WorldWideScience

Sample records for cobalt copper iron

  1. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  2. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  3. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    International Nuclear Information System (INIS)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%∼100.9% for Iron, 92.50%∼108.0% for Copper, 93.00%∼110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%∼12.1%. The sampling rate is 45 samples h -1 . The determination results of the food samples were in good agreement between the proposed method and ICP-AES

  4. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Energy Technology Data Exchange (ETDEWEB)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying [West China School of Public Health, Sichuan University, Chengdu, 610041 (China)

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%{approx}100.9% for Iron, 92.50%{approx}108.0% for Copper, 93.00%{approx}110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%{approx}12.1%. The sampling rate is 45 samples h{sup -1}. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  5. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Science.gov (United States)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  6. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples.

    Science.gov (United States)

    Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B

    2008-02-28

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.

  7. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples

    International Nuclear Information System (INIS)

    Karimi, H.; Ghaedi, M.; Shokrollahi, A.; Rajabi, H.R.; Soylak, M.; Karami, B.

    2008-01-01

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL -1 , respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples

  8. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  9. An Optical Model Study of Neutrons Elastically Scattered by Iron, Nickel, Cobalt, Copper, and Indium in the Energy Region 1.5 to 7.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1967-03-15

    Angular distributions of elastically scattered neutrons have been measured for cobalt and copper at nine energies between 1.5 and 7.0 MeV, for natural iron at 4.6 MeV, for natural nickel and indium at four energies between 3.0 and 4.6 MeV, by using time-of-flight technique. The observed angular distributions were corrected for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample-detector system by using a Monte Carlo program. Theoretical angular distributions have been fitted to the experimental angular distributions by using an optical model potential with Saxon-Woods form factors. A computer program was used to find parameter values of the potential giving the best fittings to the experimental angular distributions.

  10. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  11. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  12. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  13. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  14. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  15. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  16. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  17. Iron, lead, and cobalt absorption: similarities and dissimilarities

    International Nuclear Information System (INIS)

    Barton, J.C.; Conrad, M.E.; Holland, R.

    1981-01-01

    Using isolated intestinal segments in rats, the absorption of iron, lead, and cobalt was increased in iron deficiency and decreased in iron loading. Similarly, the absorption of these metals was decreased in transfusional erythocytosis, after intravenous iron injection and after parenteral endotoxin injection. Acute bleeding or abbreviated intervals of dietary iron deprivation resulted in increased iron absorption from isolated intestinal segments and in intact animals, while the absorption of lead and cobalt was unaffected. These results suggest that the specificity of the mucosal metal absorptive mechanism is either selectively enhanced for iron absorption by phlebotomy or brief periods of dietary iron deprivation, or that two or more mucosal pathways for iron absorption may exist

  18. Synthesis and characterization of iron cobalt (FECO) nanorods ...

    African Journals Online (AJOL)

    Synthesis and characterization of iron cobalt (FECO) nanorods prepared by simple ... shaped by increasing annealing temperature from room temperature to 800 ... Keywords: FeCo nanoparticles, sodium borohydrid, CTAB, chemical synthesis ...

  19. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  20. Comparative effects of cobalt, nickel and copper on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, W E

    1938-11-01

    An account is given of the present position of our knowledge with regard to the distribution and the physiological importance of nickel and cobalt, in relation to plants and animals. Experiments on barley and broad beans were carried out in water cultures with the sulfates and chlorides of cobalt, nickel and copper. In every case a range of low concentrations did little or no damage, but toxic action occurred abruptly above a concentration which varied with the species and with the compound. With barley, copper was the most poisonous element in either compound, but the differences were not striking. Low concentrations of the sulfate were innocuous, but parallel low strengths of the chloride caused a slight, significant depression in growth. With broad beans, cobalt was much more poisonous than either nickel or copper, particularly with the sulfate. No slight depression with low concentrations of the chloride was noticeable with this species. The morphological response to toxicity varied with the element concerned. Copper, in poisonous strengths, caused shortening and bunching of barley roots, whereas nickel and cobalt permitted the growth of elongated roots of a very attenuated nature. The individuality of plant response to poison was frequently shown by the great variation in growth in the borderline concentrations just below those which caused marked depression of growth.

  1. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    Science.gov (United States)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  2. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  3. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    Science.gov (United States)

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High performance liquid chromatographic determination of vanadium in crude oils and cobalt and iron in pharmaceutical preparations

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Lanjwani, S.N.; Khaskhely, G.Q.

    1993-01-01

    High performance liquid Chromatographic (HPLC) method has ben developed for the determination of vanadium in crude oils, based on acid decomposition of oils, followed by complexation with bis (salicylaldehyde) tetramethyl ethylenediamine (H2SA2Ten). The complex is extracted in organic phase and is separated from copper and nickel using normal phase HPLC column. Detection is achieved using spectrophtmetric detector. The vanadium in oil is obtained at sub microgram/g level. Similarly cobalt(II), cobalt(III) and iron(II) are separated on reversed phase HPLC column. Pre column derivatization is used to develop HPLC method for the determination of cobalt and iron in pharmaceutical preparations. Finally results are compared using atomic absorption spectrometer. (author)

  5. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  6. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  7. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  8. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  9. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  10. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  11. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  12. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  13. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  14. Diagnostic Value of the Cobalt (58Co) Excretion Test in Iron Deficiency Anemia

    International Nuclear Information System (INIS)

    Sihn, Hyun Chung; Hong, Kee Suck; Cho, Kyung Sam; Song, In Kyung; Koh, Chang Soon; Lee, Mun Ho

    1976-01-01

    The diagnosis of iron deficiency rests upon the correct evaluation of body iron stores. Morphological interpretation of blood film and the red cell indices are not reliable and often absent in mild iron deficiency. Serum iron levels and iron-binding capacity are more sensitive indices of iron deficiency, but they are often normal in iron depletion and mild iron deficiency anemia. They are also subject ro many variables which may introduce substantial errors and influenced by many pathologic and physiologic states. Examination of the bone marrow aspirate for stainable iron has been regarded as one of the most sensitive and reliable diagnostic method for detecting iron deficiency, but this also has limitations. Thus, there is still need for a more practical, but sensitive and reliable substitute as a screening test of iron deficiency. Pollack et al. (1965) observed that the intestinal absorption of cobalt was raised in iron, deficient rats and Valberg et al. (1969) found that cobalt absorption was elevated in patients with iron deficiency. A direct correlation was demonstrated between the amounts of radioiron and radiocobalt absorbed. Unlike iron, excess cobalt was excreted by the kidney, the percentage of radioactivity in the urine being directly related to the percentage absorbed from the gastro-intestinal tract. Recently a test based on the urinary excretion of an oral dose of 57 Co has been proposed as a method for detecting iron deficiency. To assess the diagnostic value of urinary cobalt excretion test cobaltous chloride labelled with 1 μCi of 58 Co was given by mouth and the percentage of the test dose excreted in the urine was measured by a gamma counter. The mean 24 hour urinary cobalt excretion in control subjects with normal iron stores was 6.1%(1.9-15.2%). Cobalt excretion was markedly increased in patients with iron deficiency and excreted more than 29% of the dose. In contrast, patients with anemia due to causes other than iron deficiency excreted less

  15. World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore

    Directory of Open Access Journals (Sweden)

    Pazik Paulina M.

    2016-01-01

    Full Text Available Cobalt is recognized as a strategic metal and also E-tech element, which is crucial for worlds development. An increasing demand for cobalt forces for searching of new resources that could be explored in European countries. There are many examples of cobalt recoveries, mostly from laterite and sulphide deposits. However, the accurate choice of the technology depends on many factors. The Kupferschiefer stratiform copper ore located in Poland is the biggest deposit of cobalt in Europe. Although KGHM Polska Miedz S.A. recovers many precious metals from this ore, cobalt is not recovered yet. This metal occurs as an accompanying element, mostly in the form of cobaltite (CaAsS, with the average content of 50–80 g/Mg. In this paper a possible recovery of cobalt from the Kupferschiefer ore, with the use of hydrometallurgical methods, was investigated.

  16. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  17. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  18. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  19. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  20. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  1. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  2. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  3. Comparative performance of aluminium copper and iron solar stills

    International Nuclear Information System (INIS)

    Dioha, I.J.; Nwagbo, E.E.; Gulma, N.A.

    1990-12-01

    Three different metal sheets have been used in the fabrication of three different single sloping solar stills of the same surface geometry. The metals were galvanized iron, aluminium and copper. This paper presents the performance of the different stills operating under the same environmental conditions. The observed distillate yields was greatest for copper, then aluminium and lastly, iron still. The differences in the yields is attributed to the differences in the thermal conductivities of the metals. The equivalent local costs for the fabrication of the copper, aluminium and iron stills are respectively $160, $95 and $60. Taking the long run costs into consideration, the copper still is preferred because of its availability, durability, weldability and relatively higher conductivity of 380Wm -1 K -1 value. (author). 9 refs, 2 figs, 2 tabs

  4. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-01

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO 2 ) in this paper. The influence of copper ions on bioleaching of LiCoO 2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO 2 underwent a cationic interchange reaction with copper ions to form CuCo 2 O 4 on the surface of the sample, which could be easily dissolved by Fe 3+ .

  5. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  6. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  7. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  8. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bioleaching of copper, cobalt and zinc from black shale by ...

    African Journals Online (AJOL)

    Extractions were compared with chemical leaching, where leaching up to 54.27% Co and 35.16% Zn were achieved in medium of 1% oxalic acid whereas, copper up to 51.22% extracted in medium containing 1% citric acid. Recovery of metals from this ore has indicated that this low grade discarded ore may be potential ...

  10. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  11. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  12. Electronic and magnetic coupling of iron and copper phthalocyanine to ferromagnetic Co(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane [Department of Physics, University of Kaiserslautern, Erwin Schroedinger Str. 56, D-67663 Kaiserslautern (Germany); Ali, Ehesan; Oppeneer, Peter [Department of Physics and Materials Science, Box 530, Uppsala University, S-75121 Uppsala (Sweden)

    2009-07-01

    Metallo-phthalocyanines are organic semiconductors which show in certain cases promising magnetic properties, advertising them for use in organic spintronics. Here, copper (CuPc) and iron phthalocyanine (FePc) were grown on ultra thin layers of Co(100) substrates with well known highly spin-polarized electron injection capability. Photoelectron spectroscopy (XPS) reveals different interactions between the pyrolytic nitrogen atoms and the cobalt surface for the two phthalocyanines. The analysis of the different multiplet structures appearing for the nitrogen core levels in the submonolayer regime and UPS investigations of the valence band electronic structure of the Co dominated region near the Fermi level indicates a particularly electronic coupling and a rehybridisation of the molecular orbitals with the cobalt orbitals. In order to clarify the influence of the two different central atoms on the electronic- and subsequently the magnetic coupling to the Co substrate, theoretical calculations using the GGA and GGA+U methodologies on a structure of Fe/Cu-phthalocyanine adsorbed on a 3-layered cobalt surface were performed indicating a ferromagnetic coupling between FePc and Co.

  13. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but

  14. Magnetic and Structural Properties of Electrodeposited Iron on Copper and Silver

    International Nuclear Information System (INIS)

    Koempe, K.; Kuehl, E.; Nagorny, K.

    2002-01-01

    Electrodeposition of iron on copper or silver leads to the formation of bcc-iron or amorphous iron. Thermal annealing usually results in soluted iron (also γ-iron and clusters) in copper. On silver the insolubility of iron never causes the formation of bcc-iron. Instead on copper as well as on silver fcc-iron states are formed, especially at relatively low temperatures with short times of annealing. Moessbauer spectroscopy accompanied by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) are applied for characterisation of the iron states.

  15. X-ray fluorescence determination of cobalt in iron-manganese oceanic concretions

    International Nuclear Information System (INIS)

    Ivanenko, V.V.; Kustov, V.N.; Metelev, A.Yu.; Rakita, K.A.

    1989-01-01

    A method was developed for resolution of weak analytical lines for elements determined by radionuclide-excited X-ray fluorescence multi-element analysis. The method was used aboart for determining cobalt and some other commercially valuable elements in iron-manganese concretions of Pacific ocean 109 Cd was used as an ionizing radiation source

  16. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution

    NARCIS (Netherlands)

    de Groot, M.T.; Koper, M.T.M.

    2008-01-01

    The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0–14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (MI, MII, MIII and MIV). The

  17. Iron and cobalt complexes of 4,4,9,9-tetramethyl-5,8-diazadodecane ...

    Indian Academy of Sciences (India)

    iron(II), cobalt(II), and zinc(II) ions.18–20 The flexible. N4 ligand is ... X-ray diffraction were isolated after a few days. Yield: .... bands for perchlorate ions are absent in the IR spec- trum of 3 .... ion by acidic work-up reveals the formation of cate-.

  18. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the ... and sediment were collected and trace element concentrations were measured with an ICP-MS. ..... Clay minerals are known to have high sorption affinities ..... sediment/water quality interaction with particular reference to the.

  19. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  20. Samarium-cobalt-copper-iron-titanium permanent magnets

    International Nuclear Information System (INIS)

    Inomata, K.; Yamada, M.

    1980-01-01

    A permanent magnet, which comprises a composition containing a Sm-Co compound and consisting essentially of 23 to 30 wt.% of Sm, 0.2 to 1.5 wt.% Ti, 9 to 13 wt., Cu, 3 to 12 wt.% Fe and the balance Co, said magnet having a residual flux density (Br) of about 10 (kG), a coercive force (IC) of about 8 (KOe) and a maximum energy product (BH max) of about 25 (MGOe), having the aforesaid magnetic properties without the necessity of an ageing treatment

  1. Moessbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    International Nuclear Information System (INIS)

    Ambe, Shizuko

    1990-01-01

    Moessbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Moessbauer spectrum of the cyanobacterium cultivated with 57 Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B 12 ) labeled with 57 Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B 12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with 57 Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein. (orig.)

  2. Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.

    Science.gov (United States)

    Kapoor, S; Sharma, P D; Gupta, Y K

    1975-09-01

    Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.

  3. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    Science.gov (United States)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  4. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  5. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Shim Hee-Sang

    2011-01-01

    Full Text Available Abstract We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoO x . The copper nanofibers (CuNFs were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoO x thin-film (CoO x TF electrodes, the CuNFs@CoO x electrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoO x composite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.

  6. Effect of Microstructure on the Thermal Properties of Sintered Iron-copper Composites

    OpenAIRE

    Ugarteche, Caroline Velasques; Furlan, Kaline Pagnan; Pereira, Rafaela do Vale; Trindade, Gabriel; Binder, Roberto; Binder, Cristiano; Klein, Aloisio Nelmo

    2015-01-01

    Copper is a well know material for use as heat sink or heat exchanger. However, copper has a considerable low tensile strength and temperature limit. A material that has a good thermal conductivity, low cost, but also resistance is the desired. Effects of copper on the sintering and thermal properties of iron-copper composites produced by powder metallurgy and Fe on copper-iron composites have been investigated. Copper and iron were varied from 20 to 80 vol.% in the samples, alternating the c...

  7. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  8. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  9. Preparation of Fischer-Tropsch catalysts from cobalt/iron hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.H.; Boff, J.J.; Zarochak, M.F. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    Compounds with the (hydrotalcites) have properties that make them attractive as precursors for Fischer-Tropsch catalysts. A series of single-phase hydrotalcites with cobalt/iron atom ratios ranging from 75/25 to 25/75 has been synthesized. Mixed cobalt/iron oxides have been prepared from these hydrotalcites by controlled thermal decomposition. Thermal decomposition at temperatures below 600 {degrees}C typically produced a single-phase mixed metal oxide with a spinel structure. The BET surface areas of the spinal samples have been found to be as high as about 150 m{sup 2}/g. Appropriate reducing pretreatments have been developed for several of these spinels and their activity, selectivity, and activity and selectivity maintenance have been examined at 13 MPa in a fixed-bed microreactor.

  10. Characterization of pure and copper-doped iron tartrate crystals

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  11. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.

    Science.gov (United States)

    Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan

    2018-02-01

    Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.

  12. Extraction of copper zinc and iron from hydrochloric acid solutions by means of different extractants

    Energy Technology Data Exchange (ETDEWEB)

    Zhivkova, Svetlana [Institute of Chemical Engineering - Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-07-01

    The extraction of copper, zinc and iron from hydrochloric acid solutions has been studied. The experiments have been carried out using various solvents, involving different extraction mechanisms – solvating, anion-exchange, cation-exchange, bifunctional . Mixtures of these extractants have been also used. The extraction properties of these extractant mixtures toward copper, zinc and iron, the effect of used modifiers and diluents have been also investigated. Key words: Copper, Zinc, Iron, Extraction, Extractant, Modifier, Diluent.

  13. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  14. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Wei-Dong [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Huang, Shu-Ping [Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (United States); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  15. Synthesis and characterization of strontium molybdate doped with copper, cobalt and zinc for purposes photocatalytic

    International Nuclear Information System (INIS)

    Dutra, F.B.; Silva, M.M.S.; Moriyama, A.L.L.; Souza, C.P.

    2016-01-01

    The broad concerns of contemporary society with environmental problems requires legislation and more effective techniques for wastewater treatment. In recent years, ceramic materials that have properties such as high melting points and high stability have been receiving great emphasis in several studies in particular heterogeneous photocatalysis, rapid and efficient method for the complete mineralization of contaminants. In this context, the present work deals with the synthesis and characterization of molybdate Strontium (SrMoO4) doped with copper, cobalt and zinc for the purpose of photocatalytic studies. The compounds were synthesized by complexation method EDTA / Citrate basic medium. The powders were characterized by Thermogravimetric Analysis (TG), X-Ray Diffraction (XRD), Particle size distribution by laser diffraction, Spectroscopy in the UV-Visible region, Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), showing promising results as the crystalline phase of development and potential uses for the purpose of heterogeneous photocatalysis. (author)

  16. Investigation into cobalt, copper and vanadium complexes with phenylbenzimidazolylazoketoxime and o-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Dubinina, L F; Lipunova, G N; Medvedeva, L I; Mertsalov, S L [Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR)

    1983-01-01

    Complex formation of phenylbenzimidozolylazoketoxime (PhBAKO) with Co(2), Cu(2) and V(5) ions in aqueous-ethanol medium at different pH values, is investigated. In aqueous-ethanol medium PhBAKO forms coloured complexes. Reagent has a low selectivity under these conditions. It is found that the addition of phenanthroline not only increases the contrast of the reaction but considerably increases its selectivity. The optimum range of pH value of complex formation for vanadium is 6.0-8.2. A high selectivity of PhBAKO and the contrast nature of complex formation reaction of the reagent with cobalt copper and vanadium ions, different stability of complexes in the acidic medium have permitted to develop the photometric method of determination of these elements in natural waters in the case of their mutual presence. The limit of vanadium detection is 0.01 ..mu..g/ml.

  17. Moessbauer study of iron-cobalt-rhodium spinels

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C D; Smith, P A; Karnes, C M; Shepard, W A [Ithaca Coll., NY (USA). Dept. of Physics

    1980-01-01

    Moessbauer source and absorber studies have been carried out on the spinel system CoFesub(x)Rhsub(2-x)O/sub 4/ for x 0.005, 0.3, 0.5, 1.0, 1.2 and 1.5. For 0.005 =< x =< 1.2, the cation distribution is normal with Co/sup 2 +/ on A sites. At x = 1.5, the distribution is nearly inverse. In the cases x = 0.005 and 0.3, iron on the B sites does not produce a quadrupole doublet indicating that the B sites are cubic which is contrary to the usual case in spinels.

  18. Determination of iron and copper contents in certain indigenous varieties of wheat (Triticum aestivum, L.)

    International Nuclear Information System (INIS)

    Akhtar, M.S.; Abbas, N.; Shaheen, A.

    2004-01-01

    Forty seven wheat varieties were tested for their iron and copper contents. The iron and copper contents were found to differ significantly (P 0.05) with respect to iron and copper contents. The variety named Dirk was found to possess the highest iron contents, while the variety Pasban-90 showed the highest copper contents. The varieties Dirk, Sariab, Tandojam-83, Punjab-88, Sarsabz, Punjab-81, Sandal and Sind-81 contained significantly higher iron contents as compared to other wheat varieties. The varieties, which contained the highest concentrations of copper, were Pasban-90, Chenab-79, Faisalabad-85, Lyp-73, Sind-81, Anmol-91, C-271, Rohtas-90 and Chakwal-86. However, the differences in copper contents among all these wheat varieties were non-significant (P>0.05). These varieties can therefore, be recommended to be included for future breeding and commercial exploitation. (author)

  19. Bimetallic iron and cobalt incorporated MFI/MCM-41 composite and its catalytic properties

    International Nuclear Information System (INIS)

    Li, Baoshan; Xu, Junqing; Li, Xiao; Liu, Jianjun; Zuo, Shengli; Pan, Zhiyun; Wu, Ziyu

    2012-01-01

    Graphical abstract: The formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure. Highlights: ► Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. ► FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. ► Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination. -- Abstract: The MFI/MCM-41 composite material with bimetallic Fe and Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N 2 sorption, transmission electron microscopy, scanning electron microscope, H 2 temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H 2 temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.

  20. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    International Nuclear Information System (INIS)

    Margrete Meltzer, Helle; Lise Brantsaeter, Anne; Borch-Iohnsen, Berit; Ellingsen, Dag G.; Alexander, Jan; Thomassen, Yngvar; Stigum, Hein; Ydersbond, Trond A.

    2010-01-01

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin 2 for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110≤Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  1. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  2. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  3. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  4. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  5. Synthesis, characterization and polymerization of methacrylates of copper (II), cobalt (II) and molybdenum (II). Generation of new materials

    International Nuclear Information System (INIS)

    Rojas Bolanos, Omar

    2006-01-01

    Coordination compounds of the species copper (II), cobalt (II) and molybdenum (II) with methacrylic acid were synthesized and characterized. Besides, it realized reactions of bromine addition to the doubles links of the species obtained previously, also too like reactions with dry HCl. Finally, it got hybrids materials by polymerization of the first compounds in an acrylic matrix. Research concluded with the characterization of all the products. (author) [es

  6. Effect of sample preparation methods on photometric determination of the tellurium and cobalt content in the samples of copper concentrates

    Directory of Open Access Journals (Sweden)

    Viktoriya Butenko

    2016-03-01

    Full Text Available Methods of determination of cobalt and nickel in copper concentrates currently used in factory laboratories are very labor intensive and time consuming. The limiting stage of the analysis is preliminary chemical sample preparation. Carrying out the decomposition process of industrial samples with concentrated mineral acids in open systems does not allow to improve the metrological characteristics of the methods, for this reason improvement the methods of sample preparation is quite relevant and has a practical interest. The work was dedicated to the determination of the optimal conditions of preliminary chemical preparation of copper concentrate samples for the subsequent determination of cobalt and tellurium in the obtained solution using tellurium-spectrophotometric method. Decomposition of the samples was carried out by acid dissolving in individual mineral acids and their mixtures by heating in an open system as well as by using ultrasonification and microwave radiation in a closed system. In order to select the optimal conditions for the decomposition of the samples in a closed system the phase contact time and ultrasonic generator’s power were varied. Intensification of the processes of decomposition of copper concentrates with nitric acid (1:1, ultrasound and microwave radiation allowed to transfer quantitatively cobalt and tellurium into solution spending 20 and 30 min respectively. This reduced the amount of reactants used and improved the accuracy of determination by running the process in strictly identical conditions.

  7. Sedimentation separation and fluorescent X-ray analysis of very small amount of cobalt in pure iron

    International Nuclear Information System (INIS)

    Kato, Kensaku

    1990-01-01

    As the simple method of separation and analysis of very small amount of cobalt up to 1 ppm in pure iron, the application of sedimentation separation and fluorescent X-ray analysis was examined. By adding citric acid to the sample solution, the masking of the main components was carried out, and cobalt was deposited with 2-nitroso 1-naphtol separated and concentrated on a membrane filter. The reagents and equipments used are shown. The operation of the fundamental quantitative determination was determined. The condition of measurement, the condition of sedimentation separation, the effect of coexisting elements, the rate of recovery of cobalt, the calibration curve, and the analysis of actual samples are reported. By separating and concentrating cobalt on a membrane filter, this method eliminates the obstruction of coexisting elements to the object element, which is the problem in fluorescent X-ray measurement, and has the merit of simple operation and wide range of quantitative determination. (K.I.)

  8. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe

    Science.gov (United States)

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico

    2014-05-01

    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  9. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    Science.gov (United States)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

  10. Thermochemical study of some inorganic and organic salts of cobalt, nickel and copper

    International Nuclear Information System (INIS)

    Le Van, My

    1968-01-01

    Differential enthalpy analysis has been carried out on a certain number of inorganic (halides, halide oxy-acid salts, nitrates and sulfates) and organic (alkanoates, and dicarboxylates) of cobalt, nickel and copper using a Tian-Calvet high-temperature microcalorimeter. Other investigational methods such as thermo-crystallography, thermogravimetry, spectroscopy and gas-phase chromatography have been used to complete this work. An intrinsic study of the microcalorimeter covering thermal leakage, the sensitivity and the aging of the batteries, the deviation of the experimental zero, has been carried out. A satisfactory experimental device has been developed which corresponds to optimum conditions of analysis. We have shown which are the most important factors affecting differential thermal analysis and have detected certain phenomena; we have also demonstrated that intermediate hydrates exist and shown the possibilities of thermal recrystallization. Various enthalpies of transformation have been evaluated. The various possible reaction mechanisms are discussed. The normal formation enthalpies of several series of alkanoates and dicarboxylates have been measured. A graphical method has been devised for evaluating the kinetic parameters of heterogeneous dissociations from the thermograms obtained. Finally, we have developed a simple method for estimating the normal formation enthalpies of carboxylates and oxy-acid salts, both anhydrous and hydrated. The agreement with available experimental data is satisfactory. (author) [fr

  11. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    Energy Technology Data Exchange (ETDEWEB)

    Margrete Meltzer, Helle, E-mail: helle.margrete.meltzer@fhi.no [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Lise Brantsaeter, Anne [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Borch-Iohnsen, Berit [Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, PO Box 1046 Blindern, N-0316 Oslo (Norway); Ellingsen, Dag G. [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Alexander, Jan [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Thomassen, Yngvar [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Stigum, Hein [Division of Epidemiology, Department of Chronic Diseases, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Ydersbond, Trond A. [Statistics Norway, P.Box 8131 Dep, N-0033 Oslo (Norway)

    2010-07-15

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin <12 {mu}g/L) and 84 had iron deficiency anaemia (serum ferritin <12 {mu}g/L and Hb<120 g/L). The low ferritin group had increased blood concentrations of Mn, Co and Cd but normal concentrations of Cu, Zn and Pb. In multiple regression models, ferritin emerged as the main determinant of Mn, Co and Cd (p<0.001), while no significant associations with Cu, Zn and Pb were found. Adjusted r{sup 2} for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110{<=}Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  12. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  13. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  14. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: A greener approach

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Sarkar, Soumi

    2007-01-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. 59 Fe and 60 Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained

  15. Serum Zinc, Iron and Copper Concentrations in Dogs Infected with Hepatozoon canis

    Directory of Open Access Journals (Sweden)

    Kamil Seyrek

    2009-01-01

    Full Text Available In Turkey, canine hepatozoonosis is an emerging infection with a large number of cases detected during the past five years. In the present study, serum zinc, copper and iron concentrations of dogs infected with Hepatozoon canis were measured for the first time. Compared to the controls (n = 10, serum zinc and iron concentrations in infected animals (n = 14 decreased significantly (p p p Hepatozoon canis infection may cause alterations in serum zinc iron and copper concentrations. Furthermore, in the treatment of infected animals addition of zinc and iron to the ration of infected animals should be taken into consideration.

  16. Magnetic Properties of Iron-Cobalt Oxide Nanocomposites Synthesized in Polystyrene Resin Matrix*

    Science.gov (United States)

    Vaishnava, P. P.; Senaratne, U.; Rodak, D.; Kroll, E.; Tsoi, G.; Naik, R.; Naik, V.; Wenger, L. E.; Tao, Qu; Boolchand, P.; Suryanarayanan, R.

    2004-03-01

    Magnetic nanoparticles have potential applications in memory devices and medical technology. Magnetic iron-cobalt oxide nanoparticles were prepared by in situ precipitation in an ion exchange resin using the method of Ziolo et al^1. The ion exchange resin, consisting of sulfonated divinyl benzene cross linked polystyrene, was exposed to different iron and cobalt salt solutions: a) 4FeCl2 + CoCl2 b) 9FeCl2 + CoCl2 c) 4FeCl3 + CoCl2 d) 9FeCl3 + CoCl_2. The ions bound to the resin are then oxidized with hydrogen peroxide in an alkaline media with mild heat. The resulting nanocomposites were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fe^57 Mossbauer Spectroscopy and SQUID magnetometry. It was found that the oxide composition, particle size distribution, magnetic properties including blocking temperature and the amount of superparamagnetic phases are strongly influenced by the stoichiometry of the starting FeCl_2, FeCl_3, and CoCl2 solutions. Three major phases CoFe_2O_4, Fe_3O4 and γ-Fe_2O3 have been identified. The nanocomposites prepared using Fe^2+ and Co^2+ contain larger nanoparticles (10 nm) than those prepared by Fe^3+ and Co^2+ (3 nm) . The details of the structural characterization by XRD and TEM measurements and magnetic characteristics will be presented. *Research supported by NSF grant DGE 980720 ^1Ziolo et al, Science, 257, 5067 (1992).

  17. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage

  18. Adsorption studies of water on copper, nickel, and iron: assessment of the polarization model

    International Nuclear Information System (INIS)

    Lee, S.; Staehle, R.W.

    1997-01-01

    In the atmospheric corrosion of copper, nickel, and iron, the adsorption of water affects the corrosion rates. Knowledge of water adsorption and metal oxyhydroxide formation is important in understanding the atmospheric corrosion process. The purposes of the present research were (i) to measure the adsorption of water on metal surfaces as a function of temperature and relative humidity (RH) and (ii) to assess Bradley's polarization model of adsorption. In the present research, the quartz-crystal microbalance (QCM) technique was used to measure the mass changes of copper, nickel, and iron at 0 to 100% relative humidity and 7 to 90 C under nitrogen and air environments. Less water was adsorbed on copper, nickel, and iron which form oxides than on gold. The amount of water adsorption was similar on copper, nickel, and iron under N 2 and air carrier gases. Functional relationship was first proposed as a way to include dipole/induced dipole interactions between the adsorbents and water layers. (orig.)

  19. The Role of Serum Copper and Iron in Oral Submucous Fibrosis

    Directory of Open Access Journals (Sweden)

    Master Luquman

    2004-01-01

    Full Text Available Oral submucous fibrosis (OSMF is a chronic insidious disease of multifactorial etiology. The habit of chewing arecanut is thought to be one of the most important etiologic factors. Copper and iron are elements in the human body that form part of important enzymes. We estimated the serum copper and iron in patients with OSMF as well as normal controls and discuss the role of these elements in the etiology of OSMF.

  20. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  1. Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Altimari, Pietro; Bellagamba, Marco; Granata, Giuseppe; Moscardini, Emanuela; Schiavi, Pier Giorgio; Toro, Luigi

    2015-01-01

    Cobalt nanoparticles were synthesized by pulsed electrodeposition on copper substrate. Scanning electron microscopy and image analysis were used to determine morphology and particle size distribution of nanoparticle populations obtained in different operating conditions. After preliminary tests, t on and t off were set at 50 and 300 ms respectively to obtain distinct nanoparticles and avoid dendritic structures. Experimental tests were performed according to two partially superimposed factorial designs with two factors at two levels. First factorial design investigated the effect of current density (I = 10 and 50 mA/cm 2 ) and discharged cobalt (Q = 2.5 × 10 −3 and 1.0 × 10 −2 C); second factorial design investigated the effect of cobalt concentration (C 0 = 0.01 and 0.1 M) for the same two levels of Q. For optimized value of t on /t off , square and hexagonal shaped nanoparticles were obtained. Statistical analysis evidenced that, for C 0 = 0.1 mol/L, current density is the most influencing factor on mean size: increasing I from 10 to 50 mA/cm 2 determined a diminution of mean size of 240 nm. For the same cobalt concentration, increasing the deposition time (Q) determined an increase of mean size of 60 nm. Diminishing the initial cobalt concentration from 0.1 to 0.01 mol/L determined an increase of mean size from 10 nm to 36 nm. For C 0 = 0.01 mol/L nanoparticles grow reaching an optimal size (36 nm) and then, increasing the time of deposition, optimal sized subunits tend to aggregate. As for polydispersity of nanoparticles, statistical tests denoted that increasing I determined significant reduction of variance, while increasing the time of deposition determined a significant increase of variance

  2. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  3. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  4. Preparation of phenacylchloride, morpholinophenacyl and N-Piperidinophenacyl oximes and study of their complexation with Copper (II) and Cobalt (II) ions

    International Nuclear Information System (INIS)

    Ali, Kamal Eldin Ahmed

    1999-01-01

    The aim of the present work is to prepare phenacyl chloride oxime and phenacyl of N-Piperidine and morpholine derivatives, and mainly to study their complexes with Cu(II) and Co(II) ions with objective ascertaining that one of these ligands can be used in quantitative extraction of these metal ions from the aqueous solution. Copper (II) salts form 1:1 complexes with the phenyacyl oximes of N-piperidine and morpholine and 1:2 complex with phenacyl chloride oxime. However, cobalt(II) salts form 1:2 complexes with phenacyl oxime of N-piperidine and morpholine but does not complex with phenacyl chloride oxime. The stoichiometry of these complexes were determined by UV/VIS spectrophotometry using the mole ratio, continuous variation and slope ratio methods.The stability constants of the five complexes were calculated from aberrances using Job's method. They showed that the copper (II) and cobalt (II) complexes with N-piperidinophenacy oxime are more stable than those with morpholinophenacyl oxime. Copper (II) complexes with any of these two ligands are more stable than those of cobalt (II). IR spectra of the complexes of copper (II) and cobalt (II) with phenacyl oxime of N-piperidine and morpholine show diminished peaks of hydrogen bonds between N and O atoms of the ligand. Specific extractabilities using amylalcohol of copper (II) complexes with the three ligands increase from PH4 to reach its maximum at PH8. The high value for N-piperidinophenacyl oxime ligand (96%-97%) indicates that, this ligand can be used as analytical reagent for the quantitative spectrophotometric determination of copper (II) salts in aqueous media. Cobalt (II) complexes were formed and extracted from solution only at PH6 (specific PH). The extractabilities ranging from 81.6-87.2% warrants the use of these ligands in quantitative spectrophotometric determination of cobalt (II).(Author)

  5. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    Science.gov (United States)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  6. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  7. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  8. Determination of iron, copper, manganese and zinc in the soils, grapes and wines of the Azores

    Directory of Open Access Journals (Sweden)

    María Teresa Ribeiro de Lima

    2004-06-01

    Full Text Available This paper describes the determination of iron, copper, manganese and zinc in the soils, grapes and wines of the three viticultural regions of the Azores. Iron, copper and zinc were determined by flame atomic absorption spectrometry and manganese by graphite furnace atomic absorption. The concentrations of the four elements differed in soils of the three regions; there was no difference in the concentration in grapes, whereas significant differences were observed for the wines as regards the amounts of iron, manganese and zinc. The concentrations of these four elements in wine correspond with the mean values observed for other European regions.

  9. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  10. Determination of copper and iron in the human aqueous humor by atomic absorption spectrometer with graphite furnace

    International Nuclear Information System (INIS)

    Iqbal, Z.; Mohammad, Z.; Shah, M.T.; Saeed, M.; Imdadullah

    1999-01-01

    The concentration of copper and iron was determined in human aqueous humor using atomic absorption spectrophotometer equipped with graphite furnace. The mean (+- SEM) concentrations of copper (n=16) and iron (n=14) were 0.0234 -+ 0.0045 mu g.ml/sup -1/ and 0.045 -+ 0.0092 mu.ml/sup -1/ respectively. In male and female, the concentrations of copper (p< 0.82) and iron (p<0.38) were not significantly different. (author)

  11. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    Science.gov (United States)

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  12. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    International Nuclear Information System (INIS)

    Ghaedi, M.; Ahmadi, F.; Soylak, M.

    2007-01-01

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni 2+ , Cu 2+ and Co 2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 μg L -1 for copper, 0.75 μg L -1 for nickel and 0.80 μg L -1 for cobalt. The loading capacity was 0.56 mg g -1 for Ni 2+ , 0.50 mg g -1 for Cu 2+ and 0.47 mg g -1 for Co 2+ . The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  13. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)]. E-mail: m_ghaedi@mail.yu.ac.ir; Ahmadi, F. [Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni{sup 2+}, Cu{sup 2+} and Co{sup 2+} ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 {mu}g L{sup -1} for copper, 0.75 {mu}g L{sup -1} for nickel and 0.80 {mu}g L{sup -1} for cobalt. The loading capacity was 0.56 mg g{sup -1} for Ni{sup 2+}, 0.50 mg g{sup -1} for Cu{sup 2+} and 0.47 mg g{sup -1} for Co{sup 2+}. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  14. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Study of the Chemistry of Coordination of Oxide-anions of Nitrogen with Species of Iron and Copper as Models of Enzymes of the Cycle of the Nitrogen

    International Nuclear Information System (INIS)

    Quesada Espinoza, F

    2001-01-01

    In the present work, a study is carried out about the reactivity of some nitrogen oxide-anions, like nitrite (NO 2 - ) and trioxide-dinitrate (N 2 O 3 2- ), besides nitric oxide (NO), with copper species, iron, and cobalt in their states of oxidation II, in presence of the binding spectator bispicen. The synthesis and characterization of the [Cu(bispicen)NO 2 ]BF 4 was obtained, which can help to consolidate some mechanisms, proposed for the action of the nitrite reductase. The Fe(bispicen)(NO 2 ) 2 was also characterized; this is the fourth compound that presents two nitrites coordinated to an iron (II) through nitrogen. It has the characteristic of possessing short connection distances, which gives it a special attractiveness, and it opens the possibility of studying a spin exchange [es

  16. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  17. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  18. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  19. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  20. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  1. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  2. Formation of Copper Sulfide Precipitate in Solid Iron

    Science.gov (United States)

    Urata, Kentaro; Kobayashi, Yoshinao

    The growth rate of copper sulfide precipitates has been measured in low carbon steel samples such as Fe-0.3mass%Cu-0.03mass%S-0.1mass%C and Fe-0.1mass%Cu-0.01mass%S- 0.1mass%C. Heat-treatment of the samples was conducted at 1273, 1423 and 1573 K for 100 s - 14.4 ks for precipitation of copper sulfides and then the samples were observed by a scanning electron microscope and a transmission electron microscope to measure the diameter of copper sulfides precipitated in the samples. The growth rate of copper sulfide has been found to be well described by the Ostwald growth model, as follows: R\

  3. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  4. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    Science.gov (United States)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  5. Magnetism of iron, cobalt and nickel clusters studied in molecular beams

    International Nuclear Information System (INIS)

    Billas, I.

    1995-01-01

    The magnetic properties of iron, cobalt and nickel clusters in a molecular beam have been studied in a magnetic Stern-Gerlach deflection experiment. The molecular beam apparatus consists of a laser vaporization cluster source with high intensity and stability and a high-resolution time-of-flight mass spectrometer for the deflection measurements. Several novel experimental features have been developed in this work, like a nozzle which can be heated up to 1000 K and a chopper to measure the dwell times of the clusters in the source and their corresponding velocities. These new developments have allowed the measurement and the control of the temperature of the free clusters. The Stern-Gerlach deflection experiments have been performed on Fe, Co and Ni clusters in the mass range from 20 to 700 atoms. All clusters show single-sided deflection toward increasing field. This observation indicates that a spin relaxation process occurs within the isolated clusters. The participation of both the cluster rotational and vibrational degrees of freedom to the spin relaxation has been experimentally demonstrated. The cluster magnetization has been determined as a function of applied magnetic field B and as a function of dwell times of the clusters in the source before the supersonic expansion into vacuum. Superparamagnetic behavior has been observed when the cluster rotational speed is much larger than the Larmor frequency of the cluster magnetic moment μ in the field B. In particular, for μB<< kT, the cluster magnetization depends on B/T. For lower rotational speeds, reduced values of the magnetization have been observed. The magnetic moments of the superparamagnetic Fe, Co and Ni clusters have been measured as a) a function of cluster size N at low temperature and b) as a function of cluster temperature T for various size ranges. (author) figs., tabs., refs

  6. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions

    International Nuclear Information System (INIS)

    Shah, Vishal; Collins, Daniel; Shah, Shreya; Walker, Virginia K

    2014-01-01

    Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters. (paper)

  7. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  8. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  9. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  10. Microelectrodes Based investigation of the Impacts of Water Chemistry on Copper and Iron Corrosion

    Science.gov (United States)

    The effect of bulk drinking water quality on copper and iron pipe corrosion has been extensively studied. Despite past research, many have argued that bulk water quality does not necessarily reflect water quality near the water-metal interface and that such knowledge is necessary...

  11. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  12. Heliotropium europaeum poisoning of sheep with low liver copper concentrations and the preventive efficacy of cobalt and antimethanogen.

    Science.gov (United States)

    Peterson, J E; Payne, A; Culvenor, C C

    1992-03-01

    In a field experiment in the Mallee district of Victoria, Merlno xBorder Leicester ewes and wethers grazed Heliotropium europaeum (heliotrope) over periods of 3 to 4 months in 4 successive years. By the end of the second year 12% (14 of 120) of the sheep had died; after 4 years the loss attributable to heliotrope was between 18% and 35%. Mortality was not affected by intraruminal treatment with cobalt or antimethanogen. At the end of the experiment the highest concentration of copper in the liver was 1.95 mmol/kg wet weight (approximately 413 micrograms/g dry weight). The relatively low mortality from primary heliotrope poisoning and the low concentration of copper in the liver of sheep grazing the plant are discussed in relation to the contrasting situation that prevails in the Riverina area of New South Wales. The importance of local environmental factors in the management of heliotrope grazing by sheep is emphasised, particularly in relation to the number of seasons in which the plant may be a major component of the diet.

  13. Effect of copper addition and section thickness on the mechanical and physical properties of grey cast iron

    International Nuclear Information System (INIS)

    Malik, F.A.; Zahid, M.; Hassan, M.A.; Sheikh, M.A.; Alam, S.; Qazi, M.A.

    1995-01-01

    Copper is a graphitizer at the stage of solidification and it acts as antiferritizer during transformation cooling range. Due to this, copper additions to grey cast iron prevent at formation of free ferrite in heavy sections. It also reduces the chilling in thin sections, therefore uniform structure is imparted to grey iron by the copper addition. This gives the appropriate strength and hardness properties to grey iron. Thus copper addition gives certain advantages in relation to the machinability and wear resistance which are important for many engineering properties requires by high duty cast iron. The application of copper as allying element is acceptable due to its price and availability as compared to other alloying elements. (author)

  14. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  15. Iron and copper in Plagioscion squamosissimus (Piscis: Sciaenidae) of river Orinoco, Venezuela

    International Nuclear Information System (INIS)

    Gonzalez, A. R.; Marquez, A.; Chung, S.K.

    2000-01-01

    Bauxite exploitation of the Orinoco River in recent years is an important source of heavy metals discharge in the ecosystem, changing the natural biochemical flow of these elements and their concentrations in water, sediment and organisms. Iron and copper concentrations were measured in the fish Plagioscion squamosissimus in the Orinoco river, by sampling the fish population for three months (September-November 1998) in the main channel of the middle Orinoco. The internal organs of 30 fishes per month and site were stove-dried, pulverized and dried in disecator for 30 min to use as indicators with the acid digestion method for predicting the effect of heavy metals. We found relatively high values of iron and copper concentrations in fishes of the lagoon, and high seasonal variations in the iron concentration. (Author) [es

  16. Electrokinetic copper and iron migration in anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.

    2006-01-01

    The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially

  17. Relation between serum lipoperoxide concentrations and iron or copper status over one year in Cuban adult men

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, J.; Renversez, J.C.; Favier, A.E. [Dept. de Biologie Integree, CHUG, Grenoble (France); Fleites, P.; Perez-Cristia, R. [Centro national de Toxicologia (CENATOX), La Habana (Cuba); Chassagne, M.; Barnouin, J. [INRA, Unite d' Ecopathologie, Saint Genes Champanelle (France); Verdura, T. [Inst. Finlay, La Lisa, La Habana (Cuba); Garcia, I.G. [Inst. de Farmacia y Alimentos, La Coronela, La Lisa, Ciudad de la Habana (Cuba); Tressol, J.C. [INRA, Unite maladies metaboliques et micronutriments, Saint Genes Champanelle (France)

    2001-07-01

    The aims of this study were to determine the relations between iron and copper status and lipid peroxidation at different periods over one year in low-income and low-energy intake healthy subjects. The study was conducted in 199 middle-aged healthy Cuban men from March 1995 to February 1996. Iron status was assessed by the determination of serum ferritin, transferrin saturation, whole blood hemoglobin and iron intakes. Copper status was evaluated by the determination of serum copper and copper intakes. Serum thiobarbituric acid substances (TBARS) determination was used as an index of lipid peroxidation. Rank correlations were observed between serum TBARS concentrations and iron or copper status indices at different periods. In period 3 (end of the rainy season), serum TBARS and ferritin concentrations were maximum whereas blood hemoglobin levels and iron intake were minimum. Serum TBARS concentrations were significantly higher than the reference values of the laboratory whereas, iron and copper status were within the reference ranges. These results suggested that iron and copper status may be associated with lipid peroxidation in subjects without metal overloads and that variations over the year needed to be taken in account. (orig.)

  18. Effects of iron, tin, and copper on zinc absorption in humans

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Chamberlain, M.J.

    1984-01-01

    Zinc absorption as measured by body retention of [65Zn]zinc chloride or a turkey test meal extrinsically labeled with 65Zn was determined in human subjects by whole body counting after 7 days. Average 65Zn absorption from zinc chloride in persons with a high iron-absorbing capacity was similar to persons with a low capacity to absorb iron. Inorganic iron, 920 mumol (51 mg), or HB iron, 480 mumol (26 mg), inhibited 65Zn absorption from 92 mumol (6 mg) of zinc chloride. When 610 mumol of iron (34 mg) was added to a turkey test meal containing 61 mumol of zinc (4 mg), 65Zn absorption was not inhibited. Tin, 306 mumol (36 mg), given with zinc chloride or turkey test meals (61 mumol, 4 mg, of Zn) significantly reduced 65Zn absorption. Copper, 79 mumol (5 mg), had no significant effect on the 65Zn absorption from 7.9 mumol (0.5 mg) of zinc chloride. In summary, the capacity to absorb iron did not influence 65Zn absorption, but both inorganic iron and heme-iron inhibited 65Zn absorption from zinc chloride. Inorganic iron had no effect, however, on 65Zn absorption from the turkey test meal. Tin in a large dose also inhibited 65Zn absorption from both zinc chloride and the turkey test meal

  19. Theoretical investigation of existence of meta-stability in iron and cobalt clusters

    Science.gov (United States)

    Berry, Habte Dulla; Zhang, Qinfang; Wang, Baolin

    2018-03-01

    Nowadays considerable attention has been given for researches on magnetic properties of transition metal clusters (specifically FeN and CoN). This is because these clusters offer big hopes for the possibility of presenting significant magnetic anisotropy energy which is critical for technological applications. This study intends to find out the causes for the existence of the two states (ground and meta-stable) in Iron and Cobalt clusters. The study also explains the role of valence electrons for the existence of magnetism in the two states by using the concept of ionization potential, electron dipole polarizabilities, chemical hardness and softness of the clusters. Assuming that, when all itinerant electrons are at s-level and also at the d-level (ns = n andns → 0.) the ground state and meta-stable state energies with distinct energy minima are (Egs = l / 2 n +εc n - 2μB hn andEms =εd n - gμB hn) respectively. The findings also showed that polarizability of small cluster of the specified elements are increased compared with the bulk value, which means that there is an effective increase in the cluster radius due to the spilling out of the electronic charge. Furthermore, it is obvious that 4s electrons are more delocalized than the 3d electrons so that they spill out more than the 3d electrons. This leads to the conclusion that 4s electrons are primarily responsible for the enhanced polarizabilities and for shell structure effects. This indicates that polarizability at the meta-stable state is less than that of the ground state i.e. the meta-stable state loses its s electron. Therefore the two minima represent a ground state of configuration 3 d↑5 3 d↓ 2 + δ 4s 2 - δ with energy Egs and meta-stable state of configuration 3 d↑5 3 d↓ 3 + δ 4s 1 - δ with energy Ems for Co clusters and a ground state configuration 3 d↑5 3 d↓ 1 + δ 4s 2 - δ with energy Egs an meta-stable state of configuration 3 d↑5 3 d↓ 2 + δ 4s 1 - δ with energy Ems for

  20. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    Science.gov (United States)

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium

  1. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    Science.gov (United States)

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  2. Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode

    International Nuclear Information System (INIS)

    Mashazi, Philani N.; Westbroek, Philippe; Ozoemena, Kenneth I.; Nyokong, Tebello

    2007-01-01

    Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards L-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for L-cysteine at potentials where metal oxidation (M III /M II ) takes place and this metal oxidation mediates the catalytic oxidation of L-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards L-cysteine at potentials where Mn IV /Mn III redox peak occurs and this redox peak mediates L-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10 -7 mol L -1 and good linearity for a studied concentration range up to 60 μmol L -1

  3. High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements.

    Science.gov (United States)

    Qiang, Hong; Lang, Dong-Li; Li, Yu-You

    2012-01-01

    The effect of trace metals on the mesophilic methane fermentation of high-solid food waste was investigated using both batch and continuous experiments. The continuous experiment was conducted by using a CSTR-type reactor with three run. During the first run, the HRT of the reactor was stepwise decreased from 100 days to 30 days. From operation day 50, the reactor efficiency deteriorated due to the lack of trace metals. The batch experiment showed that iron, cobalt, and nickel combinations had a significant effect on food waste. According to the results of the batch experiment, a combination of iron, cobalt, and nickel was added into the CSTR reactor by two different methods at run II, and III. Based on experimental results and theoretical calculations, the most suitable values of Fe/COD, Co/COD, and Ni/COD in the substrate were identified as 200, 6.0, and 5.7 mg/kg COD, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  5. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  6. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  7. Analysis of serum copper and iron levels in oral submucous fibrosis patients: A case–control study

    Directory of Open Access Journals (Sweden)

    Harshal Kumar

    2016-01-01

    Full Text Available Background: Oral submucous fibrosis (OSF is a chronic debilitating disease and a potentially malignant disorder of the oral cavity. The pathogenesis of the disease is not well established. Trace elements such as copper and iron play an important role in the pathogenesis of OSF. Estimation of these elements in serum of the patients may be helpful in understanding the pathologic mechanism. Therefore, a study was carried out to analyze the level of serum copper and iron in the population of Central India. Materials and Methods: A case–control study was carried out on 35 patients with clinically diagnosed of OSF and 35 healthy controls. OSF patients were categorized by clinical staging. Serum copper and iron concentrations were measured by atomic absorption spectrophotometry. Results: Results of the study shows that the mean serum copper concentration was greater in study group (133.3 ± 19.2 compared to control group (113.9 ± 22.1 and the mean serum iron was lower in study group (116.0 ± 24.1 compared to control group (128.2 ± 23.4. The result obtained was statistically significant. The serum copper level increases as the clinical staging of OSF progresses, whereas serum iron level decreases as clinical staging progresses. Conclusion: There was an increase in copper level and decrease in iron level in study group compared to control group; this suggests that there is an increase in copper level with the advancement of clinical staging of OSF.

  8. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    Science.gov (United States)

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  9. Phormidium autumnale Growth and Anatoxin-a Production under Iron and Copper Stress

    Directory of Open Access Journals (Sweden)

    Francine M. J. Harland

    2013-12-01

    Full Text Available Studies on planktonic cyanobacteria have shown variability in cyanotoxin production, in response to changes in growth phase and environmental factors. Few studies have investigated cyanotoxin regulation in benthic mat-forming species, despite increasing reports on poisoning events caused by ingestion of these organisms. In this study, a method was developed to investigate changes in cyanotoxin quota in liquid cultures of benthic mat-forming cyanobacteria. Iron and copper are important in cellular processes and are well known to affect growth and selected metabolite production in cyanobacteria and algae. The effect of iron (40–4000 μg L−1 and copper (2.5–250 μg L−1 on growth and anatoxin-a quota in Phormidium autumnale was investigated in batch culture. These concentrations were chosen to span those found in freshwater, as well as those previously reported to be toxic to cyanobacteria. Anatoxin-a concentrations varied throughout the growth curve, with a maximum quota of between 0.49 and 0.55 pg cell−1 measured within the first two weeks of growth. Growth rates were significantly affected by copper and iron concentrations (P < 0.0001; however, no statistically significant difference between anatoxin-a quota maxima was observed. When the iron concentrations were 800 and 4000 μg L−1, the P. autumnale cultures did not firmly attach to the substratum. At 250 μg L−1 copper or either 40 or 4000 μg L−1 iron, growth was suppressed.

  10. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  11. Summary of ENDF/B-V evaluations for carbon, calcium, iron, copper, and lead and ENDF/B-V Revision 2 for calcium and iron

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C Y

    1982-09-01

    This report, together with documents already published, describes the ENDF/B-V evaluations of the neutron and gamma-ray-production cross sections for carbon, calcium, iron, copper, and lead and the ENDF/B-V Revision 2 evaluations for calcium and iron.

  12. Comparative supercapacitive properties of asymmetry two electrode coin type supercapacitor cells made from MWCNTs/cobalt oxide and MWCNTs/iron oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2015-04-01

    Full Text Available Supercapacitive properties of synthesized metal oxide nanoparticles (MO) vis a vis iron oxides (Fe(sub2)O(sub3)) and cobalt oxide (Co(sub3)O(sub4)) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type...

  13. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  14. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  15. Optimal copper supply is required for normal plant iron deficiency responses

    OpenAIRE

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferr...

  16. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  17. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    OpenAIRE

    Moreira, Daniele Caroline Faria; Sá, Júlia Sommerlatte Manzoli de; Cerqueira, Isabel B.; Oliveira, Ana P. F. de; Morgano, Marcelo Antonio; Quintaes, Késia Diego

    2013-01-01

    Background & aims: Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Methods: Duplicate samples were taken of six daily meals ...

  18. Peculiarities of the electrontransport properties of polyimide films implanted with copper and cobalt ions

    International Nuclear Information System (INIS)

    Nazhim, F.A.; Odzhaev, V.B.; Lukashevich, M.G.; Nuzhdin, V.I.; Khajbullin, R.I.

    2010-01-01

    Thin polyimide foils were implanted with 40 keV Co + and Cu + ions at fluencies of 2,5·1016-1,251017 cm 2 and at ion current densities of 4, 8 and 12 mA cm 2 . Surface dc electric resistance of the implanted polymer samples have been measured in the temperature range 40-300 K. Metal implantation results in decreasing polymer resistance with the dose and current density increasing for the both kinds of metal ions. The decrease of dc electric resistance is caused by radiation-induced carbonization and metal nanoparticle formation in the implanted region of polymer. The transition from the insulating to metallic regime of conductivity is observed in cobalt implanted samples for critical doses above Dc = 1,25?1017 cm 2 at an ion current density of 8 mA cm 2 . In the contrary, high-fluence implantation in the polymer with Cu + ions for the same regimes does not result in the transition. The dominating mechanisms of charge carrier transport and the origin of insulator-to-metal transition in the metal implanted polymer are discussed. (authors)

  19. Concentration differences between serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kasperek, K.; Kiem, J.; Iyengar, G.V.; Feinendegen, L.E.

    1981-01-01

    The differences in concentrations of cesium, cobalt, iron, mercury, rubidium, selenium and zinc between serum and plasma were examined with the aid of instrumental neutron activation analysis. Eighty serum and plasma samples obtained from 13 donors were compared. Serum was prepared in plastic tubes immediately after clotting, and plasma was separated with heparin as anticoagulant. No significant differences in the concentrations of cesium, cobalt, mercury and selenium were observed. However, the concentrations of iron, rubidium and zinc were significantly higher in serum than in plasma. The average differences were 322, 12 and 20 ng/ml for iron, rubidium and zinc, respectively. The average differences found for cesium, rubidium and zinc were far below that which can be expected from a complete, or considerable release of these elements from platelets which aggregate or disintegrate during the clotting process in preparing serum. (orig.)

  20. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  1. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  2. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  3. On the system of provision of ojsc "MMC 'Norilsk Nickel'" with interstate and State certified reference materials for quality control of cobalt, nickel, copper and promproducts

    Directory of Open Access Journals (Sweden)

    T. V. Shabelnikova

    2014-01-01

    Full Text Available In order to manage the quality of OJSC "MMC "Norilsk Nickel" products the Centre of Certified Reference Material Development has developed and is currently successfully implementing a system of operations provision with interstate and state certified reference materials of nickel, cobalt and copper composition. The system wholly corresponds to modern metrological requirements. The Centre of Reference Materials Development, fulfilling leading function in the field of state certified reference material production and supply to the Company's operations, aims its activity both at the development of new types of certified reference materials in the form of metals and at widening the range of synthetic oxide certified reference materials. Developed for the first time, metallic state certified reference materials of nickel, cobalt composition with certified mass fractions of oxygen, hydrogen, nitrogen, sulfur and carbon were put into practice of the Company's analytical services work. Certified reference material use provides the possibility to take into account requirements of some consumers to the quality of nickel and produce by OJSC "MMC "Norilsk Nickel" and also helps to raise competitive ability of the products on the world metals market. Over recent years the Centre fulfilled the work on the development, certification in established order, approval and entering into the State Register twenty five types of state certified reference materials. Certified reference materials are intended for fulfillment of the analysis of chemical composition of nickel, cobalt and copper in terms of their conformity with both national and international standards.

  4. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    Directory of Open Access Journals (Sweden)

    Qing-qing Pan

    2018-01-01

    Full Text Available The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing flotation. However, Fe3+ ions would increase the surface potential, reduce the S2− adsorption, generate more sulfur element, and therefore inhibit the sulphidizing flotation.

  5. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    Science.gov (United States)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  6. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R; Moraes, C.

    accumulation was high in S. cucullata, manganese in C. rubus and iron in T. angulata. Similarly, copper and zinc in S. cucullata and copper in C. rubus were found occasionally higher than accepted health standards...

  7. Removal of cobalt, chromium, copper, iron and nickel cations from electroplating waste water by apatite ore

    Energy Technology Data Exchange (ETDEWEB)

    Kargar-Razi, M.; Yahyaabadi, S. [Azad Univ. Tehran (Iran, Islamic Republic of)

    2012-07-01

    In this investigation, the adsorption behavior of natural phosphate rock and it's concentrate with respect to Fe{sup 3+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+} and Cr{sup 3+} has been studied, in order to consider its application to purity of electroplating waste water pollution. The batch mehtod has been employed, using metal concentrations in solution ranging from 2 ppm to 40 ppm with mixing process. The effect of pH, concentration of heavy metals and times (10-20 min) is considered. The results of their removal performance in 40 ppm concentration, pH = 8 and 10 minutes are obtained as Cr{sup 3+} > Cu{sup 2+} > Fe{sup 3+} > Co{sup 2+} > Ni{sup 2+} for phosphate rock and the sequence can be given as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. The same results show that maximum adsorption in PH = 4.5 and 7 for concentrate. The Langmuir adsorption isotherm constants corresponding to adsorption capacity were found to be as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+} for phosphate soil and Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. Sorption of metallic cations are considered in pH 4.5, 7 and 8. The results show that phosphate rock and its concentrate have great potential to remove cations of heavy metal species from electroplating waste water. (orig.)

  8. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Sulochana Konerirajapuram

    2004-01-01

    Full Text Available Purpose: To measure the concentrations of iron, copper and zinc in human vitreous and to interpret their levels with various vitreoretinal diseases like proliferative diabetic retinopathy, retinal detachment, intraocular foreign body, Eales′ disease and macular hole. Methods: Undiluted vitreous fluid collected during pars plana vitrectomy was used to measure trace elements using an atomic absorption spectrophotometer. Results: The level of vitreous iron increased threefold in Eales′ disease (1.85 ± 0.36 pg/ml, 2.5-fold in proliferative diabetic retinopathy (1.534 ± 0.17 pg/ml and 2.3-fold in eyes with intraocular foreign body (1.341 ± 0.25 pg/ml when compared with macular hole (0.588 ± 0.16 pg/ml. This was statistically significant (P < 0.05. Zinc was found to be low in Eales′ disease (0.57 ± 0.22 pg/ml when compared with other groups, though the difference was not statistically significant. Conclusion: The increased level of iron with decreased zinc content in Eales′ disease confirms the earlier reported oxidative stress mechanism for the disease. In proliferative diabetic retinopathy and intraocular foreign body the level of iron increases. This is undesirable as iron can augment glycoxidation, which can lead to increased susceptibility to oxidative damage, in turn causing vitreous liquefaction, posterior vitreous detachment and ultimately retinal detachment and vision loss

  9. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years.

    Science.gov (United States)

    Morales-Ruán, Ma del Carmen; Villalpando, Salvador; García-Guerra, Armando; Shamah-Levy, Teresa; Robledo-Pérez, Ricardo; Avila-Arcos, Marco Antonio; Rivera, Juan A

    2012-01-01

    To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006) and their association with dietary and sociodemographic factors. Serum samples were used (n=5 060) to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin) 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC), were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61) or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97) were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32) and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97) were protective against MLSC. Deficiencies of iron and zinc are serious public health problems in Mexican children.

  10. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  11. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  12. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  13. Optimal copper supply is required for normal plant iron deficiency responses.

    Science.gov (United States)

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.

  14. Assessment of serum copper, iron and immune complexes in potentially malignant disorders and oral cancer

    Directory of Open Access Journals (Sweden)

    Ritu TIWARI

    Full Text Available Abstract Potentially malignant disorders (PMDs of oral cavity and oral cancer remain a cause of serious concern despite intensive research and development. Diet and immunity have been identified to play a crucial role as modifying factors in these diseases. Our study intended to explore this relationship by estimating and comparing the serum levels of copper, iron and circulating immune complexes (CICs in patients diagnosed with PMDs and oral cancer and normal healthy individuals. In this study, 40 histopathologically diagnosed cases of PMDs and oral cancer were included along with 30 healthy controls and 5 ml of venous blood was drawn using venipuncture. Serum estimation of copper, iron and CIC then followed using the colorimetric and spectrophotometric methods. The data obtained was subjected to statistical analysis using one way ANOVA and Pearson’s Product-Moment Correlation Test. The mean serum copper level was measured as 138.98 ± 10.13µg/100ml in the PMD group and 141.99 ± 21.44 µg/100ml in the oral cancer as compared to 105.5 + 18.81µ/100ml in the controls. The mean serum CIC levels was highest in the oral cancer (9.65 ± 0.16OD470 followed by the PMD group (0.18 + 0.21 OD470 and least in the control group (0.048 ± 0.02OD470. Whereas, the serum levels of iron showed a significant decrease in the PMD group (110.9 ± 10.54 µg/100ml and the oral cancer group (114.29 ± 25.83 µg/100ml as compared with the control group (136.85 ± 14.48 µg/100ml. There was no positive correlation obtained between the three groups with respect to the chosen parameters indicating that the variables were independent of each other. It can be thus be ascertained that trace elements like copper and iron as well as humoral responses (CICs have a close relationship with PMDs and oral cancers.

  15. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil

    International Nuclear Information System (INIS)

    Kumpiene, Jurate; Ore, Solvita; Renella, Giancarlo; Mench, Michel; Lagerkvist, Anders; Maurice, Christian

    2006-01-01

    Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox TM test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil. - Zerovalent iron effectively reduces mobility and bioavailability of As and Cr, but does not adequately stabilize Cu

  16. Spectrophotometric Determination of Iron(II and Cobalt(II by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    Directory of Open Access Journals (Sweden)

    V. S. Anusuya Devi

    2012-01-01

    Full Text Available Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH reacts with iron(II and cobalt(II to form reddish-brown and yellow-coloured [Fe(II-HNAHBH] and [Co(II-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II-HNAHBH], Beer’s law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II-HNAHBH] complex obeys Beer’s law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content.

  17. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  18. Synthesis and characterisation of iron, cobalt and gallium complexes wit the redox-active amide ligand systems pyridinocarboxiamidobenzene and hydroxy phenyl oxamide; Synthese und Charakterisierung von Eisen-, Cobalt- und Galliumkomplexen mit den redoxaktiven Amidligandsystemen Pyridincarboxamidobenzol und Hydroxyphenyloxamid

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, U.

    2001-07-01

    The interactions of the redox-active ligand systems piridinocarboxamidobenzene and hydroxy phenyl oxamide with the metals iron, cobalt and gallium were investigated. It was found that metal complexes with ligands of the pyridinocarboxamidobenzene and hydroxy phenyl oxamide type can be redox-active in the sense of a ligand-centered reaction. This may provide a better understanding of natural catalysis mechanisms and redox processes. [German] In dieser Arbeit wurde die Wechselwirkung der redoxaktiven Ligandsysteme Pyridincarboxamidobenzol und Hydroxyphenyloxamid mit den Metallen Eisen, Cobalt und Gallium untersucht. Es konnte gezeigt werden, dass Metallkomplexe mit Liganden vom Typ Pyridincarboxamidobenzol und Hydroxyphenyloxamid auch im Sinne einer ligandzentrierten Reaktion redoxaktiv sein koennen. Dies kann dazu beitragen, Katalysemechanismen und Redoxprozesse in der Natur besser zu verstehen. (orig.)

  19. Influences of the matrix effect in the sensibility of cobalt measurement by atomic absorption

    International Nuclear Information System (INIS)

    Avila, L.A. d'.

    1977-06-01

    The interferences caused by iron, aluminium, calcium, magnesium, manganese, copper, nickel, zinc, sodium and potassium in the determination of cobalt by atomic absorption, were studied. The concentrations of cobalt were varied in the range of 1 to 800 μg/ml and the concentrations of the interferents in the proportions occuring normally in soils, rocks, sediments, geological material in general, alloys, caustic liquors etc. To study the flame composition effect, the flame region effect and also the effect of different interferent concentrations on the cobalt for each selected spectral line, an air-acetilene flame was utilized. As an application of this study the effect was shown of 'simulated soil matrices' with respect to the interference of iron on cobalt [pt

  20. Accurate Computed Enthalpies of Spin Crossover in Iron and Cobalt Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Cirera, J

    2009-01-01

    Despite their importance in many chemical processes, the relative energies of spin states of transition metal complexes have so far been haunted by large computational errors. By the use of six functionals, B3LYP, BP86, TPSS, TPSSh, M06L, and M06L, this work studies nine complexes (seven with iron...

  1. Biosorption phenomena of chromium, copper, iron and zink by dispersed bacterial extracellular polymeric substance

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty

    2015-01-01

    Heavy metals removing is generally performed using chemical coagulant that generates the chemical pollutant, so it is necessary to replace it by another alternative material as the Extracellular Polymeric Substance (EPS) resulting from the extraction of bacteria. The EPS contains the negatively functional groups (RCOOH, ROPO 3 H, ROPO 3 Na, ROSO 3 H, ROSO 3 Na, etc) as the cation sorbent and the positively functional groups (ROH, RC(NH 2 )HCOOH, etc) as the anion sorbent. The EPS absorbs the ion pollutants, then EPS containing the loaded metals be settled by gravitation. The utilization of EPS for removing of chromium, copper, iron, and zink was performed for biosorption phenomena study. Two hundred mg of EPS is mixed with 300 ml of the liquid waste having the pH of 2,4 containing 3,06 ppm of chromium; 4,83 ppm of copper; 1,6 ppm of iron and 15,07 ppm of zink. The solution is then agitated on 150 rpm and the pH of 7. The separated water supernatant is then sampled every 2 hours for its analysis of metals content. The experiment is repeated again for the solution pH of 4 and 8. The results of experiment indicates that the EPS composition are 11% of polysaccharides, 77% of protein, and 11% of fat ,and EPS contains the chemical bounding of C-H, OH, NH, and C=O. Indicating that EPS contains RCOOH, ROH and (RC(NH 2 )HCOOH. The best condition for metals biosorption is pH 8, and on the 6 hours of process time, the metal concentration on the water supernatant for chromium, copper, iron and zinc are 0,99 ppm; 0,51 ppm; 0,17 ppm; and 4,61 ppm respectively. Its selectivities are Fe 3+ > Cr 3+ >Cu 2+ >Fe 2+ >Zn 2+ , on the 6 hours of process time the location of cations functional groups was filled by the cations of Cr 3+ ,Cu 2+ , dan Fe 2+ . The cation of Zn 2+ enters to that location on the end of period so on the 6 hours of process time its concentration of 4,61 ppm not conforms to its concentration of regulation value of 2 ppm. On the process time of 6 hours the removing

  2. Synthesis, crystal structure and excellent photoluminescence properties of copper (II and cobalt (II complexes with Bis(1[(4-butylphenylimino]methyl naphthalen-2-ol Schiff base

    Directory of Open Access Journals (Sweden)

    V.B. Nagaveni

    2018-03-01

    Full Text Available Copper (II and Cobalt (II metal complexes (4a- and 4b-complexes using Schiff base ligand 1-[(4-butylphenylimino]methyl naphthalen-2-ol (3 have been synthesized. The single crystals of Copper (II and Cobalt (II complex phosphors were grown and characterized by Fourier-Transform Infrared (FT-IR, single crystal X-ray diffraction (XRD, SEM (Scanning Electron Microscope and EDS (Energy Dispersive X-ray spectroscopy. Photoluminescence study of the phosphors revealed the presence of excitation peaks at 333 nm and 360 nm for 4a-complex (λemi = 495 nm and excitation peaks at 300 nm and 360 nm for 4b-complex (λemi = 496 nm. The calculated CCT values of the complexes pointed out that these materials can be used to obtain cold white light from the light emitting devices. Diffuse reflectance spectra (DRS showed the measured band gap energies of 1.78 eV and 1.44 eV for Cu (II and Co (II complexes, respectively. It is concluded that the 4a- and 4b-complexes become white and blue green light emitting diodes respectively and will be useful in the development of strong electroluminescent materials. Keywords: 1[(4-butylphenylimino]methylnaphthalen-2-ol, Schiff base, Cu (II and Co (IIcomplex, Photoluminescence, Single crystal XRD, OLED

  3. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    Science.gov (United States)

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  4. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    Science.gov (United States)

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  5. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  6. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  7. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  8. Study on Selective Removal of Impurity Iron from Leached Copper-Bearing Solution Using a Chelating Resin

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2016-10-01

    Full Text Available In order to selectively remove iron from copper laden solution after leaching but prior to electrowinning, equilibrium, kinetic, and thermodynamic studies have been conducted on an a chelating resin of Rexp-501 at pH 1.0 and at various temperatures. Both Langmuir and Freundlich models were investigated, with the Langmuir model proving to be more suitable for fitting iron removal performance, with little influence from copper concentration. Compared with the pseudo first order kinetic model, the pseudo second order kinetic model fitted the dynamic adsorption process better, indicating a chemisorption mechanism. Fourier transform infrared spectroscopy (FT-IR results indicated that C=O from carbonyl group played a key role in combining with iron and can be regenerated and reused. However, the C=O of the acylamino group combining with iron was not able to be released after oxalic acid was applied.

  9. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Hongyan Gao

    2017-11-01

    Full Text Available Iron cobalt oxides, such as typical FeCo2O4 and CoFe2O4, are two spinel structured transitional metal oxide materials with excellent electrochemical performance. As the electrodes, they have been widely applied in the current energy storage and conversion processes such as supercapacitors, Lithium-ion batteries and fuel cells. Based on synthesis approaches and controlled conditions, these two materials exhibited broad morphologies and nanostructures and thus distinct electrochemical performance. Some of them have shown promising applications as electrodes in energy storage and conversion. The incorporation with other materials to form composites further improved their performance. This review briefly summarized the recent applications of FeCo2O4 and CoFe2O4 in energy storage and conversion, current understandings on mechanisms and especially the relevance of morphologies and structures and composites to electrochemical performance. Some recommendations were finally put forward addressing current issues and future prospects on electrodes of FeCo2O4 and CoFe2O4 based materials in energy storage and conversion, implying there was still space to further optimize their performance.

  10. Determination of caesium in river and sea waters by electrothermal atomic-absorption spectrometry. Interference of cobalt and iron

    International Nuclear Information System (INIS)

    Frigieri, P.; Trucco, R.; Ciaccolini, I.; Pampurini, G.

    1980-01-01

    For the enrichment or the simple recovery of caesium from river and sea waters, selective inorganic exchangers were considered. Ammonium hexacyanocobalt ferrate (NCFC) was chosen because it can be used in strongly acidic solutions (with the exception of concentrated sulphuric acid). Caesium is fully retained by the NCFC chromatographic column and can then be recovered by dissolution in hot sulphuric acid. The solution is then diluted and analysed, either directly or following caesium separation, by atomic-absorption spectrometry. To check the reliability of the analytical procedure, a series of experiments were carried out in which the possible interfering species were added to the aqueous caesium solution prior to analysis. The well known ionic interference in flame atomisation processes caused by magnesium, calcium, strontium and metals was investigated by electrothermal atomisation measurements. The experimental data showed that this effect does not occur even when these elements are present in concentrations of the order of thousands of parts per million. However, strong interferences from iron and cobalt were observed. (author)

  11. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  12. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  13. Iron and chlorine as guides to stratiform Cu-Co-Au deposits, Idaho Cobalt Belt, USA

    Science.gov (United States)

    Nash, J.T.; Connor, J.J.

    1993-01-01

    The Cu-Co-Au deposits of the Idaho Cobalt Belt are in lithostratigraphic zones of the Middle Proterozoic Yellowjacket Formation characterized by distinctive chemical and mineralogical compositions including high concentrations of Fe (15- > 30 wt. percent Fe2O3), Cl (0.1-1.10 wt. percent), and magnetite or biotite (> 50 vol. percent). The Cu-Co-Au deposits of the Blackbird mine are stratabound in Fe-silicate facies rocks that are rich in biotite, Fe, and Cl, but stratigraphically equivalent rocks farther than 10 km from ore deposits have similar compositions. A lower lithostratigraphic zone containing magnetite and small Cu-Co-Au deposits extends for more than 40 km. The Fe-rich strata are probably exhalative units related to mafic volcanism and submarine hot springs, but the origin of the high Cl concentrations is less clear. Former chlorine-rich pore fluids are suggested by the presence of supersaline fluid inclusions, by Cl-rich biotite and scapolite (as much as 1.87 percent Cl in Fe-rich biotite), and by high Cl concentrations in rock samples. Chlorine is enriched in specific strata and in zones characterized by soft-sediment deformation, thus probably was introduced during sedimentation or diagenesis. Unlike some metasedimentary rocks containing scapolite and high Cl, the Yellowjacket Formation lacks evidence for evaporitic strata that could have been a source of Cl. More likely, the Cl reflects a submarine brine that carried Fe, K, and base metals. Strata containing anomalous Fe-K-Cl are considered to be a guide to sub-basins favorable for the occurrence of stratiform base-metal deposits. ?? 1993 Springer-Verlag.

  14. Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammiche-Bellal, Yasmina, E-mail: yasminahammiche@gmail.com [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Djadoun, Amar [Laboratoire de Géophysique, FSTGAT, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Meddour-Boukhobza, Laaldja; Benadda, Amel [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Avenue Albert Einstein, F-69626, Villeurbanne (France); Berger, Marie-Hélène [Centre des Matériaux PIERRE-MARIE Fourt, UMR 7633, Paris (France); Mernache, Fateh [UDEC-CRND, COMENA, BP 43 Draria, 16050, Alger (Algeria)

    2016-07-01

    Spinel cobalt-iron oxide was synthesized by co-precipitation and hydrothermal routes. The effect of the co-precipitation experimental conditions, the calcination temperature and the hydrothermal synthesis time and temperature on the properties of the solids was studied. The prepared powders were evaluated as catalysts in the ethanol combustion reaction, and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM/EDX), nitrogen adsorption–desorption isotherms (BET, BJH) and temperature programmed reduction (TPR) techniques. Using chloride salts as starting materials and sodium hydroxide as precipitating agent, the CoFe{sub 2}O{sub 4} prepared powders displayed a mesoporous structure with a pore distribution strongly dependent on the experimental conditions. A monophasic spinel phase in the case of the calcined solids was obtained while the hydrothermal process led to the formation of a mixture of single oxides in addition to the spinel phase. The variation of the crystallite size and the lattice parameter as a function of calcination temperature was similar, whereas this variation found to be irregular when the synthesis residence time in autoclave was increased. The hydrothermally treated solids show the best catalytic performance in the total oxidation of ethanol. The catalytic behavior was correlated with the crystallite size and the reduction temperature of cobalt species determined by the TPR analysis. - Highlights: • Pure CoFe{sub 2}O{sub 4} phase is obtained by co-precipitation method at calcination temperatures 500–900 °C. • The temperature of co-precipitation procedure influences strongly the growth of the solids during the calcination step. • The hydrothermal synthesis gives a mixture of oxides; CoFe{sub 2}O{sub 4} is the predominant phase. • The CoFe{sub 2}O{sub 4} spinel showed a good catalytic reactivity in the ethanol combustion reaction. • The catalysts prepared by hydrothermal process are more reactive and

  15. Determination of concentration factors for Chromium cesium, iron and cobalt in corvine and shrimp in the vicinities of Almirante Alvaro Alberto Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kamel, L.N.

    1988-01-01

    In order to verify if the concentration factors for dose calculations in critical population recommended by the International Atomic Energy (IAEA), on the Safety Series 57, are in agreement with local factors, studies were carried out at Piraquara de Dentro bay, a region in the vicinities of the Almirante Alvaro Alberto Nuclear Power Plant (CNAAA). Chromium, caesium, iron and cobalt concentration factors for corvine and shrimp were determined using the activation analysis method by neutrons, taking into account the same behaviour between radioactive and stable from the same physicochemical form. This study has evidenced that: The local values of cesium, iron and cobalt concentration factors for corvine (fish) are in the same order of magnitude of the IAEA recommended values; The chromium, caesium and cobalt concentration factor values determined for shrimp for Piraquara de Dentro bay are in the same order of magnitude or smaller than those proposed by IAEA, while the concentration factor value for ion is one order of magnitude higher than the IAEA recommended value. (author) [pt

  16. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  17. Evolution of the mössbauer spectra of ludwigite Co3 - x Fe x O2BO3 with substitution of iron for cobalt

    Science.gov (United States)

    Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Kazak, N. V.; Bezmaternykh, L. N.; Vasiliev, A. D.

    2013-06-01

    A concentration series of single crystals of iron-cobalt ludwigites Co3 - x Fe x O2BO3 ( x = 0.0125, 0.025, 0.050, 0.10, 1.0) has been synthesized. The structure has been studied using X-ray diffraction and Mössbauer effect. A preferred occupation of nonequivalent crystallographic positions by iron in the ludwigite structure has been revealed. It has been found that the valence of substituting iron ions is three. It has been revealed that the structure of the γ-resonance spectrum of Co2FeO2BO3 is complicated due to a composition disorder in the system.

  18. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    Science.gov (United States)

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  19. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  20. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  1. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  2. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingxuan; Wang, Xuemei; Qin, Dongdong; Xue, Zhonghua; Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn

    2014-11-30

    Highlights: • We fabricated the Fe-doped Co{sub 3}O{sub 4} nanofilms for the first time by potentiostatic electrodeposition method. • The Fe was doped homogeneously in the nanofilms by this method. • Among the different concentration ratios of Co{sup 2+}/Fe{sup 2+}, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. • The Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit good electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalyst in alkaline fuel cells. - Abstract: In this work, Fe-doped Co{sub 3}O{sub 4} nanofilms were fabricated by electrodeposition on FTO glass substrates for the first time. The structures of the as-prepared nanofilms were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Characterization results demonstrate that Fe was doped homogeneously in the nanofilms. As the different concentration ratios of Fe{sup 2+}/Co{sup 2+} were explored, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. It is considered that the difference in the catalytic activities for the ORR of the samples may be due to the fact that the joining of iron changed the catalyst surface's electric state and enhanced the acidity of cobalt centers, on the other hand, the doping process probably modified the absorption property of the nanofilms. The experimental results suggest that the Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit favorable electrocatalytic activity toward ORR and appear to be promising cathodic electrocatalyst in alkaline fuel cells.

  3. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries

    International Nuclear Information System (INIS)

    Lee, S.B.; Cho, S.H.; Heo, J.B.; Aravindan, V.; Kim, H.S.; Lee, Y.S.

    2009-01-01

    Carbon-free, copper-doped, lithium rich iron phosphates, Li 1+x Fe 1-y Cu y PO 4 (0 ≤ x ≤ 0.15, 0 ≤ y ≤ 0.005), have been synthesized by a solid-state reaction method. From the optimization, the Li 1.05 Fe 0.997 Cu 0.003 PO 4 phase showed superior performances in terms of phase purity and high discharge capacity. The structural, morphological, and electrochemical properties were studied and compared to LiFePO 4 , Li 1.05 FePO 4 , LiFe 0.997 Cu 0.003 PO 4 , and materials. X-ray photoelectron spectroscopy (XPS) was conducted to ensure copper doping. Only smooth surface morphologies were observed for lithium rich iron phosphates, namely Li 1.05 FePO 4 and Li 1.05 Fe 0.997 Cu 0.003 PO 4 . The Li/Li 1.05 Fe 0.997 Cu 0.003 PO 4 cell delivered an initial discharge capacity of 145 mAh/g and was 18 mAh/g higher than the Li/LiFePO 4 cell without any carbon coating effect. Cyclic voltammetry revealed excellent reversibility of the Li 1.05 Fe 0.997 Cu 0.003 PO 4 material. High rate capability studies were also performed and showed a capacity retention over 95% during the cycling. We concluded that substituted Li and Cu ions play an important role in enhancing battery performance of the LiFePO 4 material through improving the kinetics of the lithium insertion/extraction reaction on the electrode.

  5. Stability constants of glutarate complexes of copper(II), zinc(II), cobalt(II) and uranyl(II) by paper electrophoresis

    International Nuclear Information System (INIS)

    Singh, R.K.P.; Yadava, J.R.; Yadava, K.L.

    1981-01-01

    Stability constants of Copper(II), Zinc(II), Cobalt(II) and Uranyl(II) glutarates have been determined by paper electrophoresis. Glutaric acid (0.005 mol dmsup(-3)) was added to the background electrolyte : 0.1 mol dmsup(-3) HClO 4 . The proportions of (CH 2 ) 3 COOH COO - and (CH 2 ) 3 C 2 O 4 2- were varied by changing the pH of the electrolyte. These anions yielded the complexes Cu(CH 2 ) 3 C 2 O 4 , [Zn(CH 2 ) 3 COOH COO] + [Co(CH 2 ) 3 COOH COO] + and UO 2 (CH 2 ) 3 C 2 O 4 whose stability constants are found to be 10sup(3.9), 10sup(2.9), 10sup(2.7) and 10sup(13.5) respectively. (author)

  6. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine

    International Nuclear Information System (INIS)

    El-Bindary, A.A.; El-Sonbati, A.Z.

    2000-01-01

    Metal complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity , magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex,various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported. (author)

  7. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    Science.gov (United States)

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  8. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  9. The separation and determination of trace elements in iron ore

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    The separation, concentration, and determination of trace elements in iron ores are described. After the sample has been dissolved, the iron is separated by liquid-liquid extraction with a liquid cation-exchanger, di-(2-ethylhexyl) phosphoric acid. The trace elements aluminium, cadmium, calcium, chromium, cobalt, copper, lead, magnesium, manganese, mercury, potassium, sodium, vanadium, and zinc are determined in the aqueous phase by atomic-absorption spectrophotometry

  10. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006.

    Science.gov (United States)

    De la Cruz-Góngora, Vanessa; Gaona, Berenice; Villalpando, Salvador; Shamah-Levy, Teresa; Robledo, Ricardo

    2012-01-01

    To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were 14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.

  11. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  12. Analysis of ambient pH stress response mediated by iron and copper intake in Schizosaccharomyces pombe.

    Science.gov (United States)

    Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru

    2018-01-01

    The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    Science.gov (United States)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  14. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries

    International Nuclear Information System (INIS)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de

    2014-01-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO 4 ) 2 .H 2 O) and lanthanum sulfate (La 2 (SO 4 ) 3 .H 2 O) as the major recovered components. Iron was recovered as Fe(OH) 3 and FeO. Manganese was obtained as Mn 3 O 4 .The recovered Ni(OH) 2 and Co(OH) 2 were subsequently used to synthesize LiCoO 2 , LiNiO 2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  15. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    Science.gov (United States)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  16. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Kladova, A. V.; Gavel, O. Yu.; Mukhopaadhyay, A.; Boer, D. R.; Teixeira, S.; Shnyrov, V. L.; Moura, I.; Moura, J. J. G.; Romão, M. J.; Trincão, J.; Bursakov, S. A.

    2009-01-01

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn 2+ –AK, Co 2+ –AK and Fe 2+ –AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn 2+ –AK and Fe 2+ –AK crystallized in space group I222 with similar unit-cell parameters, whereas Co 2+ –AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn 2+ –AK and Fe 2+ –AK forms and a dimer was present for the Co 2+ –AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  17. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    International Nuclear Information System (INIS)

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-01-01

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu) 2 ] 2 precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities

  18. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  19. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  20. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  1. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  2. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    Science.gov (United States)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  3. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Effect of Phosphorylation and Copper(II) or Iron(II) Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    OpenAIRE

    Rożnowski, Jacek; Fortuna, Teresa; Nowak, Katarzyna; Szuba, Edyta

    2016-01-01

    ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS). Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Hersc...

  5. Ductile–brittle behavior at blunted cavities in 3D iron crystals uncovered and covered by copper atoms

    Czech Academy of Sciences Publication Activity Database

    Pelikán, Vladimír; Hora, Petr; Červená, Olga; Spielmannová, Alena; Machová, Anna

    2010-01-01

    Roč. 4, č. 2 (2010), s. 191-200 ISSN 1802-680X R&D Projects: GA ČR(CZ) GA101/07/0789; GA AV ČR KJB200760802 Institutional research plan: CEZ:AV0Z20760514 Keywords : molecular dynamics * bcc iron crystal * blunted cavity * copper cover * ductile –brittle behavior Subject RIV: JG - Metallurgy http://www.kme.zcu.cz/acm/index.php/acm/article/view/48

  6. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  7. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  8. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian copperbelt.

    Science.gov (United States)

    Kříbek, Bohdan; Mihaljevič, Martin; Sracek, Ondra; Knésl, Ilja; Ettler, Vojtěch; Nyambe, Imasiku

    2011-08-01

    The extent of arsenic (As) and metal accumulation in fronds of the As hyperaccumulator Pteris vittata (Chinese brake fern) and in leaves of Cyperus involucratus, which grow on the surface of an old flotation tailings pond in the Zambian Copperbelt province, was studied. The tailings consist of two types of material with distinct chemical composition: (1) reddish-brown tailings rich in As, iron (Fe), and other metals, and (2) grey-green tailings with a lower content of As, Fe, and other metals, apart from manganese (Mn). P. vittata accumulates from 2350 to 5018 μg g(-1) As (total dry weight [dw]) in its fronds regardless of different total and plant-available As concentrations in both types of tailings. Concentrations of As in C. involucratus leaves are much lower (0.24-30.3 μg g(-1) dw). Contents of copper (Cu) and cobalt (Co) in fronds of P. vittata (151-237 and 18-38 μg g(-1) dw, respectively) and in leaves of C. involucratus (96-151 and 9-14 μg g(-1) dw, respectively) are high, whereas concentrations of other metals (Fe, Mn, and zinc [Zn]) are low and comparable with contents of the given metals in common plants. Despite great differences in metal concentrations in the two types of deposited materials, concentrations of most metals in plant tissues are very similar. This indicates an exclusion or avoidance mechanism operating when concentrations of the metals in substrate are particularly high. The results of the investigation show that Chinese brake fern is not only a hyperaccumulator of As but has adapted itself to high concentrations of Cu and Co in flotation tailings of the Zambian Copperbelt.

  9. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mooud Amirkavei

    2013-01-01

    Full Text Available A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

  10. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    Science.gov (United States)

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  11. Effects of the substitution of iron for cobalt on the crystal and magnetic properties of PrCo4-xFexM (M=Al and Ga)

    International Nuclear Information System (INIS)

    Zlotea, C.; Isnard, O.

    2003-01-01

    We report on the structural and magnetic properties of PrCo 4-x Fe x M where x=0-4 and M=Al and Ga. The iron solubility limit in these phases is determined by means of X-ray diffraction and scanning electron microscopy. Our study confirms that single phase samples crystallizing in the CaCu 5 -type structure are stabilized for x 5 structure but with a slight preference for the 3g site. The saturation magnetization and the Curie temperature increase upon the iron substitution. The PrCo 4-x Fe x M compounds present spin reorientation transitions, whatever the substituting M and the Fe content. The substitution of iron for cobalt induces a significant increase of the spin reorientation temperature. Neutron and X-ray powder diffraction experiments as well as magnetic measurements are combined in order to clarify the effects of the presence of iron on the magnetocrystalline anisotropy and the spin reorientation transition. Finally, the magnetic phase diagrams of PrCo 4-x Fe x M (M=Al and Ga) have been determined in the whole ordered temperature range

  12. A thermodynamic and kinetic study of trace iron removal from aqueous cobalt sulfate solutions using Monophos resin.

    Science.gov (United States)

    Wang, Guangxin; Zhao, Yunchao; Yang, Bin; Song, Yongfa

    2018-01-01

    High purity cobalt has many important applications, such as magnetic recording media, magnetic recording heads, optoelectronic devices, magnetic sensors, and integrated circuits, etc. To produce 5N or higher purity cobalt in an electro-refining process, one of the challenges is to effectively reduce the Fe content of aqueous cobalt salt solution before electrolysis. This paper describes thermodynamic and kinetic investigations of the Fe adsorption process of a new sulfonated monophosphonic resin with the trade mark Monophos. Five cobalt sulfate solutions of different Co concentrations were prepared. Fe ions were removed from the solutions by ion exchange method using Monophos resin. Chemical analysis was carried out using a Perkin Elmer ICP-OES. The initial Fe concentrations of about 0.9-2.0 mg/L can be reduced to about 0.3-0.8 mg/L, which is equivalent to an Fe removal rate of 60-67%. The Langmuir isothermal adsorption model applies well to the Fe removal process. A second-order type based on McKay equation fits better with experimental data than other kinetic models. The kinetic curve can be divided into two sections. For t 30 min. Monophos resin is effective for the removal of trace Fe from cobalt sulfate solution. This ion exchange process obeys the Langmuir isothermal adsorption model and the McKay equation of second-order kinetics.

  13. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  14. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    Lanru Jing

    2004-04-01

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  15. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    Science.gov (United States)

    Moreira, Daniele C F; de Sá, Júlia S M; Cerqueira, Isabela B; Oliveira, Ana P F; Morgano, Marcelo A; Quintaes, Késia D

    2014-10-01

    Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Duplicate samples were taken of six daily meals and of the OFC on two non-consecutive days from a hospital in Belo Horizonte (MG, Brazil) in May and September of 2010 and January of 2011. The elements were determined by ICP OES. Of the diets, the soft diet showed the highest elements content. Offering the OFC was insufficient to provide adequate levels of the trace elements. The oral hospital diets were inadequate in relation to the RDAs for the trace elements studied and the use of the OFCs was insufficient to compensate the values. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  17. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    Science.gov (United States)

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  18. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  19. Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Soomro, G.A.

    2004-01-01

    Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) is carried out with 1-(2 pyridylazo)-2-naphthol as a complexing reagent in aqueous phase using non-ionic surfactant Tween 80. Beer's law is obeyed for Co(II), Ni(II) and Cu(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.5 - 3.0 ngmL/sup -1/ with detection limit (2 σ) of 6.7, 3.2 and 3.9 ngmL/sup -1/. The max molar absorption, molar absorptivity, Sandell's sensitivity of Co(II), Ni(II) and Cu(II) are 580 nm, 570 nm and 555 nm; max (104 mol/sup -1/ cm /sup -1/) is 0.87, 1.8 and 1.6 and 6.8, 3.3 and 3.9 ng cm-2 respectively. The pH at which complex is formed for Co(II), Ni(II) and Cu(II) is 5, 5.5 and 6.5 respectively. The critical micelle concentration (CMC) of Tween 80 is 5%. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of Co(II), Ni(II) and Cu(II) in industrial waste water and pharmaceutical samples. (author)

  20. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    Science.gov (United States)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  1. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  2. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  3. Self-induced inverse spin-Hall effect in an iron and a cobalt single-layer films themselves under the ferromagnetic resonance

    Science.gov (United States)

    Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji

    2018-05-01

    The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.

  4. Impact of Maternal Helicobacter pylori Infection on Trace Elements (Copper, Iron and Zinc and Pregnancy Outcomes

    Directory of Open Access Journals (Sweden)

    Emmanuel I Akubugwo

    2010-04-01

    Full Text Available Background: H. pylori infection has been suggested to interfere with micronutrient metabolism and influence pregnancy outcomes. Objectives: This study therefore seeks to document the prevalence of H. pylori seroposivity among pregnant women and to determine its impact on some trace element status and pregnancy outcomes. Materials and methods: Three hundred and forty nine consenting pregnant women aged 15-40 years (mean; 27. 04 ± 4. 75 years and gestational age ≤ 25 weeks (mean 21.77 ± 3.14 wks attending antenatal clinic at Federal Medical Centre, Abakaliki, between July 2007 and September 2008 participated in the study. H. Pylori antibody (IgG was determined by a new generation ELISA method. Plasma copper, iron and zinc were analysed using flame atomic absorption spectrophotometer (Bulk Scientific AVG 210 Model while haemoglobin and albumin were analysed using standard haematological and biochemical techniques. Both maternal sociodemographic and anthropometric parameters were recorded at recruitment. The women were followed-up till delivery after which neonatal anthropometrics and other birth outcomes were recorded. Results: H. pylori seroprevalence of 24.1% (84/349 was recorded with higher prevalence in multiparous and older women. H. pylori infected women had significantly higher BMI (29.00 ± 3.89 vs. 26.86 ± 4.10, p = 0.020 and lower (p > 0.05 plasma levels of Cu, Fe, Zn, albumin, and haemoglobin when compared to non-infected women. Also H. pylori infected women had significantly (p < 0.05 higher rates of convulsion and concomitant illnesses than their non-infected counterparts, although there was no difference in the two groups for other pregnancy outcomes. Conclusion: H. pylori infection during pregnancy seems to interfere with trace element metabolism and contribute significantly to increased maternal morbidity. Prior to confirmation of these findings in a well controlled randomised trial, it is suggested that pregnant women be

  5. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  6. Mass-selected iron-cobalt alloy clusters. Correlation of magnetic and structural properties; Massenselektierte Eisen-Kobalt-Legierungscluster. Korrelation magnetischer und struktureller Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Furkan

    2008-10-13

    In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)

  7. Studies performed on neutron-irradiated copper-doped iron specimens by means of neutron small-angle scattering

    International Nuclear Information System (INIS)

    Naraghi, M.

    1978-01-01

    By means of neutron small-angle scattering precipitation arising from heat-treatment and reactor irradiation in copper-alloyed iron specimens were studied. Copper content varried between 0 and 1.5%, irradiation temperature between 310 and 563K. The specimens had been cooled from the melt partly fast, partly slowely. By taking account of magnetic scattering and by investigating the azimuthal dependence of the total scattering it became possible to distinguish between copper precipitations and vacancy agglomerates. The most obvious effect in the slowly cooled specimens after irradiation with 2-10 19 fast neutrons per cm 2 at a temperature of 563 K is the existence of copper agglomerates with diameters of the order of magnitude of 5nm. Precipitation already occurs to a much lesser extent by the influence of temperature alone. Fast cooling from the melt or low irradiation temperature reduce precipitation during reactor irradiation. Moreover, there are indications on the formation of vacancy accumulations and dislocation rings, the latter especially in the fast cooled specimens. (orig.) [de

  8. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Hiroshi, E-mail: mhiroshi@ffpri.affrc.go.jp; Kiguchi, Makoto [Forestry and Forest Products Research Institute (Japan); Evans, Philip D. [University of British Columbia, Centre for Advanced Wood Processing (Canada)

    2009-07-15

    Aqueous dispersions of copper-carbonate nanoparticles and microparticles have just begun to be exploited commercially for the preservative treatment of wood. The success of the new systems will depend, in part, on the uniform distribution of the preservative in wood and the ability of copper to penetrate cell walls. We examined the distribution of copper in wood treated with a nano-Cu preservative. Copper particles are not uniformly distributed in treated wood, but they accumulate in voids that act as the flow paths for liquids in wood. Particles are deposited on, but not within cell walls. Nevertheless, elemental copper is present within cell walls, but at a lower level than that in wood treated with a conventional wood preservative. These findings suggest that nano-Cu preservatives are able to deliver bioactive components into wood cell walls even though the majority of copper particles are too large to penetrate the cell wall's nanocapillary network.

  9. Observed transitions in n = 2 ground configurations of copper, nickel, iron, chromium and germanium in tokamak discharges

    International Nuclear Information System (INIS)

    Hinnov, E.; Suckewer, S.; Cohen, S.; Sato, K.

    1981-11-01

    A number of spectrum lines of highly ionized copper, nickel, iron, chromium, and germanium have been observed and the corresponding transitions identified. The element under study is introduced into the discharge of the PLT Tokamak by means of rapid ablation by a laser pulse. The ionization state is generally distinguishable from the time behavior of the emitted light. New identifications of transitions are based on predicted wavelengths (from isoelectronic extrapolation and other data) and on approximate expected intensities. All the transitions pertain to the ground configurations of the respective ions, which are the only states strongly populated at tokamak plasma conditions. These lines are expected to be useful for spectroscopic plasma diagnostics in the 1-3 keV temperature range, and they provide direct measurement of intersystem energy separations from chromium through copper in the oxygen, nitrogen, and carbon isoelectronic sequences

  10. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  11. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  12. Dissolution of copper, tin, and iron from sintered tungsten-bronze spheres in a simulated avian gizzard, and an assessment of their potential toxicity to birds

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; McGill, Ian R.

    2008-01-01

    The rates of dissolution of copper, tin, and iron from sintered tungsten-bronze spheres (51.1%W, 44.4%Cu, 3.9%Sn, 0.6%Fe, by mass) were measured in an in vitro simulated avian gizzard at pH 2.0, and 42C. Most of the spheres had disintegrated completely to a fine powder by day 14. Dissolution of copper, tin, and iron from the spheres was linear over time; all r > 0.974; all P < 0.001. The mean rate of release of copper, tin, and iron was 30.4 mg, 2.74 mg, and 0.38 mg per g tungsten-bronze per day, respectively. These rates of metal release were compared to those in published studies to determine whether the simultaneous ingestion of eight spheres of 3.48 mm diameter would pose a toxic risk to birds. The potential absorption rates of iron and tin (0.54 mg Fe/day, and 3.89 mg Sn/day) from eight tungsten-bronze spheres of total mass 1.42 g would not prove toxic, based on empirical studies of tin and iron ingestion in waterfowl. The release of 43.17 mg copper/day from eight tungsten-bronze spheres, while exceeding the daily copper requirements of domesticated birds, is far below the levels of copper known to cause copper toxicosis in birds. We conclude that sintered tungsten-bronze material made into gunshot, fishing weights, or wheel balance weights, would not pose a toxic risk to wild birds when ingested

  13. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYLETHANONE N(4-ALLYL-3-THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2015-12-01

    Full Text Available The paper presents the synthesis of the ligand 1-(2-hydroxyphenylethanone N(4-allyl-3-thiosemicarbazone (H2L and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 cells and cervical cancer HeLa cells was determined. It was established that the substitution of hydrogen atom with methyl group in the azomethinic fragment leads to the growth of antitumor activity.SINTEZA ŞI ACTIVITATEA ANTITUMORALĂ A COMPUŞILOR COMPLECŞI AI CUPRULUI, NICHELULUI ŞI COBALTULUI CU N(4-ALIL-3-TIOSEMICARBAZONA 1-(2-HIDROXIFENILETANONEILucrarea conţine descrierea sintezei N(4-alil-3-tiosemicarbazonei 1-(2-hidroxifeniletanonei (H2L şi a şase compuşi coordinativi ai cuprului, nichelului şi cobaltului cu acest ligand. Structura tiosemicarbazonei H2L a fost stabilită în baza datelor spectroscopiei RMN 1H şi 13C. Compuşi coordinativi au fost studiaţi cu ajutorul analizei elementale, analizei gravimetrice a conţinutului de apă, conductivitaţii molare şi magnetochimiei. Pentru H2L a fost determinată activitatea antitumorală faţă de celulele leucemiei umane HL-60 şi ale cancerului cervical HeLa. S-a stabilit că înlocuirea atomului de hidrogen cu o grupare metil în fragmentul azomethinic conduce la creşterea activitaţii antitumorale.

  14. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  15. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  16. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  17. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Science.gov (United States)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g-1 (298 K), 196.1 mg g-1 (303 K) and 185.2 mg g-1 (308 K). It was much higher than that of AC-Fe and AC-Al. And the process was controlled by both film diffusion and intra particle mass transport. The results also showed that, the Freundlich and Temkin isotherm fit the adsorption well.

  18. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation.

    Science.gov (United States)

    Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T

    2001-03-30

    A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.

  19. Axial Ligation and Redox Changes at the Cobalt Ion in Cobalamin Bound to Corrinoid Iron-Sulfur Protein (CoFeSP or in Solution Characterized by XAS and DFT.

    Directory of Open Access Journals (Sweden)

    Peer Schrapers

    Full Text Available A cobalamin (Cbl cofactor in corrinoid iron-sulfur protein (CoFeSP is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS at the Co K-edge in combination with density functional theory (DFT calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb base of the cofactor is bound in Cbl in solution. As main species, (dmbCoIII(OH2, (dmbCoII(OH2, and (dmbCoIII(CH3 sites for solution Cbl and CoIII(OH2, CoII(OH2, and CoIII(CH3 sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II. The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.

  20. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.

    Science.gov (United States)

    Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M

    2018-07-01

    Transition metal oxides present in waste incineration systems have the ability to catalyze the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) through surface reactions involving organic dioxin precursors. However, studies have concentrated on the catalytic effects of individual transition metal oxides, while the complex elemental composition of fly ash introduces the possibility of synergistic or inhibiting effects between multiple, catalytically active components. In this study, we have tested fly ash surrogates containing different ratios (by weight) of iron (III) oxide and copper (II) oxide. Such Fe 2 O 3 /CuO mixed-oxide surrogates (in the Fe:Cu ratio of 3.5, 0.9 and 0.2 ) were used to study the cooperative effects between two transition metals that are present in high concentrations in most combustion systems and are known to individually catalyze the formation of PCDD/Fs. The presence of both iron and copper oxides increased the oxidative power of the fly ash surrogates in oxygen rich conditions and led to extremely high PCDD/F yields under pyrolytic conditions (up to >5% yield) from 2-monochlorophenol precursor. PCDD/F congener profiles from the mixed oxide samples are similar to results obtained from only CuO, however the total PCDD/F yield increases with increasing Fe 2 O 3 content. Careful analysis of the reaction products and changes to the oxidation states of active metals indicate the CuO surface sites are centers for reaction while the Fe 2 O 3 is affecting the bonds in CuO and increasing the ability of copper centers to form surface-bound radicals that are precursors to PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea

    2017-12-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.

  2. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell

    2017-01-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation...... rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate...... contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect...

  3. Coordination studies of copper(II), cobalt(II) and iron(II) with isomeric pyridyl-tetrazole ligands

    DEFF Research Database (Denmark)

    Bond, A. D.; Fleming, A.; Gaire, J.

    2012-01-01

    The reaction of 2-(2H-tetrazol-5-yl)pyridine (L1) with 1,6-dibromohexane results in formation of the isomers 2-(6 ''-bromohexyl)-(1-tetrazol-5-yl)pyridine (12) and 2-(6 ''-bromohexyl)-(2-tetrazol-5-yl)pyridine (L3). Coordination reactions of 12 and 13 with CuCl2 center dot 2H(2)O, Co(SCN)(2) and ...... conformation in its equatorial plane. Complex 5 contains water molecules coordinated to Fe(II) in the axial sites, which form hydrogen bonds to the perchlorate counter anions. (C) 2011 Elsevier Ltd. All rights reserved....

  4. Influence of the reagent concentration of the colorimetric copper determination with sodium diethyl dithiocarbamate (abbreviated: D.D.C.) and its importance for the determination of copper in the presence of large amounts of iron

    NARCIS (Netherlands)

    Karsten, P.; Rademaker, S.C.; Walraven, J.J.

    1950-01-01

    From a research about the influence of the reagent concentration on the copper determination with sodium di-ethyl-di-thio-carbamate in the presence of large amounts of iron some insight was gained into factors which had never been examined so far and which were found to have great influence on the

  5. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  6. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    International Nuclear Information System (INIS)

    Edwards, C.H.; Adkins, J.S.; Harrison, B.

    1986-01-01

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 μg and 19.6 +/- 1.6 μg, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 μg to 10.5 +/- 4.8 μg) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 μg vs 1661 +/- 471 μg, respectively, when compared to the control group

  7. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    Science.gov (United States)

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  8. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiang, E-mail: huxiang@mail.buct.edu.cn [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Zhang, Hua [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-01-15

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g{sup −1} (298 K), 196.1 mg g{sup −1} (303 K) and 185.2 mg g

  9. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    International Nuclear Information System (INIS)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g"−"1 (298 K), 196.1 mg g"−"1 (303 K) and 185.2 mg g"−"1 (308 K

  10. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Cigdem Arpa, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey); Tokgoez, Ilknur; Bektas, Sema [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey)

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. The micellar solution was heated above 50 {sup o}C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L{sup -1} H{sub 2}SO{sub 4} and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL{sup -1}, the limits of quantification (10s) were 2.2 and 1.0 ng mL{sup -1} for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL{sup -1} iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  11. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    International Nuclear Information System (INIS)

    Teshima, Norio; Gotoh, Shingo; Ida, Kazunori; Sakai, Tadao

    2006-01-01

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L -1 with a sample throughput rate of 20 h -1 . The limits of detection (3σ) were 3.9 μg L -1 for copper, 4.1 μg L -1 for iron and 4.0 μg L -1 for zinc. The proposed method was applied to analysis of some patients' sera

  12. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  13. The use of radioisotopes and low abundance stable isotopes for the study of bioavailability and the metabolism of iron, zinc and copper

    International Nuclear Information System (INIS)

    Aggett, P.J.; Fairweather Tait, S.

    1994-01-01

    The use of whole body counting and imaging with ''area of interest'' counting to monitor the metabolism of zinc in healthy volunteers and patients with coeliac diseases and cirrhosis is described as are studies of interaction between iron and copper. Stable isotopes of iron, copper and zinc have been used to investigate the metabolism of these elements in young infants and have proved useful in assessing the validity of current estimated requirements particularly of iron. Stable isotopes have also been used to improve the classic metabolic balance approach to the study of the homeostasis of zinc in zinc deprived volunteers, and have progressed to studies using plasma kinetic curves of the systemic compartmentation of zinc

  14. The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions

    Czech Academy of Sciences Publication Activity Database

    Catapano, M.C.; Tvrdý, V.; Karlíčková, J.; Migkos, T.; Valentová, Kateřina; Křen, Vladimír; Mladěnka, P.

    2017-01-01

    Roč. 9, č. 11 (2017), s. 1193 ISSN 2072-6643 R&D Projects: GA MŠk(CZ) LD15082 Institutional support: RVO:61388971 Keywords : chelator * copper * quercetin-3-O-beta-glucopyranoside Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.550, year: 2016

  15. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  16. Evaluation of brake parameters in copper discs of various thicknesses and speeds using Neodymium – Iron – Boron Magnets

    Directory of Open Access Journals (Sweden)

    Anantha Krishna G. L.

    2018-01-01

    Full Text Available Neodymium – Iron – Boron (NdFeB permanent magnets of 12.5 mm thickness and 50 mm diameter are chosen for analyses because of their higher remanence and coercivity. Experimental analyses were carried out with Copper discs of thickness 4 mm, 6 mm and 8 mm at 2000 rpm, 3000 rpm, 4000 rpm and 5000 rpm. Experiments were conducted with three different positions of magnets such as 2 coaxial magnets, single magnet and single magnet with sudden application conditions. The brake parameters recorded are % speed reduction, deceleration and time taken. In 2 coaxial magnets condition, brake parameters are better in 6 mm thick disc. In single magnet condition, the brake parameters in 6 mm thick disc are found to be more consistent than 4 mm and 8 mm thick discs. In single magnet with sudden application condition, in 4 mm thick disc, the brake parameters are found better. During analysis, very high repulsion was experienced by magnet with 8 mm thick Copper disc at all the above mentioned speeds in single magnet with sudden application condition. For high speed train applications, single magnet condition with 6mm thick disc may be suitable. For high speed automotive applications, single magnet with sudden application condition with 4 mm thick disc may be suitable.

  17. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  18. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  19. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    International Nuclear Information System (INIS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-01-01

    Highlights: • The stability of Co x Fe (2-x) O 3 nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co 2+ ions in magnetite Fe 3 O 4 nano-particles with stoichiometric formula Co x Fe 3-x O 4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co 2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co x Fe 3-x O 4 nanoparticles with the major band at 887 cm −1 , which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co 2+ content. The decrease in enthalpy with increase in Co 2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co 2+ content in B-site of Fe 3 O 4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co x Fe 3-x O 4 nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  20. Influence of ocean acidification on the organic complexation of iron and copper in Northwest European shelf seas; a combined observational and model study

    Directory of Open Access Journals (Sweden)

    Lizeth eAvendaño

    2016-04-01

    Full Text Available The pH of aqueous solutions is known to impact the chemical speciation of trace metals. In this study we conducted titrations of coastal seawaters with iron and copper at pH 7.91, 7.37 and 6.99 (expressed on the total pH scale. Changes in the concentration of iron and copper that complexed with the added ligands 1-nitroso-2-napthol and salicylaldoxime respectively were determined by adsorptive cathodic stripping voltammetry - competitive ligand equilibrium (AdCSV-CLE. Interpretation of the results, assuming complexation by a low concentration of discrete ligands, showed that conditional stability constants for iron complexes increased relative to inorganic iron complexation as pH decreased by approximately 1 log unit per pH unit, whilst those for copper did not change. No trend was observed for concentrations of iron and copper complexing ligands over the pH range examined. We also interpreted our titration data by describing chemical binding and polyelectrolytic effects using non-ideal competitive adsorption in Donnan-like gels (NICA-Donnan model in a proof of concept study. The NICA-Donnan approach allows for the development of a set of model parameters that are independent of ionic strength and pH, and thus calculation of metal speciation can be undertaken at ambient sample pH or the pH of a future, more acidic ocean. There is currently a lack of basic NICA-Donnan parameters applicable to marine dissolved organic matter (DOM so we assumed that the measured marine dissolved organic carbon could be characterized as terrestrial fulvic acids. Generic NICA-Donnan parameters were applied within the framework of the software program visual MINTEQ and the metal –added ligand concentrations [MeAL] calculated for the AdCSV-CLE conditions. For copper, calculated [MeAL] using the NICA-Donnan model for DOM were consistent with measured [MeAL], but for iron an inert fraction with kinetically inhibited dissolution was required in addition to the NICA

  1. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: a randomised controlled trial.

    Science.gov (United States)

    Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P

    2018-04-01

    Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.

  2. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  3. The determination of copper and nickel in iron- and chromium-bearing materials by a pressed-powder technique and x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Balaes, A.M.E.; Dixon, K.

    1984-01-01

    A method was developed that is suitable for the determination of copper and nickel in ores such as those from the Merensky and UG-2 Reefs. The sample was ground finely and diluted with river sand so that matrix variations were avoided as much as possible. After the addition of a wax-polystyrene binder, the material was pelletized. The matrix effects of iron and chromium, and the effects of their mutual interferences on the determination of copper and nickel, were then investigated. Equations were derived for the corrected copper and nickel Kα intensities, and were applied to the analyses of head, concentrate, middling, and tailing samples. Comparative values obtained by atomic-absorption spectrophotometry were found to be in reasonable agreement with the X-ray values; the average deviation was +0,3 per cent for copper and -1,6 per cent for nickel relative to the AAS values. The limits of detection of the method for copper and nickel are 31 and 40μg/g respectively; the limit of determination for copper is 92μg/g and for nickel is 119μg/g. The relative standard deviation at 900 and 2400μg of copper and nickel per gram is 0,02

  4. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  5. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.|info:eu-repo/dai/nl/314112596; Hugen, S.; van den Ingh, T.S.G.A.M.; Hendriks, W.H.|info:eu-repo/dai/nl/298620936; Vernooij, Hans|info:eu-repo/dai/nl/340304596; Bode, P.; Watson, A.L.; Leegwater, P.A.J.|info:eu-repo/dai/nl/074236539; Rothuizen, J.|info:eu-repo/dai/nl/071276033

    2013-01-01

    Abstract Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study

  6. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; Ingh, van den T.S.G.A.M.; Hendriks, W.H.; Vernooij, J.C.M.; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study were to

  7. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  8. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Haruka [Hiroshima University, Graduate School of Science (Japan); Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2012-03-15

    Mixed crystals of cobalt and zinc were synthesized using 1,3-bis(4-pyridyl)propane (bpp) as bridging ligand and NCS{sup - } as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS){sub 2}(bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. {sup 57}Fe Moessbauer spectrum of the red crystals showed a main doublet of Fe{sup II} high-spin state at 78 K, while the spectrum of blue crystals did not show Fe{sup II} high-spin state at 78 K.

  9. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    International Nuclear Information System (INIS)

    Dote, Haruka; Nakashima, Satoru

    2012-01-01

    Mixed crystals of cobalt and zinc were synthesized using 1,3–bis(4–pyridyl)propane (bpp) as bridging ligand and NCS  −  as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS) 2 (bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. 57 Fe Mössbauer spectrum of the red crystals showed a main doublet of Fe II high-spin state at 78 K, while the spectrum of blue crystals did not show Fe II high-spin state at 78 K.

  10. Study of thermodynamic properties of binary and ternary liquid alloys of aluminium with the elements iron, cobalt, nickel and oxygen; Etude des proprietes thermodynamiques des alliages liquides binaires et ternaires de l'aluminium avec les elements fer, cobalt, nickel et l'oxygene

    Energy Technology Data Exchange (ETDEWEB)

    Vachet, F [CEA Vallee du Rhone, 26-Pierrelatte (France)

    1966-07-01

    The present work deals with the thermodynamic study of aluminium liquid alloys with the metals iron, cobalt and nickel. The experiments carried out lead to the activity, at 1600 deg C, of aluminium in the (Al, Fe), (Al, Co), (Al, Ni) liquid alloys. The experimental method used consists in studying the partition of aluminium between the liquid immiscible phases made up with the pairs of metals (Fe, Ag), (Co, Ag), (Ni, Ag). The informations so obtained are used for drawing the isothermal equilibrium phases diagrams sections of (Al, Fe, Ag), (Al, Co, Ag), (Al, Ni, Ag) systems. The study of the partition of silver between lead and aluminium joined with the determinations of several authors allows us to determine the aluminium activity, analytically presented, in the metal M (iron cobalt and nickel). The Wagner's interaction parameters of aluminium in metal M are determined. The results obtained as the equilibrium phases diagrams of (Al, M) systems allow to compare the thermodynamic properties of the Al Fe system in liquid and solid states and to estimate the enthalpies of melting of the AlCo and AlNi intermetallic compounds. The activity, at 1600 deg C, of aluminium in (Al, Fe, Co), (Al, Fe, Ni), (Al, Co, Ni) liquid alloys is estimated through thermodynamic properties of binary components systems by application of several methods leading to results in good agreement. The study of aluminium-oxygen interactions in the liquid metallic solvants M allows us to propose an explanation for the shape of the deoxidation equilibrium line of iron, cobalt and nickel by aluminium and to compare the de-oxidizing power of aluminium toward iron, cobalt and nickel oxides. (author) [French] Le travail presente se rapporte a l'etude thermodynamique des alliages liquides de l'aluminium avec les metaux fer, cobalt et nickel. Les experiences effectuees ont pour but de determiner l'activite, a 1600 C, de l'aluminium dans les alliages liquides (Al, Fe), (Al, Co), (Al, Ni). La methode

  11. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.H.; Whiting, S.N.; Lin, Z.-Q.; Lytle, C.M.; Qian, J.H.; Terry, N. [University of California, Berkeley, CA (USA). Dept. of Plant and Microbial Biology

    2001-08-01

    A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells 1 through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year and by 94 and 98% in the second year respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first and 98 and 63% in the second year respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 cm of sediment than in the 5 to 10 or 10 to 15 cm layers and in Cell 1 than in Cells 2, 3 and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is 2.81, 2.75 and 1.05% for Fe, Co and Ni, respectively. Considerably higher concentrations of metals were associated with cattail root than shoots, although Mn was a notable exception. 48 refs., 6 figs., 4 tabs.

  13. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi

    International Nuclear Information System (INIS)

    Tatlıdil, İlknur; Bacaksız, Emin; Buruk, Celal Kurtuluş; Breen, Chris; Sökmen, Münevver

    2012-01-01

    Highlights: ► Co or Fe doped TiO 2 thin films were prepared by sol–gel method. ► We obtained lower E g values for Fe-doped and Co-TiO 2 thin films. ► Doping greatly affected the size and shape of the TiO 2 nanoparticles. ► Photocatalytic killing effect of the doped TiO 2 thin films on C. albicans and A. niger was significantly higher than undoped TiO 2 thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe 3+ or Co 2+ ion doped TiO 2 thin films and suspensions were summarized. Additionally, a sol–gel method was used for preparation of the 2% Co or Fe doped TiO 2 thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E g value was 3.40 eV for the pure TiO 2 , 3.00 eV for the Fe-doped TiO 2 film and 3.25 eV for Co-TiO 2 thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO 2 nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO 2 thin film on Candida albicans was significantly higher than Fe doped TiO 2 thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  14. Interlaboratory comparison survey of the determination of chromium, manganese, iron, titanium in dust and arsenic, cadmium, cobalt and chromium in urine

    International Nuclear Information System (INIS)

    Christensen, Jytte Molin

    2000-01-01

    This report describes an intercomparison survey based on the Danish External Quality Assessment Scheme (DEQAS). The study was carried out in 1998 for 10 laboratories in a research project on assessment of levels and health effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. The project was co-ordinated by the IAEA. Eight laboratories measured chromium (Cr), manganese (Mn), iron (Fe) and titanium (Ti) in welding fume dust loaded on filters. Six laboratories measured arsenic (As), four laboratories measured cadmium (Cd), five laboratories measured cobalt (Co) and four laboratories measured chromium (Cr) in urine. The target values of the quality control materials were traceable to certified reference materials with respect to Cr in welding fume and As, Cd, Co and Cr in urine. For Mn, Fe and Ti in welding fume the target values were established based on values from reference laboratories and consensus values from several DEQAS rounds. For evaluating the analytical performance the z-score and E n number were calculated as recommended in ISO 45. The judgement of laboratories according to the performance scores revealed that few laboratories could maintain an ideal z-score below 3 and an ideal E n number below 1. Nearly all participants had a high precision in the reported results. This is a good basis for improvements. The deviations from the target values appear to be systematic, because the deviations for Mn, Fe, Ti in welding dust as well as for As, Cd, Co and Cr in urine were a linear function of the target values (ISO 5725 evaluation). The cause for this bias is unknown at present and might not be the same for all participants. It is necessary to look further into the cause for this bias. Therefore, validation of the methodologies and regularly use of certified reference materials are highly recommended. (author)

  15. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    Science.gov (United States)

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence

  16. Effect of Microstructures on Working Properties of Nickel-Manganese-Copper Cast Iron

    Directory of Open Access Journals (Sweden)

    Daniel Medyński

    2018-05-01

    Full Text Available In the paper, the effects, on basic usable properties (abrasive wear and corrosion resistance, of solidification (acc. to the stable and non-stable equilibrium system and transformations occurring in the matrix during the cooling of castings of Ni-Mn-Cu cast iron were determined. Abrasive wear resistance was mainly determined by the types and arrangements of high-carbon phases (indicated by eutectic saturation degree, and the kinds of matrices (indicated by the nickel equivalent value, calculated from chemical composition. The highest abrasive wear resistance was found for white cast iron, with the highest degree of austenite to martensite transformation occurring in its matrix. Irrespective of solidification, a decrease of the equivalent value below a limit value resulted in increased austenite transformation, and thus, to a significant rise in hardness and abrasive wear resistance for the castings. At the same time, corrosion resistance of the alloy was slightly reduced. The examinations showed that corrosion resistance of Ni-Mn-Cu cast iron is, too a much lesser degree, decided by the means of solidification of the castings, rather than transformations occurring in the matrix, as controlled by nickel equivalent value (especially elements with high electrochemical potential.

  17. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  18. Biochemistry of the normal dura mater of the human brain determination of water, sodium, potassium, calcium, phosphorus, magnesium, copper, iron, sulfur and nitrogen contents

    Directory of Open Access Journals (Sweden)

    Horacio M. Canelas

    1969-06-01

    Full Text Available The concentrations of water, sodium, potassium, calcium, phosphorus, magnesium, copper, iron, sulfur, and nitrogen were determined in samples of apparently normal dura mater removed from 18 subjects recently dead by craniocerebral trauma. The average concentrations expressed in dry weight were: water 79.55 g/100 g ± 2.52; sodium 1.63 mequiv/100 g ±0.27; potassium 3.68 mequiv/100 g ± 0.66; calcium 119.84 mg/100 g ± 107.40; phosphorus 68.2 mg/100 g ± 34.5; magnesium 0.61 mequiv/100 g ± 0.37; copper 249.8 /xg/100 g ± 109.4; iron 0.82 mg/100 g ± 0.28; sulfur 490.7 mg/100 g ± 22.5; nitrogen 3.33 g/100 g ± 0.17.

  19. Synthesis and characterization of strontium molybdate doped with copper, cobalt and zinc for purposes photocatalytic; Sintese e caracterizacao do molibdato de estroncio dopado com cobre, cobalto e zinco para fins fotocataliticos

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, F.B.; Silva, M.M.S.; Moriyama, A.L.L.; Souza, C.P., E-mail: faby_qui@hotmail.com [Universidade Federal do Rio Grande do Norte (LAMNRC/UFRN), Natal, RN (Brazil). Lab. de Materiais Nanoestruturados e Reatores Catalicos

    2016-07-01

    The broad concerns of contemporary society with environmental problems requires legislation and more effective techniques for wastewater treatment. In recent years, ceramic materials that have properties such as high melting points and high stability have been receiving great emphasis in several studies in particular heterogeneous photocatalysis, rapid and efficient method for the complete mineralization of contaminants. In this context, the present work deals with the synthesis and characterization of molybdate Strontium (SrMoO4) doped with copper, cobalt and zinc for the purpose of photocatalytic studies. The compounds were synthesized by complexation method EDTA / Citrate basic medium. The powders were characterized by Thermogravimetric Analysis (TG), X-Ray Diffraction (XRD), Particle size distribution by laser diffraction, Spectroscopy in the UV-Visible region, Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), showing promising results as the crystalline phase of development and potential uses for the purpose of heterogeneous photocatalysis. (author)

  20. Synthesis, Characterization and Antimicrobial Studies of a New Mannich Base N-[Morpholino(phenylmethyl]acetamide and Its Cobalt(II, Nickel(II and Copper(II Metal Complexes

    Directory of Open Access Journals (Sweden)

    L. Muruganandam

    2012-01-01

    Full Text Available A new Mannich base N-[morpholino(phenylmethyl]acetamide (MBA, was synthesized and characterized by spectral studies. Chelates of MBA with cobalt(II, nickel(II and copper(II ions were prepared and characterized by elemental analyses, IR and UV spectral studies. MBA was found to act as a bidentate ligand, bonding through the carbonyl oxygen of acetamide group and CNC nitrogen of morpholine moiety in all the complexes. Based on the magnetic moment values and UV-Visible spectral data, tetracoordinate geometry for nitrato complexes and hexacoordinate geometry for sulphato complexes were assigned. The antimicrobial studies show that the Co(II nitrato complex is more active than the other complexes.

  1. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spatial distribution of iron, copper and lead in mangrove sediments in a degradation gradient in Guanabara Bay (Rio de Janeiro State)

    OpenAIRE

    Borges, Anderson C.; Dias, Jailson C.; Machado, Wilson; Patchineelam, Sambasiva R.; Sella, Silvia M.

    2007-01-01

    Iron, copper and lead distribution was evaluated in sediment cores from a disturbed mangrove area in Guanabara Bay: a core from a seaward site where mangrove vegetation was removed ~20 yr before sampling (MD); a core from an intermediate site with dead vegetation, apparently due to insect attack (MP), and a core from a landward site with living vegetation (MV). Metal concentrations showed increasing values seaward while organic matter content showed an inverse trend, displaying a negative cor...

  3. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  4. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  5. The effect of the cooling rate during quenching, electron bombardment and plastic deformation on the kinetics of a solid solution disintegration in iron-copper alloys

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Zhukov, V.P.; Braun, A.G.; Smirnov, E.A.

    1974-01-01

    From the electroresistivity variation at 77 0 K, the influence of nonequilibrium point defect density and of complexes and dislocations on the decay process of the iron-copper solid solution is determined. Owing to high quenching rate of thin foils, isochrones of their electroconductivity curves appear shifted by about 200 0 C to lower temperatures. For quenched and irradiated specimens at 200-250 0 C a sharp retardation of electroconductivity decline is observed due to a zone stage. The plastic deformation (15%) leads to a partial suppression of that stage. Both irradiation and deformation initiate the process of copper separation from the solid solution, the latter being the stronger, the more copper is in the solid solution

  6. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  7. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  8. STUDY ON THE EVOLUTION OF MICRO- AND MACROELEMENTS DURING THE WINEMAKING STAGES: THE IMPORTANCE OF COPPER AND IRON QUANTIFICATION

    Directory of Open Access Journals (Sweden)

    Liliana NOROCEL

    2017-03-01

    Full Text Available Knowledge of the concentration of mineral elements from winemaking products, particularly from the final product is important because of their influence on wine quality. Some metal ions such as iron and copper can induce haze formation and changes in the sensory proprieties of wine. The presence of heavy metals in wine is due to different factors including vineyard soil, agricultural practices (the use of fertilizers and pesticides, and can be at the same time a result of environmental pollution. In addition, the acidity of wine and grape must (freshly pressed grape juice can dissolve Cr, Cu, Ni, and Zn from winemaking equipment like pumps and taps. As wine is the most widely consumed alcoholic beverage, analytical control of mineral elements content is required during the whole process of wine production, from the grapes used to the final product. In this study the content of micro- and macroelements in grape pomace, yeast sediment, grape must and wine was determined by inductively coupled plasma-mass spectrometry (ICP-MS. Samples of winemaking products originating from five grape varieties were analyzed in four forms in order to determine to what measure the values varied the PCA (Principal component analysis. The obtained results using PCA highlighted major differences in the content in trace elements between samples.

  9. Mass balances and energy flows, reference concept. (Spent Fuel - Copper-Iron - Bentonite - Granite)

    International Nuclear Information System (INIS)

    Nordman, H.; Lehikoinen, J.

    2008-12-01

    In this work, a semi-quantitative analysis of mass and energy flows and balances in a deep repository of the KBS-3V type subject to a glacial cycle has been carried out. The energy flows and temperatures show the maximum temperature at the canister surface not to exceed the design temperature of 100 deg C. If the measures taken to limit the water flow into the underground facilities are appropriate, the lifetime of the calcite buffer in the hydraulically conductive fracture zones was calculated to extend well beyond the operational phase of the repository. The results from hydrogeochemical model calculations in the backfill imply a long-term exchange of sodium for calcium in the clay component, if MX-80 bentonite is used. As this constitutes a potential threat to the swelling pressure of backfill in saline water environments, the physicochemical properties of a backfill should be carefully adjusted to meet its preplanned function. Despite short-lived episodes of oxygen-rich glacial water intrusion, the corrosion of the copper canister will likely be minor in the long term. (orig.)

  10. A short literature survey on iron and cobalt ion doped TiO{sub 2} thin films and photocatalytic activity of these films against fungi

    Energy Technology Data Exchange (ETDEWEB)

    Tatl Latin-Small-Letter-Dotless-I dil, Ilknur [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bacaks Latin-Small-Letter-Dotless-I z, Emin [Department of Physics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Buruk, Celal Kurtulus [Department of Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon (Turkey); Breen, Chris [Materials and Engineering Research Institution, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Soekmen, Muenevver, E-mail: msokmen@ktu.edu.tr [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Co or Fe doped TiO{sub 2} thin films were prepared by sol-gel method. Black-Right-Pointing-Pointer We obtained lower E{sub g} values for Fe-doped and Co-TiO{sub 2} thin films. Black-Right-Pointing-Pointer Doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer Photocatalytic killing effect of the doped TiO{sub 2} thin films on C. albicans and A. niger was significantly higher than undoped TiO{sub 2} thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe{sup 3+} or Co{sup 2+} ion doped TiO{sub 2} thin films and suspensions were summarized. Additionally, a sol-gel method was used for preparation of the 2% Co or Fe doped TiO{sub 2} thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E{sub g} value was 3.40 eV for the pure TiO{sub 2}, 3.00 eV for the Fe-doped TiO{sub 2} film and 3.25 eV for Co-TiO{sub 2} thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO{sub 2} thin film on Candida albicans was significantly higher than Fe doped TiO{sub 2} thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  11. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  12. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    Science.gov (United States)

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  13. Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO43

    Directory of Open Access Journals (Sweden)

    Adam Bouraima

    2017-06-01

    Full Text Available The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(orthophosphate, Ag1.655Co1.64Fe1.36(PO43, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO43, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e, with partial occupancies of 0.885 (2 and 0.7688 (19, respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5 and 0.14 (5, respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4:0.61 (4 ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co octahedra stacked parallel to [101]. These chains are linked together through PO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight are located.

  14. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  15. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  16. THE RELATIONSHIP BETWEEN THE CONTENT OF IRON AND COPPER IN THE SOILS AND WINES FROM THE LOCAL VINEYARDS OF THE CONTINENTAL CROATIA: A PRELIMINARY RESEARCH

    Directory of Open Access Journals (Sweden)

    Stanko Ružičić

    2014-12-01

    Full Text Available Samples of red and white wine together with corresponding soils from the domestic vineyards of the continental Croatia were selected for analysis. Vineyard soil cover (Stagnosols and Rendzina is developed over the Plio-Quaternary non-consolidated deposits (gravel, sand, silt, clay or marly limestones. Within soils overlying non-consolidated deposits containing clays pH value range from 5.4 to 6.6, whereas maximum measured pH of 7.5 is attributed to soil developed over marly limestones. Soil and wine samples was determined by the total content of copper and iron using flame atomic absorption spectrometry (FAAS. Results are compared to the maximum permitted concentrations (MPC by the relevant Croatian regulations. Copper concentrations are elevated within all measured wines (from 1.7× to 2.0× with respect to MPC and two soil samples (up to 2.4× with respect to MPC, due to extensive use of agrochemicals in the vineyards. Increased concentrations of iron within wine and corresponding soil were determined at locality with low soil pH (5.5. Preliminary research demonstrates a plausible link between the content of elements within soils developed over a specific lithology and associated wines. Increased copper concentration within wines of domestic production points to need for education of population in line with use of eco-agrochemicals. Further extensive studies with detailed physico-chemical processing of soil samples are needed (the paper is published in Croatian.

  17. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    International Nuclear Information System (INIS)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T.

    2014-01-01

    Single crystal and bulk polycrystalline forms of K 2 MP 2 O 7 (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42 1 m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP 2 O 7 ] 2− with potassium cations situated between the layers. The MO 4 tetrahedra share oxygen atoms with [P 2 O 7 ] 4− diphosphate groups and the potassium ions have KO 8 square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d 6 Fe(II) and p-orbital mixing or a second order JT effect for d 9 Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K 2 MP 2 O 7 , M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP 2 O 7 ] 2− , formed from linked pyrophosphate groups and MO 4 tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d 6 Fe(II) and p-orbital mixing and second-order JT effects for d 9 Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d 10 distorted coordinations

  18. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  19. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    Science.gov (United States)

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  20. The role of copper and oxalate in the redox cycling of iron in atmospheric waters

    Science.gov (United States)

    Sedlak, David L.; Hoigné, Jürg

    During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.

  1. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    Science.gov (United States)

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  2. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  3. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  4. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  5. Zoning and contamination rate of magnesium and heavy metals of iron, zinc and copper in the north and northwest aquifer of Khoy (Zourabad based on GIS and determining the contaminated source

    Directory of Open Access Journals (Sweden)

    Fariborz Khodadadi

    2015-04-01

    Full Text Available Introduction Heavy metals are the most toxic pollutants in aquatic ecosystems. This contamination can result from the release of heavy metal elements during alteration and weathering of ultramafic and mafic rocks (ophiolite zones. Among the important metals and pollutants in the ophiolite; chromium, cobalt, nickel, iron, magnesium, manganese, zinc and copper could be noted. Basically, a mass of serpentine consists of serpentine, amphibole, talc, chlorite, magnetite, and the remainder of olivine, pyroxene and spinel (Kil et al., 2010. In such areas, the prevailing cold climate, during the serpentinization, chloritization and epidotiization, the activity of the solvent, such as chloride, fluoride, carbonates, sulfide, sulfosalt would be able to import the elements such as magnesium and iron, copper and zinc into the soil and groundwater. The study area is located in northwestern Iran. This area is located in the northwest of the city of Khoy. Because of the proximity to the north and northwest Khoy plains with ophiolite rocks, the soil of this region could possibly show the potential of contamination with heavy metals. Due to the toxicity and disease of unauthorized grades of these elements in groundwater in the study area, this study is focused on the more contaminated groundwater of the areas. Materials and methods In this study, over a period of 5 days, sampling from 42 water sources, including fountains, aqueducts, wells, piezometers and wells in operation, was performed. The container was washed with acid and then rinsed 3 times with the water sample. The pH and temperature of the water in the samples was measured in the field. Then to each of the samples was taken from 2 to 5 ml of concentrated nitric acid (This causes that the metal elements would not adsorbed or precipitated by these particles and pH of the samples was measured with litmus paper to reach level 2. This was done to ensure the consolidation of the water samples. Analysis of

  6. Quantitative determination of iron, copper, lead, chromium and nickel in electronic waste samples using total reflection x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Elaseer, A. S.; Musbah, A. S; Ammar, M. M. G.; Salah, M. A.; Aisha, E. A.

    2015-01-01

    Total reflection x-ray fluorescence spectroscopy in conjunction with microwave assisted extraction technique was used for the analysis of twenty electronic waste samples. The analysis was limited to the printed circuit boards of electronic devices. Iron, copper, lead, chromium and nickel were quantitatively determined in the samples. The samples were carefully milled to fine powder and 50mg was digested by acid using microwave digestion procedure. The digested samples solution was spread together with gallium as internal standard on the reflection disk and analyzed. The results showed that the cassette recorder boards contain the highest concentration of iron, lead and nickel. The average concentrations of these metals were 78, 73 and 71g/Kg respectively. Computer boards contained the highest copper average concentration 39g/Kg. the highest chromium average concentration 3.6 g/Kg was in mobile phone boards. Measurements were made using PicoTAX portable x-ray device. the instrument was used for quantitative multi-element analysis. An air cooled x-ray tube (40KV, 1 mA) with Mo target and Be window was used as x-ray source. The optics of the device was a multilayer Ni/C, 17.5 keV, 80% reflectivity provides analysis of elements from Si to Zr (K series) and Rh to U (L series). A Si PIN-diode detector (7mm"2, 195eV) was used for the elements detection. In this study heavy metals average concentration in electronic circuit boards in the in the order of iron (35.25g/kg), copper (21.14g/Kg), lead (16.59g/Kg), nickel (16.01g/Kg) and chromium (1.07g/Kg).(author)

  7. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  8. Separation and purification of carrier-free cobalt-58 from neutron irradiated nickel foil for electrochemical studies

    International Nuclear Information System (INIS)

    Egamediev, S.; Nurbaeva, D.; Rakhmanov, A.

    2004-01-01

    Full text: Cobalt-58 will be used for tracer studies of the behaviour of cobalt radionuclides in no- carrier-added form during electrochemical deposition on metal backing. The 58 Co can be produced by using 58 Ni(n,p) 58 Co nuclear reaction in nuclear reactor. 58 Co (T 1/2 =71 days) decays by positron emitting (15%) and electron capture (85%) with simultaneous γ -irradiation. In this study, we have developed the simple method for separation and purification of 58 Co in no- carrier-added form from neutron irradiated nickel foil. Previously, we have studied the dissolution of nickel foil in various media to find best conditions for rapid dissolution of nickel target. It was found that nickel foil dissolved completely without heating in 6.3 M hydrobromic acid with addition a few drops of hydrogen peroxide. After dissolution of the target material, the cobalt-58 is separated from nickel, copper, iron and other elements by extraction chromatography. The solution in 6.3 M hydrobromic acid is passed through a column containing suspension of polytetrafluoroethylene powder with 0.5 M trioctylamine in xylene, equilibrated with the same acid. Nickel is not extracted and passed through column. Cobalt is retained and finally eluted with 3 M HBr in the one free column volume. The cobalt fraction is percolated through a column filled with suspension of pure polytetrafluoroethylene powder to purify from the admixture of extractant. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with aqua regia. After treatment the damp residue is dissolved in electrolyte and the obtained solution is used to study of 58 Co electrochemical deposition procedure. The yield of cobalt-58 was higher than 93% and the radiochemical purity was more than 99%. This method will be used for separation and purification of cobalt-57 to make of sealed sources for X-ray fluorescence analysis

  9. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  10. Improvement the nutritional status of pre-school children following intervention with a supplement containing iron, zinc, copper, vitamin A, vitamin C and prebiotic

    Directory of Open Access Journals (Sweden)

    Luiza Carla Vidigal Castro

    Full Text Available Abstract This study investigated the effects of a vitamin and mineral fortified powder product supplemented with inulin, on the iron and vitamin A status of 110 pre-schools childrens in Viçosa, MG, Brazil. The 2 to 5-year-old children were submitted to anthropometric (weight and height, biochemical (erythrocytes, hemoglobin, mean corpuscular volume – MCV, mean corpuscular hemoglobin - MCH, serum iron, ferritin and serum retinol and dietary (direct food weighing, 24 h recall, and food intake record evaluations, at the beginning and at the end of a 45-day intervention. The supplement (30 g was provided daily as part of the afternoon snack, diluted in 100 mL of water, 5 times/week and it supplied 30% of the recommended daily doses of iron, zinc, copper and vitamins A and C. Dietary and biochemical data was compared by the Wilcoxon test, and anthropometric data by the paired t-test. Values of z-scores for weight and height, erythrocytes, hemoglobin, MCV, MCH and ferritin were significantly higher after intervention; no change was observed in serum retinol. The prebiotic-containing supplement significantly increased the intake of energy, macro and micronutrients, and was effective in improving the iron and anthropometric status.

  11. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    Energy Technology Data Exchange (ETDEWEB)

    Keates, Adam C. [School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1B,. UK (United Kingdom); Wang, Qianlong [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Weller, Mark T., E-mail: m.t.weller@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.

  12. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Bayham, Samuel [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Weber, Justin [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-02-21

    The proposed Clean Power Plan requires CO2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was

  13. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  14. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

    CSIR Research Space (South Africa)

    Akinbulu, IA

    2011-10-01

    Full Text Available characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic...

  15. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    Science.gov (United States)

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. [Reference values of iron, iodine, zinc, selenium, copper, molybdenum, vitamin C, vitamin E, vitamin K, carotenoids and polyphenols for the Venezuelan population].

    Science.gov (United States)

    García-Casal, Maria Nieves; Landaeta, Maritza; Adrianza de Baptista, Gertrudis; Murillo, Carolain; Rincón, Mariela; Bou Rached, Lizet; Bilbao, Arantza; Anderson, Hazel; García, Doris; Franquiz, Julia; Puche, Rafael; Garcia, Omar; Quintero, Yurimay; Peña-Rosas, Juan Pablo

    2013-12-01

    The review on iron, iodine, zinc, selenium, copper, molybdenum, vitamin C, vitamin E, vitamin K, carotenoids and polyphenols recommendations for Venezuela comprise the definitions adopted worldwide known as Dietary Reference Intakes (DRIs) that include Recommended Dietary Allowance (RDA), Estimated Average Requirement (EAR), Adequate Intake (AI) and Tolerable Upper Intake Levels (UL). The RDA for iron: 11 mg/day for infants Vitamin C: 40-50 mg/day for infants, 15-45 mg/ day for children, 75 mg/day for male adolescents, 65 mg/day for female adolescents, 90 mg/day for adult males, 75 mg/day for adult females, 80-85 mg/day during pregnancy and 115-120 mg/day during lactation. Recommendations for copper, selenium, molybdenum, vitamins E, K, carotenoids and polyphenols are also presented. These recommendations will help to design adequate and efficient policies that could help to avoid or to treat the consequences derived from the deficiency or the excess of these nutrients.

  17. Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study.

    Science.gov (United States)

    Khan, Mustafa; Kazi, Tasneem Gul; Afridi, Hassan Imran; Sirajuddin; Bilal, Muhammad; Akhtar, Asma; Khan, Sabir; Kadar, Salma

    2017-08-01

    Epidemiological data among the human population has shown a significantly increased incidence of gallstone (GS) disease worldwide. It was studied that some essential (calcium) and transition elements (iron and copper) in bile play an important role in the development of GS. The estimation of calcium, copper and iron were carried out in the serum, gall bladder bile and different types of GS (cholesterol, mixed and pigmented) of 172 patients, age ranged 20-55years. For comparative purpose age matched referents not suffering from GS diseases were also selected. Biliary concentrations of calcium (Ca), iron (Fe) and copper (Cu) were correlated with their concentrations in serum and different types of GS samples. The ratio of Ca, Fe and Cu in bile with serum was also calculated. Understudy metals were determined by flame atomic absorption spectroscopy after acid decomposition of matrices of selected samples. The Ca concentrations in serum samples were significantly higher in patients with pigmented GS as compared to controls (p0.001). The contents of Cu and Fe in serum and bile of all patients (except female cholesterol GS patient have low serum iron concentration) were found to be higher than control, but difference was significant in those patients who have pigmented GS. The concentration of Ca, Fe and Cu in different types GS were found in the order, Pigmented>mixed>cholesterol. The bile/serum ratio for Ca, Cu and Fe was found to be significantly higher in pigmented GS patients. Gall bladder bile was slightly alkaline in patients as compared to referents. The density of bile was found to be higher in patients as compared to the referents. Various functional groups present in different types of GS samples were confirmed by Fourier transform infra-red spectroscopy. The higher density and pH of bile, elevated concentrations of transition elements in all types of biological samples (serum, bile and GS), could be an important factor for the formation of different types of

  18. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... shot, causing sediment/soil and water contamination and the direct ingestion of shot by aquatic and.... Shot[supreg]. * Coatings of copper, nickel, tin, zinc, zinc chloride, zinc chrome, and fluoropolymers...

  19. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  20. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Antibacterial, Prooxidative and Genotoxic Activities of Gallic Acid and its Copper and Iron Complexes against Escherichia coli

    OpenAIRE

    JONATHAN M. BARCELO; MILDIAMOND GUIEB; ANDERSON VENTURA; ARYZA NACINO; HERMINIA PINASEN; LEAH VIERNES; TRISHIA YODONG; BIANCA LOU ESTRADA; DANIEL VALDEZ; THRESHA BINWAG

    2014-01-01

    In this study, gallic acid and its complexes with aluminum and iron were investigated for their antibacterial, pro-oxidative, and genotoxic properties at alkaline pH. At 4.0μmol/mL, gallic acid displayed bacteriostatic property while aluminum-gallic acid and iron-gallic acid complexes showed bactericidal property against Escherichia coli ATCC 25922. A higher antibacterial activity was observed in the turbidimetric assay compared to the well-diffusion assay. The metal complexes of ...

  2. INTRACELLULAR COPPER ACCUMULATION ENHANCES THE GROWTH OF KINEOCOCCUS RADIOTOLERANS DURING CHRONIC IRRADIATION

    International Nuclear Information System (INIS)

    Bagwell, C; Charles Milliken, C

    2007-01-01

    The actinobacteria Kineococcus radiotolerans is highly resistant to ionizing radiation, desiccation, and oxidative stress; though the underlying biochemical mechanisms are unknown. The purpose of this study was to explore a possible linkage between the uptake of transition metals and extreme resistance to ionizing radiation and oxidative stress. The effects of 6 different divalent cationic metals on growth were examined in the absence of ionizing radiation. None of the metals tested were stimulatory, though cobalt was inhibitory to growth. In contrast, copper supplementation dramatically increased cell growth during chronic irradiation. K. radiotolerans exhibited specific uptake and intracellular accumulation of copper compared to only a weak response to both iron and manganese supplementation. Copper accumulation sensitized cells to hydrogen peroxide. Acute irradiation induced DNA damage was similar between the copper-loaded culture as the age-synchronized no copper control culture, though low molecular weight DNA was more persistent during post-irradiation recovery in the Cu-loaded culture. Still, the estimated times for genome restoration differed by only 1 hr between treatments. While we cannot discount the possibility that copper fulfills an unexpectedly important biochemical role in a radioactive environment; K. radiotolerans has a high capacity for intracellular copper sequestration, and presumably efficiently coordinated oxidative stress defenses and detoxification systems, which confers cross-protection from the damaging affects ionizing radiation

  3. Up-gradation of MoO{sub 3} and separation of copper, iron, zinc from roasted molybdenum ore by a leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Young, Lee; Jyothi Rajesh, Kumar; Ho-Seok, Jeon; Joon-Soo, Kim, E-mail: rajeshkumarphd@rediffmail.com, E-mail: rkumarphd@kigam.re.kr [Extractive Metallurgy Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) (Korea, Republic of)

    2013-04-15

    The present research paper deals with the oxidation process of molybdenum ore. The main target of the present study is the up-gradation of MoO{sub 3} from roasted molybdenum ore by a leaching process without waste generation. The most important application of hydrometallurgical processing is the leaching process of the ore and it is the primary process to make pure metal from ore. The present investigations optimize the following experimental parameters to improve the concentration of MoO{sub 3} as well as the separation of copper, iron and zinc in roasted molybdenum ore: effect of acid concentration, temperature, pulp density and leaching time were studied systematically. The temperature study was carried out at 550-595 Degree-Sign C for the oxidation process. The XRD result shows that oxidation process of molybdenum ore and SEM pictures were taken for particles before and after the oxidation process at 585 Degree-Sign C for 360 min. (author)

  4. Corrosion resisting properties of 90/10 copper-nickel-iron alloy with particular reference to offshore oil and gas applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, P T

    1979-01-01

    The use of a copper-nickel-iron alloy for seawater pipeline systems and various other applications on offshore oil and gas platforms is now proving attractive, according to the UK's Yorkshire Imperial Metals Ltd. The alloy has already proved a useful and reliable material in many applications: It has given good results in seawater-cooled condensers and heat exchangers and seawater piping systems, in power stations, ships, desalination plant, and refrigeration service. Its antifouling and corrosion-resistant properties are valuable in these applications. The main limitations that have to be observed in its use are (1) the design, construction, and operation of systems within prescribed velocity and turbulence limits, to avoid the occurrence of impingement attack, and (2) problems that may arise because of badly polluted seawater.

  5. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  6. Study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst, by using Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.; Alonso, A.; Tumbarell, O.; Bustanmete, E.

    2003-01-01

    Atomic Absorption Spectrometry (AAS), has the advantage of its simplicity, speed and low cost. All this, together with its high sensibility and selectivity, makes the AAS one the most widely used analytic techniques. The present work shows, the study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst of a refinery, by using this technique. The results are compared to those of two laboratories which use the ICP-AES and AAS techniques and shows the processing of the statistics with the use of the t of Student and the F of Snedecor. The results using different methods are also shown as well as the recommended application of this results in the chemical characterization of this type of catalysts

  7. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  8. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  9. Solubility of cobalt in primary circuit solutions

    International Nuclear Information System (INIS)

    Lambert, I.; Joyer, F.

    1992-01-01

    The solubility of cobalt ferrite (CoFe 2 O 4 ) was measured in PWR primary circuit conditions, in the temperature range 250-350 deg C, and the results were compared with the ones obtained on magnetite and nickel ferrite. As in the former cases, it was found that, in the prevailing primary circuit conditions, the solubility of the cobalt ferrite was minimum at temperatures around 300 deg C, for cobalt as well as for iron. The equilibrium iron concentration is significantly lower than in the case of magnetite. The results are discussed in relation with the POTHY code, based only on thermodynamic laws and data, used for the prediction of the primary circuit chemistry

  10. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors

    Science.gov (United States)

    Brown, J. William; Ramesh, P. S.; Geetha, D.

    2018-02-01

    We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.

  11. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France)]. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Deves, G. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Guillou, F. [INRA-CNRS-Universite de Tours-Haras nationaux, UMR 6175, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly (France)

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  12. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Guillou, F.

    2005-01-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  13. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity

    Science.gov (United States)

    Mohamed, Gehad G.; Soliman, Madiha H.

    2010-08-01

    Sulpiride (SPR; L) is a substituted benzamide antipsychotic which is reported to be a selective antagonist of central dopamine receptors and claimed to have mood-elevating properties. The ligation behaviour of SPR drug is studied in order to give an idea about its potentiality towards some transition metals in vitro systems. Metal complexes of SPR have been synthesized by reaction with different metal chlorides. The metal complexes of SPR with the formula [MCl 2(L) 2(H 2O) 2]· nH 2O [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); n = 0-2] and [FeCl 2(HL)(H 2O) 3]Cl·H 2O have been synthesized and characterized using elemental analysis (CHN), electronic (infrared, solid reflectance and 1H NMR spectra) and thermal analyses (TG and DTA). The molar conductance data reveal that the bivalent metal chelates are non-electrolytes while Fe(III) complex is 1:1 electrolyte. IR spectra show that SPR is coordinated to the metal ions in a neutral monodentate manner with the amide O. From the magnetic and solid reflectance spectra, octahedral geometry is suggested. The thermal decomposition processes of these complexes were discussed. The correlation coefficient, the activation energies, E*, the pre-exponential factor, A, and the entropies, Δ S*, enthalpies, Δ H*, Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The synthesized ligand and its metal complexes were also screened for their antibacterial and antifungal activity against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Aspergillus flavus and Candida albicans). The activity data show that the metal complexes are found to have antibacterial and antifungal activity than the parent drug and less than the standard.

  14. Simultaneous spectrophotometric determination of copper, cobalt, nickel and iron in foodstuffs and vegetables with a new bis thiosemicarbazone ligand using chemometric approaches.

    Science.gov (United States)

    Rohani Moghadam, Masoud; Poorakbarian Jahromi, Sayedeh Maria; Darehkordi, Ali

    2016-02-01

    A newly synthesized bis thiosemicarbazone ligand, (2Z,2'Z)-2,2'-((4S,5R)-4,5,6-trihydroxyhexane-1,2-diylidene)bis(N-phenylhydrazinecarbothioamide), was used to make a complex with Cu(2+), Ni(2+), Co(2+) and Fe(3+) for their simultaneous spectrophotometric determination using chemometric methods. By Job's method, the ratio of metal to ligand in Ni(2+) was found to be 1:2, whereas it was 1:4 for the others. The effect of pH on the sensitivity and selectivity of the formed complexes was studied according to the net analyte signal (NAS). Under optimum conditions, the calibration graphs were linear in the ranges of 0.10-3.83, 0.20-3.83, 0.23-5.23 and 0.32-8.12 mg L(-1) with the detection limits of 2, 3, 4 and 10 μg L(-1) for Cu(2+), Co(2+), Ni(2+) and Fe(3+) respectively. The OSC-PLS1 for Cu(2+) and Ni(2+), the PLS1 for Co(2+) and the PC-FFANN for Fe(3+) were selected as the best models. The selected models were successfully applied for the simultaneous determination of elements in some foodstuffs and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The ground stone assemblage of a metal workers community: An unexplored dimension of Iron Age copper production at Timna

    Directory of Open Access Journals (Sweden)

    Aaron Greener

    2016-10-01

    In the framework of the renewed excavations at several of the copper smelting sites at Timna, a pioneering study was conducted in which more than 1000 ground stone tools were identified and registered. These tools include, among others, grinding stones, pounders, anvils and mortars; most were manufactured of compacted sandstone and granite, exposed in several locations in the valley. In this paper we present a typology and quantitative analysis of the ground stone tools which were used by the metal workers, and offer an interpretation of how the various types of tools were employed as part of the copper production process. This provides new insights regarding the smelting process and the conditions needed for its successful outcome.

  16. Contrasting Physiological and Proteomic Adaptations to Iron and/or Copper Limitation in Two Strains of the Same Open Ocean Diatom Thalassiosira oceanica

    Science.gov (United States)

    Schuback, N.; Hippmann, A.; Maldonado, M. T.; Allen, A. E.; McCrow, J.; Foster, L. J.; Green, B. R.; Alami, M.

    2016-02-01

    Iron plays a significant role in controlling marine primary productivity. Despite that extremely low dissolved iron (Fe) concentrations are found in Fe-limited regions, some phytoplankton are able to survive and thrive. Two strains of the model oceanic diatom Thalassiosira oceanica, TO 1003 and TO 1005, have both been used in previous studies to characterize adaptations to iron limitation. These studies have shown that T. oceanica has lowered its Fe requirements and increased its Fe acquisition efficiency compared to coastal counterparts. Both strategies may impose a higher cellular copper (Cu) demand. However, the underlying biochemical adaptations in these oceanic diatoms remain unknown. Recently, the genome, as well as the first proteomic and transcriptomic analyses of T. oceanica 1005 grown under different Fe levels, were published. To further our understanding of the interplay between Fe- and Cu- physiology in open ocean diatoms, we examined an array of physiological responses to varying degrees of Fe-, Cu- and Fe/Cu co-limitation in both strains. We also determined the differential expression of proteins using stable isotope labeling and LC-MS/MS proteomic analysis. The two strains, TO 1003 and TO 1005, need markedly different metal concentrations in the media. TO1003 requires 30% less Cu to sustain its optimal growth and less than 1/10th of the minimum Cu that is needed by TO 1005 to survive. In contrast, TO 1005 is able to grow with less Fe available in the media. The physiological and proteomic responses of these two strains when acclimated to low Fe and/or Cu concentrations will be presented. The evolutionary implications will be discussed.

  17. Oxidative dissolution of spent fuel and release of nuclides from a copper/iron canister. Model developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu

    2001-12-01

    Three models have been developed and applied in the performance assessment of a final repository. They are based on accepted theories and experimental results for known and possible mechanisms that may dominate in the oxidative dissolution of spent fuel and the release of nuclides from a canister. Assuming that the canister is breached at an early stage after disposal, the three models describe three sub-systems in the near field of the repository, in which the governing processes and mechanisms are quite different. In the model for the oxidative dissolution of the fuel matrix, a set of kinetic descriptions is provided that describes the oxidative dissolution of the fuel matrix and the release of the embedded nuclides. In particular, the effect of autocatalytic reduction of hexavalent uranium by dissolved H{sub 2}, using UO{sub 2} (s) on the fuel pellets as a catalyst, is taken into account. The simulation results suggest that most of the radiolytic oxidants will be consumed by the oxidation of the fuel matrix, and that much less will be depleted by dissolved ferrous iron. Most of the radiolytically produced hexavalent uranium will be reduced by the autocatalytic reaction with H{sub 2} on the fuel surface. It will reprecipitate as UO{sub 2} (s) on the fuel surface, and thus very little net oxidation of the fuel will take place. In the reactive transport model, the interactions of multiple processes within a defective canister are described, in which numerous redox reactions take place as multiple species diffuse. The effect of corrosion of the cast iron insert of the canister and the reduction of dissolved hexavalent uranium by ferrous iron sorbed onto iron corrosion products and by dissolved H{sub 2} are particularly included. Scoping calculations suggest that corrosion of the iron insert will occur primarily under anaerobic conditions. The escaping oxidants from the fuel rods will migrate toward the iron insert. Much of these oxidants will, however, be consumed

  18. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  20. Microstructure and transport properties of [0 0 1]-tilt bicrystal grain boundaries in iron pnictide superconductor, cobalt-doped BaFe2As2

    International Nuclear Information System (INIS)

    Hiramatsu, Hidenori; Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2012-01-01

    Relationships between microstructure and transport properties of bicrystal grain boundary (BGB) junctions were studied in cobalt-doped BaFe 2 As 2 (BaFe 2 As 2 :Co) epitaxial films grown on [0 0 1]-tilt bicrystal substrates of MgO and (La, Sr)(Al, Ta)O 3 with misorientation angles θ GB = 3–45°. The θ GB of BaFe 2 As 2 :Co BGBs were exactly transferred from those of the bicrystal substrates. No segregation of impurities was detected at the BGB junction interfaces, and the chemical compositions of the BGBs were uniform and the same as those in the bulk film regions. A transition from a strongly-coupled GB behavior to a weak-link behavior was observed in current density–voltage characteristics under self-field around θ GB ∼ 9°. The critical current density decreased from (1.2–1.6) × 10 6 A/cm 2 of the intragrain transport to (0.7–1.1) × 10 5 A/cm 2 of θ GB = 45° because supercurrent becomes more governed by Josephson current with increasing θ GB .

  1. Recovery of cobalt and lithium fromspent Li-ion batteries

    OpenAIRE

    Busnardo, Natália Giovanini; Paulino, Jéssica Frontino; Afonso, Julio Carlos

    2007-01-01

    The "active mass" (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 ºC) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the "active mass" was treated with potassium hydrogen sulfate (500 ºC) and dissolved in water. Cobalt was precipitated together with copper after addition of so...

  2. Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide

    International Nuclear Information System (INIS)

    Syamal, A.; Maurya, M.R.

    1986-01-01

    Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL . 3H 2 O, CoL . 2H 2 O, CuL, MnL . 2H 2 O, ZnL . H 2 O, Zr(OH) 2 (LH) 2 , Zr(OH) 2 L . 2MeOH, UO 2 L . MeOH and MoO 2 L . MeOH (where LH 2 =Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese(II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic oxygen, enolic oxygen and azomethine nitrogen. (orig.)

  3. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  4. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    Science.gov (United States)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  5. Extração seqüencial de cobre, ferro e zinco em ervas medicinais Sequential extraction of copper, iron and zinc in medicinal plants

    Directory of Open Access Journals (Sweden)

    Édira Castello Branco de Andrade

    2005-12-01

    initially for the pharmacists, indicates the ratio of the nutrient that is absorbed and used by the organism. This way, the determination of the total content of the metal ingested by the organism does not make possible to trace a profile of the efficiency of its absorption. Techniques of chemical speciation, as the sequential extraction, can assist in the evaluation of the bioavailability of minerals. Samples of medicinal grass of two lots were analyzed in relation to the total content of copper, iron and zinc for spectroscopy of atomic absorption in the flame, and the sequential extraction was applied. F, Dixon and t-student tests were used. One observed that, in average, the samples presented copper, iron and zinc total content of respectively 1.37 mg%, 5.13 mg% and 2.96 mg%. When comparing these values with the content of these metals in foods of vegetal origin, it can be verified that the analyzed medicinal grass can be considered a good source of metals. It was still observed that the metals have copper, iron and zinc can be found in the samples under at least four distinct chemical species and that extractors I and Iv were more efficient. Techniques of chemical speciation that can identify the compounds obtained from different extractors can assist in the evaluation of their bioavailability, as well as in the absorption processes.

  6. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia

    Science.gov (United States)

    Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.

    2006-07-01

    The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (Olympic Dam, we image a low-resistivity region (Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  7. Effects of metformin treatment on Iron, Zinc and Copper status concentration in the serum of female rats with induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Muhsin S. G. Al-Moziel

    2013-07-01

    Full Text Available This study conducted to investigate the effects of metformin drug on serum Iron, Zinc and Copper concentration in Estradiol Valerate(EV induced polycystic ovary syndrome(PCOS in virgin rats. Thirty virgin rats were randomly allotted to constitute Normal control (NC-I group and induced polycystic ovary (PCO-I and PCO-II groups having 10 rats in each group. Rats from NC-I group were administered intramuscularly with 0.2 ml of corn oil whereas polycystic ovary was induced in rats from PCO-I and PCO-II groups by administering single intra-muscular injection of estradiol Valerate 4mg/rat. The rats from PCO-I and PCO-II groups were left for 60 days for development of polycystic ovary syndrome. Animals from PCO-I group were then administered with 0.2 ml normal saline as oral gavage for 15 days, these animals were kept as PCO control group animals whereas those from PCO-II groups received metformin (50mg/kg B.wt as oral gavage for 15 days, these animals served as metformin treated PCO group animals. All the rats were thereafter sacrificed for collecting blood from inferior vena-cava. Serum samples from each rat were assessed for iron, zinc and copper status in each experimental group. The results revealed a significant (p≤0.05 increase in serum Fe and Zn and a significant (p≤0.05 decrease in serum Cu concentration in PCO group 1 compared with control non-treated group. The PCO group2 treated with metformin showed a significant (p≤0.05 decrease in serum Fe concentration as compared with those in animals from group NC-I and PCO-I. While, no significant differences were found in serum Zn concentration between all treated groups. On the other hand, a significant (p≤0.05 increase in serum Cu concentration appeared in metformin treated group compared with PCO group 1 which appears significant decrease compared with control group.

  8. The effects of a lipid‐based nutrient supplement and antiretroviral therapy in a randomized controlled trial on iron, copper, and zinc in milk from HIV‐infected Malawian mothers and associations with maternal and infant biomarkers

    Science.gov (United States)

    Shahab‐Ferdows, Setareh; Gertz, Erik; Flax, Valerie L.; Adair, Linda S.; Bentley, Margaret E.; Jamieson, Denise J.; Tegha, Gerald; Chasela, Charles S.; Kamwendo, Debbie; van der Horst, Charles M.; Allen, Lindsay H.

    2017-01-01

    Abstract We evaluated effects of antiretroviral (ARV) therapy and lipid‐based nutrient supplements (LNSs) on iron, copper, and zinc in milk of exclusively breastfeeding HIV‐infected Malawian mothers and their correlations with maternal and infant biomarkers. Human milk and blood at 2, 6, and 24 weeks post‐partum and blood during pregnancy (≤30 weeks gestation) were collected from 535 mothers/infant‐pairs in the Breastfeeding, Antiretrovirals, and Nutrition study. The participants received ARV, LNS, ARV and LNS, or no intervention from 0 to 28 weeks post‐partum. ARVs negatively affected copper and zinc milk concentrations, but only at 2 weeks, whereas LNS had no effect. Among all treatment groups, approximately 80–90% of copper and zinc and negatively correlated with milk iron at 2 and 6 weeks (r = −.18, p milk minerals with each other were the strongest correlations observed (r = .11–.47, p milk higher in iron when ferritin was higher or TfR lower. At 6 weeks, higher maternal α‐1‐acid glycoprotein and C‐reactive protein were associated with higher milk minerals in mildly anaemic women. Infant TfR was lower when milk mineral concentrations were higher at 6 weeks and when mothers were moderately anaemic during pregnancy. ARV affects copper and zinc milk concentrations in early lactation, and maternal haemoglobin during pregnancy and lactation could influence the association between milk minerals and maternal and infant iron status and biomarkers of inflammation. PMID:28851037

  9. Propriedades texturais e catalíticas de óxidos de ferro contendo cromo e cobre Textural and catalytic properties of chromium and copper-doped iron oxides

    Directory of Open Access Journals (Sweden)

    Marluce Oliveira da Guarda Souza

    1998-07-01

    Full Text Available Chromium and copper-doped hematites were prepared with the aim of studying the synergistic effect of these dopants on the textural and on the catalytic properties of the iron oxides towards the high temperature shift reaction. It was found that the most active catalysts were those with the highest amount of copper. They had the Fe(II/Fe(III ratio near the stoichiometric value of magnetite, the highest surface areas under the reactional atmosphere and the greatest tendency to produce the active form; they also were poorly crystalline solids. The best performance was shown by the catalyst with Fe/Cu=10, heated at 300ºC. It can thus be concluded that copper acts both as textural and structural promoter in these catalysts.

  10. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration

    Science.gov (United States)

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre

    2014-01-01

    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  11. Antibacterial, Prooxidative and Genotoxic Activities of Gallic Acid and its Copper and Iron Complexes against Escherichia coli

    Directory of Open Access Journals (Sweden)

    JONATHAN M. BARCELO

    2014-12-01

    Full Text Available In this study, gallic acid and its complexes with aluminum and iron were investigated for their antibacterial, pro-oxidative, and genotoxic properties at alkaline pH. At 4.0μmol/mL, gallic acid displayed bacteriostatic property while aluminum-gallic acid and iron-gallic acid complexes showed bactericidal property against Escherichia coli ATCC 25922. A higher antibacterial activity was observed in the turbidimetric assay compared to the well-diffusion assay. The metal complexes of gallic acid also generated a higher concentration of malondialdehyde and hydrogen peroxide compared to gallic acid alone at > 0.50µmol/mL. Using the SOS response of the DNA repair-deficient Escherichia coli PQ37, the metal complexes of gallic acid resulted to a significantly higher SOS Induction Factors (ρ<0.01 at ≥0.25μmol/mL. In addition, gallic acid and its metal complexes decrease the cell surface hydrophobicity of E. coli ATCC 25922 in a dose-dependent manner. The present study suggests that the antibacterial property of gallic acid and its metal complexes against Escherichia coli was caused by its pro-oxidative and genotoxic properties. Since metals are involved in the synthesis of the metal complexes of gallic acid, further tests should be conducted to determine their stability and effects to human health.

  12. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  13. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  14. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  15. Assessment of thermochemical hydrogen production. Project 8994 mid-contract progress report, July 1--November 1, 1977. [Iron chloride and copper sulfate cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Schreiber, J.D.

    1977-12-01

    We have completed the base-case (first-cut) flowsheet analysis for two thermochemical water-splitting cycles that have been under study at the Institute of Gas Technology: a four-step iron chloride cycle (denoted B-1) and a four-step copper sulfate cycle (denoted H-5). In the case of Cycle B-1, an energy balance has located the worst problem areas in the cycle, and flowsheet modifications have begun. Calculations of equilibrium effects due to the hydrolysis of ferrous chloride at pressures high enough to interface with projected hydrogen transmission systems will, apparently, necessitate higher temperature process heat input for this step. Higher pressure operation of some critical separation processes yields more favorable heat balances. For Cycle H-5, the unmodified (base-case) flowsheet indicates that reaction product separations will be relatively simple with respect to Cycle B-1. Work of Schuetz and others dealing with the electrolysis and thermodynamics of HBr/H/sub 2/O/SO/sub 2/ systems is being extensively reviewed. Work plans for this part of the contract are currently being reviewed.

  16. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Separation of cobalt from synthetic intermediate and decontamination radioactive wastes using polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Narasimhan, S.V.; Ahmed, J.

    1997-01-01

    Studies have been carried out on the removal of radioactive cobalt ( 60 Co) from synthetic intermediate level waste (ILW) and decontamination waste using neat polyurethane (PU) foam as well as n-tributyl phosphate-polyurethane (TBP-PU) foam. The radioactive cobalt has been extracted on the PU foam as cobalt thiocyanate from the ILW. Maximum removal of cobalt has been observed when the concentration of thiocyanate in the solution is about 0.4 M. Cobalt can be separated from decontamination waste containing ethylenediaminetetraacetic acid (EDTA) and iron(II). The extent of extraction of cobalt is slow and the separation of iron and cobalt is better with the neat PU foam compared to the TBP-PU foam. The presence of iron in the decontamination waste facilitates the extraction of cobalt thiocyanate on the PU foam. Column studies have been carried out in order to extend these studies to the plant scale. The capacities of the PU foams for cobalt have been determined. The effect of density and the surface area of PU foam have been investigated. Fourier Transform Infrared (FT-IR) spectral studies have been conducted to find out the interaction between PU foam and cobalt thiocyanate species

  18. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  19. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Ju Shaohua; Zhang Yifei; Zhang Yi; Xue Peiyi; Wang Yihui

    2011-01-01

    Highlights: → The extraction fractions of various valuable metals during NH 4 Cl leaching are very high. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. → The process can detoxified the hazardous elements such as Pb, As, Cd thoroughly. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. → The final residue contains about 55 wt% Fe, and have the potential to be used as iron concentrate. - Abstract: A hydrometallurgical process for treating the hazardous jarosite residue from zinc hydrometallurgy was proposed, for not only detoxifying the residue, but also recovering the contained valuable metal components. The jarosite was initially activated and decomposed by sintering at 650 o C for 1 h. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. During reduction with Zn powder, more than 93% of Pb, Cu, Ag and Cd can be simultaneously recovered. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. The final residue was almost completely detoxified, and contains about 55 wt% Fe, which can be used as an iron concentration.

  20. Potential for cobalt recovery from lateritic ores in Europe

    Science.gov (United States)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  1. Mobility and stability of large vacancy and vacancy-copper clusters in iron: An atomistic kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N., E-mail: ncastin@sckcen.be [Studiecentrum voor Kernenergie - Centre d' Etudes de l' energie Nucleaire (SCK-CEN), Nuclear Materials Science Institute, Unit Structural Materials Modelling and Microstructure-Boeretang 200, B2400 Mol (Belgium); Pascuet, M.I., E-mail: pascuet@cnea.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Malerba, L. [Studiecentrum voor Kernenergie - Centre d' Etudes de l' energie Nucleaire (SCK-CEN), Nuclear Materials Science Institute, Unit Structural Materials Modelling and Microstructure-Boeretang 200, B2400 Mol (Belgium)

    2012-10-15

    The formation of Cu-rich precipitates under irradiation is a major cause for changes in the mechanical response to load of reactor pressure vessel steels. In previous works, it has been shown that the mechanism under which precipitation occurs is governed by diffusion of vacancy-copper (VCu) complexes, also in the absence of irradiation. Coarse-grained computer models (such as object kinetic Monte Carlo) aimed at simulating irradiation processes in model alloys or steels should therefore explicitly include the mobility of Cu precipitates, as a consequence of vacancy hops at their surface. For this purpose, in this work we calculate diffusion coefficients and lifetimes for a large variety of VCu complexes. We use an innovative atomistic model, where vacancy migration energies are calculated with little approximations, taking into account all effects of static relaxation and long-range chemical interaction as predicted by an interatomic potential. Our results show that, contrary to what intuition might suggest, saturation in vacancies tend to slow down the transport of Cu atoms.

  2. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  3. Cobalt mineral exploration and supply from 1995 through 2013

    Science.gov (United States)

    Wilburn, David R.

    2011-01-01

    The global mining industry has invested a large amount of capital in mineral exploration and development over the past 15 years in an effort to ensure that sufficient resources are available to meet future increases in demand for minerals. Exploration data have been used to identify specific sites where this investment has led to a significant contribution in global mineral supply of cobalt or where a significant increase in cobalt production capacity is anticipated in the next 5 years. This report provides an overview of the cobalt industry, factors affecting mineral supply, and circumstances surrounding the development, or lack thereof, of key mineral properties with the potential to affect mineral supply. Of the 48 sites with an effective production capacity of at least 1,000 metric tons per year of cobalt considered for this study, 3 producing sites underwent significant expansion during the study period, 10 exploration sites commenced production from 1995 through 2008, and 16 sites were expected to begin production by 2013 if planned development schedules are met. Cobalt supply is influenced by economic, environmental, political, and technological factors affecting exploration for and production of copper, nickel, and other metals as well as factors affecting the cobalt industry. Cobalt-rich nickel laterite deposits were discovered and developed in Australia and the South Pacific and improvements in laterite processing technology took place during the 1990s and early in the first decade of the 21st century when mining of copper-cobalt deposits in Congo (Kinshasa) was restricted because of regional conflict and lack of investment in that country's mining sector. There was also increased exploration for and greater importance placed on cobalt as a byproduct of nickel mining in Australia and Canada. The emergence of China as a major refined cobalt producer and consumer since 2007 has changed the pattern of demand for cobalt, particularly from Africa and

  4. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    International Nuclear Information System (INIS)

    Blenski, T.; Loisel, G.; Poirier, M.; Thais, F.; Arnault, P.; Caillaud, T.; Fariaut, J.; Gilleron, F.; Pain, J.-C.; Porcherot, Q.; Reverdin, C.; Silvert, V.; Villette, B.; Bastiani-Ceccotti, S.; Turck-Chieze, S.; Foelsner, W.; Gaufridy de Dortan, F. de

    2011-01-01

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm 3 . The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the Δn=0 absorption in medium-Z plasmas for astrophysical applications.

  5. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...

  6. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  7. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  8. Preparation of high purity cobalt

    International Nuclear Information System (INIS)

    Isshiki, M.; Fukuda, Y.; Igaki, K.

    1985-01-01

    A combination of anion exchange separation, electrolytic extraction, floating zone refining and dry hydrogen treatment was used to purify cobalt. The effectiveness of each purification process was confirmed by measurements of the residual resistivity ratio (RRR) and activation analyses. Proton activation analysis revealed that all the main metallic impurities except iron were effectively removed by a combination of these processes. The effective removal of oxygen, nitrogen and carbon by dry hydrogen treatment was confirmed by activation analyses using 3 He ion beams, proton beams and γ rays. It was found that the rate-controlling step in the decarburization process was a surface reaction. The maximum RRR obtained for the purified specimen was 334, which is higher than previously reported values. (Auth.)

  9. Sustainable prevention of resource conflicts. Case study and scenarios on copper and cobalt in the Democratic Republic of Congo (Report 3.2); Rohstoffkonflikte nachhaltig vermeiden. Fallstudie und Szenarien zu Kupfer und Kobalt in der Demokratischen Republik Kongo (Teilbericht 3.2)

    Energy Technology Data Exchange (ETDEWEB)

    Taenzler, Dennis; Westerkamp, Meike [Adelphi Research, Berlin (Germany); Supersberger, Nikolaus; Ritthoff, Michael; Bleischwitz, Raimund [Wuppertal Institut (Germany)

    2011-04-15

    The Democratic Republic of Congo has enormous economic potential thanks to its raw material wealth. However, since 1996 (if not before) DR Congo has been seen as a classic example of the linkage between the exploitation of raw materials and the financing of war. The UN Panel of Experts on the Illegal Exploitation of Natural Resources in DR Congo points out that the history of Congo since colonial times has been marked by systematic abuse of natural and human resources (UN Panel 2002). The UN Panel of Experts and the work of NGOs have helped to reveal rebels, senior military figures and private companies as profiteers from the exploitation of raw materials and to identify channels of financing the violent conflict in Congo since 1996 (see reports from the UN Panel, Pole Institute, Global Witness, HRW). Foreign companies mining, trading in or processing raw materials in DR Congo have also been regularly criticised as sharing responsibility for the ongoing violence, principally in the eastern Congo (UN Panel 2002, Cuvelier/Raeymaekers 2002, RAID 2004). Practically every major escalation in conflict in recent years between the various players in Congo has been connected to the management of, or the (legal or illegal) revenues from, natural resources, particularly from mining. This observation was also backed by data from the HIIK's CONIS information system. In 2008, eight of nine conflicts in Congo related at least in part to resources - five being violent and three non-violent (HIIK 2008). Following the coltan boom of 2000/2001, it now primarily profits from the mining and sale of the tin oxide ore cassiterite which continue to serve as the key means of financing violence (see Garrett 2008).1 In DRK it is not only the mining and sale of coltan and cassiterite which represents a nexus of conflict and resources however. Alongside timber, diamonds, oil and gold, it is above all the mining and sale of copper and cobalt from the so-called copper belt in the south

  10. Magnetostrictive properties of polycrystalline iron cobalt films

    International Nuclear Information System (INIS)

    Cooke, M.D.

    2000-10-01

    This thesis is concerned with the magnetic properties of magnetostrictive FeCo polycrystalline alloy films produced by RF magnetron sputter deposition. The bulk material is known to have highly magnetostrictive properties, coupled with the possibility of a low anisotropy with the correct thermal treatment to allow ordering. Significant reduction in the anisotropy was found by using post depostional thermal treatment in Ar/H. It has been demonstrated that it is possible to produce FeCo films with magnetostrictive properties similar to those found in the bulk. Detailed examination showed an increased peak in the magnetostriction with composition which had not been previously viewed in the bulk materials. Initial development was also made of a novel co-depositional technique to allow magnetostrictive determination as a function of composition in a single deposition. Development was made of a technique using the Daresbury Synchrotron research facility and the XRD equipment to allow determination of the magnetostriction coefficients of polycrystalline films. This is the first time this has been achieved for thin film materials and provides exciting new possibilities for the future. A critique was made of the optical cantilever technique for determining magnetostriction. Clear consideration has to be made of rotational and frequency effects. A new analytical theory was devised which allowing determination of the cantilever deflection for similar substrate and film thickness. This is essential for development of current trends in nanotechnology. The results were then optimised for use in sensor and actuator devices providing novel results. Finally investigation was made of the possible effects of surfaces on the magnetic properties. The magnetostriction of FeCo/Ag multilayers and Ag embedded in an FeCo matrix are compared. These clearly show the influence of surface and illustrate the importance of considering the technique used to determine the magnetostriction. (author)

  11. Surface magnetism in iron, cobalt, and nickel

    DEFF Research Database (Denmark)

    Alde´n, M.; Mirbt, S.; Skriver, Hans Lomholt

    1992-01-01

    with experimental values to within 10%, which may be considered most satisfactory in view of the computational efficiency of the Green’s function technique. Exchange and correlation have been treated wihtin the local spin-density approximation and we have considered three different parametrizations of the original...... many-body data. We find that the calculated work functions depend as much on the choice of this parametrization as on the effect of spin polarization....

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    International Nuclear Information System (INIS)

    Stepinski, T.; Lingvall, F.; Ping Wu

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.; Lingvall, F.; Ping Wu [Uppsala Univ. (Sweden). Dept. of Materials Science

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  14. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  15. Cloud point extraction of copper, lead, cadmium, and iron using 2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, and their flame atomic absorption spectrometric determination in water and canned food samples.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2012-01-01

    A cloud point extraction procedure was optimized for the separation and preconcentration of lead(II), cadmium(II), copper(II), and iron(III) ions in various water and canned food samples. The metal ions formed complexes with 2,6-diamino-4-phenyl-1,3,5-triazine that were extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by flame atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, surfactant concentration, temperature, and incubation time, were optimized. LOD values based on three times the SD of the blank (3Sb) were 0.38, 0.48, 1.33, and 1.85 microg/L for cadmium(II), copper(II), lead(II), and iron(III) ions, respectively. The precision (RSD) of the method was in the 1.86-3.06% range (n=7). Validation of the procedure was carried out by analysis of National Institute of Standards and Technology Standard Reference Material (NIST-SRM) 1568a Rice Flour and GBW 07605 Tea. The method was applied to water and canned food samples for determination of metal ions.

  16. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  17. SEM–EDS analysis of copper, glass and iron recovered from the 1st century AD shipwreck site off Godawaya, Southern Sri Lanka

    Digital Repository Service at National Institute of Oceanography (India)

    Chandraratne, W.M.; Gaur, A.S.; Rao, B.R.; Bhushan, R.; Muthucumarana, R.; Manders, M.; Khedekar, V.D.; Dayananda, A.M.A.

    contaminants8, thus indicating different source materials. During the Harappan times, Khetri mines of Rajast- han, India, had been a major source of copper in addition to Oman and UAE in the Gulf region9. The copper alloy in the present study is composed... to Godawaya, there are famous monasteries at Mahanavulupura and Ramba monastic complexes, which have been either exca- vated or thoroughly explored. Results of these studies indicate active maritime activity in the historical and medieval periods...

  18. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Disponibilidad de cobre, hierro, manganeso, zinc en suelos del NO argentino Pant availability of copper, iron, manganesum and zinc in the north west of Agentina

    Directory of Open Access Journals (Sweden)

    Núria Roca

    2007-07-01

    Full Text Available Cobre, hierro, manganeso y zinc son cuatro metales esenciales para el crecimiento vegetal. A pesar de las pequeñas cantidades requeridas por las plantas, los suelos agrícolas suelen ser deficitarios en uno o más micronutrientes de forma que su concentración en los tejidos de los vegetales cae por debajo de los niveles que permiten un crecimiento óptimo. La naturaleza del suelo juega un papel fundamental en la disponibilidad de micronutrientes y en su comportamiento a nivel suelo-planta. Los objetivos planteados en el presente estudio son: a establecer la relación entre los parámetros edáficos y la dinámica de los metales dentro del perfil del suelo, y b determinar la biodisponibilidad y zonas de deficiencia de micronutrientes en suelos agrícolas y suelos con riesgo de salinización. El porcentaje de materia orgánica es el factor determinante en el contenido y distribución de los micronutrientes en el suelo objeto de estudio, siendo el horizonte superficial el de mayor acumulación. Tanto CuDTPA, FeDTPA como MnDTPA tienen cierta movilidad en el perfil, mientras que ZnDTPA permanece adsorbido sin un desplazamiento vertical. El ZnDTPA es el único metal que además, muestra diferencias como consecuencia de la salinidad y granulometría de los suelos. No obstante, las condiciones geoquímicas del suelo implican una baja extractabilidad y una cierta dificultad de absorción de los micronutrientes por parte de las plantas.Copper, iron, manganese and zinc are among the essential elements for plant growth. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more of these micronutrients. Therefore, their concentration in plant tissues falls below the optimum levels. Soil nature plays a fundamental role in the availability of micronutrients and their behavior at a soil-plant level. The aims of this paper were: a to establish the relationship between soil properties and micronutrient dynamics within

  20. Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile

    Science.gov (United States)

    Marschik, Robert; Kendrick, Mark A.

    2015-03-01

    The noble gas (Ar, Kr, Xe) and halogen (Cl, Br, I) composition of fluid inclusions in hydrothermal quartz and calcite related to the hypogene iron oxide-copper-gold (IOCG) mineralization at Mantoverde and Candelaria, Chile, have been investigated to provide new insights of fluid and salinity sources in Andean IOCG deposits. A combination of mechanical extraction by crushing and thermal decrepitation methods was applied and collectively indicate that fluid inclusions with salinities ranging from 3.4 up to 64 wt% NaCl equivalent have molar Br/Cl and I/Cl ratios of between 0.5 × 10-3 and 3.0 × 10-3 and I/Cl of between 8 × 10-6 and 25 × 10-6 in the majority of samples, with maximum values of 5.2 × 10-3 obtained for Br/Cl and 64 × 10-6 for I/Cl in fluid inclusions within individual samples. The fluid inclusions have age-corrected 40Ar/36Ar ratios ranging from the atmospheric value of 296 up to 490 ± 45, indicating the presence of crustal- or mantle-derived excess 40Ar in the fluid inclusions of most samples. The fluid inclusions have 84Kr/36Ar and 130Xe/36Ar ratios intermediate of air and air-saturated water. However, 40Ar/36Ar is not correlated with either 84Kr/36Ar or 130Xe/36Ar, and the fluid inclusion 36Ar concentrations of 0.2-3.5 × 10-10 mol/g (calculated from measured Cl/36Ar and thermometric salinity measurements) extend below the seawater value of 0.34 × 10-10 mol/g, suggesting that contamination with modern air is a minor artifact. The range of fluid inclusion Br/Cl and I/Cl ratios overlap those previously documented for the mantle and magmatic-hydrothermal ore deposits, and the fluids' unusually low 36Ar concentration is consistent with the involvement of magmatic-hydrothermal fluids. Input of additional non-magmatic fluid components is suggested by the spread in Br/Cl and I/Cl to values characteristic of bittern brine sedimentary formation waters and near atmospheric 40Ar/36Ar. These data are compatible with mixing of magmatic-hydrothermal fluids

  1. Enhanced magnetocrystalline anisotropy in deposited cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, D.A.; Denby, P.M.; Kirkman, I.W. [Daresbury Laboratory, Daresbury, Warrington (United Kingdom); Harrison, A.; Whittaker, A.G. [Department of Chemistry, University of Edinburgh, Edinburgh (United Kingdom)

    2002-01-28

    The magnetic properties of nanomaterials made by embedding cobalt nanocrystals in a copper matrix have been studied using a SQUID magnetometer. The remanent magnetization at temperatures down to 1.8 K and the RT (room temperature) field-dependent magnetization of 1000- and 8000-atom (average-size) cobalt cluster samples have been measured. In all cases it has been possible to relate the morphology of the material to the magnetic properties. However, it is found that the deposited cluster samples contain a majority of sintered clusters even at cobalt concentrations as low as 5% by volume. The remanent magnetization of the 8000-atom samples was found to be bimodal, consisting of one contribution from spherical particles and one from touching (sintered) clusters. Using a Monte Carlo calculation to simulate the sintering it has been possible to calculate a size distribution which fits the RT superparamagnetic behaviour of the 1000-atom samples. The remanent magnetization for this average size of clusters could then be fitted to a simple model assuming that all the nanoparticles are spherical and have a size distribution which fits the superparamagnetic behaviour. This gives a value for the potential energy barrier height (for reversing the spin direction) of 2.0 {mu}eV/atom which is almost four times the accepted value for face-centred-cubic bulk cobalt. The remanent magnetization for the spherical component of the large-cluster sample could not be fitted with a single barrier height and it is conjectured that this is because the barriers change as a function of cluster size. The average value is 1.5 {mu}eV/atom but presumably this value tends toward the bulk value (0.5 {mu}eV/atom) for the largest clusters in this sample. (author)

  2. [Balance of iron and copper in cadets of military school during physical exercise and next-day rest at different times of the year].

    Science.gov (United States)

    Zaĭtseva, I P; Nasolodin, V V; Beliakov, R A; Arshinov, N P; Zaĭtsev, O N; Meshcheriakov, S I

    2013-03-01

    According to examination, with the help of emission spectrum analysis method, of 24 cadets-athletes of different specialization it was determined that during physical exercise in summer and in winter loss of ferrum and copper with excrements exceeded the intake if these microelements with food. The next day rise of impaction of microelements and decrease of excretion. But despite the positive balance of ferrum and copper, spend of these microelements during physical exercise wasn't compensated for the day of rest. That is why there is a possibility of microelement deficit.

  3. Cobalt(II), nickel(II), copper(II), and zinc(II) complexes with [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane and [(2.3)(2).2(1)]adamanzane, 1,5,9,12-tetraazabicyclo[7.5.2]hexadecane

    DEFF Research Database (Denmark)

    Broge, Louise; Pretzmann, Ulla; Jensen, Nicolai

    2001-01-01

    ) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO4 (2......) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni-([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO3)]NO3 (4) and [Ni([3(5)]-adz)(ClO4)]ClO4 (7) the coordination geometry around nickel(II) is a distorted octahedron...... with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl4] (10b) and [Zn([3(5)]adz)][ZnCl4] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degreesC and fall...

  4. Avaliação do uso de ervas medicinais como suplemento nutricional de ferro, cobre e zinco Evaluation of the use of medicinal grass as nutritional supplement of iron, copper and zinc

    Directory of Open Access Journals (Sweden)

    Édira Castello Branco de Andrade

    2005-09-01

    Full Text Available O cobre, ferro e zinco, considerados elementos essenciais ao corpo humano, apresentam biodisponibilidade variável em função da forma química que se encontram em um alimento. As ervas medicinais, amplamente utilizadas, podem apresentar novas indicações quanto a suplementação destes metais. Este trabalho tem por objetivo avaliar os teores de cobre, ferro e zinco em ervas medicinais, pós e ervas secas, e promover a extração seqüencial visando a biodisponibilidade. Os teores de cobre, ferro e zinco foram determinados através da espectroscopia de absorção atômica. A extração seqüencial foi aplicada com os extratores cloreto de cálcio 1,0M; ácido acético 0,1M com acetato de amônio 5% (pH=5,0; ácido acético 0,5M e HCl 0,5M. Os resultados apresentaram teores altos de cobre, ferro e zinco, quando comparados com outras fontes alimentícias destes metais, além de indicar que os mesmos se apresentam sob, no mínimo, 4 espécies químicas distintas nas ervas analisadas. O extrator I foi o de melhor eficiência para os três metais. Considerando que o consumo destas ervas é feito com visão farmacológica, acredita-se que uso das mesmas em preparos de alimentos pode favorecer a suplementação dos metais cobre, ferro e zinco.Copper, iron and zinc, considered essential elements in the human body, present changeable biodisponibility in chemical form more than if found in a food. Medicinal plants, widely used, can present new indications as to how much the suplementation of these metals, aiming at such an objective, can be shown to evaluate the amounts of copper, iron, and zinc in medicinal plants, powder and dry grass, and to promote the extraction sequencial aiming at the biodisponibility. The copper amount, iron and zinc had been determined through the spectroscopy of atomic absorption. The extraction sequencial was applied with the extractors calcium chloride 1,0M; acetic acid 0,1M with ammonium acetate 5% ( pH=5,0 ; acetic acid 0

  5. Direct Laser Cladding of Cobalt on Ti-6Al-4V with a Compositionally Graded Interface

    Directory of Open Access Journals (Sweden)

    Jyotsna Dutta Majumdar

    2011-01-01

    Full Text Available Direct laser cladding of cobalt on Ti-6Al-4V with and without a graded interface has been attempted using a continuous wave CO2 laser. Graded interface is developed by depositing a thin copper layer on Ti-6Al-4V substrate prior to multiple laser cladding of cobalt on it. Presence of copper interlayer was found to suppress the formation of brittle intermetallics of Ti and Co. The effect of process parameters on the microstructures, compositions, and phases of the interface was studied in details. Finally, the mechanical and electrochemical properties of the interface processed under optimum process parameters are reported.

  6. Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Horstwood, M.S.A.; Kemp, S.J. [British Geological Survey, Nottingham (United Kingdom)

    2002-03-01

    This report presents the results of a study of the mineralogy and alteration characteristics of unusual concretions containing sheets of native copper, and uranium-vanadium mineralised concretions, in mudstones and siltstones of the Pennian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The main objectives of the study were: 1. To investigate the corrosion characteristics of the native copper as a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of spent fuel and high-level radioactive waste (HLW). This study developed from an earlier pilot study, which demonstrated that the alteration of the native copper in the concretions from Littleham Cove was mineralogically and chemically complex. 2. To investigate the alteration and oxidation of minerals containing reduced species (e.g. ferrous iron) within the uranium-rich concretions as a natural analogue for the potential effects of oxidation induced by alpha-radiolysis of water in a HLW repository environment. Native copper-bearing concretions in the Littleham Mudstone Formation are very rare. They occur, as thin lenticular disks developed largely along bedding lamina and thin low-angle fractures cutting the bedding laminae the upper part of the formation, about 10 m below the top of the formation. This part of the sequence comprises laterally discontinuous, fine-grained sheet-flood and channel sandstones and siltstones. Some of these sandstones, are more extensively-cemented by copper sulphides (mainly chalcocite), copper arsenides, cobalt-nickel arsenides, and uranium silicate. The thin permeable sandstones and siltstones, and fractures zones around small faults appear to have acted as the conduits for the movement of mineralising fluids through the mudstones. The native copper sheets all show a similar pattern of corrosion and alteration. However, the intensity of alteration is

  7. Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Horstwood, M.S.A.; Kemp, S.J.

    2002-03-01

    This report presents the results of a study of the mineralogy and alteration characteristics of unusual concretions containing sheets of native copper, and uranium-vanadium mineralised concretions, in mudstones and siltstones of the Pennian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The main objectives of the study were: 1. To investigate the corrosion characteristics of the native copper as a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of spent fuel and high-level radioactive waste (HLW). This study developed from an earlier pilot study, which demonstrated that the alteration of the native copper in the concretions from Littleham Cove was mineralogically and chemically complex. 2. To investigate the alteration and oxidation of minerals containing reduced species (e.g. ferrous iron) within the uranium-rich concretions as a natural analogue for the potential effects of oxidation induced by alpha-radiolysis of water in a HLW repository environment. Native copper-bearing concretions in the Littleham Mudstone Formation are very rare. They occur, as thin lenticular disks developed largely along bedding lamina and thin low-angle fractures cutting the bedding laminae the upper part of the formation, about 10 m below the top of the formation. This part of the sequence comprises laterally discontinuous, fine-grained sheet-flood and channel sandstones and siltstones. Some of these sandstones, are more extensively-cemented by copper sulphides (mainly chalcocite), copper arsenides, cobalt-nickel arsenides, and uranium silicate. The thin permeable sandstones and siltstones, and fractures zones around small faults appear to have acted as the conduits for the movement of mineralising fluids through the mudstones. The native copper sheets all show a similar pattern of corrosion and alteration. However, the intensity of alteration is

  8. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  9. Nuclear Spectroscopy with Copper Isotopes of Extreme N/Z Ratios

    CERN Multimedia

    La commara, M; Roeckl, E; Van duppen, P L E; Schmidt, K A; Lettry, J

    2002-01-01

    The collaboration aims to obtain detailed nuclear spectroscopy information on isotopes close to the magic proton number Z=28 Very neutron-rich and neutron-deficient copper isotopes are ionized with the ISOLDE resonance ionization laser ion source (RILIS) to provide beams with low cross contamination.\\\\ \\\\On the neutron-deficient side the high $Q_\\beta$-values of $^{56}$Cu (15~MeV) and $^{57}$Cu (8.8~MeV) allow to study levels at high excitation energies in the doubly magic nucleus $^{56}$Ni and the neighbouring $^{57}$Ni. On the neutron-rich side the spectroscopy with separated copper isotopes allows presently the closest approach to the doubly magic $^{78}$Ni at an ISOL facility. Up to now no suitable target material with a rapid release was found for nickel itself. A slow release behaviour has to be assumed also for the chemically similar elements iron and cobalt.\\\\ \\\\Using a narrow-bandwidth dye laser and tuning of the laser frequency allows to scan the hyperfine splittings of the copper isotopes and isome...

  10. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries; Metodo hidrometalurgico para reciclagem de metais terras raras, cobalto, niquel, ferro e manganes de eletrodos negativos de baterias exauridas de Ni-MH de telefone celular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de, E-mail: viniciusemmanuel@hotmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Celante, Vinicius Guilherme [Instituto Federal do Espirito Santo (IFES), Aracruz, ES (Brazil)

    2014-07-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO{sub 4}){sub 2}.H{sub 2}O) and lanthanum sulfate (La{sub 2}(SO{sub 4}){sub 3}.H{sub 2}O) as the major recovered components. Iron was recovered as Fe(OH){sub 3} and FeO. Manganese was obtained as Mn{sub 3}O{sub 4}.The recovered Ni(OH){sub 2} and Co(OH){sub 2} were subsequently used to synthesize LiCoO{sub 2}, LiNiO{sub 2} and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  11. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  12. Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt

    Science.gov (United States)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.

    2017-03-01

    Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.

  13. Absolute measurement of the critical scattering cross section in cobalt

    International Nuclear Information System (INIS)

    Glinka, C.J.; Minkiewicz, V.J.; Passell, L.

    1975-01-01

    Small-angle neutron scattering techniques have been used to study the angular distribution of the critical scattering from cobalt above T/sub c/. These measurements have been put on an absolute scale by calibrating the critical scattering directly against the nuclear incoherent scattering from cobalt. In this way the interaction range r 1 , which appears in the classical and modified Ornstein--Zernike expressions for the asymptotic form of the spin pair correlation function and is related to the strength of the spin correlations, has been determined. We obtain r 1 /a = 0.46 +- 0.03 for the ratio of the interaction range to the nearest-neighbor distance in cobalt. This result is in good agreement with theoretical predictions. Lack of agreement among previous determinations of the ratio r 1 /a made in iron failed to provide a definitive comparison with theory

  14. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  15. Molecular Cobalt Catalysts for O 2 Reduction: Low-Overpotential Production of H 2 O 2 and Comparison with Iron-Based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Heng [Department; Pegis, Michael L. [Department; Mayer, James M. [Department; Stahl, Shannon S. [Department

    2017-11-07

    A series of mononuclear pseudo-macrocyclic cobalt complexes have been investigated as catalysts for O2 reduction. Each of these complexes, with CoIII/II reduction potentials that span nearly 400 mV, mediate highly selective two- electron reduction of O2 to H2O2 (93–99%) using decamethylferrocene (Fc*) as the reductant and acetic acid as the proton source. Kinetic studies reveal that the rate exhibits a first- order dependence on [Co] and [AcOH], but no dependence on [O2] or [Fc*]. A linear correlation is observed between log(TOF) vs. E1/2(CoIII/II) for the different cobalt complexes (TOF = turnover frequency). The thermodynamic potential for+ O2 reduction to H2O2 was estimated by measuring the H /H2 open-circuit potential under the reaction conditions. This value provides the basis for direct assessment of the thermodynamic efficiency of the different catalysts and shows that H2O2 is formed with overpotentials as low as 90 mV. These results are compared with a recently reported series of Fe-porphyrin complexes, which catalyze four-electron reduction of O2 to H2O. The data show that the TOFs of the Co complexes exhibit a shallower dependence on E1/2(MIII/II) than the Fe complexes. This behavior, which underlies the low overpotential, is rationalized on the basis of the catalytic rate law.

  16. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  17. Elevated temperature study of Nd-Fe-B--based magnets with cobalt and dysprosium additions

    International Nuclear Information System (INIS)

    Gauder, D.R.; Froning, M.H.; White, R.J.; Ray, A.E.

    1988-01-01

    This paper discusses the elevated temperature performance of Nd-Fe-B magnets containing 0--15 wt. % cobalt substitutions for iron and 0--10 wt. % dysprosium substitutions for neodymium. Test samples were prepared using conventional powder metallurgy techniques. Elevated temperature hysteresis loop and open-circuit measurements were performed on the samples to investigate irreversible losses and long term aging losses at 150 0 C. Magnets with high amounts of both cobalt and dysprosium exhibited lower losses of coercivity and magnetization. Dysprosium had more influence on the elevated temperature performance of the material than did cobalt

  18. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  19. Analysis of radioactive cobalt

    International Nuclear Information System (INIS)

    1977-01-01

    This is a manual published by Science and Technology Agency, Japan, which prescribes on the analysis method for radioactive cobalt which is a typical indexing nuclide among the radioactive nuclides released from nuclear facilities. Since the released cobalt is mainly discharged to coastal region together with waste water, this manual is written for samples of sea water, sea bottom sediments and marine organisms. Radioactive cobalt includes the nuclides of 57 co, 58 Co, 60 Co, etc., the manual deals with them as a whole as 60 Co of long half life. Though 60 Co analysis has become feasible comparatively simply due to scintillation or semi-conductor spectrometry, trace 60 Co analysis is performed quantitatively by co-precipitation or collection into alumina and scintillation spectrometry. However, specific collecting operation and γ-γ coincidence measurement have been required so far. This manual employs 60 Co collection by means of ion-exchange method and measurement with low background GM counting system, to analyze quantitatively and rapidly low level 60 Co. It is primarily established as the standard analyzing method for the survey by local autonomous bodies. It is divided into 4 chapters including introduction sea water, marine organisms, and sea bottom sediments. List of required reagents is added in appendix. (Wakatsuki, Y.)

  20. Synthesis, characterisation and antimicrobial activities of cobalt(II, copper(II and zinc(II mixed-ligand complexes containing 1,10-phenanthroline and 2,2’-bipyridine

    Directory of Open Access Journals (Sweden)

    A. Mohamadou

    2010-06-01

    Full Text Available Three new 1,10-phenanthroline and 2,2’-bipyridine mixed-ligand complexes of [Co(bpy(phen2](NO32.2H2O, [Cu(bpy(phen H2O 2]Cl2.2H2O, and [Zn(bpy2(phen]Cl2.6H2O were synthesized. The complexes were characterized by elemental, IR and visible spectroscopic analyses and the results indicate that both ligands are coordinated to the respective metal ions giving octahedral complexes. Antimicrobial studies showed that there is increased antimicrobial activity of the metal ions on coordination to the ligands. The water soluble complexes showed antimicrobial activities that are higher than those of the metal salts and 2,2’-bipyridine but lower than those of 1,10-phenanthroline. The copper complex [Cu(bpy(phen(H2O 2]Cl2.2H2O shows the highest activity.

  1. Synthesis, characterization and study of the magnetic properties of a coordination polymer containing cobalt(II) and copper(II); Sintese, caracterizacao e estudo das propriedades magneticas de um polimero de coordenacao contendo cobalto(II) e cobre(II)

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Tamyris T. da; Stumpf, Humberto O.; Pereira, Cynthia L.M., E-mail: cynthialopes@ufmg.br [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pires, Heber S.; Oliveira, Luiz F.C. de [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, MG (Brazil); Pedroso, Emerson F. [Departamento de Quimica, Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil); Nunes, Wallace C. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2012-07-01

    This work describes the synthesis and characterization of two new compounds with ligand opy (N-(2-pyridyl)oxamate): the copper(II) precursor [Me{sub 4}N]{sub 2}[Cu(opy){sub 2}].5H{sub 2}O and Co{sup II} Cu{sup II} coordination polymer {l_brace}[Co Cu(opy){sub 2}]{r_brace}{sub n}x4nH{sub 2}O. This latter compound was obtained by reaction of [Me{sub 4}N]{sub 2}[Cu(opy){sub 2}].5H{sub 2}O and CoCl{sub 2}.6H{sub 2}O in water. The heterobimetallic Co{sup II} Cu{sup II} chain was characterized by elemental analysis, IR spectroscopy, thermogravimetry and magnetic measurements. Magnetic characterization revealed typical behavior of one-dimensional (1D) ferrimagnetic chain as shown in the curves of temperature (T) dependence of magnetic susceptibility ({chi}{sub M}), in the form of {chi}{sub M}T versus T, and dependence of magnetization (M) with applied field (H). (author)

  2. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  3. Cobalt deficiency effects on trace elements, hormones and enzymes involved in energy metabolism of cattle.

    Science.gov (United States)

    Stangl, G I; Schwarz, F J; Kirchgessner, M

    1999-03-01

    This study was conducted to investigate the physiological consequences of long-term moderate cobalt deficiency in beef cattle, which have not hitherto been studied in detail. Cobalt deficiency was induced in cattle by feeding two groups of animals either a basal corn silage-based diet that was moderately low in cobalt (83 micrograms Co/kg), or the same diet supplemented with cobalt to a total of 200 micrograms per kg, for 43 weeks. Cobalt deficiency was induced, as judged by inappetance, diminished growth gain and a markedly reduced vitamin B12 status in serum and liver. The long-term cobalt deprivation which was primarily a combination of reduced feed intake and a tissue vitamin B12 deficiency did not show evidence of a significant dysfunction of energy metabolism. The activities of glucose-6-phosphate dehydrogenase and cytochrome oxidase in liver remained unaffected by cobalt deficiency, nor was there a significant change in serum glucose level of cattle on the cobalt-deprived diet. However, analysis of thyroid hormone status indicated a slight reduction of type I thyroxine monodeiodinase activity in liver accompanied by a significant reduction of the triiodothyronine level in serum. The diminished liver vitamin B12 level resulted in significantly reduced folate level in this tissue, reduced concentrations of heme-depending blood parameters. Moreover cobalt deficiency or rather vitamin B12 deficiency was accompanied by a dramatic accumulation of the trace elements iron and nickel in liver. These results indicate that long-term moderate cobalt deficiency may induce a number of physiological changes in cattle, but a follow-up study, which excluded different feed levels by including a pair-fed control group, will be necessary to actually obtain the single effect of cobalt deficiency in cattle.

  4. Preparation and characterization of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  5. Preparation and characterization of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Irshad, M. I.; Mohamed, N. M.; Ahmad, F.; Abdullah, M. Z.

    2014-01-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl 2 Ðœ‡6H2O salt solution was used, which was buffered with H 3 BO 3 and acidified by dilute H 2 SO 4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications

  6. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  7. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  8. Theoretical interpretation for 2p − nd absorption spectra of iron, nickel, and copper in X-ray range measured at the LULI2000 facility

    Directory of Open Access Journals (Sweden)

    Poirier M.

    2013-11-01

    Full Text Available The 2p − nd absorption structures in medium Z elements present a valuable benchmark for atomic models since they exhibit a complex dependence on temperature and density. For these transitions lying in the X-ray range, one observes a competition between the spin-orbit splitting and the broadening associated to the excitation of complex structures. Detailed opacity codes based on the HULLAC or FAC suites agree with the statistical code SCO; but in iron computations predict higher peak absorption than measured. An addition procedure on opacities calculated with detailed codes is proposed and successfully tested.

  9. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  10. The Possible Role of Smoking and Mild Inflammation on Iron, Copper Ions and Related Metalloproteins in Male Volunteers Working in Radiation Field

    International Nuclear Information System (INIS)

    Bahgat, M.M.; Amer, M.M.; Michael, M.I.; El Daly, E.S.

    2009-01-01

    Oxidative stress implies that cells have intact pro-oxidant/anti-oxidant systems that continuously generate and detoxify oxidants during normal aerobic metabolism. When additional oxidative events occur, the pro-oxidant systems out balance the anti-oxidant, potentially producing oxidative damage to lipids, proteins, carbohydrates, and nucleic acids ultimately leading to cell death in severe oxidative stress. A disturbance in pro-oxidant/anti-oxidant systems results from a myriad of different oxidative challenges, including radiation, metabolism of environmental pollutants and administered drugs and immune system response to disease or infection. Forty male volunteers have participated in this study to evaluate the effect of smoking and mild infection on ferric and copper ions, related metalloproteins and glutathione peroxidase in males working in the radiation fields. The results denoted that those two stress ors added further imbalance in the pro oxidant-antioxidant status

  11. Cobalt source calibration

    International Nuclear Information System (INIS)

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  12. Unithiol - a cobalt antidote

    International Nuclear Information System (INIS)

    Cherkes, A.I.; Braver-Chernobul'skaya, B.S.

    1977-06-01

    The blockade of the sulfhydryl groups of the proteins leads to a disturbance of the normal activity of many enzymes and thus of the functioning of the organs and tissue. The search for antidotes against these substances which inactivate the enzymes led to the synthesis of a large group of thiols in the Ukrainian Scientific Research Sanitary Chemical Institute. The most active is sodium dithiol-2,3-dimercaptonpropansulphonate CH 2 SH-CHSH-CH 2 SO 3 Na x H 2 O, named unithiol. Its antidote activity is discussed in detail, especially concerning cobalt intoxication. (HK) [de

  13. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site.

    Science.gov (United States)

    Oustriere, Nadège; Marchand, Lilian; Galland, William; Gabbon, Lunel; Lottier, Nathalie; Motelica, Mikael; Mench, Michel

    2016-10-01

    Two biochars, a green waste compost and iron grit were used, alone and in combination, as amendment to improve soil properties and in situ stabilize Cu in a contaminated soil (964mgCukg(-1)) from a wood preservation site. The pot experiment consisted in 9 soil treatments (% w/w): untreated Cu-contaminated soil (Unt); Unt soil amended respectively with compost (5%, C), iron grit (1%, Z), pine bark-derived biochar (1%, PB), poultry-manure-derived biochar (1%, AB), PB or AB+C (5%, PBC and ABC), and PB or AB+Z (1%, PBZ and ABZ). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. In the SPW, all amendments decreased the Cu(2+) concentration, but total Cu concentration increased in all AB-amended soils due to high dissolved organic matter (DOM) concentration. No treatment improved root and shoot DW yields, which even decreased in the ABC and ABZ treatments. The PBZ treatment decreased total Cu concentration in the SPW while reducing the gap with common values for root and shoot yields of dwarf bean plants. A field trial is underway before any recommendation for the PB-based treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metal-porphyrin interactions. VI. The reactivities of several ferric porphyrin monomers with cyanide compared with ligand reactions of iron and cobalt porphyrins reconstituted with proteins. [25/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Hambright, P. (Howard Univ., Washington, DC); Chock, P.B.

    1975-01-01

    A study of the hydrolysis and kinetics and equilibrium behavior of cyanide addition to the monomeric iron(III) complexes of meso, proto and deuteroporphyrin-IX in 2 percent sodium lauryl sulfate--0.1 M tetramethyl ammonium bromide, 25/sup 0/ is reported. The reactivity parameters are compared to reactions of the same Co(II) and Fe(II) porphyrin types reconstituted to myoglobins and hemoglobins.

  15. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  16. Analysis of the behavior of orthogonal-core-type push-pull parametric transformer with iron and copper losses. Tetsuson oyobi doson wo koryoshita chokko jishinkei push pull parametric hen prime atsuki no dosa kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, K; Anazawa, Y; Kaga, A [Akita University, Akita (Japan). Mining College; Ichinokura, O [Tohoku University, Sendai (Japan). Faculty of Engineering

    1991-04-30

    This paper reports on a precise numerical analysis of operating characteristics of the push-pull parametric transformer of orthogonal-core type (proposed by the authors in the preceding papers) made in consideration of both the iron loss of its magnetic core and the copper loss of its windings. A model of magnetic circuit in the core is presented, which involves magnetic reluctances representing saturation characteristics of the core and magnetic inductances representing effects produced by hysteresis. Use is made of the function that expresses the saturation characteristics by a twenty-first power series of magnetic flux, the coefficient of each term being determined by use of experimental data on a specified sample of the magnetic core. Furthermore, recourse is had to the circuit simulator SPICE in order to analyze the operating characteristics of the transformer. Comparing results of the present analysis with experimental results, the following are noted: first, both output voltages and currents of windings of the transformer under the condition of parametric oscillation are calculated with sufficient accuracy; second, the present analysis is capable of evaluating the conversion efficiency of electric power and input power factor of the transformer, and of providing more accurate values of both voltage and current in the case of the maximum output under loading conditions as compared with the analyses so far presented. 8 refs., 11 figs., 2 tabs.

  17. Estado nutricional, ferro, cobre e zinco em escolares de favelas da cidade de São Paulo Nutritional status, iron, copper, and zinc in school children of shantytowns of Sao Paulo

    Directory of Open Access Journals (Sweden)

    Elisabete B. Santos

    2007-08-01

    Full Text Available OBJETIVO: Avaliar a antropometria, a composição corporal e o estado nutricional em ferro, cobre e zinco segundo o gênero, de crianças e adolescentes institucionalizados, moradores de duas favelas da cidade de São Paulo. MÉTODOS: Estudo transversal utilizando medidas de peso, estatura, circunferência braquial, dobras cutâneas, bioimpedância elétrica, os escores Z da relação estatura para idade, índice de massa corporal, área do braço, área muscular do braço e área de gordura do braço. Os percentuais de gordura corporal e massa magra foram analisados segundo fórmulas de Siri e Slaughter. Foram determinados hemoglobina, hematócrito, ferro, ferritina, cobre e zinco séricos. RESULTADOS: Foram maiores o peso corporal, circunferência do braço, dobras cutâneas do tríceps e subescapular, resistência elétrica, escores Z da área do braço, área muscular do braço e percentual de gordura corporal no sexo feminino em relação ao masculino. Baixa estatura foi encontrada em 8% das meninas e 5,6% dos meninos, sem diferença quanto ao gênero. Houve menor prevalência de desnutrição (2% das meninas e 5,6% nos meninos, do que de sobrepeso e obesidade (30% e 11,2%, respectivamente. Observou-se anemia em 24,4% e ferropenia em 10,5% dos escolares com ou sem anemia. Apresentaram valores abaixo do limite inferior do padrão de referência para cobre e zinco séricos, respectivamente três e sete indivíduos. CONCLUSÃO: Na população estudada, de baixo nível econômico e institucionalizada, ocorre o processo de transição nutricional e alta prevalência de anemia que não resulta da interação ferro, cobre e zinco.OBJECTIVE: To assess the anthropometry, body composition and iron, copper and zinc nutritional status, according to gender, of institutionalized children and adolescents living in two shantytowns in the city of Sao Paulo. METHODS: A cross sectional study using weight, height, arm circumference, skinfolds, electrical

  18. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  19. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years Estado nutricio de hierro, zinc, cobre y magnesio en niños mexicanos de 1 a 11 años de edad

    Directory of Open Access Journals (Sweden)

    Ma. del Carmen Morales-Ruán

    2012-04-01

    Full Text Available OBJECTIVE: To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006 and their association with dietary and sociodemographic factors. MATERIALS AND METHODS: Serum samples were used (n=5 060 to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. RESULTS: Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC, were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61 or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97 were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32 and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97 were protective against MLSC. CONCLUSIONS: Deficiencies of iron and zinc are serious public health problems in Mexican children.OBJETIVO: Describir el estado nutricio de micronutrimentos en niños de 1-11 años de edad de la Encuesta Nacional de Salud y Nutrición 2006 y su asociación con factores dietéticos y sociodemográficos. MATERIAL Y MÉTODOS: Se usaron muestras séricas (n=5060 para medir las concentraciones de ferritina, receptor de transferrina, zinc, cobre y magnesio. RESULTADOS: La prevalencias de deficiencias en niños de 1-4 y de 5 a 11 años fueron para ferritina, 26.0 y 13%; zinc, 28.1 y 25.8% respectivamente y cobre ≈30% en ambos grupos. Las concentraciones bajas de magnesio (CBM fueron 12.0 y 28.4%, respectivamente. Ser beneficiario de Liconsa (RM=0.32; IC 95%: 0.17-0.61 y pertenecer al nivel socioeconómico alto (RM=0.63; IC, 95%: 0.41-0.97 fueron protectores para deficiencia de hierro. La edad (RM=1.26; IC, 95%: 1.19-1.32 y vivir en la región Centro (RM=0.59; IC, 95

  20. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    Science.gov (United States)

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  1. Radio cobalt in French rivers

    International Nuclear Information System (INIS)

    Lambrechts, A.; Baudin-Jaulent, Y.

    1996-01-01

    The isotopes 58 and 60 of cobalt present in liquid wastes from nuclear plants or from fuel reprocessing plant of Marcoule are fixed in the different compartments of French rivers. The activity levels of radio-cobalt vary according to the sampled compartments nature (bryophyta > immersed plants > sediment > fish). Elsewhere, laboratory experimentations show that the contamination of fish occurs essentially from the water way rather than from food. Cobalt is mainly fixed by kidneys; muscles is no more than 30 % of the total fish activity. (author)

  2. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    Science.gov (United States)

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  3. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    International Nuclear Information System (INIS)

    Elkhadir, A. Y. F.

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of β-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H 2 SO 4 , (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO 3 for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H 2 SO 4 , (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO 3 , respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  4. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Elkhadir, A Y. F. [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of {beta}-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H{sub 2}SO{sub 4}, (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO{sub 3} for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H{sub 2} SO{sub 4}, (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO{sub 3}, respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  5. Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide

    KAUST Repository

    Uwamariya, V.

    2015-08-17

    Iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effect of Ca2+ and pH on the adsorptive removal of Cu2+ and Cd2+ from groundwater using batch adsorption experiments and kinetic modeling. It was observed that Cu2+ and Cd2+ were not stable in synthetic waters. The extent of precipitation increased with increasing pH. Removal of Cu2+ and Cd2+ was achieved through both precipitation and adsorption, with IOCS showing higher adsorption efficiency. Increase of pH (from 6 to 8) resulted in a higher overall removal efficiency of both Cu2+ and Cd2+, with precipitation as predominant removal mechanisms at higher pH values, especially for Cu2+. An increase in Ca2+ concentration increased the precipitation of Cu2+ [as Cu2(OH)2CO3 and Cu3(OH)2(CO3)2] and Cd2+ [as Cd(OH)2 and CdCO3]. In addition, Ca2+ competes with Cu2+ and Cd2+ for surface adsorption sites on IOCS and GFH, and reduces their adsorption capacity. The kinetic modeling revealed that the adsorption of Cd2+ onto IOCS is a complex process, with limited contribution of chemisorption that increases in the presence of Ca2+. © 2015 American Society of Civil Engineers.

  6. sup(60)Co hot atom chemistry of tris(acetylacetonato) cobalt(III) adsorbed on silica gel

    International Nuclear Information System (INIS)

    Nishioji, H.; Sakai, Y.; Tominaga, T.

    1985-01-01

    The sup(60)Co hot atom reactions were studied in tris(acetylacetonato)cobalt(III) adsorbed on silica gel surface. sup(57)Fe Moessbauer spectra of tris(acetylacetonato)iron(III) in the corresponding system were also measured in order to examine the state of dispersion of complex molecules on silica gel. The retention formation processes were discussed in terms of the dependence of sup(60)Co retention on the adsorbed amount (concentration) of cobalt(III) complexes. (author)

  7. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  8. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  9. A serials of sandwich-like trinuclear and one-dimensional chain cyanide-bridged iron(III)-copper(II) complexes: Syntheses, crystal structures and magnetic properties

    Science.gov (United States)

    Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng

    2018-04-01

    Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.

  10. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  11. Structural and magnetic properties of the products of the transformation of ferrihydrite: Effect of cobalt dications

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, K.I. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Pariona, N. [Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz (Mexico); Martinez, A.I., E-mail: arturo.martinez@cinvestav.edu.mx [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil); Herrera-Trejo, M. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Perry, Dale L. [Mailstop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-05-01

    The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research. - Highlights: • Co(II) may stabilize ferrihydrite against transformation to more crystalline oxides. • The transformation is strongly dependent on the Co(II)/Fe(III) atomic ratio. • Cobalt-substituted hematite and cobalt-substituted magnetite were the products. • FORC diagrams identified the interaction coupling between single-domains.

  12. Structural and magnetic properties of the products of the transformation of ferrihydrite: Effect of cobalt dications

    International Nuclear Information System (INIS)

    Camacho, K.I.; Pariona, N.; Martinez, A.I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.

    2017-01-01

    The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research. - Highlights: • Co(II) may stabilize ferrihydrite against transformation to more crystalline oxides. • The transformation is strongly dependent on the Co(II)/Fe(III) atomic ratio. • Cobalt-substituted hematite and cobalt-substituted magnetite were the products. • FORC diagrams identified the interaction coupling between single-domains.

  13. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  14. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  15. Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada

    Science.gov (United States)

    Acosta-Góngora, P.; Gleeson, S. A.; Samson, I. M.; Corriveau, L.; Ootes, L.; Jackson, S. E.; Taylor, B. E.; Girard, I.

    2018-03-01

    The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S ( n = 48) and δ 65Cu ( n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (-7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between -1.2 and -0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.

  16. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  17. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  18. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  19. Multi-component titanium–copper–cobalt- and niobium nanostructured oxides as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Henych, Jiří; Ivanova, R.; Kovacheva, D.; Štengl, Václav

    2015-01-01

    Roč. 116, č. 2 (2015), s. 397-408 ISSN 1878-5190 Institutional support: RVO:61388980 Keywords : Copper and cobalt oxides * Effect of support * Ethyl acetate combustion * Multicomponent oxides * Titania doped with niobium Subject RIV: CA - Inorganic Chemistry Impact factor: 1.265, year: 2015

  20. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  1. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  2. Copper (II), nickel (II) and cobalt (II) complexes of n ...

    African Journals Online (AJOL)

    aminoalkylaminomethanephosphonic acids, (n-ampa). LM Durosinmi, IAO Oje, Jide Ige. Abstract. No Abstract. Nigerian Journal of Chemical Research Vol. 1 1996: 53-60. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT ...

  3. Nano copper and cobalt ferrites as heterogeneous catalysts for the ...

    Indian Academy of Sciences (India)

    logically active natural products were found to contain substituted ... pH of the solution was increased to ... weak which indicate that the residual carbon has mostly burnt away .... imidazole. 3.1a Comparison of effect of the present catalysts with.

  4. Bioleaching of copper, cobalt and zinc from black shale by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... duce organic acid metabolites which include citric, oxalic and gluconic acids during ... acid metabolites like citric, oxalic, malic gluconic acids used for bioleaching of ..... polluted soils using oxalate. J. Water, Air, Soil Pollut.

  5. Characteristic of Carbon Nanotubes Modified with Cobalt, Copper and Bromine

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2014-06-01

    Full Text Available W pracy przedstawiono wyniki badań nanorurek węglowych w stanie surowym, po oczyszczeniu jak również po modyfikacji. Zostały przyłączone grupy funkcyjne oraz nanocząstki metali, pochodzące od siarczanu kobaltu, octanu miedzi i mieszaniny bromowodoru z bromem. Dla takich nanorurek przeprowadzono badania powierzchni na mikroskopie sił atomowych (AFM, badania rentgenograficzne (analiza składu fazowego, określenie wielkości krystalitów oraz badania spektroskopowe Raniana.

  6. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  7. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  8. Iron, transferrin and myelinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5{sup '} and 3{sup '} untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  9. Iron, transferrin and myelinogenesis

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F.

    2003-01-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport

  10. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  11. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  12. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  13. COPPER LEACHING FROM WASTE ELECTRIC CABLES BY BIOHYDROMETALLURGY

    OpenAIRE

    Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan; Léonard, Grégoire

    2015-01-01

    This study examines the leaching of copper from waste electric cables by chemical leaching and leaching catalysed by Acidithiobacillus ferrooxidans in terms of leaching kinetics and reagents consumption. Operational parameters such as the nature of the oxidant (Fe3+, O2), the initial ferric iron concentration (0-10 g/L) and the temperature (21-50°C) were identified to have an important influence on the degree of copper solubilisation. At optimal process conditions, copper extraction above 90%...

  14. How Will Copper Contamination Constrain Future Global Steel Recycling?

    OpenAIRE

    Daehn, Katrin; Cabrera Serrenho, Andre; Allwood, Julian Mark

    2017-01-01

    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flow...

  15. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  16. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.

    Science.gov (United States)

    Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S

    1997-01-01

    The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.

  17. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  18. Recovery of cobalt and lithium from spent Li-ion batteries

    International Nuclear Information System (INIS)

    Busnardo, Natalia Giovanini; Paulino, Jessica Frontino; Afonso, Julio Carlos

    2007-01-01

    The 'active mass' (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 deg C) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the 'active mass' was treated with potassium hydrogen sulfate (500 deg C) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the 'active mass'. (author)

  19. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    Science.gov (United States)

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  20. Cobalt production in RAPS-1

    International Nuclear Information System (INIS)

    Krishnan, P.D.; Purandare, H.D.

    1978-01-01

    At present in RAPS-1 radioisotope Co 60 is produced by irradiating Co 59 in the adjusters which perform the function of regulation of reactivity, power and xenon override. But the manrem expenditure of the crew handling the charge and discharge of the adjusters is going to be prohibitively high. It is therefore proposed to irradiate Co 59 in the fuel channel positions. The physics optimisation study for such irradiation is presented. The burnup penalty and loss of power are estimated to produce the required quantity of Co 60 after optimising the number of cobalt pencils in a bundle and the positions of the cobalt producing channels in the reactor core. (author)

  1. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  2. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  3. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  4. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  5. The cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Jigang, A.; Liye, Z.; Yisi, L.; Haifeng, W.; Zhifang, W.; Liqiang, W.; Yuanshi, Z.; Xincheng, X.; Furong, L.; Baozeng, G.; Chunfa, S.

    1997-01-01

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  6. Cobalt 60 commercial irradiation facilities

    International Nuclear Information System (INIS)

    West, G.

    1985-01-01

    The advantage of using cobalt 60 for ionizing treatment is that it has excellent penetration. Gamma plants are also very efficient, in as much as there is very little mechanical or electrical equipment in a gamma irradiation facility. The average efficiency of a gamma plant is usually around 95% of all available processing time

  7. NIVELES SÉRICOS DE MAGNESIO, HIERRO Y COBRE EN POBLACIÓN DE ADULTOS DE CIUDAD BOLÍVAR, ESTADO BOLÍVAR, VENEZUELA I SERUM LEVELS OF MAGNESIUM , IRON AND COPPER IN ADULT POPULATION FROM CIUDAD BOLIVAR, BOLIVAR STATE, VENEZUELA

    Directory of Open Access Journals (Sweden)

    María Caride

    2014-02-01

    Full Text Available Determination of bioelements concentrations in serum are considered very important, since they allow to establish reference levels that can be used to detect essential elements deficiency or poisoning by their excess. The aim of this study was to identify the serum levels of magnesium, iron and copper in a population of apparently healthy adults, residents of an urban area of Ciudad Bolivar, Bolivar State, The sample consisted of 57 individuals (28 men and 29 women that were not occupationally exposed residents in Ciudad Bolivar, aged between 25 and 60 years. Bioelements were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES after acid digestion of serum samples. The average concentration values (± SD of magnesium, iron and copper obtained were, respectively, 22 ± 3 mg.L-1, 1.1 ± 0.2 mg.L-1 y 1.0 ± 0.2 mg.L-1. Regarding the studied bioelement levels, only magnesium levels of men were significantly higher (p < 0.05 than the levels of women. The mean concentrations of bioelements were within ranges of reference values reported in the literature for healthy people, but significantly different (p < 0,05 to those from Merida, another region from Venezuela, and a possible consequence of changes in eating habits and environment conditions among these two Venezuelan regions.

  8. Study of the point defects formed in cobalt by electron bombardment; Etude des defauts ponctuels crees par bombardement electronique dans le cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Sulpice, G [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    A study of the point defects formed in cobalt by electron bombardment is presented. The results are compared with those previously obtained for two other ferromagnetic metals of different structure, iron and nickel. In the first part we give a review of the literature concerning the creation of point defects, their contribution to resistivity and their annihilation mode in the three structure types. We then describe the experimental techniques adapted, in particular the study of the resistivity increase during a linear temperature rise. Our investigations concern the following, essential points : the observation of the successive annihilation stages of the point defects formed in pure cobalt, a study of the variations with respect to the doses and energy of the incident particles, and the determination of the annealing kinetics and the corresponding activation energies. The results are finally compared with the various models of point defect annihilation proposed for other metals: none of these interpretations is in perfect agreement with our results. In the case of cobalt we are thus led to modify the model proposed by our laboratory for iron an nickel. The difference between these three metals is explained by the anisotropic character of the cobalt matrix. (author) [French] Nous presentons une etude des defauts ponctuels crees par bombardement electronique dans le cobalt et comparons nos resultats a ceux obtenus precedemment dans deux autres metaux ferromagnetiques de structure differente, le fer et le nickel. Dans une premiere partie nous faisons une mise au point bibliographique comparee sur la creation des defauts, leur contribution a la resistivite et leur mode d'annihilation dans les trois types de structure. Nous decrivons ensuite les techniques experimentales mises au point, en particulier l'etude du revenu de la resistivite au cours d'une montee lineaire de temperature. Au cours de ce travail, nous avons mis en evidence les stades successifs d

  9. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  10. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  11. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  12. Study of the point defects formed in cobalt by electron bombardment

    International Nuclear Information System (INIS)

    Sulpice, G.

    1968-12-01

    A study of the point defects formed in cobalt by electron bombardment is presented. The results are compared with those previously obtained for two other ferromagnetic metals of different structure, iron and nickel. In the first part we give a review of the literature concerning the creation of point defects, their contribution to resistivity and their annihilation mode in the three structure types. We then describe the experimental techniques adapted, in particular the study of the resistivity increase during a linear temperature rise. Our investigations concern the following, essential points : the observation of the successive annihilation stages of the point defects formed in pure cobalt, a study of the variations with respect to the doses and energy of the incident particles, and the determination of the annealing kinetics and the corresponding activation energies. The results are finally compared with the various models of point defect annihilation proposed for other metals: none of these interpretations is in perfect agreement with our results. In the case of cobalt we are thus led to modify the model proposed by our laboratory for iron an nickel. The difference between these three metals is explained by the anisotropic character of the cobalt matrix. (author) [fr

  13. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mec