WorldWideScience

Sample records for cobalt-doped iron oxides

  1. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  2. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  3. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Science.gov (United States)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  4. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  5. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  6. Effect of cobalt doping on structural, optical and redox properties cerium oxide nanoparticles

    Science.gov (United States)

    Ansari, Anees A.; Labis, J.; Alam, M.; Ramay, Shahid M.; Ahmad, N.; Mahmood, Asif

    2016-03-01

    Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.

  7. Synthesis and Characterization of Cobalt doped Manganese Oxide Nanoparticles by Chemical Route

    Science.gov (United States)

    Pugazhvadivu, K. S.; Ramachandran, K.; Tamilarasan, K.

    Cobalt doped α-Mn2O3 nanoparticles have been synthesized by chemical route. The structural properties were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis. The SEM image shows that the nanoclusters having spherical geometry. The optical properties were analyzed by ultraviolet - visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. UV-Vis spectra illustrates that Co doped Mn2O3 nanosystem acquire blue shift from bulk value (2.5 eV). The chemical composition and purity of the samples were examined using energy dispersive analysis of X-ray spectroscopy (EDAX). Magnetic properties were studied using electron paramagnetic resonance (EPR) and Guoy's method. The high magnetic moment of 3.5 μB shows the enhancement in magnetic transition temperature (Tc) of Mn2O3 nanosystem due to the incorporation of cobalt ions.

  8. Addressing the selectivity issue of cobalt doped zinc oxide thin film iso-butane sensors: Conductance transients and principal component analyses

    Science.gov (United States)

    Ghosh, A.; Majumder, S. B.

    2017-07-01

    Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.

  9. Controlled cobalt doping in biogenic magnetite nanoparticles

    Science.gov (United States)

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  10. Controlled cobalt doping in biogenic magnetite nanoparticles.

    Science.gov (United States)

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  11. Cobalt Doped SnO2 Thick Film Gas Sensors: Conductance and Gas Response Characteristics for LPG and CNG Gas

    OpenAIRE

    V. Kumar; S. K. Srivastava; Kiran Jain

    2009-01-01

    Cobalt doped thick films tin oxide sensors were studied for their LPG and CNG gas sensitivity. SnO2 powder was synthesized by precipitation technique and doped with cobalt sulphate (0 to 10 wt %) by impregnation technique. The sensing characteristics were found to depend on the cobalt concentration and operating temperature. Best performance for LPG and CNG detection was obtained for 3 wt % addition of cobalt sulphate. Cobalt doped SnO2 sensors showed a decrease in the optimum temperature for...

  12. Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process

    Science.gov (United States)

    Pärna, R.; Joost, U.; Nõmmiste, E.; Käämbre, T.; Kikas, A.; Kuusik, I.; Hirsimäki, M.; Kink, I.; Kisand, V.

    2011-05-01

    Undoped and cobalt doped titania (TiO 2) thin films have been prepared on Si(1 0 0) monocrystal and quartz substrate using the sol-gel deposition method and annealed in air at 450, 550, 650, 750, 850, 950 and 1050 °C. Several experimental techniques (AFM, XRD, Raman spectroscopy, XRR, EDX, XPS, XAS, UV-VIS spectroscopy) have been used to characterize these films. Further more the degree of light induced hydrophilicity was estimated by measuring the contact angle of a water droplet on the film. Increase of the annealing temperature and in smaller degree also cobalt doping predispose titania crystallite growth. The rutile phase was detected at lower temperatures in the cobalt doped films than in the undoped titania films. Cobalt in the cobalt doped TiO 2 was seen to be in Co 2+ oxidation state, mainly in CoTiO 3 phase when films were annealed at temperatures higher than 650 °C. Cobalt compounds segregated into the sub-surface region and to the surface of the titania, where they formed islands. Cobalt doping red-shifted the fundamental absorption edge further into the visible range, however it did not enhance the light induced hydrophilicity of the thin film surface as compared to the undoped titania thin films.

  13. Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  14. X-ray absorption spectroscopic and magnetic characterization of cobalt-doped zinc oxide nanocrystals prepared by the molten-salt method

    International Nuclear Information System (INIS)

    Han, Ah Reum; Hwang, Seong-Ju; Zhao, Yongnan; Kwon, Young-Uk

    2008-01-01

    The local atomic arrangement and electronic structure of the Co-doped Zn 1-x Co x O nanocrystal have been quantitatively examined along with its magnetic properties. According to our analysis using powder X-ray diffraction, electron microscopy, and Zn K-edge X-ray absorption spectroscopy (XAS), phase-pure wurzite-structured Zn 1-x Co x O nanocrystals have been successfully synthesized via the molten-salt method. The Co K-edge XAS analysis clearly demonstrates that all the Co 2+ ions are substituted for the tetrahedral Zn sites of the Wurzite structure with a coordination number of 3.9 and a bond distance of 1.97 A, ruling out the presence of magnetic impurity phase and Co-metal cluster. Magnetization measurements reveal that the present Zn 1-x Co x O sample does not show any ferromagnetic transition down to 2 K. In this regard, we can conclude that Co-doped zinc oxide is not ferromagnetic but the previously reported ferromagnetism in this phase would be an extrinsic property

  15. Cobalt Doped SnO2 Thick Film Gas Sensors: Conductance and Gas Response Characteristics for LPG and CNG Gas

    Directory of Open Access Journals (Sweden)

    V. Kumar

    2009-02-01

    Full Text Available Cobalt doped thick films tin oxide sensors were studied for their LPG and CNG gas sensitivity. SnO2 powder was synthesized by precipitation technique and doped with cobalt sulphate (0 to 10 wt % by impregnation technique. The sensing characteristics were found to depend on the cobalt concentration and operating temperature. Best performance for LPG and CNG detection was obtained for 3 wt % addition of cobalt sulphate. Cobalt doped SnO2 sensors showed a decrease in the optimum temperature for CNG detection from 450°C to 350°C. The transient response characteristics were determined at different temperatures and doping concentrations to understand the effect of doping on the rate kinetics. A correlation was established between response time, sensor response and the intergranular potential barriers.

  16. Single sheet iron oxides

    DEFF Research Database (Denmark)

    Yin, Zhou

    activity. LDH single sheets have been reported to be effective sorbents, catalysts in electrochemical and photochemical reactions, and building thin films together with other nanomaterials for designing new functionalities. Here we focus on the delamination of FeII-FeIII LDHs into single sheet iron oxide...... was rapid compared to other iron oxides, reaching equilibrium within 60 minutes. Arsenic sorption and acid-base titration data could be successfully described with a 1pk Basic Stern Model (BSM). The point of zero charge was around 8. The intrinsic surface complexation equilibrium constants (log K...... became abundant at low pH. (3) Electrochemical reduction of chlorinated compounds using an SSI modified electrode. Here, the electrochemical reactivity of SSIs coated on indium tin oxide coated glass electrodes was investigated. Iron on the SSI modified electrode showed a typical Cyclic Voltammetry...

  17. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  18. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    Science.gov (United States)

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cobalt-promoted Iron Oxide Nanoparticles for the Selective Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Rutter, Matthew

    Recent work has shown that both cobalt and iron oxide nanoparticles are active for the oxidative dehydrogenation (ODH) of cyclohexane to benzene, the former more active than the latter. Further study has shown that the addition of gold species as a minority component into iron oxide nanocrystals increases the selectivity of the reaction to benzene. Since a primary motivation for this work is the addition of catalysts in jet fuels to facilitate the dehydrogenation and cracking reactions preceding their combustion, a low-cost, sacrificial catalyst is sought after. In this application, catalyst nanoparticles suspended in the fuel stream will dehydrogenate cyclic alkanes (cyclohexane) to their aromatic counterparts (benzene). Alkenes and aromatics have a much higher rate of combustion, which decreases the amount of uncombusted fuel in the exhaust, thereby increasing performance. As these catalysts are not recyclable, there is significant impetus to substitute cheaper base metals for expensive noble metals. In this work, iron oxide nanoparticles are doped with varying levels of cobalt to examine the effect of cobalt content and oxidation state on the selectivity and activity of the iron oxide for the oxidative dehydrogenation of cyclohexane, used as a model cyclic alkane in jet fuel. We have shown previously that small (˜5nm) cobalt oxide nanoparticles favor the production of benzene over the partial dehydrogenation products cyclohexene and cyclohexadiene, or the complete oxidation product carbon dioxide. It is the aim of this work to examine the surface of these cobalt-iron oxide nanoparticles to determine the conditions most favorable for this selective oxidative dehydrogenation. Cobalt-doped iron nanoparticles were prepared by a surfactant-free hydrothermal co-precipitation technique that enabled a high degree of composition control and size control. These samples were characterized via Transmission Electron Microscopy (TEM), powder X-Ray Diffraction (XRD), X

  20. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kulanthaivel, Senthilguru [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Roy, Bibhas [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Agarwal, Tarun [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Giri, Supratim [Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008 (India); Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S. [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Maiti, Tapas K. [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Banerjee, Indranil, E-mail: indraniliit@gmail.com [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2016-01-01

    ABSTRACT: The present study delineates the synthesis and characterization of cobalt doped proangiogenic–osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co{sup 2+}) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP–OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic–osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. - Highlights: • Cobalt (Co{sup +2}) doped hydroxyapatite (Co-HAp) can be prepared by the wet chemical method. • The concentration of Co{sup +2} influences the physico-chemical properties of HAp. • Co-HAp was found to be biocompatible and osteogenic. • Co-HAp enhanced cellular VEGF secretion through HIF-1α stabilization. • The optimum biological performance of Co-HAp was achieved for 0.33% (w/w) Co{sup +2} doping.

  1. 21 CFR 186.1374 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III...

  2. 21 CFR 73.2250 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including the...

  3. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tank, Kashmira P., E-mail: kashmira_physics@yahoo.co.in [Saurashtra University, Crystal Growth Laboratory, Physics Department (India); Chudasama, Kiran S.; Thaker, Vrinda S. [Saurashtra University, Bioscience Department (India); Joshi, Mihir J., E-mail: mshilp24@rediffmail.com [Saurashtra University, Crystal Growth Laboratory, Physics Department (India)

    2013-05-15

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  4. Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water.

    Science.gov (United States)

    Hu, Peidong; Long, Mingce; Bai, Xue; Wang, Cheng; Cai, Caiyun; Fu, Jiajun; Zhou, Baoxue; Zhou, Yongfeng

    2017-06-15

    As an emerging carbonaceous material, carbon aerogels (CAs) display a great potential in environmental cleanup. In this study, a macroscopic three-dimensional monolithic cobalt-doped carbon aerogel was developed by co-condensation of graphene oxide sheets and resorcinol-formaldehyde resin in the presence of cobalt ions, followed by lyophilization, carbonization and thermal treatment in air. Cobalt ions were introduced as a polymerization catalyst to bridge the organogel framework, and finally cobalt species were retained as both metallic cobalt and Co 3 O 4 , wrapped by graphitized carbon layers. The material obtained after a thermal treatment in air (CoCA-A) possesses larger BET specific surface area and pore volume, better hydrophilicity and lower leaching of cobalt ions than that without the post-treatment (CoCA). Despite of a lower loading of cobalt content and a larger mass transfer resistance than traditional powder catalysts, CoCA-A can efficiently eliminate organic contaminants by activation of peroxymonosulfate with a low activation energy. CoCA-A can float beneath the surface of aqueous solution and can be taken out completely without any changes in morphology. The monolith is promising to be developed into an alternative water purification technology due to the easily separable feature. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 21 CFR 73.3125 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  6. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Wen; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2017-01-15

    Graphical abstract: Cobalt-doped graphitic carbon nitride (Co−CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine and melamine as precursors. The obtained photocatalysts display high and stable activity for photocatalytic generation of hydrogen through water splitting. - Highlights: • Cobalt-doped g-C{sub 3}N{sub 4} photocatalysts were prepared. • High and stable visible light photocatalytic activity for H{sub 2} evolution. • Efficient separation and transfer of photo-induced electron-hole pairs. - Abstract: Cobalt-doped graphitic carbon nitride (Co−CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine (CoPc) and melamine as precursors. The π-π interaction between melamine and CoPc promotes cobalt doping into the framework of g-C{sub 3}N{sub 4}. The prepared samples were carefully characterized and the results demonstrated that Co-doped graphitic carbon nitride inhibited the crystal growth of graphitic carbon nitride (CN), leading to larger specific surface area (33.1 m{sup 2} g{sup −1}) and abundant Co-N{sub x} active sites, narrower band gap energy and more efficient separation of photogenerated electrons and holes. 0.46% Co−CN exhibited higher hydrogen evolution rate (28.0 μmol h{sup −1}) under visible light irradiation, which is about 3.0 times of that over the pure CN and about 2.2 times of that over cobalt-doped CN using CoCl{sub 2} ∙ 6H{sub 2}O as a cobalt source. This study provides a valuable strategy to modify CN with enhanced photocatalytic performance.

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate......-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types...

  8. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

    Science.gov (United States)

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D

    2016-02-07

    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence.

  9. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  10. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  11. Metal ion binding to iron oxides

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.; Benedetti, M.F.; Ponthieu, M.

    2006-01-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to

  12. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  13. Iron or iron oxide grains in the interstellar medium?

    International Nuclear Information System (INIS)

    Jones, A.P.

    1990-01-01

    Iron grains have often been proposed as a component of circumstellar and interstellar grains. It is apparent that 'cosmic abundance' circumstellar shells should condense iron-rich particles such as metallic iron, iron/nickel alloys and iron carbides. It is not, however, clear that these grains can survive in this state in the interstellar medium. In this paper the chemistry of iron particles in the diffuse interstellar medium is examined and it is concluded that these grains cannot survive as pristine metallic iron-rich entities. The reactivity of iron, and in particular its reaction with interstellar gas-phase oxygen and sulphur species, will result in the rapid degradation of the metal to an oxide, sulphide or even sulphate. The lack of metallic phases in the mineralogy of primitive interplanetary dust particles is consistent with the absence of metallic particles in the interstellar medium. (author)

  14. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution

    Science.gov (United States)

    Chen, Pei-Wen; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De

    2017-01-01

    Cobalt-doped graphitic carbon nitride (Cosbnd CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine (CoPc) and melamine as precursors. The π-π interaction between melamine and CoPc promotes cobalt doping into the framework of g-C3N4. The prepared samples were carefully characterized and the results demonstrated that Co-doped graphitic carbon nitride inhibited the crystal growth of graphitic carbon nitride (CN), leading to larger specific surface area (33.1 m2 g-1) and abundant Co-Nx active sites, narrower band gap energy and more efficient separation of photogenerated electrons and holes. 0.46% Cosbnd CN exhibited higher hydrogen evolution rate (28.0 μmol h-1) under visible light irradiation, which is about 3.0 times of that over the pure CN and about 2.2 times of that over cobalt-doped CN using CoCl2 • 6H2O as a cobalt source. This study provides a valuable strategy to modify CN with enhanced photocatalytic performance.

  15. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  16. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  17. Accelerated dissolution of iron oxides in ice

    OpenAIRE

    D. Jeong; K. Kim; W. Choi

    2012-01-01

    Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a~new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4), the dissolution of iron oxides was greatly enhanced in the ice phas...

  18. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have o...

  19. Tannin biosynthesis of iron oxide nanoparticles

    Science.gov (United States)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  20. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  1. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Basurto Sanchez, R.

    1993-01-01

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe 2 O 3 ), and c) Magnetite (Fe 3 O 4 ) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  2. On the formation of iron(III) oxides via oxidation of iron(II)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, R.; Pelizzetti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Borgarello, E. [Eniricerche SpA, Milan (Italy); Meisel, D. [Argonne National Lab., IL (United States)

    1994-09-01

    Formation of iron oxides in aqueous salt solutions is reviewed. The discussion is focused on the oxidation of iron(II) and the following hydrolysis process that leads to the formation of a solid phase from homogeneous solutions. Results from our own studies on the kinetics of the oxidation reactions and the ensuing growth processes are presented.

  3. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many...... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....

  4. Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage.

    Science.gov (United States)

    Li, Bing; Shi, Yuxin; Huang, Kesheng; Zhao, Mingming; Qiu, Jiaqing; Xue, Huaiguo; Pang, Huan

    2018-02-19

    Compared to single metallic Ni or Co phosphides, bimetallic Ni-Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one-step solvothermal process is proposed for the synthesis of bouquet-like cobalt-doped nickel phosphite (Ni 11 (HPO 3 ) 8 (OH) 6 ), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 electrode presents a maximum specific capacitance of 714.8 F g -1 . More significantly, aqueous and solid-state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm -2 at the power density of 0.6 KW cm -2 . The solid-state device shows a high energy density of 14.72 mWh cm -2 at the power density of 0.6 KW cm -2 . These excellent performances confirm that the cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 are promising materials for applications in electrochemical energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploring Reaction Conditions to Improve the Magnetic Response of Cobalt-Doped Ferrite Nanoparticles

    Science.gov (United States)

    Galarreta, Itziar; Gil de Muro, Izaskun; Lezama, Luis

    2018-01-01

    With the aim of studying the influence of synthesis parameters in structural and magnetic properties of cobalt-doped magnetite nanoparticles, Fe3−xCoxO4 (0 magnetic properties, both magnetization and electronic magnetic resonance, has led the conditions to improve the magnetic response of doped nanoparticles. Magnetization values of 86 emu·g−1 at room temperature (R.T.) have been obtained for the sample with the highest Co content and the highest reflux time. Magnetic characterization also displays a dependence of the magnetic anisotropy constant with the varying cobalt content. PMID:29370104

  6. EXPLORING MICROBIAL IRON OXIDATION IN WETLAND SOILS

    NARCIS (Netherlands)

    Wang, J.; Den Oudsten, F.; Meima-Franke, M.; Vollrath, S.; Muyzer, G.; Bodelier, P.L.E.; Laanbroek, H.J.

    2010-01-01

    The release of oxygen by the roots of wetland plants creates suboxic conditions that may favour the growth of iron-oxidizing bacteria (FeOB). Given their importance in iron cycling, little is known about the diversity or distribution of these bacteria. This is largely due to the lack of efficient

  7. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Chanda, A., E-mail: anupamamatsc@gmail.com; Gupta, S.; Shukla, P. [Department of Physics, Dr. Harisingh Gour University, Sagar, M.P-470003 (India); Chandra, V. [Department of Chemistry, Dr. Harisingh Gour University, Sagar, M.P-470003 (India)

    2016-05-23

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane. The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.

  8. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  9. Exploring Microbial Iron Oxidation in Wetland Soils

    Science.gov (United States)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  10. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  11. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Unknown

    Ferrite grade iron oxides from ore rejects. 333. S 250 MK III were used to find out the particle size distributions in the final oxide products. 3. Results and discussion. 3.1 Phase identification. The dhkl values of all oxide products were compared with the JCPDS files: 24–81 and 25–1402. All were found to be mainly γ-Fe2O3 ...

  12. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  13. Cobalt-doped carbon xerogel with different initial pH values toward oxygen reduction

    Science.gov (United States)

    Fitri, Azim; Loh, Kee Shyuan; Puspasari, Ifa; Mohamad, Abu Bakar

    2017-12-01

    In this study, cobalt-doped carbon xerogel (Co-CX) was synthesized via sol-gel polymerization resorcinol-formaldehyde, catalyzed with cobalt nitrate, followed by drying and carbonization process under nitrogen gas flow. The effect of initial pH value (5.5, 6.5 and 7.5) and the type of carbon precursors on the morphology of Co-CX have been investigated with Field Emission-Transmission Electron Microscopy (FESEM). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH has been studied by using a rotating ring-disk electrode (RRDE) technique. FESEM revealed that Co doping promotes the formation of more pores. While the conditions allow obtaining xerogel with higher porosity at pH 7.5. The RRDE result display that Co-CX exhibited good catalytic activity tends to favor two electrons pathway.

  14. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  15. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Abstract. Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared success- fully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized ...

  16. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  17. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  18. Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma.

    Science.gov (United States)

    Fanzani, Alessandro; Poli, Maura

    2017-08-07

    Recent data have indicated a fundamental role of iron in mediating a non-apoptotic and non-necrotic oxidative form of programmed cell death termed ferroptosis that requires abundant cytosolic free labile iron to promote membrane lipid peroxidation. Different scavenger molecules and detoxifying enzymes, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), have been shown to overwhelm or exacerbate ferroptosis depending on their expression magnitude. Ferroptosis is emerging as a potential weapon against tumor growth since it has been shown to potentiate cell death in some malignancies. However, this mechanism has been poorly studied in Rhabdomyosarcoma (RMS), a myogenic tumor affecting childhood and adolescence. One of the main drivers of RMS genesis is the Retrovirus Associated DNA Sequences/Extracellular signal Regulated Kinases (RAS/ERK)signaling pathway, the deliberate activation of which correlates with tumor aggressiveness and oxidative stress levels. Since recent studies have indicated that treatment with oxidative inducers can significantly halt RMS tumor progression, in this review we covered different aspects, ranging from iron metabolism in carcinogenesis and tumor growth, to mechanisms of iron-mediated cell death, to highlight the potential role of ferroptosis in counteracting RMS growth.

  19. Heat treatment effect on the physical properties of cobalt doped TiO{sub 2} sol–gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Samet, L., E-mail: lolwasamet@gmail.com [Institut Préparatoires aux Etudes d' Ingénieurs d' El-Manar, Université Tunis El Manar, Campus Universitaire, 2092 El Manar (Tunisia); Laboratoire de Photovoltaique de Semi-conducteur et de Nanostructure, Centre de Recherches et des Technologies de l' Energie, Technopole borj cedria, Bp 95, hammamm lif 2050 (Tunisia); Ben Nasseur, J.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteur et de Nanostructure, Centre de Recherches et des Technologies de l' Energie, Technopole borj cedria, Bp 95, hammamm lif 2050 (Tunisia); March, K.; Stephan, O. [Laboratoire de Physique des Solides, UMR 8502 CNRS - Université Paris-Sud, Bât 510, 91405 Orsay cedex (France)

    2013-11-15

    Cobalt doped and undoped TiO{sub 2} powders have been prepared by sol–gel technique and annealed at temperatures ranging from 400 °C to 1000 °C. The effects of annealing temperature on the structural, morphological and optical properties have been characterized by X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy and diffuse reflectance spectroscopy. For all doped samples there is a general reduction of the band gap energy, in comparison with undoped samples prepared in the same conditions. More specifically, experimental results indicate that cobalt doping, occurring as Co{sup 2+} ion insertion into the TiO{sub 2} (Ti{sup 4+}) host lattice, inhibits the growth of the crystallites and delays the phase transformation from anatase to rutile. Moreover, at high temperature, a secondary phase (CoTiO{sub 3}) is found to coexist with highly crystalline rutile. These structural characteristics are discussed in relation with the observed general trends for the optical properties. - Highlights: • Cobalt doped and undoped TiO{sub 2} powders have been prepared by sol–gel route. • Doping makes the band gap narrower. • Doping delays the phase transformation from anatase to rutile. • Doping inhibits the growth of the crystallites. • At high annealing temperature a CoTiO{sub 3} phase coexists with highly crystalline rutile.

  20. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  1. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Shalini, M. Govindaraj; Sahoo, Subasa C., E-mail: subasa@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Padnekkad, Kasaragod, Kerala - 671314 (India)

    2016-05-06

    M-type barium hexaferrite (BaFe{sub 12}O{sub 19}) and cobalt doped barium hexaferrite (BaFe{sub 11}CoO{sub 19}) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  2. Preparation and characterization of Nickel-and cobalt-doped magnetites

    Directory of Open Access Journals (Sweden)

    Lelis Maria de Fátima Fontes

    2003-01-01

    Full Text Available Nickel- and cobalt-doped magnetites were prepared by a co-precipitation method and studied in some detail, in an effort to identify some effects of the doping cations on the magnetic, crystallographic and morphological properties of the resulting spinel. The synthetic samples were characterized by conventional chemical analysis, powder X-ray diffractometry, Mössbauer spectroscopy, saturation magnetization and scanning electron microscopy. From chemical analysis, the continuous increase of Ni2+ or Co2+ is accompanied by a simultaneous decrease of the Fe2+ contents, in the spinel structure. The magnetization values also decrease continuously with increasing doping cation contents. Mössbauer parameters are characteristic of substituted magnetites and indicate the presence of a single phase only. Based on the inverted intensities of the lines 1 (leftmost, on the negative Doppler velocity scale and 2 of Mössbauer spectra of doped samples, relatively to the pure magnetite, it was assumed that the isomorphical substitution occurs preferentially on octahedral coordination sites of the spinel structure. The coercive field of these ferrites decrease steadily with Ni2+ but increases with Co2+ contents, reaching a maximum at x = 0.38, in the general formula Co xFe3-xO4 .

  3. Role of iron oxide impurities in electrocatalysis by multiwall carbon ...

    Indian Academy of Sciences (India)

    The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine ...

  4. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application

    OpenAIRE

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin,; Husen, Azamal

    2016-01-01

    Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anae...

  5. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  6. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  7. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  8. Effects of coating spherical iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.

  9. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    Science.gov (United States)

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  10. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  11. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Shi Sifeng; Jia Jingfu; Guo Xiaokui; Zhao Yaping; Liu Boyu; Chen Desheng; Guo Yongyuan; Zhang Xianlong

    2012-01-01

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  12. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    article/fulltext/boms/034/04/0843-0851. Keywords. Nanocomposites; polymer matrix; neodymium oxide; spinel ferrites; quadrupole splitting; Scherrer equation. Abstract. Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of ...

  13. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  14. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of anilineformaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad ...

  15. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    Administrator

    Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of aniline- formaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad peaks at ~ 590 ...

  16. Investigation of carrier oil stabilized iron oxide nanoparticles and its ...

    African Journals Online (AJOL)

    Iron oxide nanoparticles were synthesized by co-precipitation method. The polyunsaturated carrier oil (flaxseed oil) is used as a stabilizing agent for iron oxide nanoparticles. Kirby Bauer method was used to investigate the antibiotic sensitivity of carrier oil stabilized and uncoated SPIONs at 10 and 20 μg/L on Gram-positive ...

  17. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    Wintec

    iron oxide particles are synthesized employing a novel technique and using starch/water/ethylene glycol as com- plexing agents. Their structural, magnetic and optical properties are evaluated. Emphasis is laid in studying the shape induced optical properties of gamma iron oxide nanoparticles. Thermogravimetric (TG) and ...

  18. Iron oxides as a cause of GPR reflections

    NARCIS (Netherlands)

    van Dam, R.L.; Schlager, W.; Dekkers, M.; Huisman, J.A.

    2002-01-01

    Iron oxides frequently occur as secondary precipitates in both modern and ancient sediments and may form bands or irregular patterns. We show from time-domain reflectometry (TDR) field studies that goethite iron-oxide precipitates significantly lower the electromagnetic wave velocity of sediments.

  19. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  20. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  1. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  2. Modified iron oxide nanomaterials: Functionalization and application

    International Nuclear Information System (INIS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-01-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  3. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  4. Modified iron oxide nanomaterials: Functionalization and application

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-15

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  5. Iron-Oxide-Filled Carbon Nanotubes

    Science.gov (United States)

    Cava, Carlos Eduardo

    Carbon nanotubes (CNT) are recognized as one of the most important materials in the recent history of nanotechnology. In the last 25 years, intensive studies about this material have led to new ideas for the use of nanomaterials in many technological products. The unique properties presented by this material allow its use in a wide range of applications. Known as a crystalline material, CNTs can, however, interact with many materials in different manners, making it easy to use as a composite. One interesting aspect is the possibility of filling the CNT hollow core with a foreign material, forming a filled CNT. This composite can be achieved in situ using chemical vapor deposition and arc-discharge or after the synthesis, by chemical methods. The technique choice to achieve the filled CNT depends on the material inside the CNT. The resulting material can provide new electrical, optical, and mechanical features due to the synergistic effect between the CNTs themselves and the filling, which can originate new multifunctional materials. Concerning the electrical conductivity and the gas sensing, the possible interaction between the CNT and the filling can modify the electronic structure of the material and, consequently, affect the kind of interaction between the CNT and different gases. Commonly, the filled CNTs are obtained with magnetic materials inside the tube, which are also precursors in their syntheses; this feature brings new possibilities to magnetic devices, such as memories. Among them, iron-oxide-filled carbon nanotubes have been suggested as a technological material for use in magnetic, electrical, and medical applications. Therefore, this kind of nanocomposite material can be useful in the preparation of versatile and durable solid-state sensors, memory devices, with simple manufacturing and in a proper size. In this chapter, an introduction about the production and application of iron-oxide-filled CNTs in its many different forms will be presented.

  6. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation.

    Science.gov (United States)

    Yarjanli, Zahra; Ghaedi, Kamran; Esmaeili, Abolghasem; Rahgozar, Soheila; Zarrabi, Ali

    2017-06-26

    In the recent decade, iron oxide nanoparticles (IONPs) have been proposed for several applications in the central nervous system (CNS), including targeting amyloid beta (Aβ) in the arteries, inhibiting the microglial cells, delivering drugs, and increasing contrast in magnetic resonance imaging. Conversely, a notable number of studies have reported the role of iron in neurodegenerative diseases. Therefore, this study has reviewed the recent studies to determine whether IONPs iron can threaten the cellular viability same as iron. Iron contributes in Fenton's reaction and produces reactive oxygen species (ROS). ROS cause to damage the macromolecules and organelles of the cell via oxidative stress. Iron accumulation and oxidative stress are able to aggregate some proteins, including Aβ and α-synuclein, which play a critical role in Alzheimer's and Parkinson's diseases, respectively. Iron accumulation, oxidative stress, and protein aggregation make a positive feedback loop, which can be toxic for the cell. The release of iron ions from IONPs may result in iron accumulation in the targeted tissue, and thus, activate the positive feedback loop. However, the levels of IONPs induced toxicity depend on the size, concentration, surface charge, and the type of coating and functional groups of IONPs. IONPs depending on their properties can lead to iron accumulation, oxidative stress and protein aggregation in the neural cells. Therefore, in order to apply IONPs in the CNS, the consideration of IONPs properties is crucial.

  7. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  8. Cobalt-doped Bi26Mo10O69: Crystal structure and conductivity

    International Nuclear Information System (INIS)

    Mikhailovskaya, Z.A.; Buyanova, E.S.; Petrova, S.A.; Morozova, M.V.; Zhukovskiy, V.M.; Zakharov, R.G.; Tarakina, N.V.; Berger, I.F.

    2013-01-01

    A series of cobalt-doped bismuth molybdates were synthesized and investigated using X-ray powder diffraction, transmission electron microscopy and impedance spectroscopy. The ranges of solid solution were determined. Two new compounds, Bi 1−x Co x [Bi 12 O 14 ]Mo 5 O 34.5±δ (x=0.2) and Bi[Bi 12 O 14 ]Mo 5−y Co y O 34.5±δ (y=0.2), which crystallise in monoclinic unit cells have been examined in detail by diffraction methods. Impedance spectroscopy measurements show that the studied materials are good ionic conductors with conductivity values about 5×10 −3 S×cm −1 at 973 K and 1.7×10 −4 S×cm −1 at 623 K, which are similar to conductivity values of yttrium substituted zirconia and (YSZ) gadolinium doped ceria (CGO). - Graphical abstract: Measured and calculated diffraction spectra for Bi 12.8 Co 0.2 Mo 5 O 34±δ and projection of the Bi 12.8 Co 0.2 Mo 5 O 34±δ crystal structure onto the ac plane. Highlights: • The limit of the Bi 1−x Co x [Bi 12 O 14 ]Mo 5 O 34.5±δ homogeneity range is equal to x=0.2. • The limit of the Bi[Bi 12 O 14 ]Mo 5−y Co y O 34.5±δ homogeneity range is equal to y=0.2. • Solid solutions have monoclinic symmetry. No phase transition is observed. • The conductivity at 700° for y=0.2 solid solutions is equal to −lg σ, S×cm −1 =2.23. • The conductivity at 350° for y=0.2 solid solutions is equal to −lg σ, S×cm −1 =3.74

  9. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  10. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  11. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  12. Effects of coating spherical iron oxide nanoparticles.

    Science.gov (United States)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  14. Controlled cobalt doping in the spinel structure of magnetosome magnetite: New evidences from element- and site-specific XMCD analyses

    Science.gov (United States)

    Pan, Y.; LI, J.; Menguy, N.; Arrio, M. A.; Sainctavit, P.; Juhin, A.; Wang, Y.; Chen, H.; Bunau, O.; Otero, E.; Ohresser, P.

    2016-12-01

    Controlled cobalt doping in the spinel structure of magnetosome magnetite: New evidences from element- and site-specific XMCD analyses Jinhua Li1,2*, Nicolas Menguy2,3, Marie-Anne Arrio3, Philippe Sainctavit3,4, Amélie Juhin3, Yinzhao Wang1,2, Haitao Chen5, Oana Bunau3, Edwige Otero4, Philippe Ohresser4, Yongxin Pan1,21Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China. 2France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of Sciences, Beijing 100029, China. 3IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, 75005 Paris, France. 4Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France. 5Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China *To whom correspondence may be addressed. Email: lijinhua@mail.iggcas.ac.cnThe biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. However, the coordination chemistry and magnetism of such metal-doped magnetosomes still remains largely unknown. Here, we present new evidences from X-ray magnetic circular dichroism (XMCD) for element- and site-specific magnetic analyses that cobalt is incorporated in the spinel structure of the magnetosomes within Magnetospirillum magneticum AMB-1 through the replacement of Fe2+ ions by Co2+ ions in octahedral (Oh) sites of magnetite. Compared with non-doped one, cobalt-doped magnetosome sample has lower Verwey transition temperature and larger magnetic coercivity, related to the amount of doped cobalt. This study this study indicates a biologically controlled process on cobalt doping and magnetic alteration by MTB system

  15. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  16. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  17. Effect of waste plastics addition on the reduction of iron oxide by ...

    African Journals Online (AJOL)

    HDPE)) addition on the production of premium grade iron nuggets from iron oxide using metallurgical coke as reducing agent. Composite pellets were formed from mixtures of iron oxide and carbonaceous materials consisting of coke, HDPE and ...

  18. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  19. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with d...

  20. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    .... (c) Uses and restrictions. (1) Synthetic iron oxide may be safely used for the coloring of sausage casings intended for human consumption in an amount not exceeding 0.10 percent by weight of the finished...

  1. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  2. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    Directory of Open Access Journals (Sweden)

    Dale L. Huber

    2012-05-01

    Full Text Available Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m, which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

  3. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

    Science.gov (United States)

    Zeng, Q; Baker, I; Loudis, J A; Liao, Y F; Hoopes, P J

    2007-02-09

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3 O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3 O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization ( M S ) of Fe/Fe 3 O 4 particles (100-190 emu/g) can be twice as high, and the coercivity ( H C ) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3 O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  4. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    T. Young

    2018-02-01

    Full Text Available We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ∼50 nm thick grown on (001 LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T′ phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T′ phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T′-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  5. Iron Oxide Silica Derived from Sol-Gel Synthesis

    Directory of Open Access Journals (Sweden)

    João Carlos Diniz da Costa

    2011-02-01

    Full Text Available In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

  6. Iron Oxide Silica Derived from Sol-Gel Synthesis.

    Science.gov (United States)

    Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos

    2011-02-17

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

  7. Iron Oxide Silica Derived from Sol-Gel Synthesis

    OpenAIRE

    João Carlos Diniz da Costa; Anne Julbe; Simon Smart; Adi Darmawan

    2011-01-01

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of ...

  8. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  11. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  12. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0......The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  13. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  14. Oxidation-Induced Degradable Nanogels for Iron Chelation

    Science.gov (United States)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  15. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  16. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nano magnetic oxides are promising candidates for high density magnetic storage and other appli- cations. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural.

  17. Role of iron oxide impurities in electrocatalysis by multiwall carbon

    Indian Academy of Sciences (India)

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide ...

  18. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ali A

    2016-08-01

    Full Text Available Attarad Ali,1 Hira Zafar,1 Muhammad Zia,1 Ihsan ul Haq,2 Abdul Rehman Phull,3 Joham Sarfraz Ali,1 Altaf Hussain4 1Department of Biotechnology, 2Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; 3Department of Biology, Kongju National University, Kongju, South Korea; 4Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Pakistan Abstract: Recently, iron oxide nanoparticles (NPs have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. Keywords: superparamagnetism, iron oxide nanoparticles, surfactants, hyperthermia, biodistribution, bioelimination

  19. Formation and Transformation of Iron Oxide-Kaolinite Associations in the Presence of Iron(II)

    NARCIS (Netherlands)

    Wei, S.Y.; Liu, F.; Feng, X.H.; Tan, W.F.; Koopal, L.K.

    2011-01-01

    Iron oxide-kaolinite associations are important components of tropical and subtropical soils and have significant influence on the physical and chemical properties of soils. In this study, the formation and transformation of Fe oxide-kaolinite associations as a function of pH, temperature, and time

  20. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  1. Iron oxide and gold nanoparticles in cancer therapy

    International Nuclear Information System (INIS)

    Gotman, Irena; Gutmanas, Elazar Y.; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.

    2016-01-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  2. Iron oxide and gold nanoparticles in cancer therapy

    Science.gov (United States)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  3. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  4. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  5. A pentanuclear iron catalyst designed for water oxidation

    Science.gov (United States)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  6. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  7. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  8. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    Science.gov (United States)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  9. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Chamorro, Susana; Vaquero, María Pilar; Brenes, Agustín; Gutiérrez, Lucía; Salas, Gorka; Luengo, Yurena; Verdoy, Dolores; José Teran, Francisco

    2015-01-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe 2 O 3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe 2 O 3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe 2 O 3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses. (paper)

  10. Influence of copper in spheres of iron and aluminum oxide

    International Nuclear Information System (INIS)

    Sousa, A.F. de; Gomes, E.C.C.; Valentini, A.; Longhinotti, E.; Sales, F.A.M.

    2010-01-01

    The various applications of mesoporous materials in adsorption and catalysis have driven research for new synthetic routes to improve the structural and morphological characteristics of the compounds currently available. Spherical mesoporous materials of aluminum oxide and / or iron were synthesized in proportions of 10.30 and 50%, and then impregnated with copper oxide by wet impregnation method. Supporters of spherical iron oxide and aluminum before and after impregnation with copper were characterized by XRD, SEM, chemical analysis, BET and TPR. The analysis results of XRD showed the formation of crystalline phases AB 2 O 4 type, the results of TPR showed a shift of the band of iron reduction with the incorporation of copper and the samples indicated a decrease in porosity, possibly due to the closure of pores with the addition of copper. (author)

  11. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those......Rapid sand filtration is an economical way to treat anoxic groundwaters and involves aeration followed by particulate and soluble substrate removal via deep bed filtration. The anoxic source groundwater can contain several potential electron donors (CH4, Fe2+, Mn2+, NH4+ and assimilable organic...... carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...

  12. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Fahlvik, A.K.

    1991-05-01

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  13. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  14. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Haracz, S.; Hilgendorff, M.; Rybka, J.D.; Giersig, M.

    2015-01-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  15. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation...... presented in this PhD study may be important for the future planning of agricultural NO3--buffer zones and may be used as an input into the reactive transport models, predicting the behavior of NO3- in the aquatic environments...

  16. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  17. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    extensively in recent times because of their technological and fundamental scien- tific importance [1]. These nanomaterials exhibit very interesting electrical, opti- cal, magnetic, chemical and related surface properties, which is entirely different. [2] from the respective bulk materials. The fabrication of low valent iron nanopar-.

  18. Size-dependent magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  19. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    Science.gov (United States)

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  20. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron

    International Nuclear Information System (INIS)

    Hiralal, P; Unalan, H E; Amaratunga, G A J; Wijayantha, K G U; Kursumovic, A; MacManus-Driscoll, J L; Jefferson, D

    2008-01-01

    A simple, catalyst-free growth method for vertically aligned, highly crystalline iron oxide (α-Fe 2 O 3 ) wires and needles is reported. Wires are grown by the thermal oxidation of iron foils. Growth properties are studied as a function of temperature, growth time and oxygen partial pressure. The size, morphology and density of the nanostructures can be controlled by varying growth temperature and time. Oxygen partial pressure shows no effect on the morphology of resulting nanostructures, although the oxide thickness increases with oxygen partial pressure. Additionally, by using sputtered iron films, the possibility of growth and patterning on a range of different substrates is demonstrated. Growth conditions can be adapted to less tolerant substrates by using lower temperatures and longer growth time. The results provide some insight into the mechanism of growth.

  1. Iron as a catalyst of human low-density lipoprotein oxidation: Critical factors involved in its oxidant properties.

    Science.gov (United States)

    Lapenna, Domenico; Ciofani, Giuliano; Obletter, Gabriele

    2017-05-01

    Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  3. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  4. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles

    OpenAIRE

    Shukla, Sudeep; Jadaun, Alka; Arora, Vikas; Sinha, Raj Kumar; Biyani, Neha; Jain, V.K.

    2014-01-01

    Iron oxide nanoparticles (INPs) have potential biological, biomedical and environmental applications. These applications require surface modification of the iron oxide nanoparticles, which makes it non-toxic, biocompatible, stable and non-agglomerative in natural and biological surroundings. In the present study, iron oxide nanoparticles (INPs) and chitosan oligosaccharide coated iron oxide nanoparticles (CSO-INPs) were synthesized to evaluate the effect of surface coating on the stability an...

  5. Role of iron oxide impurities in electrocatalysis by multiwall carbon ...

    Indian Academy of Sciences (India)

    Abstract. The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes. (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin ...

  6. Synthesis of iron oxide nanoparticles of narrow size distribution on ...

    Indian Academy of Sciences (India)

    WINTEC

    Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of ... templates like aluminium oxide, carbon nanotubes, sur- factants, polymer fibres and egg shell membranes have been employed.

  7. Corrosion of X60 steel influenced by iron oxidizing bacteria ...

    African Journals Online (AJOL)

    Corrosion of X60 steel influenced by iron oxidizing bacteria (Leptothrix Descophora). A Rim-Rukeh, Y T Puyate. Abstract. No Abstract. Global Journal of Engineering Research Vol. 6 (1) 2007: pp. 51-56. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  8. Iron complexes as electrocatalysts for the water oxidation reaction

    NARCIS (Netherlands)

    Kottrup, K.G.

    2018-01-01

    In this dissertation, the synthesis and characterization of a series of iron complexes based on different ligand platforms are described. The complexes are subsequently studied for their activity in catalytic water oxidation with the help of a variety of electroanalytical techniques. The

  9. Minerals of oxidation zone of the Chokadambulaq iron deposit

    International Nuclear Information System (INIS)

    Safaraliev, N.S.

    2008-01-01

    The zone of oxidation of Chokadambulaq iron deposit has original mineral composition, which characterized specificity of their formation. Here is formed a secondary zone of enrichment marit ores, having practical meaning. In last is concentrated from 0.5 up to 1.0% from total quantities of reserves

  10. Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

    NARCIS (Netherlands)

    Lei, P.Y.; Boies, A.M.; Calder, S.A.; Girshick, S.L.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer,

  11. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  12. Self-orderding of iron oxide nanoparticles covered by graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Vejpravová, Jana; Pacáková, Barbara; Holý, V.; Bernstorff, S.; Kalbáč, Martin

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2499-2504 ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR GAP204/10/1677 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : GISAXS * graphene * iron oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.489, year: 2014

  13. Role of iron oxide impurities in electrocatalysis by multiwall carbon ...

    Indian Academy of Sciences (India)

    Multiwall carbon nanotubes (MWCNTs); iron oxide nanoparticles; dopamine; hydrogen peroxide; magnetically-modified electrode. 1. Introduction. Due to the good electrical conductivity, chemical inert- ness and well defined crystalline surface, carbon nanotubes. (CNTs) have been viewed as a promising electrode mate-.

  14. Structural investigations of biogenic iron oxide samples. Preliminary results

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kuklin, A.I.; Orelovich, O.L.; Kovalev, Yu.S.; Arzumanyan, G.M.; Kurkin, T.S.; Stolyar, S.V.; Iskhakov, R.S.; Rajkher, Yu.L.

    2008-01-01

    Some preliminary results on morphology and structure of iron oxide particles formed inside Klebsiella oxytoca bacteria are presented. In particular, by means of optical microscopy, scanning electron microscopy and small-angle X-ray scattering the effect of the bacteria age (the duration of growth) on the nanoparticles properties is studied

  15. Effect of magnetic iron oxide nanoparticles on pregnancy and ...

    African Journals Online (AJOL)

    Although, some studies revealed the nontoxic effect of iron oxide nanoparticles in adult mice, the present study indicated that, the doses higher than 50 mg/kg of DMSA-coated magnetic nanoparticles can disrupt embryo development. Key words: Magnetic nanoparticles, pregnancy, testicular development, toxicity.

  16. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  17. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  18. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    .00(OH)5.31(C12H23O2)0.66(SO4)0.51 and FeIII3O2.18(OH)3.13(C12H23O2)0.56(SO4)0.47, respectively. oxGRC12 has the same planar layer structure as GRC12, as revealed by identical powder X‐ray diffraction patterns. The electrostatic interactions between the interlayer dodecanoate (C12) anions and the iron...... hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron...

  19. Biogenic iron oxide transformation by hyperthermophiles: spectral and physiological potentials

    Science.gov (United States)

    Kashyap, S.; Sklute, E.; Dyar, M. D.; Holden, J. F.

    2017-12-01

    It is likely that any putative life in our Solar System beyond Earth, extinct or extant, is microbial. However, to detect such life, distinct organic or mineral biosignatures need to be established. Microbe-mineral interactions and mineral transformations deserve further examination in this regard. This study focused on hyperthermophilic iron oxide-reducing archaea and addressed the types of iron-oxide minerals that are favored for growth, the kinetics of such reactions, and the mineral transformations that occur depending upon the electron acceptor. Two hyperthermophilic archaea (Pyrodictium delaneyi and Pyrobaculum islandicum) and six laboratory-synthesized nanophase iron oxide minerals (2-line ferrihydrite, lepidocrocite, akaganéite, goethite, hematite and maghemite) were tested for cell growth and Fe(II) production. The mineral end-products were further characterized by examining the spectral signatures associated with these transformations using reflectance, Raman, and Mössbauer spectroscopies and electron diffraction patterns. Additionally, we critically examined how sample preparation techniques influence the end products of these transformations by comparing freeze-dried samples against those still in solution. Results showed that both organisms utilize all six nanophase iron oxides, although with varying success. The best candidates for microbial reduction were ferrihydrite, akaganéite, and lepidocrocite. The mineral transformation products and the extent of reduction varied and showed subtle differences based on organism and the type of iron oxide used. The subtle spectral differences were best characterized using combined spectroscopy techniques. This research provides new insights into microbe-mineral interactions and the discrimination of potential biosignatures in the search for life beyond Earth.

  20. Radiative forcing of iron oxides from combustion sources

    Science.gov (United States)

    Ito, A.; Lin, G.; Penner, J.

    2017-12-01

    Combustion aerosols affect the climate by absorbing and scattering radiation. Iron (Fe) oxides emitted from combustion sources largely reside in supermicron aerosols. Fe oxides on aerosols are known to absorb sun light and heat the atmosphere. However, supermicron aerosols from combustion sources are ignored for radiative forcing in climate models. Here, we use a global chemical transport model and a radiative transfer model to estimate the radiative forcing of Fe oxides from combustion sources. The model results suggest that Fe oxides from combustion sources significantly contribute to a warming effect at the top of the atmosphere over the air polluted regions such as China and India as well as biomass burning source regions. However, the estimates strongly depend on chemical speciation of Fe oxides, which is also important for bioavailability. These results suggest comprehensive observations are needed to fully understand the effects of Fe oxides on the net radiative forcing and ecosystems.

  1. Synthesis engineering of iron oxide raspberry-shaped nanostructures.

    Science.gov (United States)

    Gerber, O; Pichon, B P; Ihiawakrim, D; Florea, I; Moldovan, S; Ersen, O; Begin, D; Grenèche, J-M; Lemonnier, S; Barraud, E; Begin-Colin, S

    2017-01-07

    Magnetic porous nanostructures consisting of oriented aggregates of iron oxide nanocrystals display very interesting properties such as a lower oxidation state of magnetite, and enhanced saturation magnetization in comparison with individual nanoparticles of similar sizes and porosity. However, the formation mechanism of these promising nanostructures is not well understood, which hampers the fine tuning of their magnetic properties, for instance by doping them with other elements. Therefore the formation mechanism of porous raspberry shaped nanostructures (RSNs) synthesized by a one-pot polyol solvothermal method has been investigated in detail from the early stages by using a wide panel of characterization techniques, and especially by performing original in situ HR-TEM studies in temperature. A time-resolved study showed the intermediate formation of an amorphous iron alkoxide phase with a plate-like lamellar structure (PLS). Then, the fine investigation of PLS transformation upon heating up to 500 °C confirmed that the synthesis of RSNs involves two iron precursors: the starting one (hydrated iron chlorides) and the in situ formed iron alkoxide precursor which decomposes with time and heating and contributes to the growth step of nanostructures. Such an understanding of the formation mechanism of RSNs is necessary to envision efficient and rational enhancement of their magnetic properties.

  2. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  3. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    phenanthroline and iron(III) 2,2′-bipyridyl oxidize methionine to sulphoxide, oxidation with the former oxidant is much faster compared to the latter. This is because of the higher oxidation potential of the iron(III)–phenanthroline complex compared to the iron(III)–2,2′-bipyridyl. Hence the intimate mechanism of oxidation of ...

  4. Interactions of silica with iron oxides: Effects on oxide transformations and sorption properties

    International Nuclear Information System (INIS)

    Taylor, P.

    1995-08-01

    This report is a review of the literature on the adsorption of silica species on iron oxides and oxyhydroxides, and its effects on the adsorption of other species and on oxide interconversion reactions. The information is discussed briefly in the contexts of nuclear waste disposal and boiler-water chemistry. (author). 76 refs

  5. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  6. Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties

    Science.gov (United States)

    Ullrich, Aladin; Hohenberger, Stefan; Özden, Ayberk; Horn, Siegfried

    2014-08-01

    We have investigated the synthesis and structural as well as magnetic properties of composite nanoparticles, including core-shell particles, consisting of iron and manganese oxides. The synthesis is based on thermal decomposition of suitable metal oleates in a high boiling solvent. Seed particles are used to avoid homogeneous nucleation and to initiate the formation of heterogeneous systems. The as-synthesized particles were characterized by energy filtered transmission electron microscopy (EFTEM) and SQUID magnetometry. The synthesized nanoparticles had diameters between 10 and 20 nm and consisted of manganese oxide and iron oxide.

  7. Pro-oxidant iron in exhaled breath condensate: a potential excretory mechanism.

    Science.gov (United States)

    Mumby, S; Chung, K F; McCreanor, J E; Moloney, E D; Griffiths, M J D; Quinlan, G J

    2011-09-01

    Pro-oxidant iron provides a potential measure of iron-catalysed oxidative stress in biological fluids. This study aimed, to investigate if the Bleomycin technique for measurement of pro-oxidant iron in biological fluids could be utilised for determinations in exhaled breath condensate (EBC). Secondly, to measure levels of pro-oxidant iron in EBC from asthmatics after exposure to polluting city environments. Retrospective analysis of samples of EBC and bronchoalveolar lavage fluid (BALF). Pro-oxidant iron levels were determined by the Bleomycin method. Transferrin levels were determined by radial diffusion immunoassay and lactoferrin by ELISA. Patients undergoing surgery necessitating cardiopulmonary bypass, normal healthy controls, "healthy" smokers, and asthmatics (mild and moderate). Pro-oxidant iron was significantly decreased (ppro-oxidant iron in EBC were significantly (ppro-oxidant iron content post exposure to city environments (ppro-oxidant iron detectable in EBC and paired BALF from patients undergoing cardiopulmonary bypass (pre and post surgery) suggest a potential for EBC determinations. Significantly elevated levels in EBC from smokers relative to control subjects provide further support for this technique. In asthma disease severity and environmental exposure influenced levels of pro-oxidant iron measured in EBC indicating a potential for enhanced iron-catalysed oxidative stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  9. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss...... and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative...... stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part...

  10. Josephson junction in cobalt-doped BaFe2As2 epitaxial thin films on (La,Sr)(Al,Ta)O3 bicrystal substrates

    Science.gov (United States)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2010-04-01

    Josephson junctions were fabricated in epitaxial films of cobalt-doped BaFe2As2 on [001]-tilt (La,Sr)(Al,Ta)O3 bicrystal substrates. 10-μm-wide microbridges spanning a 30°-tilted bicrystal grain boundary (BGB bridge) exhibited resistively-shunted-junction (RSJ)-like current-voltage characteristics up to 17 K, and the critical current was suppressed remarkably by a magnetic field. Microbridges without a BGB did not show the RSJ-like behavior, and their critical current densities were 20 times larger than those of BGB bridges, confirming BGB bridges display a Josephson effect originating from weakly-linked BGB.

  11. Iron oxide and iron carbide particles produced by the polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y., E-mail: yyasu@rs.kagu.tus.ac.jp; Shimizu, R. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan)

    2016-12-15

    Iron oxide (γ-Fe{sub 2}O{sub 3}) and iron carbide (Fe{sub 3}C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe {sub 2}O{sub 3}. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe{sub 3}C and α-Fe with various sizes.

  12. Iron oxide and iron carbide particles produced by the polyol method

    Science.gov (United States)

    Yamada, Y.; Shimizu, R.; Kobayashi, Y.

    2016-12-01

    Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.

  13. Electrochemical oxidation of pharmaceutical effluent using cast iron electrode.

    Science.gov (United States)

    Abhijit, Deshpande; Lokesh, K S; Bejankiwar, R S; Gowda, T P H

    2005-01-01

    Electrochemical oxidation of low (BOD/COD) ratio pharmaceutical wastewater was investigated in this study, using cast iron electrode. The batch experimental results were assessed in terms of COD and BOD concentration while the recalcitrance was monitored in terms of change in the (BOD/COD) ratio during the process. The effects of operating parameters like pH, electrolysis duration and current density were studied on the treatment efficiency and their operating ranges were experimentally determined. The efficiency and energy consumption of anode were estimated. Cast iron electrode has been found to be effective in removing 72% COD after 2hours of electrolysis. In particular, it was found that the (BOD/COD) ratio had improved from 0.18 to 0.3 after 120 min. of electrolysis indicating improvement of biodegradability of wastewater. It has been found, the pharmaceutical wastewater could be effectively pretreated by anodic oxidation.

  14. Synthesis, Characterization, and Cytotoxicity of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Kanagesan

    2013-01-01

    Full Text Available In order to study the response of human breast cancer cells' exposure to nanoparticle, iron oxide (α-Fe2O3 nanoparticles were synthesized by a simple low temperature combustion method using Fe(NO33·9H2O as raw material. X-ray diffraction studies confirmed that the resultant powders are pure α-Fe2O3. Transmission electron microscopy study revealed the spherical shape of the primary particles, and the size of the iron oxide nanoparticles is in the range of 19 nm. The magnetic hysteresis loops demonstrated that the sample exposed ferromagnetic behaviors with a relatively low coercivity. The cytotoxicity of α-Fe2O3 nanoparticle was also evaluated on human breast cancer cells to address the current deficient knowledge of cellular response to nanoparticle exposure.

  15. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    Science.gov (United States)

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  16. Iron oxide-enhanced MR lymphography: initial experience

    International Nuclear Information System (INIS)

    Bellin, Marie-France; Beigelman, Catherine; Precetti-Morel, Sophie

    2000-01-01

    The detection of nodal metastases is of utmost importance in oncologic imaging. Ultrasmall superparamagnetic iron oxide particles (USPIO) are novel contrast agents specifically developed for MR lymphography. After intravenous administration, they are taken up by the macrophages of the lymph nodes, where they accumulate. They reduce the signal intensity (SI) of normally functioning nodes on postcontrast T2-and T2*-weighted images through the magnetic susceptibility effects on iron oxide. Metastatic nodes, in which macrophages are replaced by tumor cells, show no significant change in SI on postcontrast T2-and T2*-weighted images. Early clinical experience suggests that USPIO-enhanced MR lymphography improves the sensitivity and specificity for the detection of nodal metastases. It also suggests that micrometastases could be detected in normal-sized nodes. This article reviews the physiochemical properties of USPIO contrast agents, their enhancement patterns, and early clinical experience

  17. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  18. Removal of water contaminants by iron oxide nanomaterials.

    Science.gov (United States)

    Saharan, Priya; Chaudhary, Ganga Ram; Mehta, S K; Umar, Ahmad

    2014-01-01

    In recent years, there has been increasing concern about the usage of a broad range of organic substances, heavy metals and aromatic compounds in the aquatic environment due to their wide distribution and potential adverse health effects. The presence of toxic contaminants in water effluent, even at very low concentrations, is extremely harmful and undesirable. Various treatment processes have been investigated to reduce these toxic pollutants from wastewater. Because of the chemical stability of the contaminants, these technologies have proved to be ineffective for handling waste effluents. Nanotechnology offers the possibility of efficient removal of pollutants as nanoparticles have a smaller size and higher adsorptive surface area. From the past few years, nanoscale iron oxides such as magnetite, maghemite, and hematite have been used for the separation and removal of organic and inorganic contaminants. In this review we summarize the use of iron oxide nanomaterials performed over the last few years for the removal of dyes, heavy metals and aromatic compounds.

  19. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  20. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  1. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    Directory of Open Access Journals (Sweden)

    Wahajuddin

    2012-07-01

    Full Text Available Wahajuddin,1,2 Sumit Arora21Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Rae Bareli, IndiaAbstract: A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite or Fe3O4 (magnetite particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to

  2. Liquid Plasma Synthesis of Carbon Coated Iron Oxide Particles

    Science.gov (United States)

    Uygun, Aysegul; Hershkowitz, Noah; Eren, Esin; Uygun, Emre; Celik Cogal, Gamze; Yurdabak Karaca, Gozde; Manolache, Sorin; Sundaram, Gunasekaran; Sadak, Omer; Oksuz, Lutfi

    2017-10-01

    Recently, magnetic metal or metal oxide nanoparticles encapsulated in carbon are important in biomedical applications. The relevant reason to study toxicity of the magnetic nanoparticles coated by carbon is that they have great potential to contribute to cancer treatment. In this work, the synthesis of iron oxide nano-particles coated by graphitic carbon shells using pulsed plasma in liquid method. Short duration of RF plasma discharge, low electrical energy and fast quenching of the surrounding media can let to synthesize various kinds of pure nanoparticles. Corresponding author: ayseguluygun@sdu.edu.tr, lutfioksuz@sdu.edu.tr.

  3. Linear-chain assemblies of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    2017-07-01

    Highlights: • Hydrothermal synthesis of pure phase 200 nm Fe{sub 3}O{sub 4} nanoparticles. • Studies of linear-chain assemblies of iron oxide nanosphere by FESEM. • Micromagnetic simulations showed the presence of 3D vortex states. • The B.E. for different numbers of particles in linear chain assemblies were calculated. - Abstract: We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  4. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  5. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  6. Prominent occurrence of iron oxides at KTB mass extinction: a review

    African Journals Online (AJOL)

    The iron oxide/oxyhydroxide and iron minerals such as illite, phyllosilicate, jarosite etc. present in the rock samples from KTB form a major part. One can study different phases of iron oxide/oxyhydroxide present in the KTB samples with the help of Mössbauer spectroscopy. The Mössbauer studies showed that at KTB sites ...

  7. Distribution and diversity of gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh

    NARCIS (Netherlands)

    Wang, J.; Vollrath, S.; Behrends, T.; Bodelier, P.L.E.; Muyzer, G.; Den Oudsten, F.; Meima-Franke, M.; Cappellen, P.; Laanbroek, H.J.

    2011-01-01

    Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal

  8. Distribution and diversity of Gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh

    NARCIS (Netherlands)

    Wang, J.; Vollrath, S.; Behrends, T.; Bodelier, P.L.E.; Muyzer, G.; Meima-Franke, M.; den Oudsten, F.; van Cappellen, P.; Laanbroek, H.J.

    2011-01-01

    Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal

  9. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  10. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  11. Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming, E-mail: tmwu@dragon.nchu.edu.tw

    2015-01-15

    This work describes the preparation and characterization of polyvinylidene fluoride (PVDF)/iron oxide composites fabricated from monodispersed 6 nm iron oxide nanoparticles in the crystalline form of magnetite (Fe{sub 3}O{sub 4}) and polyvinylidene fluoride in a mixed solvent system (THF/DMF) through the solution mixing technique. Structural analysis using transmission electron microscopy shows that the 6 nm iron oxide nanoparticles are uniformly distributed in PVDF matrix. The piezoelectric responses of PVDF/iron oxide composites are extensively increased about five times in magnitude with applied electrical field poling at 35 MV/m. Mechanical properties of the fabricated 2 wt% PVDF/iron oxide composites measured by dynamic mechanical analysis indicate significant enhancements in the storage modulus when compared to that of neat PVDF. The incorporation of 2 wt% iron oxide nanoparticles into the PVDF matrix improves the thermal stability about 28 °C as compared to that of PVDF. The effect of iron oxide on the isothermal degradation behavior of PVDF is also investigated. - Highlights: • A new PVDF/iron oxide composite were synthesized for electroactive usages. • Thermal properties of composite have improved as the contents of iron oxide increase. • Piezoelectric property of composite increases with increasing content of iron oxide. • Piezoelectric responses of composite enhance notably with applying electrical field.

  12. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  13. Oxidation of phenolic acids by soil iron and manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90, and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.

  14. Mercury removal in wastewater by iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Vélez, E; Campillo, G E; Morales, G; Hincapié, C; Osorio, J; Arnache, O; Uribe, J I; Jaramillo, F

    2016-01-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λ max ∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements. (paper)

  15. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  16. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  17. Synthesis and Reactive Properties of Iron Oxide-Coated Nanoaluminum

    Science.gov (United States)

    Kaplowitz, Daniel A.; Jian, Guoqiang; Gaskell, Karen; Jacob, Rohit; Zachariah, Michael R.

    2014-04-01

    A homogeneous coating of Fe3O4 on in situ-generated nanoaluminum was accomplished by thermal decomposition of Fe(CO)5 in an aluminum aerosol stream and subsequent oxidation of iron by air bleed. X-ray photoelectron spectroscopy (XPS) investigation revealed that oxygen penetrated through this coating, and Fe3O4 facilitated the formation of an expanded aluminum oxide layer compared to an uncoated aluminum case. Closed cell combustion tests displayed a minor decrease in pressure response for the coated product, which was attributed to the increased aluminum oxide layer. The critical ignition temperature was reduced for the coated product in T-jump fine-wire combustion tests.

  18. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  19. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  20. Preparation and characterization of iron oxide and hydroxide based nanomaterials

    Science.gov (United States)

    Carbajal Franco, Guillermo

    Iron (Fe) oxides and hydroxides are common and abundant materials. They exhibit diverse crystal structures, properties and phenomena by virtue of which they find a wide range of scientific and technological applications. Controlled growth and manipulation of the specific structure and electronic behavior to meet the requirements of a given application is a challenging problem in view of many possible phases and composition of the resulting materials. The preparation method and experimental conditions will, therefore, significantly affect the properties and performance of Fe oxides and hydroxides. The goal of the project is to obtain Fe-based oxide/hydroxide catalytic materials and to derive a comprehensive understanding of the microstructure and electronic properties. The obvious relevance of the work it to optimize conditions to produce high quality Fe- based nanomaterials capable of dissociating the water molecules and produce hydrogen. The present approach to synthesize Fe oxides and hydroxides is based on a chemical route involving Fe-containing compounds. First step involved is the precipitation of Fe hydroxide/oxide particles from iron salts in an aqueous and non-aqueous media. The resultant precipitates consist of agglomerated nanoparticles. The size of the resulting Fe oxide and hydroxide nanoparticle depends on the concentration of the original solutions. After precipitation, a weak organic acid is added to obtain different concentrations. The samples were obtained at different intervals of time. Structure modification and dispersion of nanoparticles have been achieved and correlated with the concentration of the organic acid. It is demonstrated that the microstructure can be controlled in order to tune the materials' electronic behavior. In addition, the incorporation of various metal ions into the host matrix is explored in order to control the structure and electronic properties. The results are presented and discussed in detail in this dissertation.

  1. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    Science.gov (United States)

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  2. New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions

    Directory of Open Access Journals (Sweden)

    Daily Rodríguez-Padrón

    2017-09-01

    Full Text Available Polysaccharides from natural sources and iron precursors were applied to develop new bio-nanocomposites by mechanochemical milling processes. The proposed methodology was demonstrated to be advantageous in comparison with other protocols for the synthesis of iron oxide based nanostructures. Additionally, mechanochemistry has enormous potential from an environmental point-of-view since it is able to reduce solvent issues in chemical syntheses. The catalytic activity of the obtained nanocatalysts was investigated in both the oxidation of benzyl alcohol to benzaldehyde and in the alkylation of toluene with benzyl chloride. The microwave-assisted oxidation of benzyl alcohol reached 45% conversion after 10 min. The conversion of the alkylation of toluene in both microwave-assisted and conventional heating methods was higher than 99% after 3 min and 30 min, respectively. The transformation of benzyl alcohol and toluene into valuable product in both the oxidation and alkylation reaction reveals a potential method for the valorization of lignocellulosic biomass.

  3. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  4. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

    Directory of Open Access Journals (Sweden)

    Jacek Wojnarowicz

    2015-09-01

    Full Text Available Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999% and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD, helium pycnometry density, specific surface area (SSA, inductively coupled plasma optical emission spectrometry (ICP-OES, extended X-ray absorption fine structure (EXAFS spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS and with magnetometry using superconducting quantum interference device (SQUID. Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.

  5. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy); Lovaglio, T.; Galasso, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S di Potenza, Zona Industriale di Tito, 85050 Tito Scalo (PZ) (Italy); Teghil, R. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy)

    2015-10-30

    Highlights: • Laser ablation of a iron target in water and acetone performed by an ultra-short laser source has been reported. • The size distributions of the obtained nanoparticles have been related to the ablation dynamics. • The formation of a graphitic shell prevents the oxidation of the iron nanoparticles. - Abstract: Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium.

  6. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

    International Nuclear Information System (INIS)

    De Bonis, A.; Lovaglio, T.; Galasso, A.; Santagata, A.; Teghil, R.

    2015-01-01

    Highlights: • Laser ablation of a iron target in water and acetone performed by an ultra-short laser source has been reported. • The size distributions of the obtained nanoparticles have been related to the ablation dynamics. • The formation of a graphitic shell prevents the oxidation of the iron nanoparticles. - Abstract: Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium.

  7. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  8. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  9. Small-angle neutron scattering investigations of Co-doped iron oxide nanoparticles. Preliminary results

    Science.gov (United States)

    Creanga, Dorina; Balasoiu, Maria; Soloviov, Dmitro; Balasoiu-Gaina, Alexandra-Maria; Puscasu, Emil; Lupu, Nicoleta; Stan, Cristina

    2018-03-01

    Preliminary small-angle neutron scattering investigations on aqueous suspensions of several cobalt doped ferrites (CoxFe3-xO4, x=0; 0.5; 1) nanoparticles prepared by chemical co-precipitation method, are reported. The measurements were accomplished at the YuMO instrument in function at the IBR-2 reactor. Results of intermediary data treatment are presented and discussed.

  10. Greenlighting Photoelectrochemical Oxidation of Water by Iron Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Riha, Shannon C.; DeMarco, Erica J.; Martinson, Alex B. F.; Farha, Omar K.; Hupp, Joseph T.

    2014-12-23

    Hematite (alpha-Fe2O3) is one of just a few candidate electrode materials that possess all of the following photocatalyst-essential properties for scalable application to water oxidation: excellent stability, earth-abundance, suitability positive valence-band-edge energy, and significant visible light absorptivity. Despite these merits, hematites modest oxygen evolution reaction kinetics and its poor efficiency in delivering photogenerated holes, especially holes generated by green photons, to the electrode/solution interface, render it ineffective as a practical water-splitting catalyst. Here we show that hole delivery and catalytic utilization can be substantially improved through Ti alloying, provided that the alloyed material is present in ultrathin-thin-film form. Notably, the effects are most pronounced for charges photogenerated by photons with energy comparable to the band gap for excitation of Fe(3d) -> Fe(3d) transitions (i.e., green photons). Additionally, at the optimum Ti substitution level the lifetimes of surface-localized holes, competent for water oxidation, are extended. Together these changes explain an overall improvement in photoelectrochemical performance, especially enhanced internal quantum efficiencies, observed upon Ti(IV) incorporation.

  11. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Sorption of trace amounts of gallium (III) on iron (III) oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied. (orig.) [de

  13. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    Directory of Open Access Journals (Sweden)

    Meng Meng Lin

    2010-02-01

    Full Text Available Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. Meng Meng Lin received a BSc in biotechnology at the University of Hong Kong, China in 2004 and an MSc in biomedical nanotechnology at Newcastle University, UK, in 2005. She is currently working toward her PhD at the Institute of Science and Technology in Medicine, Keele University, UK. She was a visiting student at the Royal Institute of Technology, Sweden, in 2006. Her research interests include nanoparticles preparation, cell/nanomaterials interface, and cancer-oriented drug delivery. Hyung-Hwan Kim received an MSc degree in

  14. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Czech Academy of Sciences Publication Activity Database

    Luňáček, J.; Životský, O.; Jirásková, Yvonna; Buršík, Jiří; Janoš, P.

    2016-01-01

    Roč. 120, OCT (2016), s. 295-303 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Oxide-nano- composite s * Mössbauer spectroscopy * TEM * Cerium oxide * Magnetic parameters Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.714, year: 2016

  15. Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Velinov, N.; Kormunda, M.; Dimitrov, M.; Paneva, D.; Slušná, Michaela; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 81, JUN (2016), s. 14-19 ISSN 1566-7367 R&D Projects: GA MŠk LM2015073 Institutional support: RVO:61388980 Keywords : Titania–hafnia binary oxides * Iron modifications * Support effect * Ethyl acetate oxydation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.330, year: 2016

  16. Iron (II) ions induced oxidation of ascorbic acid and glucose.

    Science.gov (United States)

    Mlakar, A; Batna, A; Dudda, A; Spiteller, G

    1996-12-01

    Lipid peroxidation (LPO) of polyunsaturated fatty acids (PUFAs) is suspected to be involved in the generation of chronic diseases. A model reaction for LPO is the air oxidation of PUFAs initiated by Fe2+ and ascorbic acid. In the course of such model reactions glycolaldehyde (GLA) was detected as main aldehydic product. Since it is difficult to explain the generat on of GLA by oxidation of PUFAs, it was suspected that GLA might be derived by oxidation of ascorbic acid. This assumption was verified by treatment of ascorbic acid with Fe2+. Produced aldehydic compounds were trapped by addition of pentafluorobenzylhydroxylamine hydrochloride (PFBHA-HCl), trimethylsilylated and finally identified by gas chromatography/mass spectronetry (GC/MS). Oxidation of ascorbic acid with O2 in presence of iron ions produced not only glycolaldehyde (GLA), but also glyceraldehyde (GA), dihydroxyacetone (DA) and formaldehyde. Glyoxal (GO) and malondialdehyde (MDA) were detected as trace compounds. The yield of the aldehydic compounds was increased by addition of lipid hydroperoxides (LOOH) or H2O2. The buffer influenced the reaction considerably: Iron ions react with Tris buffer by producing dihydroxyacetone (DA). Since ascorbic acid is present in biological systems and Fe2+ ions are obviously generated by cell damaging processes, the production of GLA and other aldehydic components might add to the damaging effects of LPO. Glucose suffers also oxidation to short-chain aldehydic compounds in aqueous solution, but this reaction requires addition of equimolar amounts of Fe2+ together with equimolar amounts of H2O2 or 13-hydroperoxy -9-cis-11-trans-octadecadienoic acid (13-HPODE). Therefore this reaction, also influenced by the buffer system, seems to be not of biological relevance.

  17. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  18. Radiation induced synthesis of gold/iron-oxide composite nanoparticles using high-energy electron beam

    International Nuclear Information System (INIS)

    Seino, Satoshi; Kinoshita, Takuya; Nakagawa, Takashi; Kojima, Takao; Taniguci, Ryoichi; Okuda, Shuichi; Yamamoto, Takao A.

    2008-01-01

    Composite nanoparticles consisting of gold and iron oxide were synthesized in aqueous solution systems by using a high-energy electron beam. The electron irradiation induces radiation-chemical reaction to form metallic gold nanoparticles. These gold nanoparticles were firmly immobilized on the surface of the support iron oxide nanoparticles. Surface of the support iron oxide nanoparticles are almost fully coated with fine gold nanoparticles. The size of these gold nanoparticles depended on the concentrations of gold ions, polymers and iron oxide nanoparticles in the solutions before the irradiation.

  19. Contribution to the study of iron-manganese alloy oxidation in oxygen at high temperatures

    International Nuclear Information System (INIS)

    Olivier, Francoise

    1972-01-01

    This research thesis reports a systematic investigation of the oxidation of three relatively pure iron-manganese alloys in oxygen, under atmospheric pressure, and between 400 and 1000 C, these alloys being annealed as well as work-hardened. It also compares their behaviour with that of non-alloyed iron oxidized under the same conditions. The author describes the experimental techniques and installations, discusses the morphology of oxide films formed under the experimental conditions, discusses the film growth kinetics which is studied by thermogravimetry, proposes interpretations of results, and outlines the influence of manganese addition to iron on iron oxidation

  20. Adsorption of microamounts of ruthenium on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1987-01-01

    The adsorption of Ru on amorphous Fe(OH) 3 , α-Fe 2 O 3 and Fe 3 O 4 was measured as a function of the pH and the time of aging. The adsorption of Ru increases markedly in the 3-5.5 pH range. At higher pH values α-Fe 2 O 3 shows different behaviour with respect to Ru adsorption. The influence of EDTA, citrate and oxalate on the adsorption of Ru on Fe 3 O 4 was investigated. Possible mechanisms of the adsorption of Ru on hydrous iron oxides are discussed. (author)

  1. Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maarten Bloemen

    2014-02-01

    Full Text Available Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. Its magnetic and magneto-optical properties were investigated by vibrating sample magnetometry and Faraday rotation measurements. The luminescent characteristics of the material, in solution and incorporated in a polymer thin film, were probed by fluorescence experiments.

  2. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Falk, Matthias

    2007-01-01

    Lithium niobate crystals (LiNbO 3 ) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO 3 crystals this treatment leads to a nearly complete oxidization from Fe 2+ to Fe 3+ indicated by the disappearance of the absorption caused by Fe 2+ . During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe 2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10 -6 for oxidized crystals whereas it is about 10 -1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe 2+ . A microscopic shock-wave model is developed that explains the observed absorption front by

  3. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully......, neutrophilic iron oxidizers were present at the level of up to 7 105 cells per gram sediment. The spatial abundance and diversity of FeOB inferred by DGGE fingerprinting differed greatly both between and within individual sand filters. The results suggest a larger than assumed role of FeOB in iron removal...... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  4. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    Science.gov (United States)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  5. Morphology and phase control of iron oxide polymorph nanoparticles

    Science.gov (United States)

    Cui, Hongtao; Wang, Li; Shi, Min; Li, Yanhong

    2017-04-01

    In this work, lepidocrocite (γ-FeOOH) nanobundles were prepared by a facile NH4F assisted epoxide precipitation route. The reactions between epoxide and [Fe(H2O)6]2+ promoted the hydrolysis and condensation of [Fe(H2O)6]2+, resulting in the formation of iron oxyhydroxide. After calcination of γ-FeOOH nanobundles at 400 °C, the produced α-Fe2O3 still kept the bundle morphology. Due to the unique chemistry of epoxide, the morphology and phase of iron oxide polymorph nanoparticles (goethite, akaganeite, lepidocrocite, magnetite) were well-controlled through controlling reaction conditions such as Fe2+ concentration, NH4F additive and reaction temperature. It is particularly interesting that NH4F working as phase controlling agent is able to control the phase development of iron oxyhydroxides. This phase control effect of NH4F is attributed to the promoted reaction rate of epoxide originating from the higher electronegativity of fluoride ions than chloride ions. Based on the results in this work and our other preliminary works, it is considered that this route can be used as a general strategy for controlling the morphology and phase of transition element compounds.

  6. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture

    Science.gov (United States)

    Javed, Yasir; Akhtar, Kanwal; Anwar, Hafeez; Jamil, Yasir

    2017-11-01

    Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs. [Figure not available: see fulltext.

  7. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...

  8. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    Science.gov (United States)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  9. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  10. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  11. Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes

    Directory of Open Access Journals (Sweden)

    Lin Chee-Cheng

    2009-01-01

    Full Text Available Abstract Iron fatty acid complexes (IFACs are prepared via the dissolution of porous hematite powder in hot unsaturated fatty acid. The IFACs are then decomposed in five different organic solvents under reflux conditions in the presence of the respective fatty acid. The XRD analysis results indicate that the resulting NPs comprise a mixture of wustite, magnetite, and maghemite phases. The solvents with a higher boiling point prompt the formation of larger NPs containing wustite as the major component, while those with a lower boiling point produce smaller NPs with maghemite as the major component. In addition, it is shown that unstable NPs with a mixed wustite–magnetite composition can be oxidized to pure maghemite by extending the reaction time or using an oxidizing agent.

  12. Effects of Small Additions of Copper and Copper + Nickel on the Oxidation Behavior of Iron

    Science.gov (United States)

    Webler, Bryan; Yin, Lan; Sridhar, Seetharaman

    2008-10-01

    This study was undertaken to investigate the effect of small amounts of copper and copper + nickel additions on the oxidation rate and oxide/metal interface microstructure of iron. Three iron-based alloys were compared: 0.3 wt pct copper, 0.3 wt pct copper-0.1 wt pct nickel, and 0.3 wt pct copper-0.05 wt pct nickel. Alloy samples were oxidized in air at 1150 °C for 60, 300, and 600 seconds. Pure iron oxidized for 300 seconds was used as a reference material. The parabolic oxidation rate for the iron-copper alloy did not differ from that of pure iron, but the parabolic rate for the nickel-containing alloys decreased by a factor of 2. The microstructure of the iron-copper alloy consisted of a thin, copper-rich layer at the oxide/metal interface. Both nickel-containing alloys had perturbed oxide/metal interfaces consisting of alternating solid/liquid regions. The application of ternary alloy interface stability theories show that the perturbed interfaces arise from unequal diffusivities in the solid γ-iron phase. It is suggested that this perturbed interface microstructure causes the observed decrease in oxidation rate, by limiting the iron supply to the oxide.

  13. Iron oxide nanoparticles for magnetically assisted patterned coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Gianina; Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Draganescu, Dan; Popa, Marcel I.

    2015-08-15

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe{sub 3}O{sub 4} particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe{sup 3+}/Fe{sup 2+} ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5–5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings. - Highlights: • Magnetite nanoparticles bearing variable hydrophobic functionality were synthesized. • Partial oxidation in alkaline solution is proved to be the optimum synthesis method. • Nanoparticle assembly in magnetic field produced films with hierarchical roughness. • Coating patterning is controlled by surfactant nature and magnetic field strength. • Possible applications in composite films with ice-phobic properties are suggested.

  14. Iron induced RNA-oxidation in the general population and in mouse tissue

    DEFF Research Database (Denmark)

    Cejvanovic, Vanja; Kjær, Laura Kofoed; Bergholdt, Helle Kirstine Mørup

    2018-01-01

    Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overload......, which have led us to test the hypothesis that high iron status, assessed by iron biomarkers and genetic disposition, increases urinary excretion of 8-oxoGuo. In a general Danish population study we used a Mendelian randomization design with HFE genotypes as a proxy for iron status and supplemented...

  15. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    Science.gov (United States)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell culture media at concentrations of 0.25 mg Fe/mL and 1.0 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for 72 hours. Extracellular iron was then removed and cells were irradiated at either 662 keV or 10 MV. At the 0.25 mg Fe/mL dose (4 pg Fe/cell), radiation energy did not affect the level of cytotoxicity. However with 1.0 mg Fe/mL (9 pg Fe/cell), the higher 10 MV radiation energy resulted in 50% greater cytotoxicity as compared to cells without IONPs irradiated at this energy. These results suggest IONPs may be able to significantly enhance the cytotoxic effects of radiation and improve therapeutic ratio if they can be selectively associated with cancer cells and/or tumors. Ongoing in vivo studies of IONP radiation enhancement in a murine tumor model are too immature to draw conclusions from at this time, however preliminary data suggests similar effectiveness of IONP radiation enhancement at 6 MV and 18 MV energy levels. In addition to the IONP-based radiation enhancement demonstrated here, the use of tumor-localized IONP with an externally delivered, non-toxic alternating magnetic field affords the opportunity to selectively heat and kill tumor cells. Combining IONP-based radiation sensitization and heat-based cytotoxicity provides a unique and potentially highly effective opportunity for therapeutic ratio enhancement.

  16. Potential for microbial oxidation of ferrous iron in basaltic glass.

    Science.gov (United States)

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  17. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, G.; Ennaoui, A.; Fiechter, S.; Tributsch, H.; Hofmann, W.K.; Birkholz, M. (Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Solare Energetik Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Materialforschung); Kautek, W. (Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany, F.R.))

    1990-03-01

    Photoactive iron pyrite (FeS{sub 2}) thin film layers have been synthesized by a simple method involving the reaction of Fe{sub 3}O{sub 4} or Fe{sub 2}O{sub 3} with elemental sulfur. The films were formed on a variety of different substrate materials by converting or sulfurizing iron oxide layers. The subsequent sulfur treatment of the oxide layers consisted of exposure of the films to gaseous sulfur in open or closed ampules at 350degC for 0.5-2 h. The morphology, composition and photoactivity of the films produced were checked using X-ray diffraction, X-ray photoelectron spectroscopy (ESCA), optical absorption, steady state and transient photoconductivity. The best films showed good crystallinity and purity with concurrent photoconductivity and photoelectrochemical response. The ability of this technique to produce photoactive material can be explained by interpretation of the Gibbs ternary phase diagram for the Fe-O-S system, and may be related to the production of photoactive pyrite in nature. A discussion is made as to the future improvement of the solar cell response by proper optimization of geometric and configurational properties. (orig.).

  18. Kinetic analysis of the reduction of zinc and iron oxides from dust and slurry

    OpenAIRE

    Melamud, S. G.; Mal'tsev, V. A.; Yur'ev, B. P.

    2013-01-01

    The reduction of zinc and iron oxides from blast-furnace slurry and gas-purification dust at steel furnaces by heating with carbon is studied in physicochemical terms. Kinetic analysis reveals the optimal parameters of furnace reduction. Initial data are obtained for the development of a reduction technology for zinc and iron oxides. © 2013 Allerton Press, Inc.

  19. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    The nano iron oxides have been synthesized by almost all the known wet chemical methods which include precipitation at ambient/elevated temperatures, surfactant mediation, emulsion/micro-emulsion, electro-deposition etc. Iron oxides in nano-scale have exhibited great potential for their applications as catalytic ...

  20. HREM investigation of the constitution and the crystallography of thin thermal oxide layers on iron

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.

    1997-01-01

    Oxide layers formed at 573 K in O2 at atmospheric pressure, both on a clean iron surface and on an iron surface covered with an etching induced (hydro)oxide film, were investigated with high-resolution transmission electron microscopy (HREM). Cross-sections of oxidised samples were prepared by a ...

  1. Revealing the interparticle magnetic interactions of iron oxide nanoparticles-carbon nanotubes hybrid materials

    NARCIS (Netherlands)

    Douvalis, A.P.; Georgakilas, V.; Tsoufis, T.; Gournis, D.; Kooi, B.; Bakas, T.

    2010-01-01

    Spinel iron oxide nanoparticles capped with organic molecules have been successfully prepared and used to produce iron oxide nanoparticles-single wall carbon nanotubes hybrid materials, which were characterized by a number of experimental techniques. The nanoparticles in both samples have an average

  2. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  3. Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles

    Science.gov (United States)

    Bhargava, Arpit; Jain, Navin; Barathi L., Manju; Akhtar, Mohd. Sayeed; Yun, Yeoung-Sang; Panwar, Jitendra

    2013-11-01

    In the present study, extracellular synthesis of iron oxide nanoparticles (IONPs) was achieved using Aspergillus japonicus isolate AJP01. The isolate demonstrated its ability to hydrolyze the precursor salt solution, a mixture of iron cyanide complexes, under ambient conditions. Hydrolysis of these complexes released ferric and ferrous ions, which underwent protein-mediated coprecipitation and controlled nucleation resulting in the formation of IONPs. Transmission electron microscopy, selected area electron diffraction pattern, energy dispersive spectroscopy and grazing incidence X-ray diffraction analysis confirmed the mycosynthesis of IONPs. The synthesized particles were cubic in shape with a size range of 60-70 nm with crystal structure corresponding to magnetite. Scanning electron microscopy analysis revealed the absence of IONPs on fungal biomass surface, indicating the extracellular nature of synthesis. Fourier transform infrared spectroscopy confirmed the presence of proteins on as-synthesised IONPs, which may confer their stability. Preliminary investigation indicated the role of proteins in the synthesis and stabilization of IONPs. On the basis of present findings, a probable mechanism for synthesis of IONPs is suggested. The simplicity and versatility of the present approach can be utilized for the synthesis of other nanomaterials.

  4. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  5. Super paramagnetic iron oxide nanoparticle modified mancozeb imprinted polymer

    Science.gov (United States)

    Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    An electrochemical sensor for detection of mancozeb from soil and vegetable sample using molecularly imprinted star polymer modified with iron oxide nanoparticles (SPIONs) is described in this work. We have prepared SPIONS by hydrothermal method and modified with vinyl silane to introduce double bond at their surface. The vinyl group modified SPIONs were used to form mancozeb imprinted star polymer (ISP). The ISPs have specific recognition ability high adsorption capacity towards their template molecule and could be easily extracted from complex matrices using a simple magnet. The prepared polymer was well characterized by field emissive scanning electron microscopy (FE-SEM). Under the optimum condition, the prepared sensor shows good response for mancozeb in the range of 5.96 to 222.39 µg L-1 (detection limit=0.98 µg L-1). The proposed sensors have highly selective for detection of mancozeb in soil and vegetable samples also.

  6. On the Simultaneous Iron Oxide Reduction and Carburization Kinetics

    Science.gov (United States)

    D'Abreu, Jose Carlos; Kohler, Helio Marques; Falero, Edelink Efrain Tinoco; Otaviano, Mauricio Marcos

    Nowadays the most important Direct Reduction — DR processes in shaft furnaces has to deal with carbon fines precipitation and DRI carburization issues. Based in a cooperative research program joining Catholic University (PUC-Rio) and SAMARCO Mining Co, a project dealing with pellets reduction and those two phenomena was established. This work analyzes kinetically the three reactions mentioned before, considering typical values for the operational variables temperature, flowrate, pressure and gas composition, parameters commonly used to control the DRI formation in the Reduction Zone — RZ of the shaft furnaces. From laboratories experimental results, the kinetic equations for those reactions were established and, using the superposition principle, generated a specific global kinetic model for the iron oxide reduction and the soot formation. Finally, using those experimental results and applying a planned statistical factorial analysis for the experiments, the numerical coefficients for each equation were calculated and the correlation factor determined for the proposed global kinetic equation.

  7. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  8. Heterobifunctional PEG Ligands for Bioconjugation Reactions on Iron Oxide Nanoparticles

    Science.gov (United States)

    Bloemen, Maarten; Van Stappen, Thomas; Willot, Pieter; Lammertyn, Jeroen; Koeckelberghs, Guy; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2014-01-01

    Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability and advanced functionality is crucial. PMID:25275378

  9. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  10. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy

    Science.gov (United States)

    Tuchina, Elena S.; Kozina, Kristina V.; Shelest, Nikita A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2014-03-01

    The main goal of this study was to investigate the sensitivity of microorganisms to combined action of blue light and iron oxide nanoparticles. Two strains of Staphylococcus aureus - methicillin-sensitive and meticillin-resistant were used. As a blue light source LED with spectral maximum at 405 nm was taken. The light exposure was ranged from 5 to 30 min. The Fe2O3 (diameter ˜27 nm), Fe3O4 nanoparticles (diameter ˜19 nm), and composite Fe2O3/TiO2 nanoparticles (diameter ˜100 nm) were synthesized. It was shown that irradiation by blue light caused from 20% to 88% decrease in the number of microorganisms treated with nanoparticles. Morphological changes in bacterial cells after phototreatment were analyzed using scanning electron microscope.

  11. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  12. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  13. Iron sulfide oxidation and the chemistry of acid generation

    Science.gov (United States)

    Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.

    1988-06-01

    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2- increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2- activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2- activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2- activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).

  14. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

    NARCIS (Netherlands)

    Ionescu, Danny; Heim, Christine; Polerecky, L.; Thiel, Volker; de Beer, Dirk

    2015-01-01

    Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At

  15. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  17. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    Science.gov (United States)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  18. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  19. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload

    Energy Technology Data Exchange (ETDEWEB)

    Pardo Andreu, G.L. [Centro de Quimica Farmaceutica, Departamento de Investigaciones Biomedicas, Ciudad de La Habana (Cuba); Inada, N.M.; Vercesi, A.E. [Universidade Estadual de Campinas, Departamento de Patologia Clinica, Faculdade de Ciencias Medicas, Campinas, SP (Brazil); Curti, C. [Universidade de Sao Paulo, Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, SP (Brazil)

    2009-01-15

    One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21{+-}4 to 130{+-}7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H{sup +} leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria. (orig.)

  20. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  1. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2013-02-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  2. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  3. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  4. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  6. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    Science.gov (United States)

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  7. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  8. Acicular iron nanoparticles protected against sintering with aluminium oxide

    Directory of Open Access Journals (Sweden)

    Pozas, R.

    2004-08-01

    Full Text Available Acicular iron nanoparticles have been obtained by thermal reduction with hydrogen of a goethite precursor protected against sintering with Al cations, either by doping during the synthesis or by a further coating and the relation between microstructure and magnetic properties of the final Fe particles has been studied in order to evaluate the efficiency of both protecting methods. Uniform goethite and Al-doped goethite precursors were prepared by oxidation with air of FeSO4 solutions, containing Al(NO33 when required, previously precipitated with Na2CO3, while the Al oxide coating on the undoped goethite precursor was carried out by heterocoagulation. In both protecting methods, Al cations were mainly concentrated in the particle outer layers of the goethite precursors and the final iron. Due to this Al enrichment, the growth of iron crystals during the reduction process is minimised resulting Fe particles with improved coercivity and squareness. Nevertheless, the coating procedure seems to be more effective giving rise to the iron particles with the largest coercivity, probably due to a better preservation of the acicular morphology in this case.

    Se han obtenido nanopartículas aciculares de hierro por reducción térmica con hidrógeno de un precursor acicular de goetita que fue protegido frente a la sinterización por la adición de cationes Al mediante dopado durante su síntesis o por recubrimiento posterior, estudiándose la relación entre la microestructura y las propiedades magnéticas de las partículas finales de α-Fe con objeto de evaluar la eficacia de ambos métodos de protección. Los precursores uniformes de goetita y de goetita dopada con Al se prepararon por oxidación con aire de disoluciones de FeSO4 o de FeSO4 y Al(NO33, previamente precipitadas por la adición de Na2CO3, mientras que el recubrimiento con óxido de aluminio sobre las partículas de goetita fue llevado a cabo por un procedimiento de heterocoagulaci

  9. A cast-mold approach to iron oxide and Pt/iron oxide nanocontainers and nanoparticles with a reactive concave surface.

    Science.gov (United States)

    George, Chandramohan; Dorfs, Dirk; Bertoni, Giovanni; Falqui, Andrea; Genovese, Alessandro; Pellegrino, Teresa; Roig, Anna; Quarta, Alessandra; Comparelli, Roberto; Curri, M Lucia; Cingolani, Roberto; Manna, Liberato

    2011-02-23

    We report the synthesis of various iron oxide nanocontainers and Pt-iron oxide nanoparticles based on a cast-mold approach, starting from nanoparticles having a metal core (either Au or AuPt) and an iron oxide shell. Upon annealing, the particles evolve to asymmetric core-shells and then to heterodimers. If iodine is used to leach Au out of these structures, asymmetric core-shells evolve into "nanocontainers", that is, iron oxide nanoparticles enclosing a cavity accessible through nanometer-sized pores, while heterodimers evolve into particles with a concave region. When starting from a metal domain made of AuPt, selective leaching of the Au atoms yields the same iron oxide nanoparticle morphologies but now encasing Pt domains (in their concave region or in their cavity). We found that the concave nanoparticles are capable of destabilizing Au nanocrystals of sizes matching that of the concave region. In addition, for the nanocontainers, we propose two different applications: (i) we demonstrate loading of the cavity region of the nanocontainers with the antitumoral drug cis-platin; and (ii) we show that nanocontainers encasing Pt domains can act as recoverable photocatalysts for the reduction of a model dye.

  10. Sorption of small amounts of europium(III) on iron(III) hydroxide and oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied. (author)

  11. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  12. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    Science.gov (United States)

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  13. Chromium Elimination from Water by use of Iron Oxide Nanoparticles Absorbents

    Directory of Open Access Journals (Sweden)

    S Shokraei

    2014-09-01

    Results: results showed that best absorbent is soil absorbent and iron oxide nanoparticles, with maximum removal percent equal to 96.2%. Also best turnover was obtained from 8837 ppm of primary concentration of heavy metal. In other hand, in other experiments that used from iron oxide nanoparticles, adding of nanoparticles caused to increase in chrome absorption and conversion of Cr6+ to Cr3+. Conclusion: with use of the results of this study can be said that Combining of iron oxide nanoparticles with chrome removal filters can be convert Cr6+ to Cr3+, and process turnover will increased.

  14. Effect of Iron Oxides (Ordinary and Nano and Municipal Solid Waste Compost (MSWC Coated Sulfur on Wheat (Triticum aestivum L. Plant Iron Concentration and Growth

    Directory of Open Access Journals (Sweden)

    S Mazaherinia

    2011-02-01

    Full Text Available Abstract A greenhouse study was conducted to compare the effects of ordinary iron oxide (0.02-0.06 mm and nano iron oxide (25-250 nm and five levels of both iron oxides (0, 0.05, 0.1, 0.5, and 1.0 %w/w and two levels of sulfurous granular compost (MSW (0 and 2% w/w on plant height, spike length, grain weight per spike, total plant dry matter weight and thousands grain weight of wheat. The experimental factors were combined in factorial arrangement in a completely randomized design with 3 replications. Results showed that nano iron oxide was superior over ordinary iron oxide in all parameters studied. Fe concentration, spike length, plant height, grain weight per spike, total plant dry weight and thousands grain weight showed increasing trend per increase in both of iron oxides levels. Also, all parameters studied in sulfurous granular compost (MSW treatment were superior over granular compost without sulfurous (MSW. This increase in all parameters were significantly higher when urban solid waste compost coated with sulfur coupled with nano iron oxide compared to urban sulfurous granular compost (MSW along with ordinary iron oxide. Keywords: Sulfurous granular compost (MSW, Nano and ordinary iron oxides, Wheat

  15. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  16. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    by centrifugation of the clear part of blood after clotting at 3,000g for 15min and kept frozen until required, usually after 24hrs. Determination of serum iron level. The serum iron level was determined spectrophotometrically by the O- phenanthroline method16. Ferrous iron reacts with o-phenonthroline to form an orange-red ...

  17. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  18. Soluble Iron in Alveolar Macrophages Modulates Iron Oxide Particle-Induced Inflammatory Response via Prostaglandin E2 Synthesis

    Science.gov (United States)

    Ambient particulate matter (PM)-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of inflammation by PM-associated soluble metal, we investigated intracellular solubility of radiolabelled iron oxide (59

  19. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System

    Directory of Open Access Journals (Sweden)

    Yong-Sang Kim

    2017-05-01

    Full Text Available The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3 was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.

  20. Synthesis and characterization of diblock copolymer templated iron oxide nanoparticles

    Science.gov (United States)

    Akcora, Pinar

    2005-07-01

    separation and magnetic properties were also investigated. The knowledge gained from understanding the templating mechanism in block copolymer/iron oxide nanocomposites can be applied to other similar systems for a variety of biological and catalyst applications.

  1. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B; Baral, Dinesh

    2015-01-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe 3 O 4 )) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe 3 O 4 and CA-Fe 3 O 4 /ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe 3 O 4 , CA-Fe 3 O 4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe 3 O 4 ) and 189.51 nm (CA-Fe 3 O 4 ) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe 2 O 3 /ITO immunosensor exhibits a good detection range of 12.5–500 ng mL −1 with a low detection limit of 0.32 ng mL −1 , sensitivity 0.03 Ω/ng ml −1 cm −2 , and reproducibility more than 11 times. (paper)

  2. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  3. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully ...... role of FeOB in iron removal at waterworks using RSF technologies....

  4. Aggregation, organic matter, and iron oxide morphology in oxisols from Minas Gerais, Brazil

    NARCIS (Netherlands)

    Muggler, C.C.; Griethuysen, van C.; Buurman, P.; Pape, T.

    1999-01-01

    The characteristic strong aggregation observed in Oxisols is usually attributed to the presence of free aluminium or iron compounds. Previous investigation of Oxisols from Minas Gerais, Brazil, suggested that iron oxide minerals do not necessarily play a role in aggregation. Oxisol profiles

  5. Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland

    NARCIS (Netherlands)

    Wang, J.; Krause, S.; Muyzer, Gerard; Meima-Franke, M.; Laanbroek, H.J.; Bodelier, P.L.E.

    2012-01-01

    Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circum-neutral pH. The latter is

  6. Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland

    NARCIS (Netherlands)

    Wang, J.; Krause, S.; Muyzer, G.; Meima-Franke, M.; Laanbroek, H.J.; Bodelier, P.L.E.

    2012-01-01

    Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is

  7. [Release of iron ions from transferrin under the effect of nitric oxide].

    Science.gov (United States)

    Zhumabaeva, T T; Baĭder, L M; Kuropteva, Z V

    2000-01-01

    The dynamics of EPR signals from the iron-transporting blood protein Fe(3+)-transferrine after the administration of sodium nitrite and metronidazole to animals was studied. It was shown that exogenin nitric oxide produced by nitrocompounds resulted in the release of iron from Fe(3+)-transferrine.

  8. Biological iron(II) oxidation as pre-treatment to limestone neutralisation of acid water

    CSIR Research Space (South Africa)

    Maree, JP

    1998-01-01

    Full Text Available Iron (II) should be oxidised to iron (III) before the neutralisation of acid water with limestone, otherwise the oxidation will occur downstream of the neutralisation plant with the formation of acid (reactions 1 and 2). This study aimed...

  9. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  10. Relation of iron stores to oxidative stress in type 2 diabetes | Kundu ...

    African Journals Online (AJOL)

    onset type 2 diabetes. Further studies proved ferritin to be an important and independent predictor of the development of diabetes. The link between hyperglycemia, enhanced free radical activity (oxidative stress) and serum iron and its stores ...

  11. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics.

    Science.gov (United States)

    de Toledo, Lucas de Alcântara Sica; Rosseto, Hélen Cássia; Bruschi, Marcos Luciano

    2018-04-01

    The use of iron oxide magnetic nanoparticles (IMNP) in medical and pharmaceutical areas dates to the beginning of the 1970s, as carriers. Some other uses to these nanoparticles are in vitro separation, magnetic resonance imaging and drug targeting agent. Many preparations containing IMNP have been described and used in drug delivery, hyperthermia, in vitro separation, tissue repair, cellular therapy, for magnetic separation, magnetic resonance imaging, as spoilers for magnetic resonance spectroscopy, and more recently as sensors for metabolites and other biomolecules. The use of these nanostructures as antibacterial agents has also been reported, which could kill some bacteria species causing no damage to the human host cells. Recently, they have been used as hyperthermia agents to treat infections or cancer, which are more susceptible than the healthy host's cells. Engineering designs, physiochemical characteristics, biomedical applications of IMNP, toxicity and magnetic nanotoxicology have been discussed. However, the application of IMNP as antimicrobials is very important. Thus, this review explores the therapeutic activities of IMNP and their use as antimicrobial agents. These nanoparticles can be efficient for the treatment of microbial infections, probably acting as membrane permeability enhancer, damaging the cell wall or by generating reactive oxygen species.

  12. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  13. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    Science.gov (United States)

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  14. Electron impact ionisation cross sections of iron oxides

    Science.gov (United States)

    Huber, Stefan E.; Mauracher, Andreas; Sukuba, Ivan; Urban, Jan; Maihom, Thana; Probst, Michael

    2017-12-01

    We report electron impact ionisation cross sections (EICSs) of iron oxide molecules, FexOx and FexOx+1 with x = 1, 2, 3, from the ionisation threshold to 10 keV, obtained with the Deutsch-Märk (DM) and binary-encounter-Bethe (BEB) methods. The maxima of the EICSs range from 3.10 to 9 . 96 × 10-16 cm2 located at 59-72 eV and 5.06 to 14.32 × 10-16 cm2 located at 85-108 eV for the DM and BEB approaches, respectively. The orbital and kinetic energies required for the BEB method are obtained by employing effective core potentials for the inner core electrons in the quantum chemical calculations. The BEB cross sections are 1.4-1.7 times larger than the DM cross sections which can be related to the decreasing population of the Fe 4s orbitals upon addition of oxygen atoms, together with the different methodological foundations of the two methods. Both the DM and BEB cross sections can be fitted excellently to a simple analytical expression used in modelling and simulation codes employed in the framework of nuclear fusion research. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80308-2.

  15. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role

    KAUST Repository

    Mozo, Sergio Lentijo

    2017-01-12

    Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs) using a two-step approach that made use of polyethylenenemine (PEI) as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1) in the absence of PEI or (2) by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID) magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  16. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

    Science.gov (United States)

    Valdiglesias, Vanessa; Fernández-Bertólez, Natalia; Kiliç, Gözde; Costa, Carla; Costa, Solange; Fraga, Sonia; Bessa, Maria Joao; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2016-12-01

    Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Transformation of iron oxides on PI electrospun membranes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penggang; Lv, Fengzhu, E-mail: lfz619@cugb.edu.cn; Liu, Leipeng; Ding, Ling; Zhang, Yihe, E-mail: zyh@cugb.edu.cn

    2016-09-15

    Iron oxides/PI fiber membranes, especially magnetic PI membranes, are important flexible porous materials available application in the field of wave absorption, magnetic recording, membrane separation and catalysts. Therefore, α-Fe{sub 2}O{sub 3} loaded PI composite fibers were prepared by electrospinning of poly(amic acid) PAA solution followed by loading Fe{sup 3+} on the PAA membrane by ion-exchange and then imidization. Then the α-Fe{sub 2}O{sub 3} on PI membrane were reduced by H{sub 2} to give magnetic PI membranes. The content of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} on PI can be controlled by adjustment the ion-exchange time. The saturation magnetization of the composite membranes can reach up to 4 emu/g and the final composite membranes have magnetic response ability. - Highlights: • The content of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} on PI can be controlled. • The saturation magnetization of the composite membranes can reach up to 4 emu/g. • The composite membranes have magnetic response ability.

  18. Characterization, Quantification, and Determination of the Toxicity of Iron Oxide Nanoparticles to the Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Sae-Yeol-Rim Paik

    2015-09-01

    Full Text Available Iron oxide nanoparticles (IONPs have been used to develop iron supplements for improving the bioavailability of iron in patients with iron deficiency, which is one of the most serious nutritional deficiencies in the world. Accurate information about the characteristics, concentration, and cytotoxicity of IONPs to the developmental and reproductive cells enables safe use of IONPs in the supplement industry. The objective of this study was to analyze the physicochemical properties and cytotoxicity of IONPs in bone marrow cells. We prepared three different types of iron samples (surface-modified iron oxide nanoparticles (SMNPs, IONPs, and iron citrate and analyzed their physicochemical properties such as particle size distribution, zeta potential, and morphology. In addition, we examined the cytotoxicity of the IONPs in various kinds of bone marrow cells. We analyzed particle size distribution, zeta potential, iron levels, and subcellular localization of the iron samples in bone marrow cells. Our results showed that the iron samples were not cytotoxic to the bone marrow cells and did not affect the expression of cell surface markers and lipopolysaccharide (LPS-induced the secretion of cytokines by murine bone marrow-derived dendritic cells (BMDCs. Our results may be used to investigate the interactions between nanoparticles and cells and tissues and the developmental toxicity of nanoparticles.

  19. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  20. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface....... Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling...... campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations>300 nM. At the boundary between...

  1. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  2. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  3. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... by magnetic interactions between the particles at lower temperatures. ©2006 American Institute of Physics...

  4. Distribution of Iron-Oxidizing Bacteria in the Nordic Uranium Tailings Deposit, Elliot Lake, Ontario, Canada

    OpenAIRE

    Silver, M.

    1987-01-01

    Iron-oxidizing bacteria are present within the top 2 m (but not always at the surface) and near the water table-capillary fringe of the vegetated Nordic uranium deposit, Elliot Lake, Ontario, Canada. They are distributed uniformly in the top 0.5 m of unvegetated tailings. The locations of these bacteria correlate with zones of pyrite oxidation as delineated in previous studies by the formation of soluble iron and sulfate. Heterotrophic bacteria are also present in the tailings, with greatest ...

  5. Iron oxide reference electrodes in solid electrolyte sensors designed to control the thermodynamic activity of oxygen

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Ivanov, K.D.; Chernov, M.E.; Ul'yanov, V.V.; Shelemet'ev, V.M.; Sadovnichij, R.P.; Cheporov, R.Yu.; Niyazov, S.-A.S.

    2012-01-01

    The paper presents results on the use of iron oxide reference electrode in the oxygen activity sensors used to measure the oxygen activity in heavy liquid metal coolants. The specific features of the operation of the sensor with iron oxide reference electrode are established and comparative characteristics with respect to other applicable reference electrodes are presented. Conclusions on the reasonability of its use for measurement of oxygen activity in liquid metal media are drawn [ru

  6. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    Science.gov (United States)

    2015-12-18

    AFRL-AFOSR-JP-TR-2016-0002 Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics Kwang-Sup Lee HANNAM...SUBTITLE Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics 5a. CONTRACT NUMBER FA2386-12-1-4010...superparamagnetic γ-Fe2O3 magnetic nanoparticles (MNP) to grapheme-based materials. The distance of the ligands to the graphene derivative surface can be

  7. Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available Fe nanoparticles and branched nanostructures of iron oxide were synthesized by chemical reduction in aqueous phase. The mechanism of formation of iron oxides as a function of the amount of surfactant employed during the synthesis process was studied. Specifically Fe, Fe2O3, and Fe3O4 nanoparticles were obtained. The oxidation of Fe to Fe3O4 and finally to Fe2O3 was carried out by oxidative etching process, decreasing the amount of stabilizer agent. The structures obtained were characterized by high resolution (HRTEM and scanning/transmission (STEM electron microcopies, energy dispersive spectroscopy (EDS, and optical spectroscopy (UV-Vis and IR.

  8. Iron oxides dynamics in a subtropical Brazilian Paleudult under long-term no-tillage management

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda

    2013-02-01

    Full Text Available Replacing conventional tillage (CT with no-tillage (NT management alters the pedoenvironment and the rate of topsoil processes, with possible effects on dissolution processes associated with iron oxides and therefore soil mineralogy. This study aimed to determine the effect of NT on the content and distribution of types of iron oxides in a Rhodic Paleudult in southern Brazil. Soil samples were collected at eight depths within the 0.00-0.80 m layer under CT and NT in a long-term experiment (21 years. Mineralogical identification was conducted by X-ray diffraction (XRD, and the Fe content related to specific types of iron oxides determined by selective dissolution and diffuse-reflectance spectroscopy. Kaolinite, quartz, goethite, hematite, and maghemite were identified in the clay fraction. In the NT-managed soil, there was a decrease in the content of crystalline iron oxides and an increase in the content of poorly crystalline iron oxides with increasing proximity to the soil surface. These results suggest that iron oxides are rearranged in this soil by reductive dissolution of the crystalline types and neoformation of metastable ferrihydrite in topsoil layers, which should be assessed further in laboratory studies.

  9. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  10. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  11. Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfehani

    2016-07-01

    Full Text Available Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were encapsulated by a PEG-phospholipid. The suspension of iron oxide nanoparticles was prepared using the culture media and cell viability was determined by MTT assay. Results: MTT assay was used to examine the cytotoxicity of iron oxide nanoparticle s. Royan B1 cells were treated with medium containing different concentrations (10, 20, 30, 40, 50, and 60µg/ml of the iron oxide nanoparticle. Cell viability was determined at 12 and 24 hours after treatment which showed significant decreases when concentration and time period increased. Conclusion: The main mechanism of nanoparticles action is still unknown, but in vivo and in vitro studies in different environments suggest that they are capable of producing reactive oxygen species (ROS. Therefore, they may have an effect on the concentration of intracellular calcium, activation of transcription factors, and changes in cytokine. The results of this study show that the higher concentration and duration of treatment of cells with iron oxide nanoparticles increase the rate of cell death.

  12. In situ estimates of iron-oxidation and accretion rates for iron-oxidizing bacterial mats at Lō'ihi Seamount

    Science.gov (United States)

    Emerson, David; Scott, Jarrod J.; Leavitt, Anna; Fleming, Emily; Moyer, Craig

    2017-08-01

    It is increasingly recognized that diffuse, hydrothermal venting is an important source of iron to the deep-sea that can influence oceanic iron dynamics and abundance. Lithotrophic Fe-oxidizing bacteria (FeOB) are dominant at diffuse hydrothermal vent sites, producing microbial iron mats that are often centimeters or more thick. At present, little is known about in situ growth rates of FeOB, specific Fe-oxidation rates, or accretion rates for iron mats. An in situ productivity chamber was developed that took advantage of the unique mineral morphotypes produced by FeOB to estimate rates of Fe-oxidation and accretion. Chambers were placed at two diffuse vents (1179 and 1300 mbsl) at Lō'ihi Seamount where they were colonized by FeOB for different amounts of time. From this analysis, it was estimated that Fe-oxidation rates could range from 8.2 to 51.9 × 10-6 mol h-1, and that iron mats could accrete at around 2.2 cm. yr-1. Molecular analysis indicated that the relative abundance of Zetaproteobacteria, a group of known FeOB, accounted for 80-90% of the bacteria colonizing the chambers. There was a distinct difference between populations at the 1179 m site (Pohaku), and the 1300 m site (North Hiolo Ridge). Microscope slides placed within the productivity chambers were colonized by different morphotypes of FeOB. The cells responsible for one common morphotype that produces a Y-shaped filament were identified as Zetaproteobacteria by use of a small subunit rRNA probe. This work confirms the importance of FeOB in the formation of chemosynthetic iron mats, and provides the first estimates for in situ Fe-oxidation rates and mat accretion rates.

  13. Renal functional and structural integrity in infants with iron deficiency anemia: relation to oxidative stress and response to iron therapy.

    Science.gov (United States)

    El-Shimi, Mohamed S; El-Farrash, Rania A; Ismail, Eman A; El-Safty, Ibrahim A; El-Safty, A; Nada, Ahmed S; El-Gamel, Omayma A; Salem, Yomna M; Shoukry, Sara M

    2015-10-01

    Iron deficiency anemia (IDA) is the most common nutritional deficiency in the world. The aim of our study was to evaluate and compare renal functional and structural integrity in 50 infants with IDA and 50 healthy controls and to assess the relation between IDA and oxidative stress and response to iron therapy. This was a prospective study in which peripheral blood samples were collected from all study subjects and the following laboratory investigations performed: serum iron profile, urinary microalbumin, urinary leucine aminopeptidase (LAP), fractional excretion of sodium (FeNa), serum total antioxidant capacity (TAC), serum malondialdehyde (MDA), serum and urinary trace elements (iron, copper, zinc, calcium and magnesium). All patients received oral iron therapy and were followed-up for 3 months. The levels of baseline urinary markers were higher among the patients with IDA than among the controls (p < 0.05). Patients had a lower pre-therapy TAC and lower serum zinc and magnesium levels than controls as well as higher MDA and serum copper levels (p < 0.05). MDA level was positively correlated to microalbumin and LAP level (p < 0.05). Urinary LAP concentration was positively correlated to urinary trace element concentrations (p < 0.05). A significant decrease in microalbumin, LAP, FeNa, and urinary trace elements was observed post-iron therapy while hemoglobin and ferritin levels were increased (p < 0.05). Among the study subjects, IDA had an adverse influence on renal functional and structural integrity which could be reversed with iron therapy. Oxidative stress played an important role in the pathogenesis of renal injury in IDA.

  14. Adsorption of small molecules at the cobalt-doped SrTiO3(001) surface: A first-principles investigation

    Science.gov (United States)

    Carlotto, Silvia; Natile, Marta Maria; Glisenti, Antonella; Vittadini, Andrea

    2015-03-01

    The cobalt-doped SrTiO3 (001) surface and its interaction with small molecules (CO, NO and O2) is investigated by DFT and DFT + U calculations. Structural, electronic, and chemical changes induced by the presence of the cobalt impurity are studied. Similar to what is found for the bulk SrTiO3, cobalt impurities promote the formation of oxygen vacancies and tend to cluster with them. The presence of impurities has a strong influence on adsorption and in particular it gives rise i) to an enhancement of the adsorption energies and ii) to an inversion of the π electron flux from a surface → molecule to a molecule → surface donation. Furthermore, the examined molecular probes have different affinities with surface defects/impurities: whereas the vacancy site is favored for O2and CO, NO is preferentially adsorbed at the Co impurity site. The obtained results provide the basis for further studies of the catalytic properties of Co-doped SrTiO3.

  15. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  16. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au; Kosasih, B. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfield Avenue, Wollongong, NSW 2522 (Australia)

    2015-10-28

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  17. Iron oxide nanoparticles for use in contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Oliveira, Elisa M.N. de; Rocha, Maximiliano S. da; Caimi, Priscila de A.; Basso, Nara R. de S.; Zanini, Mara L.; Papaleo, Ricardo M.

    2015-01-01

    In this work were carried out synthesis of iron oxide nanoparticles coated with dextran, comparing the results of using different concentrations of dextran, iron salts, temperature and reaction time. The compounds were analyzed by DLS, XRD, TGA, TEM, FTIR, Zeta Potential and relaxivity. Nanoparticles with dispersion around 10-15 nm and average hydrodynamic diameters of 16-50 nm, with superparamagnetic behavior were obtained. The ratio of the relaxivities (r2/r1) in aqueous solutions was 5.30, close to value of the commercially available iron oxide contrast agents. (author)

  18. Iron-tellurium-selenium mixed oxide catalysts for the selective oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Patel, B.M.; Price, G.L.

    1990-01-01

    This paper reports on iron-tellurium-selenium mixed oxide catalysts prepared by coprecipitation from aqueous solution investigated for the propylene to acrolein reaction in the temperature range 543-773 K. Infrared spectroscopy, electron dispersive X-ray analysis, X-ray diffraction, and isotopic tracer techniques have also been employed to characterize this catalytic system. Properties of the Fe-Te-Se mixed oxide catalysts have been compared with Fe-Te mixed oxides in an effort to deduce the functionality of Se. The selenium in the Fe-Te-Se-O catalyst has been found to be the hydrocarbon activating site. The activation energies for the acrolein and carbon dioxide formation are 71 and 54 kJ/mol, respectively. Reactions carried out with 18 O 2 have shown lattice oxygen to be primarily responsible for the formation of both acrolein and carbon dioxide. The initial and rate-determining step for acrolein formation is hydrogen abstraction as determined by an isotope effect associated with the C 3 D 6 reaction. No isotope effect is observed for carbon dioxide formation from C 3 D 6 suggesting that CO 2 is formed by parallel, not consecutive, oxidation of propylene

  19. Reduction Behaviors of Iron, Vanadium and Titanium Oxides in Smelting of Vanadium Titanomagnetite Metallized Pellets

    Science.gov (United States)

    Wang, Shuai; Guo, Yufeng; Jiang, Tao; Yang, Lu; Chen, Feng; Zheng, Fuqiang; Xie, Xiaolin; Tang, Minjun

    2017-09-01

    The complicated reduction behaviors of iron, vanadium and titanium oxides must be accurately controlled for the successful smelting of vanadium titanomagnetite. The aim of this study is to investigate the effects of the binary basicity, MgO content, smelting temperature, duration and reductants on the reduction of iron, vanadium and titanium oxides during the electric furnace smelting of vanadium titanomagnetite metallized pellets. The results demonstrate that the recovery ratios of both iron and vanadium increase as the binary basicity increases from 0.9 to 1.2, whereas the reduction of titanium oxides is mitigated when the basicity is maintained at 1.1. Compared to its weak effect on the recovery ratio of iron, increasing MgO content improves the vanadium recovery ratio. A low content of titanium in molten iron is obtained when the MgO content in the slag is lower than 11%, whereas the titanium content in the molten iron increases as the MgO content increases further. Moreover, the iron and vanadium recovery ratios, and the Ti content in the molten iron, increase with increasing smelting temperature, duration and reductant content.

  20. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    Science.gov (United States)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  1. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    International Nuclear Information System (INIS)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-01-01

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O 2 . Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  2. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  3. Oxytetracycline Delivery in Adult Female Zebrafish by Iron Oxide Nanoparticles.

    Science.gov (United States)

    Chemello, Giulia; Piccinetti, Chiara; Randazzo, Basilio; Carnevali, Oliana; Maradonna, Francesca; Magro, Massimiliano; Bonaiuto, Emanuela; Vianello, Fabio; Radaelli, Giuseppe; Fifi, Anna Paola; Gigliotti, Federica; Olivotto, Ike

    2016-12-01

    Recently, the indiscriminate use of antibiotics in the aquaculture sector has raised public concern because of possible toxic effects, development of bacterial resistance, and accumulation of residues in individual tissues. Even if several countries have developed regulations about their use, it is clear that long-term growth of the aquaculture industry requires both ecologically sound practices and sustainable resource management. Alternative strategies for better management of antibiotic administration are of primary interest to improve absorption rates and, as a consequence, to reduce their release into the aquatic environment. The present study investigates, for the first time to our knowledge, a new methodology for oxytetracycline (OTC) administration through the use of iron oxide nanoparticles (NPs) (made of maghemite γ-Fe 2 O 3 ) in zebrafish (Danio rerio). Fish were divided into 4 experimental groups: control; group A exposed to 4 mg/L OTC (through water); group B exposed to the 100 mg/L SAMNs@OTC complex (equivalent to 4 mg/L OTC), and group C exposed to bare NPs. No detoxification processes or anatomical alterations were observed in fish exposed to bare NPs. Exposure of fish to the SAMNs@OTC complex resulted in a 10 times higher OTC accumulation with respect to using water exposure. This new OTC administration method seems much more efficient with respect to the traditional way of exposure and has the potentiality to reduce antibiotic utilization and possible environmental impacts. However, the dynamics related to OTC release from the SAMNs@OTC complex are still not clear and need further investigations.

  4. Ultrasonic computed tomography imaging of iron oxide nanoparticles

    Science.gov (United States)

    Perlman, Or; Azhari, Haim

    2017-02-01

    Iron oxide nanoparticles (IONPs) are becoming increasingly used and intensively investigated in the field of medical imaging. They are currently FDA approved for magnetic resonance imaging (MRI), and it would be highly desirable to visualize them by ultrasound as well. Previous reports using the conventional ultrasound B-scan (pulse-echo) imaging technique have shown very limited detectability of these particles. The aim of this study is to explore the feasibility of imaging IONPs using the through-transmission ultrasound methodology and demonstrate their detectability using ultrasonic computed tomography (UCT). Commercially available IONPs were acoustically analysed to quantify their effect on the speed of sound (SOS) and acoustic attenuation as a function of concentration. Next, through-transmission projection and UCT imaging were performed on a breast mimicking phantom and on an ex vivo tissue model, to which IONPs were injected. Finally, an MRI scan was performed to verify that the same particles examined in the ultrasound experiment can be imaged by magnetic resonance, using the same clinically relevant concentrations. The results have shown a consistent concentration dependent speed of sound increase (1.86 \\text{m}{{\\text{s}}^{-1}} rise per 100 µg · ml-1 IONPs). Imaging based on this property has shown a substantial contrast-to-noise ratio improvement (up to 5 fold, p  <  0.01). The SOS-related effect generated a well discernible image contrast and allowed the detection of the particles existence and location, in both raster-scan projection and UCT imaging. Conversely, no significant change in the acoustic attenuation coefficient was noted. Based on these findings, it is concluded that IONPs can be used as an effective SOS-based contrast agent, potentially useful for ultrasonic breast imaging. Furthermore, the particle offers the capacity of significantly enhancing diagnosis accuracy using multimodal MRI-ultrasound imaging capabilities.

  5. Iron oxide nanoparticles with different polymer coatings for photothermal therapy

    Science.gov (United States)

    Yang, Jia; Fan, Lu; Xu, Yanhong; Xia, Jindong

    2017-10-01

    Iron oxide nanoparticles (Fe3O4 NPs) have attracted significant attention in view of their potential applications in biomedicine. Surface coatings or modifications are generally needed to improve the colloidal stability of Fe3O4 NPs in a physiological environment. In this study, Fe3O4 NPs in the size range of 12-15 nm coated with polyacrylic acid (PAA), poly(vinyl alcohol) (PVA), and polyethyleneimine (PEI) were synthesized through a mild reduction route to investigate their potential for photothermal therapy. The polymer-coated Fe3O4 NPs dispersed well in water and formed stable colloids; the surface charges of the particles were dependent on the nature of the surface coating. The strong absorption in the near-infrared (NIR) region enabled the coated Fe3O4 NPs to be used as agents in photothermal therapy. The photothermal conversion efficiency of PEI-coated Fe3O4 NPs (PEI-Fe3O4 NPs) distinctly decreased when exposed to a cell culture medium. In addition, PEI-Fe3O4 NPs showed higher cytotoxicity and enhanced cellular uptake efficiency when compared to PAA-coated Fe3O4 NPs (PAA-Fe3O4 NPs) and PVA-coated Fe3O4 NPs (PVA-Fe3O4 NPs). This study highlights the importance of optimizing the surface properties of Fe3O4 NPs when using them in biomedical applications and provides guidelines for the design and development of functional Fe3O4 NPs for cancer therapy. [Figure not available: see fulltext.

  6. Magnetic hyperthermia in phosphate coated iron oxide nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, B.B.; Muthukumaran, T.; Philip, John, E-mail: philip@igcar.gov.in

    2016-06-01

    We study the magnetic field induced hyperthermia in water based phosphate coated Fe{sub 3}O{sub 4} nanofluids, synthesized by a co-precipitation method using ferrous and ferric salt solutions, ammonia and orthophosphoric acid. The specific absorption rate (SAR) values were measured at a fixed frequency of 126 kHz and at extremely low field amplitudes. The SAR values were determined from the initial rate of temperature rise curves under non-adiabatic conditions. It was observed that the SAR initially increases with sample concentration, attains a maximum at an optimum concentration and beyond which SAR decreases. The decrease in SAR values beyond the optimum concentration was attributed to the enhancement of dipolar interaction and agglomeration of the particles. The system independent intrinsic loss power (ILP) values, obtained by normalizing the SAR values with respect to field amplitude and frequency, were found to vary between 158–125 nHm{sup 2} kg{sup −1}, which were the highest benchmark values reported in the biologically safe experimental limit of 1.03–0.92×10{sup 8} Am{sup −1} s{sup −1}. The very high value of ILP observed in the bio-compatible phosphate coated iron oxide nanofluids may find practical applications for these nanoparticles in tumor targeted hyperthermia treatment. - Highlights: • Magnetic field induced hyperthermia of phosphate coated Fe{sub 3}O{sub 4} nanofluid is studied. • Phosphate coated Fe{sub 3}O{sub 4} are synthesized using a single step co-precipitation method. • SAR increases with concentration up to 2 wt% and then decreases. • Decrease in SAR values was due to stronger dipolar interaction and agglomeration. • The normalized SAR values ranges between 158–125 nHm{sup 2} kg{sup −1}.

  7. Sea-urchin-like iron oxide nanostructures for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Uk, E-mail: leeho@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Soon Chang [Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Young-Chul [Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Vrtnik, Stane; Kim, Changsoo; Lee, SangGap [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Young Boo; Nam, Bora [Jeonju Center, Korea Basic Science Institute, Jeonju 561-756 (Korea, Republic of); Lee, Jae Won [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of); Park, So Young; Lee, Sang Moon [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Jouhahn, E-mail: jouhahn@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of)

    2013-11-15

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} phase) nanostructures (called u-MFN) with large surface areas (94.1 m{sup 2} g{sup −1}) and strong magnetic properties (57.9 emu g{sup −1}) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g{sup −1}) and Cr(VI) (35.0 mg g{sup −1}) and the organic pollutant Congo red (109.2 mg g{sup −1}). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions.

  8. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  9. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  10. Thermodynamic analysis of growth of iron oxide films by MOCVD ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen.

  11. Ecology of neutrophilic iron-oxidizing bacteria in wetland soils

    NARCIS (Netherlands)

    Wang, J.

    2011-01-01

    Wetland ecosystems are important as sites of rapid biogeochemical cycling of bioactive elements, among which iron features prominently. The redox cycling of iron exerts a strong influence on soil chemistry and the metabolism of plants and microorganisms. Studies have shown that bacteria play an

  12. Thermodynamic analysis of growth of iron oxide films by MOCVD ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the β-ketoesterate complex of iron [tris(t-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen.

  13. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    Piloni, Natacha E.; Fermandez, Virginia; Videla, Luis A.; Puntarulo, Susana

    2013-01-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH − ) ratio, taken as oxidative stress index, was assessed. The A·/AH − ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6

  14. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    Science.gov (United States)

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  16. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  17. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Dunham, Jordon; Bauer, Jan; Campbell, Graham R.; Mahad, Don J.; van Driel, Nikki; van der Pol, Susanne M. A.; 't Hart, Bert A.; Lassmann, Hans; Laman, Jon D.; van Horssen, Jack; Kap, Yolanda S.

    Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as

  18. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  19. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( < 10-5 SI). An increase of both phase peak and relaxation time was found with increasing grain size of the sorted Fe-sand. Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  20. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Science.gov (United States)

    Roussou, Paraskevi; Tsagarakis, Nikolaos J.; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility. PMID:24396593

  1. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paraskevi Roussou

    2013-01-01

    Full Text Available Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women’s infertility.

  2. Pollution Control Meets Sustainability: Structure-Activity Studies on New Iron Oxide-Based CO Oxidation Catalysts.

    Science.gov (United States)

    Schoch, Roland; Bauer, Matthias

    2016-08-09

    A new class of catalysts for the oxidation of CO based on iron oxide as a biocompatible, earth-abundant and non-toxic metal is presented. The catalytic activities achieved with these catalysts provide promising milestones towards the substitution of noble metals in CO oxidation catalysts. The catalysts can be obtained by using iron core-shell nanoparticle precursors. The metal used for the shell material determines whether the iron core is integrated in or isolated from the support. The active iron site is effectively integrated into the γ-Al2 O3 support if an aluminum shell is present in the core-shell precursor. When the metal used for the shell is different from the support, an isolated structure is formed. Using this directed synthesis approach, different iron oxide species can be obtained and their structural differences are linked to distinct catalytic activities, as demonstrated by combined in-depth analytical studies using XRD, X-ray absorption spectroscopy (XAS), UV/Vis, and Brunauer-Emmett-Teller (BET) analysis. The key species responsible for high catalytic activity is identified as isolated tetrahedrally coordinated Fe(III) centers, whereas aggregation leads to a reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    Science.gov (United States)

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  4. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    Amorphous iron (hydr)oxides are used to remove heavy metals from wastewater and in the treatment of air pollution control residues generated in waste incineration. In this study, iron oxides containing heavy metals (e.g., Pb, Hg, Cr, and Cd) were treated at 50, 600, and 900 °C to simulate...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...... of iron oxides may be advantageous to improve the thermodynamic stability of the product but that thermal treatment at both 600 and 900 °C significantly reduced the binding capacity for heavy metals....

  5. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression and virulence

    Directory of Open Access Journals (Sweden)

    Carlos Adrian Garcia

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, trough the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS, and virulence. Studies were done on K279 and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF. Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.

  6. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  7. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  8. Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention

    KAUST Repository

    Olivieri, S.

    2011-12-14

    Parkinson\\'s disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human Parkinson\\'s disease patients. Parkinson\\'s disease ceruloplasmin profiles proved more acidic than those found in healthy controls and in other human neurological diseases (peripheral neuropathies, amyotrophic lateral sclerosis, and Alzheimer\\'s disease); degrees of acidity correlated with patients\\' pathological grading. Applying an unsupervised pattern recognition procedure to the two-dimensional electrophoresis images, we identified representative pathological clusters. In vitro oxidation of CSF in two-dimensional electrophoresis generated a ceruloplasmin shift resembling that observed in Parkinson\\'s disease and co-occurred with an increase in protein carbonylation. Likewise, increased protein carbonylation was observed in Parkinson\\'s disease CSF, and the same modification was directly identified in these samples on ceruloplasmin. These results indicate that ceruloplasmin oxidation contributes to pattern modification in Parkinson\\'s disease. From the functional point of view, ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in turn promotes intracellular iron retention in neuronal cell lines as well as in primary neurons, which are more sensitive to iron accumulation. Accordingly, the presence of oxidized ceruloplasmin in Parkinson\\'s disease CSF might be used as a marker for oxidative damage and might provide new insights into the underlying pathological mechanisms.

  9. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  10. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  11. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  12. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  13. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  14. Deposition of biogenic iron minerals in a methane oxidizing microbial mat.

    Science.gov (United States)

    Wrede, Christoph; Kokoschka, Sebastian; Dreier, Anne; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2013-01-01

    The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  15. Study of Organic and Inorganic Binders on Strength of Iron Oxide Pellets

    Science.gov (United States)

    Srivastava, Urvashi; Kawatra, S. Komar; Eisele, Timothy C.

    2013-08-01

    Bentonite is a predominant binder used in iron ore pelletization. However, the presence of a high content of silica and alumina in bentonite is considered undesirable for ironmaking operations. The objective of this study was to identify the alternatives of bentonite for iron ore pelletization. To achieve this goal, different types of organic and inorganic binders were utilized to produce iron oxide pellets. The quality of these iron oxide pellets was compared with pellets made using bentonite. All pellets were tested for physical strength at different stages of pelletization to determine their ability to survive during shipping and handling. The results show that organic binders such as lactose monohydrate, hemicellulose, and sodium lignosulfonate can provide sufficient strength to indurated pellets.

  16. Stability of oxidized iron species and the redox budget of slab-derived fluids

    Science.gov (United States)

    Sanchez-Valle, C.; Hin, R.; Testemale, D.; Borca, C.; Grolimund, D.

    2017-12-01

    The high oxidation state of subduction zone magmas compared to magmas from other locations might result from the influx of oxidized fluid from the subducted oceanic plate into the mantle wedge. However, the nature of the chemical agent(s) and the mechanism responsible for the transfer of the oxidized signature from the slab to the mantle wedge remains poorly understood. In this contribution, we will discuss the oxidizing capacity of slab-derived fluids in the light of experimental results of the solubility and speciation of iron in high-pressure fluids that mimic the slab flux. Iron-bearing mineral assemblages were equilibrated with chlorinated aqueous fluids and hydrous granitic melts at different oxygen fugacities relevant for the present day crust/mantle. The concentration of iron and the distribution of stability of oxidized iron species were monitored up to 2.5 GPa and 800 °C using a combination of diamond trap experiments and XANES measurements in diamond anvil cells. The results illustrate the role of coordination chemistry involving halogen and polymerized species in the stability of oxidized iron in the fluids. The concentration of Fe3+ in the fluids progressively decreases as temperature increases, regardless of fluid composition and pressure. This implies that the fluid capacity to transport Fe3+ at high temperature may be limited, even at the redox conditions relevant for the present day crust and mantle. With the new experimental results, we place constrains on the oxidizing capacity of Fe-bearing metasomatic fluids and discuss the transfer of the oxidizing signature and the conditions for the genesis of oxidized arc magmas.

  17. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  18. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  19. Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni3S2Nanowire Films for High-Performance Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Wang, Tao; Ma, Yujie; Jiang, Wenkai; Wang, Shuai; Hong, Min; Hu, Nantao; Su, Yanjie; Zhang, Yafei; Yang, Zhi

    2017-10-23

    Metal sulfides have aroused great interest for energy storage. However, their low specific capacities and inferior rate capabilities hinder their practical applications. In this work, a facile cobalt-doping process is used to boost the electrochemical performance of Ni@Ni 3 S 2 core-sheath nanowire film electrodes for high-performance electrochemical energy storage. Co ions are doped successfully and uniformly into Ni 3 S 2 nanosheets through a facile ion-exchange process. The electrochemical properties of film electrodes are improved greatly, and an ultrahigh volumetric capacity (increased from 105 to 730 C cm -3 at 0.25 A cm -3 ) and excellent rate capability are obtained after Co is doped into Ni@Ni 3 S 2 core-sheath nanowires. A hybrid asymmetric supercapacitor with Co-doped Ni@Ni 3 S 2 as the positive electrode and graphene-carbon nanotubes as the negative electrode is assembled and exhibits an ultrahigh volumetric capacitance of 142 F cm -3 (based on the total volume of both electrodes) at 0.5 A cm -3 and excellent cycling stability (only 3 % capacitance decrease after 5000 cycles). Moreover, the volumetric energy density can reach 44.5 mWh cm -3 , which is much larger than those of thin-film lithium batteries (1-10 mWh cm -3 ). These results may provide useful insights for the fabrication of high-performance film electrodes for energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element- and site-specific X-ray magnetic circular dichroism analyses.

    Science.gov (United States)

    Li, Jinhua; Menguy, Nicolas; Arrio, Marie-Anne; Sainctavit, Philippe; Juhin, Amélie; Wang, Yinzhao; Chen, Haitao; Bunau, Oana; Otero, Edwige; Ohresser, Philippe; Pan, Yongxin

    2016-08-01

    The biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science due to the precise morphology of the particles, the chain-like assembly and their unique magnetic properties. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. Despite some successful outcomes, the coordination chemistry and magnetism of such metal-doped magnetosomes still remain largely unknown. Here, we present new evidences from X-ray magnetic circular dichroism (XMCD) for element- and site-specific magnetic analyses that cobalt is incorporated in the spinel structure of the magnetosomes within Magnetospirillum magneticum AMB-1 through the replacement of Fe(2+) ions by Co(2+) ions in octahedral (Oh) sites of magnetite. Both XMCD at Fe and Co L2,3 edges, and energy-dispersive X-ray spectroscopy on transmission electron microscopy analyses reveal a heterogeneous distribution of cobalt occurring either in different particles or inside individual particles. Compared with non-doped one, cobalt-doped magnetosome sample has lower Verwey transition temperature and larger magnetic coercivity, related to the amount of doped cobalt. This study also demonstrates that the addition of trace cobalt in the growth medium can significantly improve both the cell growth and the magnetosome formation within M. magneticum AMB-1. Together with the cobalt occupancy within the spinel structure of magnetosomes, this study indicates that MTB may provide a promising biomimetic system for producing chains of metal-doped single-domain magnetite with an appropriate tuning of the magnetic properties for technological and biomedical applications. © 2016 The Author(s).

  1. Light-induced oxidation of iron atoms in a photosensitive nitrile hydratase

    International Nuclear Information System (INIS)

    Honda, Jun; Sasabe, Hiroyuki; Teratani, Yoshitaka; Hirata, Akira; Kobayashi, Yoshio; Ambe, Fumitoshi; Nagamune, Teruyuki; Endo, Isao

    1992-01-01

    The photoactivation process of a photosensitive nitrile hydratase (NHase) from Rhodococcus sp. N-771 has been investigated by 57 Fe Moessbauer spectroscopy and magnetic susceptibility measurements in order to clarify the behavior of iron atoms in the enzyme. Moessbauer spectra of inactive NHase gave two symmetric-doublet components indicating the presence of two iron species, while that of the active NHase gave a single symmetric doublet indicating the presence of a single iron species. Magnetic susceptibility measurements of the inactive and active NHase both showed small effective magnetic moments. These results led to the conclusion that one of the two iron atoms incorporated in the NHase is oxidized during photoactivation, namely from a low spin ferrous to a low spin ferric state. This is the first observation of an intramolecular photooxidation phenomena involving iron in a single protein molecule. (author). 11 refs.; 3 figs.; 3 tabs

  2. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  3. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@caesar.elte.hu [EötvösLoránd University, Institute of Chemistry (Hungary); Tolnai, Gy. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary); Fodor, F.; Solti, Á. [EötvösLoránd University, Institute of Biology (Hungary); Kovács, K.; Kuzmann, E.; Ábrahám, A. [EötvösLoránd University, Institute of Chemistry (Hungary); Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary)

    2016-12-15

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. {sup 57}Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  4. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    Science.gov (United States)

    Homonnay, Z.; Tolnai, Gy.; Fodor, F.; Solti, Á.; Kovács, K.; Kuzmann, E.; Ábrahám, A.; Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z.

    2016-12-01

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. 57Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  5. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  6. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

    Science.gov (United States)

    Yang, Wendy H.; Weber, Karrie A.; Silver, Whendee L.

    2012-08-01

    The oxidation of ammonium is a key step in the nitrogen cycle, regulating the production of nitrate, nitrous oxide and dinitrogen. In marine and freshwater ecosystems, anaerobic ammonium oxidation coupled to nitrite reduction, termed anammox, accounts for up to 67% of dinitrogen production. Dinitrogen production through anaerobic ammonium oxidation has not been observed in terrestrial ecosystems, but the anaerobic oxidation of ammonium to nitrite has been observed in wetland soils under iron-reducing conditions. Here, we incubate tropical upland soil slurries with isotopically labelled ammonium and iron(III) to assess the potential for anaerobic ammonium oxidation coupled to iron(III) reduction, otherwise known as Feammox, in these soils. We show that Feammox can produce dinitrogen, nitrite or nitrate in tropical upland soils. Direct dinitrogen production was the dominant Feammox pathway, short-circuiting the nitrogen cycle and resulting in ecosystem nitrogen losses. Rates were comparable to aerobic nitrification and to denitrification, the latter being the only other process known to produce dinitrogen in terrestrial ecosystems. We suggest that Feammox could fuel nitrogen losses in ecosystems rich in poorly crystalline iron minerals, with low or fluctuating redox conditions.

  7. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    Science.gov (United States)

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  8. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Holmes David S

    2009-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like, ctaABT (heme biogenesis and insertion, nuoI and nuoK (NADH complex subunits, sdrA1 (a NADH complex accessory protein and atpB and atpE (ATP synthetase F0 subunits. The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit. Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1 a gene cluster (ctaRUS that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2 a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool

  9. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    Directory of Open Access Journals (Sweden)

    Ciobanu Carmen

    2012-03-01

    Full Text Available Abstract Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs. The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.

  10. Tunability of Size and Magnetic Moment of Iron Oxide Nanoparticles Synthesized by Forced Hydrolysis

    Directory of Open Access Journals (Sweden)

    Ben Sutens

    2016-07-01

    Full Text Available To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-pot synthesis method resulting in monodisperse superparamagnetic iron oxide nanoparticles with a controllable size and magnetic moment using cost-effective reagents. The obtained nanoparticles were thoroughly characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared (FT-IR measurements. Furthermore, the influence of the size on the magnetic moment of the nanoparticles is analyzed by superconducting quantum interference device (SQUID magnetometry. To emphasize the potential use in biomedical applications, magnetic heating experiments were performed.

  11. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    Science.gov (United States)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  12. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    Science.gov (United States)

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  13. Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension

    Directory of Open Access Journals (Sweden)

    Jović Nataša

    2014-01-01

    Full Text Available Hybrid structures composed of exfoliated expanded graphite (EG and iron oxide nanocrystals have been produced by an ex situ process. The iron oxide nanoparticles coated with meso-2,3-dimercaptosuccinic acid (DMSA, or poly(acrylic acid (PAA were integrated onto the exfoliated EG flakes by mixing their aqueous suspensions at room temperature under support of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide (EDC and N-hydroxysuccin-nimide (NHS. EG flakes have been used both, naked and functionalized with branched polyethylenimine (PEI. Complete integration of two constituents has been achieved and mainteined stable for more than 12 months. No preferential spatial distribution of anchoring sites for attachement of iron oxide nanoparticles has been observed, regardless EG flakes have been used naked or functionalized with PEI molecules. The structural and physico-chemical characteristics of the exfoliated expanded graphite and its hybrids nanostructures has been investigated by SEM, TEM, FTIR and Raman techniques. [Projekat Ministarstva nauke Republike Srbije, br. 45015

  14. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Pragnesh N. Dave

    2014-01-01

    Full Text Available In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nanaparticles based nanomaterials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  15. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  16. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis.

    Science.gov (United States)

    Kucera, Jiri; Bouchal, Pavel; Lochman, Jan; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2013-04-01

    In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators.

  17. Impact of iron, chelators, and free fatty acids on lipid oxidation in low-moisture crackers.

    Science.gov (United States)

    Barden, Leann; Vollmer, Daniel; Johnson, David; Decker, Eric

    2015-02-18

    This research strove to understand the relationship between physical structure and oxidative stability in crackers since mechanisms of lipid oxidation are poorly understood in low-moisture foods. Confocal microscopy showed that lipids formed a continuous matrix surrounding starch granules, and starch-lipid, lipid-air, and protein-lipid interfaces were observed. Unlike bulk oils, meats, and emulsions, lipid hydroperoxides exhibited greater stability in low-moisture crackers as hexanal formation was delayed >20 d. Iron, added at 10 times the concentrations normally found in enriched flour, did not increase oxidation rates compared to the control. EDTA may reduce endogenous iron activity but not as greatly as in other matrices. Addition of fatty acids up to 1.0% of total lipid weight did not statistically affect lipid oxidation lag phases. The unique structure of low-moisture foods clearly affects their resistance to metal-promoted lipid oxidation.

  18. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  19. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    Science.gov (United States)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  20. The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver.

    Science.gov (United States)

    Boveris, Alberto; Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Torti, Horacio; Massot, Francisco; Repetto, Marisa G

    2012-11-01

    The transition metals iron (Fe) and copper (Cu) are needed at low levels for normal health and at higher levels they become toxic for humans and animals. The acute liver toxicity of Fe and Cu was studied in Sprague Dawley male rats (200 g) that received ip 0-60 mg/kg FeCl(2) or 0-30 mg/kg CuSO(4). Dose and time-responses were determined for spontaneous in situ liver chemiluminescence, phospholipid lipoperoxidation, protein oxidation and lipid soluble antioxidants. The doses linearly defined the tissue content of both metals. Liver chemiluminescence increased 4 times and 2 times after Fe and Cu overloads, with half maximal responses at contents (C(50%)) of 110 μgFe/g and 42 μgCu/g liver, and with half maximal time responses (t(1/2)) of 4h for both metals. Phospholipid peroxidation increased 4 and 1.8 times with C(50%) of 118 μg Fe/g and 45 μg Cu/g and with t(1/2) of 7h and 8h. Protein oxidation increased 1.6 times for Fe with C(50%) at 113 μg Fe/g and 1.2 times for Cu with 50 μg Cu/g and t(1/2) of 4h and 5h respectively. The accumulation of Fe and Cu in liver enhanced the rate of free radical reactions and produced oxidative damage. A similar free radical-mediated process, through the formation HO(•) and RO(•) by a Fenton-like homolytic scission of H(2)O(2) and ROOH, seems to operate as the chemical mechanism for the liver toxicity of both metals. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  2. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    International Nuclear Information System (INIS)

    I P Soares, Paula; Lochte, Frederik; Echeverria, Coro; M M Ferreira, Isabel; P M R Borges, João; C J Pereira, Laura; T Coutinho, Joana; M M Novo, Carlos

    2015-01-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe 3 O 4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe 3 O 4 samples do not reduce cell viability. However, oleic acid Fe 3 O 4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. (paper)

  3. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions.

    Science.gov (United States)

    Mendes, Rafael Gregorio; Koch, Britta; Bachmatiuk, Alicja; El-Gendy, Ahmed Aboud; Krupskaya, Yulia; Springer, Armin; Klingeler, Rüdiger; Schmidt, Oliver; Büchner, Bernd; Sanchez, Samuel; Rümmeli, Mark Hermann

    2014-01-01

    Iron oxide nanoparticles hold great promise for future biomedical applications. To this end numerous studies on iron oxide nanoparticles have been conducted. One aspect these studies reveal is that nanoparticle size and shape can trigger different cellular responses through endocytic pathways, cell viability and early apoptosis. However, systematic studies investigating the size dependence of iron oxide nanoparticles with highly defined diameters across multiple cells lines are not available yet. Iron oxide nanoparticles with well-defined size distributions were prepared. All samples were thoroughly characterized and the cytotoxicity for four standard cell lines (HeLa Kyoto, human osteosarcoma (U2OS), mouse fibroblasts (NIH 3T3) and mouse macrophages (J7442)) where investigated. Our findings show that small differences in size distribution (ca. 10nm) of iron oxide nanoparticles do not influence cytotoxicity, while uptake is size dependent. Cytotoxicity is dose-dependent. Broad distributions of nanoparticles are more easily internalized as compared to the narrow distributions for two of the cell lines tested (HeLa Kyoto and mouse macrophages (J7442)). The data indicate that it is not feasible to probe changes in cytotoxicity within a small size range (10nm). However, TEM investigations of the nanoparticles indicate that cellular uptake is size dependent. The present work compares narrow and broad distributions for various samples of carbon-coated iron oxide nanoparticles. The data highlights that cells differentiate between nanoparticle sizes as indicated by differences in cellular uptake. This information provides valuable knowledge to better understand the interaction of nanoparticles and cells. © 2013.

  4. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  5. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Eric C. Abenojar

    2016-10-01

    Full Text Available Magnetic iron oxide nanoparticles (IONPs are heavily explored as diagnostic and therapeutic agents due to their low cost, tunable properties, and biocompatibility. In particular, upon excitation with an alternating current (AC magnetic field, the NPs generate localized heat that can be exploited for therapeutic hyperthermia treatment of diseased cells or pathogenic microbes. In this review, we focus on how structural changes and inter-particle interactions affect the heating efficiency of iron oxide-based magnetic NPs. Moreover, we present an overview of the different approaches to evaluate the heating performance of IONPs and introduce a new theranostic modality based on magnetic imaging guided–hyperthermia.

  6. Textural and Mineralogical Characteristics of Microbial Fossils in Modern and Ancient Iron (oxyhydr)oxides

    Science.gov (United States)

    Potter, S. L.; Chan, M. A.; McPherson, B. J.

    2012-12-01

    The Jurassic Brushy Basin Member of the Morrison Formation contains extensive alkaline saline lacustrine deposits rich in diagenetic iron (oxyhydr)oxides that are well exposed on the Colorado Plateau of the southwestern USA. These early diagenetic iron (oxyhydr)oxide minerals are associated with preserved diatoms and other algal forms, identified via scanning electron microscope (SEM) in thin sections of representative samples. The minerals are also associated with macroscopic bioturbation features (e.g., charophytes, burrows and fossilized dinosaur bones). Algal forms with cellular elaboration are identified by HF dissolution of bioturbation structures and examination with SEM. Collectively, these features suggest biomediated textures are preserved in early diagenetic iron (oxyhydr)oxides, and can persist for tens of millions of years. Modern microbially precipitated iron (oxyhydr)oxides and ~100ka tufa terraces from a cold spring system along Ten Mile Graben in southern Utah, USA are compared with the Morrison examples to identify modern microbial fossils and document any differences and preservation changes during diagenesis over geologic time. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se) are associated with microbial fossils in both the modern and ancient tufas, as well as the ancient Morrison specimens. The occurrence of these distinctive trace element configurations in the iron (oxyhydr)oxide minerals suggest the suites could be potential markers for biosignatures. The presence of ferrihydrite in ~100ka fossil microbial mats suggests this thermodynamically unstable mineral may also be used as a biomarker. Diagnostic trace element suites and unusual mineral phases warrant further study for their potential as biomarkers. These terrestrial iron (oxyhydr)oxide examples will: 1) document specific biomediated textures and what their origins might be (related to different processes or species), 2) show how they might persist or respond to

  7. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles

    DEFF Research Database (Denmark)

    Katz, Jordan E; Zhang, Xiaoyi; Attenkofer, Klaus

    2012-01-01

    Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest....... To determine the links between crystal structure and charge-transport efficiency, we used pump-probe spectroscopy to study the dynamics of electrons introduced into iron(III) (oxyhydr)oxide nanoparticles via ultrafast interfacial electron transfer. Using time-resolved x-ray spectroscopy and ab initio...

  8. Structure and Properties of Nanocrystalline Iron Oxide Powder Prepared by the Method of Pulsed Laser Ablation

    Science.gov (United States)

    Svetlichnyi, V. A.; Shabalina, A. V.; Lapin, I. N.

    2017-04-01

    Colloidal solution of iron oxide nanoparticles is synthesized by nanosecond pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns, and 180 mJ) of a metallic iron target in water, and nanocrystalline powder is prepared from this solution by vacuum drying. A composition and structure of the material obtained are investigated by methods of electron microscopy, x-ray diffraction, and optical spectroscopy. It is established that oxide particles with average size of about 5 nm and Fe3O4 magnetite structure are mainly formed during ablation. Preliminary investigation of magnetic properties of the prepared nanoparticle powders shows that they can be in ferromagnetic and/or superparamagnetic states.

  9. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  10. Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Du, Shan-Wen

    2015-01-01

    The partial oxidation of a COG (coke oven gas) in a blast furnace is examined in this work using thermodynamic analysis. LTIR and HTIR (Low-temperature and high-temperature indirect reduction) of iron oxides in a blast furnace are also studied. The influences of the reaction temperature, M/H (methane-to-hematite) ratio, and O/F (oxygen-to-fuel) ratio on CH 4 conversion and iron oxide reduction are examined. Within the investigated ranges of the parameters, a higher reaction temperature is conducive to CH 4 conversion, while at least 97.64% of Fe 2 O 3 is reduced. In LTIR, Fe 3 O 4 is the prime product, with a high level of solid carbon formation. The entire LTIR reaction is characterized by exothermic behavior, so that no additional heat is required to trigger COG partial oxidation and IR. In HTIR, increasing the reaction temperature facilitates CO-based IR and suppresses H 2 -based IR. A higher temperature produces more Fe, so as to enhance the iron oxide reduction reactions; meanwhile, the FeO reduction is governed by H 2 and CH 4 . When the reaction temperature is higher than 800 °C and the M/H ratio is lower than unity, a heat supply is required to drive HTIR. The O/F ratio in LTIR and HTIR should be controlled below 2 to retard carbon formation and drive iron oxide reduction. - Highlights: • Direct partial oxidation of coke oven gas in blast furnace is analyzed thermodynamically. • A higher reaction temperature is conducive to CH 4 conversion and syngas production. • At least 97.64% of Fe 2 O 3 is converted. • The low-temperature indirect reduction is characterized by exothermic behavior. • The oxygen-to-fuel molar ratio in indirect reduction should be controlled below 2

  11. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.

    Science.gov (United States)

    Fustinoni-Reis, Adriana M; Arruda, Sandra F; Dourado, Lívia P S; da Cunha, Marcela S B; Siqueira, Egle M A

    2016-02-17

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.

  12. Tucum-Do-Cerrado (Bactris setosa Mart. Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver

    Directory of Open Access Journals (Sweden)

    Adriana M. Fustinoni-Reis

    2016-02-01

    Full Text Available This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G, Tuc (AIN-93G added of tucum-do-cerrado, Fe (AIN-93G iron-enriched, or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.

  13. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  14. In vitro biological validation and cytocompatibility evaluation of hydrogel iron-oxide nanoparticles

    Science.gov (United States)

    Catalano, Enrico

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (MNPs) have recently been investigated for their excellent biocompatibility as well as multi-purpose biomedical potential with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized for possible use for induced magnetic hyperthermia, and targeted drug delivery. The coating of iron oxide nanoparticles plays a key-role to efficiently improve internalization of nanoparticles in many cell types. Targeting is also highly desirable for these applications. In this regard hydrophilic coating like chitosan was used to improve drug release. Uncoated (Fe3O4)and chitosan-coated iron oxide nanoparticles (CS-Fe3O4) were synthesized and characterized from the biological point of view. The aim of this study was to provide an in vitro evaluation of the cytocompatibility of Fe3O4 and CS-Fe3O4 MNPs by using different in vitro evaluation tests. In this context, the cytocompatibility and cytotoxic effects of uncoated and hydrogel chemically-engineered chitosan-coated iron oxide NPs were investigated according to the ISO standard 10993-5:2009. Fe3O4 and CS-Fe3O4 NPs were tested on human mammary epithelial cells (MCF-10A) by using direct and not direct contact cytotoxicity evaluation tests, by evaluating influence of the iron particles on the cytoskeleton with phalloidin/DAPI staining and in vitro cellular iron uptake with Perl's Prussian blue staining. The results indicate that uncoated and chitosan-coated iron oxide nanoparticles are cytocompatible, without negative influence on the cytoskeleton or higher accumulation of iron in the cytoplasm. Therefore, it is encouraging that our data suggest uncoated and chitosan-coated iron oxide nanoparticles have satisfactory proliferative and viability effects on MCF-10A cells. In conclusion data suggest that both MNP types may be differently aimed in biomedical application in relation

  15. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  16. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of adsorbed polyaniline on the thermal stability of iron and arsenic oxides

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2000-06-01

    Full Text Available Iron and arsenic oxide grains are coated with the conducting organic polymer polyaniline. The obtained samples were characterized by infrared spectroscopy, SEM, conducting measurements and thermogravimetry. The thermal stability of both oxides are increased. For As2O3 the sublimation temperature is increased from 165ºC in the pure oxide to 206ºC in the polymer modified sample. The pure Fe3O4 sample exhibits sublimation at 780ºC whereas the polyaniline coated oxide is stable until at least 1000ºC.

  18. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  19. Destructive behavior of iron oxide in projectile impact

    Science.gov (United States)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  20. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    Directory of Open Access Journals (Sweden)

    Marcio S Medeiros

    Full Text Available Parkinson's disease (PD is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD, catalase (CAT, nitrosative stress marker (NOx, thiobarbituric acid reactive substances (TBARS, non-protein thiols (NPSH, advanced oxidation protein products (AOPP, ferric reducing ability of plasma (FRAP and vitamin C as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA, ischemic-modified albumin (IMA and myeloperoxidase. Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP and inflammatory markers (NTPDases, IMA, and myeloperoxidase were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  1. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  2. The effect of Li2O and LiF on structural properties of cobalt doped borate glasses

    Directory of Open Access Journals (Sweden)

    A.M. Abdelghany

    2017-10-01

    Full Text Available Two glassy (LiF–B2O3 and (Li2O–B2O3 systems containing different content of CoO dopants (0.05, 0.1, 0.15, 0.2 wt% were prepared. UV/Vis optical absorption of base glasses reveals a strong UV absorption bands attributed to unavoidable contaminated trace iron impurities. CoO-doped glasses show extra three visible bands due to both octahedral and tetrahedral Co2+ ions related to the little variation between energies of ligand field stabilization between the two coordination states. Fluoride containing glasses show limited variations in the spectral properties due to the different ligand strength of the anions (F− and O2−. FTIR spectra display characteristic modes of vibrations due to triangular and tetrahedral borate groups. It is assumed that LiF acts as Li2O in promoting the formation of tetrahedral (BO3F units which possess the same wavenumber position for vibrations of (BO4 units in the range of 800–1200 cm−1. CoO causes no distinct variations in number or position of characteristic IR vibrational bands due to their low dopant level (0.05–0.2%. A new suggested trial has been utilized to calculate the percent of four coordinated borons from both optical and FTIR spectra to give more insight on the role of CoO as dopant on these spectral properties and on the calculated parameters.

  3. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  4. The Modification of Carbon with Iron Oxide Synthesized in Electrolysis Using the Arc Discharge Method

    Science.gov (United States)

    Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul

    2017-02-01

    The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.

  5. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Avik; Kilianová, Martina; Yang, Bing; Tyo, Eric C.; Seifert, Soenke; Prucek, Robert; Panáček, Aleš; Suchomel, Petr; Tomanec, Ondřej; Gosztola, David J.; Milde, David; Wang, Hsien-Hau; Kvítek, Libor; Zbořil, Radek; Vajda, Stefan

    2018-06-01

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the starting nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.

  6. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang

    2017-11-01

    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  7. Structural characterization of hog iron oxide content glasses obtained from zinc hydrometallurgy wastes

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhujharov, W.

    1997-01-01

    It has been carried out the structural characterization of high oxide content glasses obtained by melting of a goethite industrial waste from the zinc hydrometallurgy with other raw materials as dolomite and glass cullet. The structural characterization has been carried out by X-ray Diffraction (XRD), X-Ray Diffraction by Amorphous Dispersion (RDF) and Mossbauer spectroscopy. It has been determined the interatomic distance, the oxidation state and the coordination of iron atoms in these glasses. (Author) 16 refs

  8. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides

    Science.gov (United States)

    Sklute, Elizabeth C.; Kashyap, Srishti; Dyar, M. Darby; Holden, James F.; Tague, Thomas; Wang, Peng; Jaret, Steven J.

    2018-01-01

    Nanophase iron (oxyhydr)oxides are ubiquitous on Earth, globally distributed on Mars, and likely present on numerous other rocky solar system bodies. They are often structurally and, therefore, spectrally distinct from iron (oxyhydr)oxide bulk phases. Because their spectra vary with grain size, they can be difficult to identify or distinguish unless multiple analysis techniques are used in tandem. Yet, most literature reports fail to use multiple techniques or adequately parameterize sample morphology, making it difficult to understand how morphology affects spectral characteristics across techniques. Here, we present transmission electron microscopy, Raman, visible and near-infrared, and mid-infrared attenuated total reflectance data on synthetic, nanophase akaganéite, lepidocrocite, goethite, hematite, ferrihydrite, magnetite, and maghemite. Feature positions are tabulated and compared to those for bulk (oxyhydr)oxides and other nanophase iron (oxyhydr)oxides from the literature. The utility and limitations of each technique in analyzing nanophase iron (oxyhydr)oxides are discussed. Raman, mid-infrared, and visible near-infrared spectra show broadening, loss of some spectral features, and shifted positions compared to bulk phases. Raman and mid-infrared spectroscopies are useful in identifying and distinguishing akaganéite, lepidocrocite, goethite, and hematite, though ferrihydrite, magnetite, and maghemite have overlapped band positions. Visible near-infrared spectroscopy can identify and distinguish among ferrihydrite, magnetite, and maghemite in pure spectra, though akaganéite, lepidocrocite, and goethite can have overlapping bands. It is clear from this work that further understanding of variable spectral features in nanophase iron (oxyhydr)oxides must await additional studies to robustly assess effects of morphology. This study establishes a template for future work.

  9. Biomineralogy and Morphology of the Marine Iron-oxidizing Bacterium Mariprofundus ferrooxydans

    Science.gov (United States)

    Chan, C. S.; Emerson, D.; Edwards, K. J.

    2006-12-01

    Mariprofundus ferrooxydans strain PV-1 is a lithoautotrophic iron-oxidizing proteobacterium isolated from the Loihi Seamount in Hawaii. As cells grow, they form filaments upon which iron minerals are deposited. Based on similarities in morphology, these structures appear to accumulate and form the bulk of iron mats at Loihi. Furthermore, Mariprofundus has been observed in a number of other seafloor mat samples (e.g. by microscopy and 16S rRNA gene sequencing of East Pacific Rise samples, C. M. Santelli unpublished data), suggesting that the occurrence of Mariprofundus is widespread. To learn about the effect of Mariprofundus on iron cycling, we are studying the processes by which it oxidizes iron and influences iron mineral formation. We are conducting studies on the spatial relationships between the cells, stalks, and minerals using scanning and transmission electron microscopy (SEM and TEM). Identification and imaging of stalk-bound, nanometer-sized iron oxyhydroxide minerals is being performed by high-resolution transmission electron microscopy (HRTEM). We have developed sample preparation methods to preserve in vivo spatial relationships, involving direct colonization of sample holders in cultures and in the environment. Method development has been performed on stalk-forming, iron-oxidizing Gallionella ferruginea cultures and terrestrial iron mats. Gallionella is morphologically and physiologically very similar to Mariprofundus, although 16S rRNA gene phylogeny shows that they are not closely related. Comparison of the terrestrial and marine iron-oxidizing bacteria (FeOB) gives us insight into adaptations that are particular to marine iron-oxidizers and those that are common to all FeOB. Light and fluorescence microscopy of Mariprofundus cultures has shown that a single bean-shaped cell lies at the end of each filament. SEM and TEM results have revealed that the filament is ribbon-like, sometimes twisted as with the classic Gallionella stalk, but sometimes not

  10. Tin oxide quantum dots embedded iron oxide composite as efficient lead sensor

    Science.gov (United States)

    Dutta, Dipa; Bahadur, Dhirendra

    2018-04-01

    SnO2 quantum dots (QDs) embedded iron oxide (IO) nanocomposite is fabricated and explored as a capable sensor for lead detection. Square wave anodic stripping voltammetry (SWASV) and amperometry have been used to explore the proposed sensor's response towards lead detection. The modified electrode shows linear current response for concentration of lead ranging from 99 nM to 6.6 µM with limit of detection 0.42 µM (34 ppb). Amperometry shows a detection limit as low as 0.18 nM (0.015 ppb); which is far below the permissible limit of lead in drinking water by World Health Organization. This proposed sensor shows linear current response (R2 = 0.98) for the lead concentration ranging from 133 × 10-9 to 4.4 × 10-6M. It also exhibits rapid response time of 12 sec with an ultra high sensitivity of 5.5 µA/nM. These detection properties promise the use of SnO2 QDs -IO composite for detection of lead in environmental sample with great ease.

  11. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  12. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle.

    Science.gov (United States)

    Lee, Jaesang; Kim, Jungwon; Choi, Wonyong

    2007-05-01

    Most studies on zerovalent iron (ZVI) were mainly focused on the reductive transformation of halo- or nitrocompounds. Oxidation reactions occurring on ZVI have been recently recognized. In this study, we demonstrate that the oxidation pathways on ZVI can be accelerated by the presence of polyoxometalate (POM: nanosized metaloxygen cluster anion) serving as an electron shuttle. The ions, SiW12O40(4-) and PW12O40(3-), can mediate the electron transfer from the Fe0 surface to 02 while enhancing the production of H2O2, which subsequently initiates the OH radical-mediated oxidation through a Fenton-type reaction. The oxidation reaction was completely quenched by adding methanol as an OH radical-scavenger. On the other hand, PMo12O40(3-) completely inhibited the oxidative degradation by irreversibly scavenging an electron and holding it. We systematically investigated the effects of iron loading, the concentration of POM, and pH on the oxidative degradation kinetics of 4-chlorophenol in the POM-mediated ZVI system. The POM-mediated oxidations on ZVI were additionally tested for 12 organic contaminants and the rates were compared. Their oxidative degradation on ZVI was mostly enhanced in the presence of POM (SiW12O40(4-)). The present study provides a good model system upon which the ZVI-based oxidation technologies can be successfully enhanced and modified for further developments.

  13. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.

    Science.gov (United States)

    Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus

    2015-07-25

    Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this

  14. Iron Oxide Arrays Prepared from Ferrocene- and Silsesquioxane-Containing Block Copolymers

    Directory of Open Access Journals (Sweden)

    Raita Goseki

    2012-01-01

    Full Text Available Arrays of iron oxides as precursors of iron clusters were prepared by oxygen plasma treatment of block copolymer microphase-separated nanostructures in thin films. Block copolymers composed of ferrocene-containing and silsesquioxane-containing polymethacrylate (PMAPOSS-b-PMAHFC were successfully prepared, with different molecular weights and compositions and narrow molecular weight distributions, by living anionic polymerization. The formed microphase-separated nanostructures in the bulk were characterized by wide- and small-angle X-ray scattering (WAXS and SAXS, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Thin films were prepared from a solution of PMAPOSS-b-PMAHFC in tetrahydrofuran by spin coating onto silicon wafers. Fingerprint-type line nanostructures were formed in the PMAPOSS-b-PMAHFCs thin films after solvent annealing with carbon disulfide. Oxygen plasma treatment provided the final line arrays of iron oxides based on the formed nanostructural patterns.

  15. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  16. Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

    Directory of Open Access Journals (Sweden)

    Thyagaraju BM

    2008-01-01

    Full Text Available Background: The present study describes the susceptibility of prepubertal testis of mice toprooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions.Materials and Methods: Following in vitro exposure to iron (5,10 and 25 M, oxidative responsemeasured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4wk was more robust compared to that of pubertal mice (6 wk.Results: Further, in an in vivo study, pre pubertal mice administered (i.p sub lethal doses (12.5,25 and 50mg/100g bw/d, 5d of Iron dextran, showed significant induction of oxidative stressresponse in testis cytosol and mitochondria manifested as lipid peroxidation, generation of reactiveoxygen species, hydroperoxide levels and enhanced protein carbonyl levels (a measure of proteinoxidation. Diminished levels of GSH and total thiols in both cytosol and mitochondria of testissuggested an altered redox state. Significant perturbations in the activities of antioxidant enzymessuch as glutathione transferase, glutathione peroxidase and SOD were discernible suggesting theongoing oxidative stress in vivo. These oxidative impairments were accompanied by functionalimplications in testis as reflected in the altered activities of dehydrogenases and reduced activitiesof both 3 - and 17 -hydroxysteriod dehydrogenase.Conclusion: Collectively, these data provide an account of the susceptibility of prepubertal testisto iron-induced oxidative stress, associated functional consequences and this model is being furtherexploited for understanding the implications on the physiology of testis and consequent effect onfertility.

  17. On the kinetics of the initial oxidation of iron and iron nitride

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Somers, Marcel A.J.; Mittemeijer, E.J.

    2002-01-01

    the oxide film. For sputter-cleaned + annealed epsilon Fe2N1-x this lead to a nitrogen concentration larger than the maximum solubility of nitrogen in epsilon Fe2N1-x. The excess nitrogen at the metal-oxide interface, which is negatively charged as was indicated by the corresponding XPS N 1s peak, lead...

  18. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment

    DEFF Research Database (Denmark)

    Nordi, Katrin á; Thamdrup, Bo; Schubert, Carsten J.

    2013-01-01

    Freshwater systems are identified as one of the main natural methane sources, but little is known about the importance of anaerobic oxidation of methane (AOM) in these systems. We investigated AOM in a lake sediment characterized by a high reactive iron content, normal sulfate concentrations in t...

  19. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces

    Directory of Open Access Journals (Sweden)

    Monica Thukkaram

    2014-01-01

    Full Text Available Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.

  20. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments

    NARCIS (Netherlands)

    Slomp, C.P.; Gaast, S. J. van der; Raaphorst, W. van

    1996-01-01

    Differential X-ray powder diffraction (DXRD) and extraction procedures were used to characterize the iron oxides present in four sediments from contrasting environments in the North Sea. Stations were located in depositional areas on the southern shelf (German Bight) and on the north-eastern

  1. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  2. The Oxidation of Iron: Experiment, Simulation, and Analysis in Introductory Chemistry

    Science.gov (United States)

    Schubert, Frederic E.

    2015-01-01

    In this exercise, an actual chemical reaction, oxidation of iron in air, is studied along with a related analogue simulation of that reaction. The rusting of steel wool is carried out as a class effort. The parallel simulation is performed by students working in small groups. The analogue for the reacting gas is a countable set of discrete marble…

  3. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  4. Integrated iron(II) oxidation and limestone neutralisation of acid mine water

    CSIR Research Space (South Africa)

    Maree, JP

    1999-01-01

    Full Text Available Volumetric iron (II) oxidation rates exceeding 100 g/(l.d) were achieved by dosing powdered limestone to a bio-reactor treating artificial acid mine water. Neutralisation and partial sulphate removal were achieved as well. The rate is highly...

  5. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)

    Unknown

    Dedicated to the memory of the late Professor Bhaskar G Maiya. *For correspondence. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro- perbenzoic acid: Nature of reactive intermediates. A AGARWALA, V BAGCHI and D BANDYOPADHYAY*. Department of Chemistry, Indian Institute of Technology, New Delhi ...

  6. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  7. Rapid determination of iron oxide content in magnetically modified particulate materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Nýdlová, L.; Pospíšková, K.; Baldíková, E.; Maděrová, Z.; Šafaříková, Miroslava

    2016-01-01

    Roč. 26, June (2016), s. 114-117 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic iron oxides * magnetic permeability meter * magnetically modified materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  8. Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for ...

    African Journals Online (AJOL)

    We report herein the fabrication of nanostructured and mesoporous iron-cerium mixed oxides for photocatalytic application. Phase, electronic structure and other properties of the products were characterized by both low-angle and wide-angle X-ray diffraction, diffuse reflectance spectroscopy, transmission electron ...

  9. Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Filip, J.; Horská, Kateřina; Nowakova, M.; Tuček, J.; Šafaříková, Miroslava; Hashimoto, H.; Takada, J.; Zbořil, R.

    2015-01-01

    Roč. 12, č. 2 (2015), s. 673-682 ISSN 1735-1472 R&D Projects: GA MŠk(CZ) LH11111; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Biogenic iron oxides * Leptothrix ochracea * Magnetic fluid * Magnetic adsorbents * Xenobiotics Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.344, year: 2015

  10. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...

  11. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  12. Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings

    DEFF Research Database (Denmark)

    Jia, Chun-Jiang; Sun, Ling-Dong; Luo, Feng

    2008-01-01

    We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can be divi...

  13. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio early life stages.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhu

    Full Text Available Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology.

  14. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Czech Academy of Sciences Publication Activity Database

    Smolkova, I.S.; Kazantseva, N.E.; Babayan, V.; Smolka, P.; Parmar, H.; Vilcakova, J.; Schneeweiss, Oldřich; Pizúrová, Naděžda

    2015-01-01

    Roč. 374, JAN (2015), s. 508-515 ISSN 0304-8853 Institutional support: RVO:68081723 Keywords : Iron oxide nanoparticles * Coprecipitation * Magnetic interactions * Specific loss power * Hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  15. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    Science.gov (United States)

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function. PMID:28400730

  16. Kinetics and mechanism of oxidation of glycine by iron (III)-1, 10 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 4. Kinetics and mechanism of oxidation of glycine by iron(III)-1 ... Partha Sarathi1 A Kalyan Kumar1 K Krishna Kishore1 P Vani1. Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University, Visakhapatnam 530 003, India ...

  17. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 3.150, year: 2015

  18. Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research

    NARCIS (Netherlands)

    Chardon, W.J.; Menon, R.G.; Chien, S.H.

    1996-01-01

    Iron oxide impregnated filter paper (FeO paper) has been used to study the availability of phosphorus (P) to plants and algae, P desorption kinetics and P dynamics in the field. Since its initial development a number of differences in the method of preparation of the paper and its application have

  19. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Material s engineering Impact factor: 4.164, year: 2016

  20. Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron

    Directory of Open Access Journals (Sweden)

    Samuel de Souza Pinto

    2016-06-01

    Full Text Available ABSTRACT Iron plays a pivotal role in the redox reactions of photosynthesis and metabolic processes such as chlorophyll synthesis. Iron availability in waterlogged soils can reach toxic levels and promote oxidative stress. Fe toxicity is the most concerning of stresses for rice in many lowland environments around the world and may cause severe impairments in rice photosynthesis. This study aimed to investigate the extension of oxidative stress after excess Fe exposure and its effects on the photosynthesis of rice cultivars with differential sensitivity. Three Brazilian rice cultivars (EPAGRI 107, BRSMG SELETA and BR IRGA 409 were grown in Hoagland nutrient solution (pH 4.0 with two Fe-EDTA doses corresponding to excess Fe (7 mM and control (0.009 mM treatments. After just three days of excess Fe exposure, there was a significant increase in iron concentration in the shoots. The BR IRGA 409 cultivar exhibited higher Fe accumulation in its shoots, and the EPAGRI 107 cultivar recorded the lowest values, which were below the critical toxicity level, as a resistance strategy. Impairment in light energy partitioning and oxidative damage became evident before changes in stomatal resistance, chlorophyll content, maximal PSII quantum yield or visual symptoms for the most sensitive cultivar (BR IRGA 409. The photosynthesis limitations, in addition to the impairment of excess energy dissipation in rice from iron toxicity, are the results of oxidative damage.

  1. Melting and freezing of ice in relation to iron oxidation of meteorites

    Czech Academy of Sciences Publication Activity Database

    Hrubá, J.; Kletetschka, Günther

    2015-01-01

    Roč. 50, Supplement 1 SI (2015) ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /78./. 27.07.2015-31.07.2015, Berkeley] Institutional support: RVO:67985831 Keywords : meteorites * iron oxidation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-06-01

    Full Text Available Electrochemical sensors using edge-plane pyrolytic graphite electrode (EPPGEs) modified with singlewall carbon nanotubes–iron (III) oxide (SWCNT/Fe2O3) nanoparticles for the sensitive detection of dopamine (DA) are described for the first time...

  3. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    Science.gov (United States)

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  4. The Wettability of a Multi-Component DNAPL on Quartz and Iron Oxide Sands

    Science.gov (United States)

    Molnar, I.; O'Carroll, D.; Gerhard, J.

    2009-05-01

    Dense nonaqueous phase liquids (DNAPLs) released to the subsurface often contain a variety of chemical constituents, via either co-disposal or intentional modification to increase their industrial efficacy. These additional constituents are often surface active compounds (surfactants)that partition to soil surfaces. The role that these surface active compounds that sorb to soil surfaces have on DNAPL migration is still poorly understood despite an increasing amount of work in the area. Most studies have focused on the role surface active chemicals play in altering the wettability of quartz sands. This research aims to extend the understanding of multi-component DNAPL transport to other porous media and under a variety of pH conditions. Specifically, the objective of this study was to compare the changes in the wettability of quartz and iron oxide sands in a tetrachloroethylene (PCE)/water system spiked with dodecylamine, a representative cationic surfactant. Wettability was assessed through: (i) contact angles measured on representative quartz and iron oxide-coated plates as well as (ii) contact angles measured directly on sands using an Axial Drop Symmetrical Analyzer apparatus; and (iii) capillary pressure-saturation relationships obtained via multi-step outflow experiments. In addition, two-dimensional sandbox experiments explored the influences of iron oxide and quartz sands on multicomponent DNAPL migration. Results suggest that quartz and iron oxide-coated sands exhibit different wetting characteristics under similar subsurface conditions.

  5. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Wang, Haotian; Kumar, Rajiv; Nagesha, Dattatri; Duclos, Richard I.; Sridhar, Srinivas; Gatley, Samuel J.

    2015-01-01

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59 Fe, 14 C-oleic acid, and 111 In. Results: Mouse biodistributions showed 111 In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59 Fe than 111 In in liver and spleen, but lower levels of 14 C. Conclusions: While there is some degree of dissociation between the 111 In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  6. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wydra, Robert J.; Kruse, Anastasia M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Bae, Younsoo [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506 (United States); Anderson, Kimberly W. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Hilt, J. Zach, E-mail: hilt@engr.uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe{sub 3}O{sub 4}) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. - Highlights: • Utilized atomic transfer radical polymerization (ATRP) to coat iron oxide nanoparticles with PEG • Investigated the surface coating by surface characterization methods • Demonstrated the potential use of nanoparticles for cancer therapy applications.

  7. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON...

  8. Laser-Induced Synthesis of Iron-Iron Oxide/Methylmethoxysilicone Nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Bastl, Zdeněk; Vorlíček, Vladimír; Dumitrache, F.; Alexandrescu, R.; Morjan, I.; Sandu, I.; Ciupina, V.

    2004-01-01

    Roč. 18, č. 7 (2004), s. 337-342 ISSN 0268-2605 R&D Projects: GA AV ČR IAA4072107; GA MŠk OC 523.60 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4040901 Keywords : nanocomposite * laser synthesis * iron Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.385, year: 2004

  9. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  10. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations.

    Science.gov (United States)

    Shah, Ankit; Dobrovolskaia, Marina A

    2018-04-01

    Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Improvement in gold grade from iron-oxide mineral using reduction roasting and magnetic separation

    Science.gov (United States)

    Kim, Hyun-soo; On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Park, Cheon-young

    2017-04-01

    Microwave has a wide range of applications in mineral technology, metallurgy, etc. It is an established fact that microwave energy has potential for the speedy and efficient heating of minerals and in a commercial context may provide savings in both time and energy. Microwave heating is being developed as a potential thermal pre-treatment process, because of its unique advantages over the differences of ore minerals in absorbing microwaves. The aim of this study was to investigate the improvement in Au grade from iron-oxide mineral using reduction roasting and magnetic separation. The characteristics of iron-oxide mineral were analyzed using chemical, XRD and reflected light microscopy. The reduction roasting using microwave and magnetic separation experiments were examined under various conditions (reducing agent and chemical additive). The results of XRD and reflected light microscopy showed that the iron-oxide mineral mainly composed of illite, quartz and hematite. The iron-oxide mineral had an Au, Ag, Fe contents of 6.4, 35.1 and 155,441.1 mg/kg, respectively. The results demonstrated that the improvement in Au by reduction roasting using microwave (frequency of 2.45GHz, intensity of 5kW) and magnetic separation (magnetic field intensity of 9,000 Gauss) were effective processes. The Au content in iron-oxide mineral from 6.4 mg/kg to 14.2 mg/kg was achieved within microwave exposure time of 10min (reducing agent(PAC) ratio = 50 : 50, 5% of chemical additive(Soda ash)). Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"

  12. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation

    International Nuclear Information System (INIS)

    Lei, Jing; Liu Chengshuai; Li Fangbai; Li Xiaomin; Zhou Shungui; Liu Tongxu; Gu Minghua; Wu Qitang

    2006-01-01

    To understand the photodegradation of azo dyes in natural aquatic environment, a novel photo-Fenton-like system, the heterogeneous iron oxide-oxalate complex system was set up with the existence of iron oxides and oxalate. Five iron oxides, including γ-FeOOH, IO-250, IO-320, IO-420 and IO-520, were prepared and their adsorption capacity was investigated in the dark. The results showed that the saturated adsorption amount (Γ max ) was ranked the order of IO-250>IO-320>γ-FeOOH>IO-420>IO-520 and the adsorption equilibrium constant (K a ) followed the order of IO-250>IO-520>γ-FeOOH>IO-420>IO-320. The effect of initial pH value, the initial concentrations of oxalate and orange I on the photodegradation of orange I were also investigated in different iron oxide-oxalate systems. The results showed that the photodegradation of orange I under UVA irradiation could be enhanced greatly in the presence of oxalate. And the optimal oxalate concentrations (C ox 0 ) for γ-FeOOH, IO-250, IO-320, IO-420 and IO-520 were 1.8, 1.6, 3.5, 3.0 and 0.8mM, respectively. The photodegradation of orange I in the presence of optimal C ox 0 was ranked as the order of γ-FeOOH>IO-250>IO-320>IO-420>IO-520. The optimal range of initial pH was at about 3-4. The first-order kinetic constant for the degradation of orange I decreased with the increase in the initial concentration of orange I. Furthermore, the variation of pH, the concentrations of Fe 3+ and Fe 2+ during the photoreaction were also strongly dependent on the C ox 0 and iron oxides

  13. ID ICPMS Lu-Hf Geochronology of Apatite from Iron-Oxide Apatite (IOA) Deposits, Northern Chilean Iron Belt.

    Science.gov (United States)

    Zhang, C.; Vervoort, J. D.; Barra, F.; Palma, G.

    2017-12-01

    Determining the age of mineralization of ore deposits is important for understanding the mechanisms and timing of ore formation. In many cases, however, conventional dateable mineral phases (e.g., zircon, monazite) are lacking in the ore mineral assemblages. For example, Iron Oxide Apatite (IOA) and Iron Oxide Gold Copper Gold (IOCG) deposits have the remaining fundamental question as to whether they have formed by hydrothermal or magmatic processes, or some combination of the two. In these deposits, the mineralization of iron oxide is often accompanied by the growth of apatites, which typically have REE concentrations of tens to several thousand ppm and which makes them potentially amenable to dating by the Lu-Hf isochron method. These apatites, however, also have very low concentrations of Hf, which makes determination of precise Hf isotope compositions challenging. In this study, we attempted to date these deposits using the apatite Lu-Hf isochron method, using procedures modified from that of Münker et al., 2001 and Barfod et al., 2003 and report the first Lu-Hf ages for apatites from Carmen, Fresia, and Mariela IOA deposits in northern Chilean Iron Belt. The concentration of Hf in analyzed apatite is 0.001 ppm. To ensure at least 0.5ng of Hf is collected for MS analysis, 0.5g apatite was dissolved for each sample. A single stage of Ln-spec resin chromatographic columns was used to separate Hf from REEs as multi stages of separation columns would decrease the Hf yield considerably. Using these procedures, we determined a Lu-Hf apatite age for the Carmen deposit of 130.0±1.7 Ma, which is in accordance with a previously published U-Pb apatite age of 131.0±1.0 Ma (Gelcich et al., 2005). The apatites from Fresia and Mariela yield Lu-Hf ages of 132.8±5.3 Ma and 117.3±0.4 Ma respectively. The lower points on the isochrons are either a low Lu/Hf phase (actinolite, magnetite) or bulk earth ratios. These are some of the first Lu-Hf ages of directly dating apatite

  14. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    Science.gov (United States)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-04-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  15. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    Anjuman, S.; Tahira, S.; Hizbullah, K.; Hizbullah, K.

    2011-01-01

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  16. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    Science.gov (United States)

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in aluminium oxides maybe more important for stability of micro-aggregates.

  17. Distribution of iron-oxidizing bacteria in the nordic uranium tailings deposit, elliot lake, ontario, Canada.

    Science.gov (United States)

    Silver, M

    1987-04-01

    Iron-oxidizing bacteria are present within the top 2 m (but not always at the surface) and near the water table-capillary fringe of the vegetated Nordic uranium deposit, Elliot Lake, Ontario, Canada. They are distributed uniformly in the top 0.5 m of unvegetated tailings. The locations of these bacteria correlate with zones of pyrite oxidation as delineated in previous studies by the formation of soluble iron and sulfate. Heterotrophic bacteria are also present in the tailings, with greatest concentrations at the surface and near the water table-capillary fringe. Sulfate-reducing bacteria were detected in the soil and peat at the base of the tailings. The results of this study suggest that the establishment of vegetation directly upon the tailings surface does not arrest bacterial pyrite oxidation.

  18. Oxidation of iron and of titanium nitride by hydrogen sulphide and water vapour

    International Nuclear Information System (INIS)

    Nardou, Francoise

    1980-01-01

    This research thesis reports the study of the kinetic mechanism of reactions in heterogeneous phases with gaseous release within the frame of metallic or ceramic material oxidation. The first part discusses the use of the linear law of sulfuration of iron by the H 2 S gas, and discusses the sulfuration mechanism. The second part addresses the oxidation of iron in an H 2 /H 2 O atmosphere between 800 and 1000 C. It notably studies the nature of the linear regime mentioned in the literature. The last part addresses the very different case of titanium nitride, and studies the influence of water vapour on the oxidation mechanism. A close correlation between kinetic results and morphological observations highlights an embrittlement of TiN by hydrogen which diffuses at grain boundaries [fr

  19. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    –310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...... photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported...

  20. Mössbauer effect phase determination in iron oxide-polyaniline nanocomposites

    Science.gov (United States)

    Aphesteguy, J. C.; Jacobo, S. E.; Rodríguez Torres, C. E.; Fernández van Raap, M. B.; Sánchez, F. H.

    Mössbauer effect spectroscopy and thermal analysis techniques were applied to characterize polyaniline composites successfully synthesized by embedding Fe oxide nanoparticles (about 10-13 nm) in a polymeric matrix in the presence of dodecyl benzene sulfonic acid and Hel (dopant). Thermal techniques provided quantitative information on iron oxide content and on polyaniline stability and transformations. Mössbauer results indicated that for the whole studied composition range, 3.4 to 100 iron oxide wt.%, composites hold maghemite particles. A preliminary study of the conductivity of the nanocomposites was performed. The largest conductivity was observed for a 8 wt.% maghemite composite where all particles are magnetically unblocked at room temperature within the Mössbauer time window.

  1. Mössbauer effect phase determination in iron oxide polyaniline nanocomposites

    Science.gov (United States)

    Aphesteguy, J. C.; Jacobo, S. E.; Rodríguez Torres, C. E.; Fernández van Raap, M. B.; Sánchez, F. H.

    2007-09-01

    Mössbauer effect spectroscopy and thermal analysis techniques were applied to characterize polyaniline composites successfully synthesized by embedding Fe oxide nanoparticles (about 10 13 nm) in a polymeric matrix in the presence of dodecyl benzene sulfonic acid and HCl (dopant). Thermal techniques provided quantitative information on iron oxide content and on polyaniline stability and transformations. Mössbauer results indicated that for the whole studied composition range, 3.4 to 100 iron oxide wt.%, composites hold maghemite particles. A preliminary study of the conductivity of the nanocomposites was performed. The largest conductivity was observed for a 8 wt.% maghemite composite where all particles are magnetically unblocked at room temperature within the Mössbauer time window.

  2. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.

    Science.gov (United States)

    Sharma, Anirudh; Cornejo, Christine; Mihalic, Jana; Geyh, Alison; Bordelon, David E; Korangath, Preethi; Westphal, Fritz; Gruettner, Cordula; Ivkov, Robert

    2018-03-20

    Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.

  3. Fischer-Tropsch synthesis: Moessbauer studies of pretreated ultrafine iron oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chenshi Huang; Davis, B.H. (Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research); Rao, K.R.P.M.; Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (United States). Inst. for Mining and Minerals Research)

    1992-01-01

    Moessbauer spectroscopy indicates that a 24 hour-pretreatment in CO at 260{degrees}C and 8 atm. in a tetralin solvent almost completely converts uftrafine iron oxide (about 3 nm) to iron carbide. However, pretreatment in hydrogen under the same conditions resulted in reduction of about 33% of the iron to metallic Fe; the remainder was Fe{sub 3}O{sub 4}. Exposure of the CO pretreated catalyst to a 1:1 HDCO synthesis gas resulted in the gradual reoxidation of the carbides to Fe{sub 3}O{sub 4}. During the first 2 hours of exposure of the H{sub 2} pretreated sample to synthesis gas,.the metallic Fe was converted to iron carbides. Further exposure of the H{sub 2} pretreatment sample to synthesis gas did not result in a composition change of the catalyst. Therefore, it is concluded that iron carbides with different oxidation characteristics were formed in these two cases.

  4. Magnetic properties of ε iron(III) oxide nanorod arrays functionalized with gold and copper(II) oxide

    Science.gov (United States)

    Maccato, Chiara; Carraro, Giorgio; Peddis, Davide; Varvaro, Gaspare; Barreca, Davide

    2018-01-01

    A sequential Chemical Vapor Deposition (CVD) - Radio Frequency (RF)-sputtering approach was adopted to fabricate supported nanocomposites based on the scarcely investigated ε-iron(III) oxide polymorph. In particular, ε-Fe2O3 nanorod arrays were obtained by CVD, and their subsequent functionalization with Au and CuO nanoparticles (NPs) was carried out by RF-sputtering under mild operational conditions. Beside a multi-technique characterization of material structure, morphology and chemical composition, particular efforts were dedicated to the investigation of their magnetic properties. The pertaining experimental data, discussed in relation to the system chemico-physical characteristics, are directly dependent on the actual chemical composition, as well as on the spatial distribution of Au and CuO nanoparticles. The approach adopted herein can be further implemented to control and tailor different morphologies and phase compositions of iron oxide-based nanomaterials, meeting thus the open requests of a variety of technological utilizations.

  5. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  6. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    Science.gov (United States)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  7. Pyrene Removal from Contaminated Soils by Modified Fenton Oxidation Using Iron Nano Particles

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2013-07-01

    Full Text Available Background:The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study.Methods:Varying concentrations of H2O2 (0-500 mM and iron nano oxide (0-60 mM, reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg.Results:By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met.Conclusions:In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH.

  8. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-01-01

    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  9. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  10. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  11. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  12. Nanocomposites of Highly Monodisperse Encapsulated Superparamagnetic Iron Oxide Nanocrystals Homogeneously Dispersed in a Poly(ethylene Oxide) Melt.

    Science.gov (United States)

    Feld, Artur; Koll, Rieke; Fruhner, Lisa Sarah; Krutyeva, Margarita; Pyckhout-Hintzen, Wim; Weiß, Christine; Heller, Hauke; Weimer, Agnes; Schmidtke, Christian; Appavou, Marie-Sousai; Kentzinger, Emmanuel; Allgaier, Jürgen; Weller, Horst

    2017-04-25

    Nanocomposite materials based on highly stable encapsulated superparamagnetic iron oxide nanocrystals (SPIONs) were synthesized and characterized by scattering methods and transmission electron microscopy (TEM). The combination of advanced synthesis and encapsulation techniques using different diblock copolymers and the thiol-ene click reaction for cross-linking the polymeric shell results in uniform hybrid SPIONs homogeneously dispersed in a poly(ethylene oxide) matrix. Small-angle X-ray scattering and TEM investigations demonstrate the presence of mostly single particles and a negligible amount of dyads. Consequently, an efficient control over the encapsulation and synthetic conditions is of paramount importance to minimize the fraction of agglomerates and to obtain uniform hybrid nanomaterials.

  13. Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis

    International Nuclear Information System (INIS)

    Taze, Chrysa; Panetas, Ioannis; Kalogiannis, Stavros; Feidantsis, Konstantinos; Gallios, George P.; Kastrinaki, Georgia; Konstandopoulos, Athanasios G.; Václavíková, Miroslava; Ivanicova, Lucia; Kaloyianni, Martha

    2016-01-01

    Highlights: • The impact of two types of iron oxide nanoparticles on the physiological status of mussels was studied. • Oxidative parameters significantly changed after 1, 3, 7 days of exposure. • The nanoparticles induced oxidative stress to the animals. • All the parameters measured could be applied in biomonitoring studies. - Abstract: Nanoparticles (NPs), due to their increased application and production, are being released into the environment with unpredictable impact on the physiology of marine organisms, as well as on entire ecosystems and upcoming effects on human health. The aim of the present study was to evaluate and compare the oxidative responses of the mussel Mytilus galloprovincialis after exposure to iron oxide NPs and to iron oxide NPs incorporated into zeolite for 1, 3 and 7 days. Our results showed that both effectors induced changes on animal physiology by causing oxidative stress in hemocytes of exposed mussels compared to control animals. This was shown by the significant increase in reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, ubiquitin conjugates and DNA damage. In addition an increase in prooxidant levels as measured by the prooxidant-antioxidant balance (PAB) assay was observed in exposed mussels’ hemolymph. The results show that ROS, DNA damage, protein and lipid oxidation, ubiquitin conjugates and PAB could constitute, after further investigation, reliable biomarkers for the evaluation of pollution or other environmental stressors. In addition, more studies are needed in order to ensure the safety of these NPs on various biomedical applications, since it is critical to design NPs that they meet the demands of application without causing cellular toxicity.

  14. Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Taze, Chrysa; Panetas, Ioannis [Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kalogiannis, Stavros [Alexander Technological Educational Institution of Thessaloniki, Department of Nutrition and Dietetics, Thessaloniki (Greece); Feidantsis, Konstantinos [Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gallios, George P. [Laboratory of General & Inorganic Chemical Technology, School of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Kastrinaki, Georgia [Aerosol & Particle Technology Laboratory, CERTH/CPERI, P.O. Box 60361, 57001 Thessaloniki (Greece); Konstandopoulos, Athanasios G. [Aerosol & Particle Technology Laboratory, CERTH/CPERI, P.O. Box 60361, 57001 Thessaloniki (Greece); Department of Chemical Engineering, Aristotle University, PO. Box 1517, 54006 Thessaloniki (Greece); Václavíková, Miroslava; Ivanicova, Lucia [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Kosice (Slovakia); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-03-15

    Highlights: • The impact of two types of iron oxide nanoparticles on the physiological status of mussels was studied. • Oxidative parameters significantly changed after 1, 3, 7 days of exposure. • The nanoparticles induced oxidative stress to the animals. • All the parameters measured could be applied in biomonitoring studies. - Abstract: Nanoparticles (NPs), due to their increased application and production, are being released into the environment with unpredictable impact on the physiology of marine organisms, as well as on entire ecosystems and upcoming effects on human health. The aim of the present study was to evaluate and compare the oxidative responses of the mussel Mytilus galloprovincialis after exposure to iron oxide NPs and to iron oxide NPs incorporated into zeolite for 1, 3 and 7 days. Our results showed that both effectors induced changes on animal physiology by causing oxidative stress in hemocytes of exposed mussels compared to control animals. This was shown by the significant increase in reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, ubiquitin conjugates and DNA damage. In addition an increase in prooxidant levels as measured by the prooxidant-antioxidant balance (PAB) assay was observed in exposed mussels’ hemolymph. The results show that ROS, DNA damage, protein and lipid oxidation, ubiquitin conjugates and PAB could constitute, after further investigation, reliable biomarkers for the evaluation of pollution or other environmental stressors. In addition, more studies are needed in order to ensure the safety of these NPs on various biomedical applications, since it is critical to design NPs that they meet the demands of application without causing cellular toxicity.

  15. Phase change induced by polypyrrole in iron-oxide polypyrrole ...

    Indian Academy of Sciences (India)

    Unknown

    polymer. Polypyrrole, one of the conducting polymers, has received lot of attention in the preparation of nanocomposites due to its high stability in conducting oxidized form (Partch et al 1991; Huang and Matijevic. 1995; Maeda and Armes 1995). Nanocomposite materials based on nanosized magnetic materials have been ...

  16. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation...

  17. Synthesis of iron oxide nanoparticles of narrow size distribution on ...

    Indian Academy of Sciences (India)

    WINTEC

    applications in pigments, catalysts, gas sensors and as raw materials for ferrites. Templating is commonly em- ployed for the controlled production of materials with ordered structure having desired properties. In the past, templates like aluminium oxide, carbon nanotubes, sur- factants, polymer fibres and egg shell ...

  18. Synthesis of magnetic iron oxide nanoparticles toward arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Starbird Perez, Ricardo; Montero Campos, Virginia

    2015-01-01

    A high contact area material is supplied to be used in the treatment of water contaminated with arsenic. Synthesis of iron nanoparticles is reported with superparamagnetic properties, stabilized with stearic acid. The characterization is performed through spectrophotometric, thermogravimetric and electronic transmission techniques. The presence of an emulsifier is evidenced and determinant for the stabilization of the iron oxide phase (maghemite or magnetite) with magnetic properties. The material is obtained and shows suitable properties to be used in the treatment of water for human consumption. (author) [es

  19. The influence of thermal annealing on structure and oxidation of iron nanowires

    Directory of Open Access Journals (Sweden)

    Krajewski Marcin

    2015-03-01

    Full Text Available Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta. At higher Ta, hematite was the dominant phase in the nanowires.

  20. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress.

    Directory of Open Access Journals (Sweden)

    Remil Linggatong Galay

    Full Text Available Ticks are obligate hematophagous parasites that have successfully developed counteractive means against their hosts' immune and hemostatic mechanisms, but their ability to cope with potentially toxic molecules in the blood remains unclear. Iron is important in various physiological processes but can be toxic to living cells when in excess. We previously reported that the hard tick Haemaphysalis longicornis has an intracellular (HlFER1 and a secretory (HlFER2 ferritin, and both are crucial in successful blood feeding and reproduction. Ferritin gene silencing by RNA interference caused reduced feeding capacity, low body weight and high mortality after blood meal, decreased fecundity and morphological abnormalities in the midgut cells. Similar findings were also previously reported after silencing of ferritin genes in another hard tick, Ixodes ricinus. Here we demonstrated the role of ferritin in protecting the hard ticks from oxidative stress. Evaluation of oxidative stress in Hlfer-silenced ticks was performed after blood feeding or injection of ferric ammonium citrate (FAC through detection of the lipid peroxidation product, malondialdehyde (MDA and protein oxidation product, protein carbonyl. FAC injection in Hlfer-silenced ticks resulted in high mortality. Higher levels of MDA and protein carbonyl were detected in Hlfer-silenced ticks compared to Luciferase-injected (control ticks both after blood feeding and FAC injection. Ferric iron accumulation demonstrated by increased staining on native HlFER was observed from 72 h after iron injection in both the whole tick and the midgut. Furthermore, weak iron staining was observed after Hlfer knockdown. Taken together, these results show that tick ferritins are crucial antioxidant molecules that protect the hard tick from iron-mediated oxidative stress during blood feeding.

  1. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  2. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    Souza, Kellie Provazi de

    2006-01-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO 4 ) 2 (NH 4 ) 2 .6H 2 O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl 3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  3. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  4. Corrosion protection of iron using porous anodic oxide/conducting polymer composite coatings.

    Science.gov (United States)

    Konno, Yoshiki; Tsuji, Etsushi; Aoki, Yoshitaka; Ohtsuka, Toshiaki; Habazaki, Hiroki

    2015-01-01

    Conducting polymers (CPs), including polypyrrole, have attracted attention for their potential in the protection of metals against corrosion; however, CP coatings have the limitation of poor adhesion to metal substrates. In this study, a composite coating, comprising a self-organized porous anodic oxide layer and a polypyrrole layer, has been developed on iron. Because of electropolymerization in the pores of the anodic oxide layer, the composite coating showed improved adhesion to the substrate along with prolonged corrosion protection in a NaCl aqueous corrosive environment. The anodic oxide layers are formed in a fluoride-containing organic electrolyte and contain a large amount of fluoride species. The removal of these fluoride species from the oxide layer and the metal/oxide interface region is crucial for improving the corrosion protection.

  5. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  6. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Science.gov (United States)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  7. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles.

    Science.gov (United States)

    Magdolenova, Zuzana; Drlickova, Martina; Henjum, Kristi; Rundén-Pran, Elise; Tulinska, Jana; Bilanicova, Dagmar; Pojana, Giulio; Kazimirova, Alena; Barancokova, Magdalena; Kuricova, Miroslava; Liskova, Aurelia; Staruchova, Marta; Ciampor, Fedor; Vavra, Ivo; Lorenzo, Yolanda; Collins, Andrew; Rinna, Alessandra; Fjellsbø, Lise; Volkovova, Katarina; Marcomini, Antonio; Amiry-Moghaddam, Mahmood; Dusinska, Maria

    2015-05-01

    Surface coatings of nanoparticles (NPs) are known to influence advantageous features of NPs as well as potential toxicity. Iron oxide (Fe3O4) NPs are applied for both medical diagnostics and targeted drug delivery. We investigated the potential cytotoxicity and genotoxicity of uncoated iron oxide (U-Fe3O4) NPs in comparison with oleate-coated iron oxide (OC-Fe3O4) NPs. Testing was performed in vitro in human lymphoblastoid TK6 cells and in primary human blood cells. For cytotoxicity testing, relative growth activity, trypan blue exclusion, (3)H-thymidine incorporation and cytokinesis-block proliferation index were assessed. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. Particle characterization was performed in the culture medium. Cellular uptake, morphology and pathology were evaluated by electron microscopy. U-Fe3O4 NPs were found not to be cytotoxic (considering interference of NPs with proliferation test) or genotoxic under our experimental conditions. In contrast, OC-Fe3O4 NPs were cytotoxic in a dose-dependent manner, and also induced DNA damage, indicating genotoxic potential. Intrinsic properties of sodium oleate were excluded as a cause of the toxic effect. Electron microscopy data were consistent with the cytotoxicity results. Coating clearly changed the behaviour and cellular uptake of the NPs, inducing pathological morphological changes in the cells.

  8. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted by meso-Tetraarylporphyrin Iron(III)-Hydroxo Complexes.

    Science.gov (United States)

    Maldotti, A.; Bartocci, C.; Varani, G.; Molinari, A.; Battioni, P.; Mansuy, D.

    1996-02-28

    The photochemical and photocatalytic properties of iron meso-tetraarylporphyrins bearing an OH(-) axial ligand and different substituents in the beta-positions of the porphyrin ring are reported. Irradiation (lambda = 365 nm) in the absence of dioxygen leads to the reduction of Fe(III) to Fe(II) with the formation of OH(*) radicals. Substituents at the pyrrole beta-positions are found to markedly affect the photoreduction quantum yields. Under aerobic conditions, this photoreaction can induce the subsequent oxidation of cyclohexane to cyclohexanone and cyclohexanol by O(2) itself. The process occurs under mild conditions (22 degrees C; 760 Torr of O(2)) and without the consumption of a reducing agent. The polarity of the solvent and the nature of the porphyrin ring have a remarkable effect on the selectivity of the photooxidation process, likely controlling the cleavage of O-O bonds of possible iron peroxoalkyl intermediates. In particular, in pure cyclohexane, oxidation occurs with the selective formation of cyclohexanone; in contrast, in dichloromethane/cyclohexane mixed solvent, the main oxidation product is cyclohexanol. Phenyl-tert-butylnitrone (pbn) has been found to quench the radical chain autooxidation of the substrate thus increasing the yield of cyclohexanol. This becomes the only oxidation product when iron 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin hydroxide (Fe(III)(TDCPP)(OH)) is used as photocatalyst.

  9. Comparative supercapacitive properties of asymmetry two electrode coin type supercapacitor cells made from MWCNTs/cobalt oxide and MWCNTs/iron oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2015-04-01

    Full Text Available Supercapacitive properties of synthesized metal oxide nanoparticles (MO) vis a vis iron oxides (Fe(sub2)O(sub3)) and cobalt oxide (Co(sub3)O(sub4)) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type...

  10. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Science.gov (United States)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  11. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  12. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Science.gov (United States)

    Bhavani, P.; Rajababu, C. H.; Arif, M. D.; Reddy, I. Venkata Subba; Reddy, N. Ramamanohar

    2017-03-01

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16-40 nm) and rod (diameter 20-25 nm, length magnetization (MS) of 103.017 emu/g and low remanant magnetization (Mr) of 0.22 emu/g with coercivity (Hc) of 70.9 Oe, which may be attributed to the smaller magnetic domains (dm) and dead magnetic layer thickness (t).

  13. Reduction of iron oxides during the pyrometallurgical processing of red mud

    Science.gov (United States)

    Raspopov, N. A.; Korneev, V. P.; Averin, V. V.; Lainer, Yu. A.; Zinoveev, D. V.; Dyubanov, V. G.

    2013-01-01

    The results of experiments on the use of red mud in traditional pyrometallurgical processes and plants are presented. The red muds of the Ural Aluminum Plant (UAZ, Kamensk-Ural'skii) and the Alyum Plant (Tul'chiya) are shown to have similar phase and chemical compositions. The morphology of the iron oxides in red mud samples taken from mud storage is studied by Mössbauer spectroscopy. It is found that the metallic (cast iron) and slag phases that form during the pyrometallurgical processing of red mud by melting with a carbon reducer in the temperature range 1200-1500°C are clearly separated. Cast iron can be used in steelmaking, and the slag can be used for hydrometallurgical processing and extraction of nonferrous metals and for the building industry after correcting its composition.

  14. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  15. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  16. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  17. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.

    Science.gov (United States)

    Hall, Steven J; Silver, Whendee L

    2013-09-01

    Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation

  18. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  19. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal.

    Science.gov (United States)

    Nethaji, S; Sivasamy, A

    2017-04-01

    Graphene oxide (GO) was prepared from commercially available graphite powder. Porous iron oxide ribbons were grown on the surface of GO by solvothermal process. The prepared GO-Fe 3 O 4 nanocomposites are characterized by FT-IR, XRD, VSM, SEM, TEM, Raman spectroscopy, surface functionality and zero point charge studies. The morphology of the iron oxide ribbons grown on GO is demonstrated with TEM at various magnifications. The presence of magnetite nanoparticles is evident from XRD peaks and the magnetization value is found to be 37.28emu/g. The ratio of intensity of D-peak to G-peak from Raman spectrum is 0.995. The synthesized Graphene oxide-Fe 3 O 4 nanocomposites (GO-Fe 3 O 4 ) were explored for its surface adsorptive properties by using a model organic compound, 2,4-Dichlorophenoxy acetic acid (2,4-D) from aqueous solution. Batch adsorption studies were performed and the equilibrium data are modelled with Langmuir, Freundlich and Temkin isotherms. The maximum monolayer capacity from Langmuir isotherm is 67.26mg/g. Kinetic studies were also carried out and the studied adsorption process followed pseudo second-order rate equation. Mechanism of the adsorption process is studied by fitting the data with intraparticle diffusion model and Boyd plot. The studied adsorption process is both by film diffusion and intraparticle diffusion. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes.

    Science.gov (United States)

    Frascione, Daniela; Diwoky, Clemens; Almer, Gunter; Opriessnig, Peter; Vonach, Caroline; Gradauer, Kerstin; Leitinger, Gerd; Mangge, Harald; Stollberger, Rudolf; Prassl, Ruth

    2012-01-01

    Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magnetic and/or paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI). MLs have an advantage over free magnetic nanocores, in that various functional groups can be attached to the surface of liposomes for ligand-specific targeting. We have synthesized PEG-coated sterically-stabilized magnetic liposomes (sMLs) containing ultrasmall superparamagnetic iron oxides (USPIOs) with the aim of generating stable liposomal carriers equipped with a high payload of USPIOs for enhanced MRI contrast. Regarding iron oxide nanoparticles, we have applied two different commercially available surface-coated USPIOs; sMLs synthesized and loaded with USPIOs were compared in terms of magnetization and colloidal stability. The average diameter size, morphology, phospholipid membrane fluidity, and the iron content of the sMLs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence polarization, and absorption spectroscopy, respectively. A colorimetric assay using potassium thiocyanate (KSCN) was performed to evaluate the encapsulation efficiency (EE%) to express the amount of iron enclosed into a liposome. Subsequently, MRI measurements were carried out in vitro in agarose gel phantoms to evaluate the signal enhancement on T1- and T2-weighted sequences of sMLs. To monitor the biodistribution and the clearance of the particles over time in vivo, sMLs were injected in wild type mice. DLS revealed a mean particle diameter of sMLs in the range between 100 and 200 nm, as confirmed by TEM. An effective iron oxide loading was achieved just for one type of USPIO, with an EE% between 74% and 92%, depending on the initial Fe concentration (being higher for lower amounts of Fe). MRI measurements demonstrated the applicability of these nanostructures as MRI probes. Our results show that the development of sMLs is strictly dependent on the