition. Such a result is suggestive of antagonistic interactions between these two metals. The responses of nematode species to the cobalt and zinc treatments were varied. Oncholaimellus mediterraneus, Oncholaimus campylocercoides, and Neochromadora trichophora were significantly affected with cobalt contamination but, they were not eliminated. Exposed to zinc, Hypodontolaimus colesi was eliminated and seemed to be an intolerant species versus this metal. Some of these species, "cobalt-sensitive" or "zinc-sensitive", were also affected by the metal combination even at low dose: O. mediterraneus, N. trichophora, and H. colesi. Differential sensitivity to cobalt and/or zinc may result in a subsequent competitive release of more tolerant species. A list of this kind of species was established to be used as a possible preventive tool versus contaminated fish. This was most evidently the case in

  1. Air-stable compact of cobalt-rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable magnetic products. An organometallic compound which decomposes at a temperature below 500 0 C is mixed with particles of a transition metal-rare earth alloy. The resulting mixture is pressed to form a green body, which is then heated to decompose the organometallic compound to produce a metal vapor that deposits an interconnecting metal coating on the exposed surfaces of the pressed particles. (U.S.)

  2. SU-F-T-533: Study of Dosimetric Properties of Cadmium Free Alloy Used in Compensator Based IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A [Dr B L Kapoor Hospital, New Delhi, Delhi (India); Kaushik, S [Dr B L Kapoor Hospital, New Delhi, Delhi (India); Guru Jambheshwar University of Science & Technology, Hisar, Haryana (India); Punia, R [Guru Jambheshwar University of Science & Technology, Hisar, Haryana (India); Singh, M [MMH College, Ghaziabad, Utter Pradesh (India)

    2016-06-15

    Purpose: To study the dosimetric properties of cadmium free alloy which is used in compensator based IMRT. Methods: A mixture of 30% of lead,52% of bismuth and 18% of tin was used to prepare alloy. We prepared slabs of different thicknesses ranging from 0.71 cm to 6.14 cm. Density of alloy was measured by Archimedes’ principle using SI-234 Denver instrument and water as buoyant liquid. Transmission, linear attenuation coefficient (µ), tissue phantom ration (TPR), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter were measured and analyze for different field size and different thickness of compensator for 6 MV photon beam. Measurements were carried out at 100 cm SSD and 160 cm SSD. Results: Density of alloy was found to be 9.5456 gm/cm3. Melting point of alloy is 90–95 °C. For a field size of 10×10 cm2 µ was 0.4253 cm-1 at 100 cm SSD. Calculated TPR was found to be within 3 % of measured TPR. Ds was found to be decreasing with increasing thickness of compensator. 1cm, 1.98 cm and 4.16 cm thick compensator slab decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10cm2 at 100 cm SSD. As field size increases Ds increases for a given compensator thickness. This is due to increase in amount of scattered dose from wider collimator opening. For smaller field size, PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increases from 1 cm to 6.14 cm at a depth of 10 cm in water. For larger field size variation in PDDs is not significant. Conclusion: High degree of modulation can be achieved from this compensator material, which is essential in compensator based IMRT. Dosimetric properties analyzed in this study establish this alloy as a reliable, cost effective, reusable compensator material.

  3. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  4. An elevator for cobalt-60 source

    International Nuclear Information System (INIS)

    Tang Zaimin; Liang Donghu

    1990-07-01

    The elevator used for cobalt-60 source is a key device in the irradiation industry. It plays an important role in the safety and control of irradiation operation as well as the utilization rate of radiation source. From 1983 to 1986, Beijing Institute of Nuclear Engineering undertook designing of various size irradiation projects for different uses. Since then a kind of cobalt-60 source elevator suited for the irradiator of wet-source-storage has been chosen. It is reliable in the operation and complete in the function. An automatic control circuit brings the systems of cobalt-60 source elevator into an interlock system which ensures the irradiation operation safety. Besides introducing the structural features and performance of this elevator, the conditions of safety interlocking in raising or lowering the cobalt-60 source is also discussed. The discussion is from the safety viewpoint of operating an irradiator and irradiation technology

  5. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  6. Improved rapidly-quenched hydrogen-absorbing alloys for development of improved-capacity nickel metal hydride batteries

    Science.gov (United States)

    Ise, Tadashi; Hamamatsu, Takeo; Imoto, Teruhiko; Nogami, Mitsuzo; Nakahori, Shinsuke

    The effects of annealing a rapidly-quenched hydrogen-absorbing alloy with a stoichiometric ratio of 4.76 were investigated concerning its hydrogen-absorbing properties, crystal structure and electrochemical characteristics. Annealing at 1073 K homogenized the alloy microstructure and flattened its plateau slope in the P-C isotherms. However, annealing at 1273 K segregated a second phase rich in rare earth elements, increased the hydrogen-absorbing pressure and decreased the hydrogen-absorbing capacity. As the number of charge-discharge cycles increases, the particle size distribution of the rapidly-quenched alloy became broad due to partial pulverization. However, particle size distribution of the rapidly-quenched, annealed, alloy was sharp, since the annealing homogenized the microstructure, thereby improving the cycle characteristics. A high-capacity rectangular nickel metal hydride battery using a rapidly-quenched, annealed, surface-treated alloy for the negative electrode and an active material coated with cobalt compound containing sodium for the positive electrode was developed. The capacity of the resulting battery was 30% greater than that of a conventional battery.

  7. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  8. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  9. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  10. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  11. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  12. Gas atomization of Cu-modified AB5 metal hydride alloys

    International Nuclear Information System (INIS)

    Young, K.; Ouchi, T.; Banik, A.; Koch, J.; Fetcenko, M.A.; Bendersky, L.A.; Wang, K.; Vaudin, M.

    2011-01-01

    Research highlights: → The gas atomization process together with a hydrogen annealing process was demonstrated on AB5 alloys. → The method was found to be effective in restoring the original cycle life sacrificed by the incorporation of copper in the alloy formula as a means of improving the low temperature performance of AB 5 alloys. → The new process also improves high rate, low temperature, and charge retention performances for both Cu-free and Cu-containing AB 5 alloys. - Abstract: Gas atomization together with a hydrogen annealing process has been proposed as a method to achieve improved low-temperature performance of AB 5 alloy electrodes in Ni/MH batteries and restore the original cycle life which was sacrificed by the incorporation of copper in the alloy formula. While the gas atomization process reduces the lattice constant aspect ratio c/a of the Cu-containing alloys, the addition of a hydrogen annealing step recovers this property, although it is still inferior to the conventionally prepared annealed Cu-free alloy. This observation correlates very well with the cycle life performance. In addition to extending the cycle life of the Cu-containing metal hydride electrode, processing by gas atomization with additional hydrogen annealing improves high-rate, low-temperature, and charge retention performances for both Cu-free and Cu-containing AB 5 alloys. The degradation mechanisms of alloys made by different processes through cycling are also discussed.

  13. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  14. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  15. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    Science.gov (United States)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  16. Effect of titanium addition on shape memory effect and recovery stress of training-free cast Fe–Mn–Si–Cr–Ni shape memory alloys

    International Nuclear Information System (INIS)

    Wang, Gaixia; Peng, Huabei; Sun, Panpan; Wang, Shanling; Wen, Yuhua

    2016-01-01

    The shape memory effect and recovery stress of cast Fe–17.2Mn–5.28Si–9.8Cr–4.57Ni (18Mn) and Fe–17.5Mn–5.29Si–9.68Cr–4.2Ni–0.09Ti (18Mn–Ti) alloys have been investigated by optical microscopy, scanning electron microscopy (SEM), electron backscattering diffraction (EBSD), and resistivity–temperature curves. The cast 18Mn and 18Mn–Ti alloys solidified as the ferritic mode for which liquid phase fully transforms into primary δ ferrite. The role of titanium is to indirectly refine the austenite through refining the primary δ ferrite. In this case, the austenitic grains of the cast 18Mn alloy were much bigger than that of the cast 18Mn–Ti alloy, although the two alloys underwent δ→γ phase transformation. Grain refinement suppresses the stress-induced ε martensitic transformation, and thus the shape memory effect of the cast 18Mn–Ti alloy is worse than that of the cast 18Mn alloy. On the contrary, the maximum recovery stress and the recovery stress at room temperature are higher for the cast 18Mn–Ti alloy annealed at 1073 K for 30 min than for the cast 18Mn alloy annealed at 973 K for 30 min, because grain refinement suppresses the relaxation of recovery stress caused by the plastic deformation and the stress-induced ε martensitic transformation during cooling process. It is difficult to obtain the training-free cast Fe–Mn–Si based shape memory alloys with excellent shape memory effect and high recovery stress only by grain refinement.

  17. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  18. Crystallographic parameters of magnetic Pr{sub 2}Fe{sub 14−x}Co{sub x}B-type alloys determined using anomalous x-ray diffraction with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Galego, E., E-mail: egalego@ipen.br; Serna, M.M.; Ramanathan, L.V.; Faria, R.N.

    2017-02-15

    Anomalous x-ray synchrotron diffraction was used to determine the crystallographic parameters of PrFeCoB-based magnetic alloys. The effect of cobalt concentration on the crystallographic parameters of the magnetically hard Pr{sub 2}Fe{sub 14−x}Co{sub x}B phase was studied. The results indicate that addition of cobalt has a marked effect on crystal structure. Variation of the c parameter decreased twice as much as the a parameter with increase in Co content. The positions of inequivalent atoms of the magnetically hard matrix phase ϕ in the Pr-based alloys were determined using Rietveld refinement. This permitted determination of the relative distance of each inequivalent atom from its nearest neighbors. Cobalt occupied the 16k{sub 2} site and Fe had a tendency to occupy the 8j{sub 2} sites located between the Kagomé layers. - Highlights: • Good magnetics properties can be achieved with addition of 4% and 8% Co. • Rietveld refinement is proposed for crystallographic parameters studies. • Co has preference to substitute Fe in 16k{sub 2} site and avoid the 8j{sub 2} site.

  19. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  20. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.