WorldWideScience

Sample records for cobalt alloy surfaces

  1. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  2. Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.

    Science.gov (United States)

    Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira

    2018-03-24

    Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.

  3. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Balouiri, Mounyr, E-mail: b.mounyr@gmail.com [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Bouhdid, Samira [Faculté des Sciences de Tétouan, Université Abdelmalek Essaadi, Avenue de Sebta, Mhannech II, 93002 Tétouan (Morocco); Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Ibnsouda, Saad Koraichi [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Cité de l' innovation, Université Sidi Mohamed Ben Abdellah, BP 2626, 30007 Fez (Morocco); Harki, El Houssaine [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco)

    2017-02-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  4. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    International Nuclear Information System (INIS)

    Balouiri, Mounyr; Bouhdid, Samira; Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar; Ibnsouda, Saad Koraichi; Harki, El Houssaine

    2017-01-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  5. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  6. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  7. Derivative spectrophotometry of cobalt alloys

    International Nuclear Information System (INIS)

    Spitsyn, P.K.

    1985-01-01

    The method of derivative spectrophotometry is briefly described, and derivative absorption spectra are presented for samarium, cobalt, and commercial Sm-Co alloys. It is shown that the use of derivative spectrophotometry not only improves the accuracy and selectivity of element determinations but also simplifies the analysis of alloys. Results of a statistical evaluation of the metrological characteristics of the analytical procedure described here are presented. 8 references

  8. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  9. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  10. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    Alloys 20. ABSTRACT (Continue on revet -se tside lf necessary and identify by block number) ~ lThe sodium sulfate-induced hot corrosion of cobalt and...Figures 12 and 13. The Na2 SO 4 was observed to form puddles on the oxide-covered specimen surface. An oxide slag was usually suspended in the... slag (black arrows) were suspended (30 sees at 1000°C in air). b) After washing the Na2SO 4 from the specimen, the exposed oxide surface was highly

  11. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  12. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    Science.gov (United States)

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  13. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  14. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  15. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  16. Hot corrosion of low cobalt alloys

    Science.gov (United States)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  17. Synthesis of cobalt alloy through smelting method and its characterization as prosthesis bone implant

    International Nuclear Information System (INIS)

    Aminatun,; Putri, N.S Efinda; Indriani, Arista; Himawati, Umi; Hikmawati, Dyah; Suhariningsih

    2014-01-01

    Cobalt-based alloys are widely used as total hip and knee replacements because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility. In this work, cobalt alloys with variation of Cr (28.5; 30; 31.5; 33, and 34.5% wt) have been synthesized by smelting method began with the process of compaction, followed by smelting process using Tri Arc Melting Furnace at 200A. Continued by homogenization process at recrystallization temperature (1250° C) for 3 hours to allow the atoms diffuses and transform into γ phase. The next process is rolling process which is accompanied by heating at 1200° C for ± 15 minutes and followed by quenching. This process is repeated until the obtained thickness of ± 1 mm. The evaluated material properties included microstructure, surface morphology, and hardness value. It was shown that microstructure of cobalt alloys with variation of Cr is dominant by γ phase, thus making the entire cobalt alloys have high hardness. It was also shown from the surface morphology of entire cobalt alloys sample indicated the whole process of synthesis that had good solubility were at flat surface area. Hardness value test showed all of cobalt alloys sample had high hardness, just variation of 33% Cr be in the range of ASTMF75, it were 345,24 VHN which is potential to be applied as an implant prosthesis

  18. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  19. Tribological research of cobalt alloys used as biomaterials

    Directory of Open Access Journals (Sweden)

    Robert Karpiński

    2015-12-01

    Full Text Available This study provides information about the cobalt alloys used in dentistry and medicine. The work includes a review of the literature describing the general properties of cobalt alloys. In addition it describes the impact of the manufacturing conditions and alloy additives used , on the structure and mechanical properties of these alloys. The research methodology and the results obtained has been presented in the study. Two cobalt-based alloys Co-CrMo-W and Co-Cr-Ni-Mo were selected for the tests. The first one was prepared with the use of casting technique whereas the second was obtained due to plastic forming. An analysis of the chemical composition and in vitro tribological tests with the use of tribotester of "ball-on-disc" type was conducted. Comparative tribological characteristics of these alloys has been presented.

  20. Tungsen--nickel--cobalt alloy and method of producing same

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Riley, R.E.

    1977-01-01

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing this tungsten--nickel--cobalt alloy is further described and comprises coating the tungsten particles with a nickel--cobalt alloy, pressing the coated particles into a compact shape, heating the compact in hydrogen to a temperature in the range of 1400 0 C and holding at this elevated temperature for a period of about 2 hours, increasing this elevated temperature to about 1500 0 C and holding for 1 hour at this temperature, cooling to about 1200 0 C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1 / 2 hour, and cooling the resulting alloy to room temperature in this argon atmosphere

  1. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  2. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  3. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  4. Brightness coatings of zinc-cobalt alloys by electrolytic way

    International Nuclear Information System (INIS)

    Julve, E.

    1993-01-01

    Zinc-cobalt alloys provide corrosion resistance for the ferrous based metals. An acidic electrolyte for zinc-cobalt electrodeposition is examined in the present work. The effects of variations in electrolyte composition, in electrolyte temperature, pH and agitation on electrodeposit composition have been studied, as well as the current density influence. It was found that the following electrolyte gave the optimum results: 79 g.1''-1 ZnCl 2 , 15.3 g.1''-1 CoCl 2 .6H 2 O, 160 g.1''-1 KCl, 25 g.1''-1 H 3 BO 3 and 5-10 cm''3.1''-1 of an organic additive (caffeine, coumarin and sodium lauryl-sulphonate). The operating conditions were: pH=5,6 temperature: 30 degree centigree, current density: 0,025-0,035 A. cm''2, anode: pure zinc, agitation: slowly with air and filtration: continuous. The throwing power and cathode current efficiency of the electrolyte were also studied. This electrolyte yielded zinc-cobalt alloys white and lustrous and had a cobalt content of 0,5-0,8% (Author) 3 refs. 5 fig

  5. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  6. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  7. Discontinuous precipitation in cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Zieba, P.; Cliff, G.; Lorimer, G.W.

    1997-01-01

    Discontinuous precipitation in a Co32 wt% W alloy aged in the temperature range from 875 K to 1025 K has been investigated. Philips EM 430 STEM has been used to characterize the microstructure and to measure the composition profiles across individual lamellae of ε Co and Co 3 W phases in partially transformed specimens. Two kinds of cellular precipitates have been found in the alloy. The initial transformation product, identified as primary lamellae with spacing of a few nanometers is replaced during prolonged ageing by secondary lamellae with a much larger interlamellar spacing, typically a few tens of nm. Line scans across cell boundaries of the primary lamellae revealed that, just behind the advancing cell boundary, the solute content is far from the equilibrium state. This solute excess within the cells is quickly removed at the ageing temperature. Calculations show that the diffusion process was too rapid to be identified as ordinary volume diffusion. Investigation of the kinetics showed that discontinuous precipitation is controlled by diffusion processes at the advancing cell boundary. This proposal has been confirmed by STEM analysis of tungsten profiles in the depleted ε Co lamellae

  8. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  9. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  10. Substitution of cobalt alloying in PWR primary circuit gate valves

    International Nuclear Information System (INIS)

    Cachon, L.; Sudreau, F.; Brunel, L.

    1995-01-01

    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  11. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    Science.gov (United States)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  12. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  13. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  14. Preparation of rare earth-cobalt magnet alloy by reduction-diffusion process

    International Nuclear Information System (INIS)

    Krishnan, T.S.

    1980-01-01

    Preparation of rare earth-cobalt alloys by reduction-diffusion (R-D) process is described. The process essentially involves mixing of the rare earth oxide and cobalt/cobalt oxide powders in proper proportion and high temperature reduction of the charge in hydrogen atmosphere, followed by aqueous leaching of the reduced mass to yield the alloy powder. Comparison is made of the magnetic properties of the R-D powder with those of the powder prepared by the direct melting (DM) route and it is observed from the reported values for SmCo 5 that the energy product of the R-D powder (approximately 22 MGOe) is only marginally lower than that of the directly melted alloy (approximately 25 MGOe). The paper also includes the results of studies carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of misch metal-cobalt alloy by the R-D process. (auth.)

  15. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  16. Thermomagnetic method to determine cobalt content in solid WC-Co alloys

    International Nuclear Information System (INIS)

    Tumanov, V.I.; Loshakov, A.L.; Korchakova, E.A.

    1980-01-01

    A thermomagnetic method of cobalt amount determination in tungsten solid alloys is suggested. The method consists in the following: a sample of solid alloy is placed in a magnetic field sufficient to achieve technical saturation (not less than 10 kOe), and specific magnetization of saturation of the alloy σ is determined, then the sample is heated and according to the curves of magnetic permeability dependence on the temperature the Curie point of the alloy THETA is determined and cobalt amount is calculated by the formula qsub(Co)=σ100/(kTHETA+b). The analysis duration is approximately 30 min. Comparative data of cobalt amount determination in solid alloys WC-Co using thermonagnetic and potentiometric methods are presented. Results obtained by thermomagnetic and chemical method are in good agreement. Efficiency of the thermomagnetic method is much higher

  17. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  18. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  19. Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kai Kerber

    2012-12-01

    Full Text Available In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys’ mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

  20. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  1. Investigations of the high-temperature corrosion of cobalt and cobalt alloys using radioactive isotopes

    International Nuclear Information System (INIS)

    Winterhager, H.; Krug, H.P.; Widmayer, H.

    1977-01-01

    High-temperature oxidation tests with Co, Co-Fe and Co-Fe-Cr alloys have been made by means of the S 35 method and by measuring the thickness of the oxidation coating. In any case, several different coatings formed by oxidation were found and described generally. The compact surface consists of sulfides of the pentlandite-type; indirection to the metal sore there follow several heterogeneous layers. The measured activity-distribution excludes any lattice-diffusion sulfur defects in the scale-coating enable the oxidation to permeate to the metal core. (orig./IHOE) [de

  2. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  3. Microstructure And Functional Properties Of Prosthetic Cobalt Alloys CoCrW

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2015-09-01

    Full Text Available The material subject to investigation was two commercial alloys of cobalt CoCrW (No. 27 and 28 used in prosthodontics. The scope of research included performing an analysis of microstructure and functional properties (microhardness, wear resistance and corrosion resistance, as well as dilatometric tests. The examined alloys were characterized by diverse properties, which was considerably influenced by the morphology of precipitates in these materials. Alloy No. 27 has a higher corrosion resistance, whereas alloy No. 28 shows higher microhardness, better wear resistance and higher coefficient of linear expansion. Lower value of the expansion coefficient indicates less probability of initiation of a crack in the facing ceramic material.

  4. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    Science.gov (United States)

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  5. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  6. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.

    Science.gov (United States)

    Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan

    2018-02-01

    Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.

  7. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys.

    Science.gov (United States)

    Chen, Hao; Sago, Alan; West, Shari; Farina, Jeff; Eckert, John; Broadley, Mark

    2011-01-01

    We present a comparative analysis between biocompatibility test results of wrought and Metal Injection Molded (MIM) ASTM F562-02 UNS R30035 (MP35N) and F1537 UNS R31538 (CCM) alloy samples that have undergone the same generic orthopedic implant's mechanical, chemical surface pre-treatment, and a designed pre-testing sample preparation method. Because the biocompatibility properties resulting from this new MIM cobalt alloy process are not well understood, we conducted tests to evaluate cytotoxicity (in vitro), hemolysis (in vitro), toxicity effects (in vivo), tissue irritation level (in vivo), and pyrogenicity count (in vitro) on such samples. We show that our developed MIM MP35N and CCM materials and treatment processes are biocompatible, and that both the MIM and wrought samples, although somewhat different in microstructure and surface, do not show significant differences in biocompatibility.

  8. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy

    International Nuclear Information System (INIS)

    Mayer, E.

    1965-10-01

    We describe experiments along which has been studied the anisotropy of γ radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV γ radiation was measured in function of the sample temperature, using as thermometer the anisotropy of γ radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 ± 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo 5 ). The field at the cobalt in NdCo 5 has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds 5 ) [fr

  9. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  10. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.

    Science.gov (United States)

    Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S

    1997-01-01

    The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.

  11. Incentives and opportunities for reducing the cobalt content in reactor core components

    International Nuclear Information System (INIS)

    Ocken, H.

    1985-01-01

    Cobalt in core components contributes to radiation field buildup on out-of-core surfaces. Core components containing cobalt-base alloys and cobalt as an impurity are identified. The use of cobalt-free wear-resistant alloys and construction materials with lower impurity levels of cobalt is disused. It is argued that such measures are cost effective. Lower radiation fields and disposal costs will offset higher raw material costs. Component performance will not be affected. (author)

  12. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.

    Science.gov (United States)

    Zeng, Li; Xiang, Nan; Wei, Bin

    2014-11-01

    A cobalt-chromium-molybdenum alloy fabricated by selective laser melting is a promising material; however, there are concerns about the change in its corrosion behavior. The purpose of this study was to evaluate the changes in corrosion behavior of a cobalt-chromium-molybdenum alloy fabricated by the selective laser melting technique before and after ceramic firing, with traditional processing of cobalt-chromium-molybdenum alloy serving as a control. Two groups of specimens were designated as group selective laser melting and group traditional. For each group, 20 specimens with a cylindrical shape were prepared and divided into 4 cells: selective laser melting as-cast, selective laser melting fired in pH 5.0 and 2.5, traditional as-cast, and traditional fired in pH 5.0 and 2.5. Specimens were prepared with a selective laser melting system for a selective laser melting alloy and the conventional lost wax technique for traditional cast alloy. After all specimen surfaces had been wet ground with silicon carbide paper (1200 grit), each group of 10 specimens was put through a series of ceramic firing cycles. Microstructure, Vickers microhardness, surface composition, oxide film thickness, and corrosion behavior were examined for specimens before and after ceramic firing. Three-way ANOVA was used to evaluate the effect of porcelain firing and pH values on the corrosion behavior of the 2 alloys (α=.05). Student t tests were used to compare the Vickers hardness. Although porcelain firing changed the microstructure, microhardness, and x-ray photoelectron spectroscopy results, it showed no significant influence on the corrosion behavior of the selective laser melting alloy and traditional cast alloy (P>.05). No statistically significant influence was found on the corrosion behavior of the 2 alloys in different pH value solutions (P>.05). The porcelain firing process had no significant influence on the corrosion resistance results of the 2 alloys. Compared with traditional

  13. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  14. Standard specification for cobalt-chromium-nickel-molybdenum-tungsten alloy (UNS R31233) plate, sheet and strip. ASTM standard

    International Nuclear Information System (INIS)

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 818-91. Last previous edition was B 818-93

  15. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  16. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  17. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  18. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  19. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  20. The influence of x-rays radiation on the kinetic electrocrystallization of nickel and cobalt alloys

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Val'ko, N.G.; Moroz, N.I.; Vorontsov, A.S.; Vojna, V.V.

    2009-01-01

    In the work research kinetic electrocrystallization of nickel and cobalt coatings of coverings from sulfate electrolyte under the influence of x-ray radiation. It has been revealed that under the influence of radiation the thickness coatings alloy and the alloy exit on a current increases in comparison with control samples. It is caused by increase in streams diffusion ions of restored metal to cathodes and formation intermediate Co xN i 1-1 in irradiated electrolytes. Thus, on the above stated processes essential influence is rendered by length of a wave of operating radiation. (authors)

  1. On-surface manipulation of atom substitution between cobalt phthalocyanine and the Cu(111) substrate

    DEFF Research Database (Denmark)

    Shen, Kongchao; Narsu, Bai; Ji, Gengwu

    2017-01-01

    On-surface fabrication of controllable nanostructures is an appealing topic in the field of molecular electronics. Herein, the adsorption of cobalt phthalocyanine (CoPc) on a Cu(111) surface is investigated utilizing a combination of photoelectron spectroscopy (PES) and density functional theory ...... state environment may offer an encouraging approach towards the artificial engineering of organometallic nanostructures and related properties for surface catalysts, molecular electronics and so on....... and thermal annealing, and the tendency to form Co–Cu alloy at the interface. While CoPc has been successfully utilized in electrocatalysts for fuel cell applications and CuPc is commonly used as a leading material in organic solar cells, this report of interface transmetalation from CoPc to CuPc in a solid...

  2. [Comparison of the clinical effects of selective laser melting deposition basal crowns and cobalt chromium alloy base crowns].

    Science.gov (United States)

    Li, Jing-min; Wang, Wei-qian; Ma, Jing-yuan

    2014-06-01

    To evaluate the clinical effects of selective laser melting (SLM) deposition basal crowns and cobalt chromium alloy casting base crowns. One hundred and sixty eight patients treated with either SLM deposition basal crowns (110 teeth) or cobalt chromium alloy casting basal crowns (110 teeth) were followed-up for 1 month, 6 months, 12 months and 24 months. The revised standard of American Public Health Association was used to evaluate the clinical effect of restoration, including the color of porcelain crowns, gingival inflammation, gingival margin discoloration, and crack or fracture. Data analysis was conducted with SPSS 20 software package for Student's t test and Chi-square test. Six cases were lost to follow-up. The patients who were treated with SLM deposition basal crowns (104 teeth) and cobalt chromium alloy casting base crowns (101 teeth) completed the study. Patients were more satisfied with SLM deposition cobalt chromium alloy porcelain crowns. There was 1 prosthesis with poor marginal fit after 24 months of restoration in SLM crowns. There were 6 prostheses with edge coloring and 8 with poor marginal fit in cobalt chromium alloy casting base crowns, which was significantly different between the 2 groups(P<0.05). The SLM deposition copings results in smaller edge coloring and better marginal fit than those of cobalt-chrome copings. Patients are pleased with short-term clinical results.

  3. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  4. Synthesis and characterization of palladium-cobalt alloy for new medical micro-devices

    Science.gov (United States)

    Kafrouni, Lina

    According to Canadian Cancer Statistics, it is estimated that 196,900 Canadians will develop cancer and 78,000 will die of cancer in 2015. Given that tumor cells are more sensitive to a temperature increase than healthy ones, this property can be used in vivo to destroy the cancerous cells by elevation of body temperature, otherwise known as hyperthermia. Magnetic hyperthermia is a promising technique for cancer treatment because of ease in targeting the cancerous cells using magnetic nanoparticles (MNPs) and hence having fewer side effects than chemotherapy and radiotherapy. Despite the use of magnetic hyperthermia to treat cancer for thousands of years, the challenge of only heating malignant cells remains daunting. Thus, oncologists often use the heat treatment in combination with radiotherapy or chemotherapy or both. The combined approach results in eliminating many cancer cells in addition to making the resistant cancer cells more vulnerable to other treatments. To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic particles for selective uptake by cancerous cells and stability as well as magnetic properties for high heating capacity (> 1000 W/g) must be overcome. The ultimate objective of this thesis is to synthesize an excellent candidate for a powerful magnetic hyperthermia. Due to rapid advances in nanotechnology, a synthesis method of nanoparticles (NPs) with the ability to rigorously control the structure and morphology, such as size, shape and crystallinity, is needed. Electrodeposition is a versatile method for the synthesis of metal NPs directly and selectively onto conductive substrates, simply by regulating applied current or voltage. Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown that the electrodeposition technique is of great utility in the fabrication of nanocrystalline palladium-cobalt (PdCo) alloys. The primary goal of this project is to synthesize

  5. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  6. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    Science.gov (United States)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  7. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  8. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    Science.gov (United States)

    Tulga, Ayca

    2018-04-01

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Mass-selected iron-cobalt alloy clusters. Correlation of magnetic and structural properties; Massenselektierte Eisen-Kobalt-Legierungscluster. Korrelation magnetischer und struktureller Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Furkan

    2008-10-13

    In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)

  10. Trunnion Failure of the Recalled Low Friction Ion Treatment Cobalt Chromium Alloy Femoral Head.

    Science.gov (United States)

    Urish, Kenneth L; Hamlin, Brian R; Plakseychuk, Anton Y; Levison, Timothy J; Higgs, Genymphas B; Kurtz, Steven M; DiGioia, Anthony M

    2017-09-01

    Gross trunnion failure (GTF) is a rare complication in total hip arthroplasty (THA) reported across a range of manufacturers. Specific lots of the Stryker low friction ion treatment (LFIT) anatomic cobalt chromium alloy (CoCr) V40 femoral head were recalled in August 2016. In part, the recall was based out of concerns for disassociation of the femoral head from the stem and GTF. We report on 28 patients (30 implants) with either GTF (n = 18) or head-neck taper corrosion (n = 12) of the LFIT CoCr femoral head and the Accolade titanium-molybdenum-zirconium-iron alloy femoral stems. All these cases were associated with adverse local tissue reactions requiring revision of the THA. In our series, a conservative estimate of the incidence of failure was 4.7% (n = 636 total implanted) at 8.0 ± 1.4 years from the index procedure. Failures were associated with a high-offset 127° femoral stem neck angle and increased neck lengths; 43.3% (13 of 30) of the observed failures included implant sizes outside the voluntary recall (27.8% [5 of 18] of the GTF and 75.0% [8 of 12] of the taper corrosion cases). Serum cobalt and chromium levels were elevated (cobalt: 8.4 ± 7.0 μg/mL; chromium: 3.4 ± 3.3 μ/L; cobalt/chromium ratio: 3.7). The metal artifact reduction sequence magnetic resonance imaging demonstrated large cystic fluid collections typical with adverse local tissue reactions. During revision, a pseudotumor was observed in all cases. Pathology suggested a chronic inflammatory response. Impending GTF could be diagnosed based on aspiration of black synovial fluid and an oblique femoral head as compared with the neck taper on radiographs. In our series of the recalled LFIT CoCr femoral head, the risk of impending GTF or head-neck taper corrosion should be considered as a potential diagnosis in a painful LFIT femoral head and Accolade titanium-molybdenum-zirconium-iron alloy THA with unknown etiology. Almost half of the failures we observed included sizes outside of the

  11. Magnetic properties of exchange-coupled trilayers of amorphous rare-earth-cobalt alloys

    International Nuclear Information System (INIS)

    Wuechner, S.; Toussaint, J.C.; Voiron, J.

    1997-01-01

    From amorphous thin films from alloys of rare earths (Gd, Sm), yttrium or zirconium with cobalt we have prepared trilayers with very clean interfaces appropriate for the study of magnetic coupling. The sandwiches were typically Y-Co/Gd-Co/Y-Co and Sm-Co/X/Sm-Co ' (X=Gd-Co, Co-Zr, Co). The three individual layers are coupled magnetically by exchange interactions between cobalt moments throughout the entire sample. This coupling associated with the specific properties of the given alloy (magnetic moment, anisotropy, coercivity) leads to ferrimagnetic or ferromagnetic structures of the magnetization of adjacent layers and to novel magnetization processes. For systems consisting of magnetically hard external layers with different coercivities and a soft central layer (Sm-Co/X/Sm-Co ' , X=Gd-Co, Co-Zr), the influence of the central layer close-quote s thickness and type of the material on coupling and magnetization processes have been studied quantitatively. Numerical simulations using a one-dimensional model for describing the magnetization processes observed in sandwich systems fit the magnetization curves of these model systems particularly well. copyright 1997 The American Physical Society

  12. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    Science.gov (United States)

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  13. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  14. Electrocatalysis on bimetallic and alloy surfaces

    NARCIS (Netherlands)

    Koper, M.T.M.

    2004-01-01

    Bimetallic surfaces and alloys are well known to have unique catalytic properties for many important chemical transformations [1]. In electrocatalysis, bimetallic and alloy catalysts have been a particularly active area of research in relation to low-temperature fuel cells [2]. On the anode side,

  15. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2003-01-01

    Iron–cobalt alloys supported on carbon were investigated as ammonia synthesis catalysts. Barium was found to have a promoting effect for Fe with an optimum atomic ratio Ba/Fe of 0.35. At this Ba loading, a local maximum for the NH3 synthesis activity was found at 4 wt% Co by varying the Fe/Co ratio....... Samples containing only Co and no Fe, however, yielded by far the most active catalysts (7.0 μmol (NH3) g−1 s−1, 673 K, 10 bar). Barium was a very efficient promoter for Co, increasing the NH3 synthesis activity by more than two orders of magnitude compared to the unpromoted Co samples, while...

  16. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  17. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  18. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  19. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  20. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  1. General aspects of surface alloy formation

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Engstfeld, Albert K.; Roetter, Ralf T.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Berko, Andras

    2010-07-01

    Surface confined alloys are excellent model systems for studies of structure-property relationships of bimetallic surfaces. They are formed by deposition of a guest metal B onto a substrate A, followed by annealing to a temperature, where place exchange between adatoms and atoms from the underlying surface layer becomes possible and diffusion into the bulk is sufficiently slow. We exemplarily confirmed by scanning tunneling microscopy and Auger electron spectroscopy for PtRu/Ru(0001), PdRu/Ru(0001), AuPt/Pt(111), AgPt/Pt(111), and AgPd/Pd(111), surface alloys are obtained for systems where metal B has a negative surface segregation energy within metal A. By exchanging A and B, however, AB surface alloys are most likely overgrown by metal B, which we demonstrate for RuPt/Pt(111) in comparison to PtRu/Ru(0001).

  2. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  3. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  4. Bimetallic nickel-cobalt nanosized layers supported on polar ZnO surfaces: metal-support interaction and alloy effects studied by synchrotron radiation X-ray photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Law, Y.T.; Skála, T.; Pis, I.; Nehasil, V.; Vondráček, Martin; Zafeiratos, S.

    2012-01-01

    Roč. 116, č. 18 (2012), s. 10048-10056 ISSN 1932-7447 R&D Projects: GA MŠk(CZ) LC06058; GA ČR GD202/09/H041 Institutional support: RVO:68378271 Keywords : mc fuel -cell * hydrogen -production * oxide surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.814, year: 2012

  5. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-12-01

    Full Text Available Ni-based alloy powders with different contents of cobalt (Co have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM, an electron probe microanalyzer (EPMA, X-ray diffraction (XRD, a hardness tester, and a wear tester. The results show that the phases in the cladding layers are mainly γ, M7(C, B3, M23(C, B6, and M2B. With the increase in Co content, the amounts of M7(C, B3, M23(C, B6, and M2B gradually decrease, and the width of the eutectic structure in the cladding layer also gradually decreases. The microhardness decreases but the wear resistance of the cladding layer gradually improves with the increase of Co content. The wear resistance of the NiCo30 cladding layer is 3.6 times that of the NiCo00 cladding layer. With the increase of Co content, the wear mechanism of the cladding layer is changed from abrasive wear to adhesive wear.

  6. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    Science.gov (United States)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  7. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  8. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  9. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    Science.gov (United States)

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical

  10. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  11. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy; Realisation d'un appareil pour des mesures d'orientation nucleaire a basse temperature. Application a l'alliage neodyme-cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-10-01

    We describe experiments along which has been studied the anisotropy of {gamma} radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV {gamma} radiation was measured in function of the sample temperature, using as thermometer the anisotropy of {gamma} radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 {+-} 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo{sub 5}). The field at the cobalt in NdCo{sub 5} has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds < Heff(NdCo{sub 5}) < 220000 oersteds. (author) [French] Nous decrivons des experiences au cours desquelles nous avons etudie l'anisotropie de rayonnements {gamma} emis par des noyaux orientes. Nous avons utilise les grands champs hyperfins agissant sur las noyaux dans les metaux ferromagnetiques pour produire l'alignement a basse temperature. Par irradiation nous avons obtenu quelques noyaux de cobalt 60 dans nos echantillons qui furent ensuite refroidis a 0,01 K. Le degre d'anisotropie du rayonnement {gamma} de 1,33 MeV fut mesure en fonction de la temperature de l'echantillon en utilisant l'anisotropie du rayonnement {gamma} de noyaux de cobalt 60 dans un monocristal de cobalt metallique utilise comme thermometre. Le cobalt 60 a ete aligne dans un alliage de cobalt-nickel (40% Ni). Le champ hyperfin au niveau du cobalt a ete mesure par rapport au champ effectif dans le cobalt metallique

  12. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  13. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  14. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    International Nuclear Information System (INIS)

    Abd Malek, N M S; Mohamed, S R; Che Ghani, S A; Wan Harun, W S

    2015-01-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition (paper)

  15. Dental implant suprastructures using cobalt-chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years.

    Science.gov (United States)

    Teigen, Kyrre; Jokstad, Asbjørn

    2012-07-01

    An association between the long-term success and survival of implant-supported prostheses as a function of biomaterial combinations has not been established. The use of cast cobalt-chromium for the suprastructure framework may be an alternative to the conventional approach of using type 3 gold alloys. A retrospective chart audit of all patients who had received implant-supported fixed dental prostheses (FDP) before 1996 was identified in a private practice clinic. Data were recorded for FDPs made from four combinations of alloy frameworks and veneering material, i.e. type 3 gold and cobalt-chromium with ceramic or prefabricated acrylic teeth. The extracted data from the charts were subjected to explorative statistical tests including Kaplan-Meier survival analyses. Patients (n=198) with 270 short and extensive FDPs supported entirely by 1117 implants were identified. The average follow-up observation periods varied between 4 and 220 months, with an average of 120 months. The success and survival, as well as event rates and types of biological and technical complications, were similar for implant-supported FDPs using cobalt-chromium and type 3 gold alloy frameworks veneered with ceramics or prefabricated acrylic teeth. An influence of the suprastructure biomaterial combination on the clinical performance of the individual supporting implants could not be established. Implant-supported FDPs made from type 3 gold or cobalt-chromium frameworks and veneered with ceramic or prefabricated acrylic teeth demonstrate comparable clinical performance. The biomaterial combinations do not appear to influence the success or survival of the individual implants. © 2011 John Wiley & Sons A/S.

  16. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  17. Air-stable compact of cobalt-rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable magnetic products. An organometallic compound which decomposes at a temperature below 500 0 C is mixed with particles of a transition metal-rare earth alloy. The resulting mixture is pressed to form a green body, which is then heated to decompose the organometallic compound to produce a metal vapor that deposits an interconnecting metal coating on the exposed surfaces of the pressed particles. (U.S.)

  18. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  19. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  20. Surface studies of liquid metals and alloys

    International Nuclear Information System (INIS)

    Bastasz, Robert

    2003-01-01

    Liquid metals and alloys have been proposed for use in nuclear fusion reactors to serve as replaceable plasma-facing surfaces that remove particles and heat from reacting plasmas. Several materials are being considered for this purpose including lithium, gallium, and tin as well as some of the alloys made from these elements. In order to better understand the properties of liquid surfaces, the technique of low-energy ion scattering was used to examine the surface composition of several of these materials in vacuum as a function of temperature. Oxygen is found to rapidly segregate to the surface of several metallic liquids. The segregation process can be interpreted using a simple thermodynamic model based on Gibbs theory. In the case of an alloy of Sn and Li, Li also segregates to the liquid surface. This provides a means to produce a surface enriched in Li, which is more plasma compatible than Sn, without the need to handle large quantities of liquid Li. (author)

  1. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  2. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    OpenAIRE

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation ...

  3. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  4. DC electrical, thermal, and spectroscopic properties of various condensation polyimides containing surface cobalt oxide

    Science.gov (United States)

    Rancourt, J. D.; Boggess, R. K.; Horning, L. S.; Taylor, L. T.

    1987-01-01

    Doping polyimides with cobalt ion causes the room temperature direct current electrical resistivity to decrease relative to the polymer alone, the reduction being most pronounced for the air-side of the cobalt modified polyimides. At a constant electrical field, resistivity for the volume, air-side and glass-side modes decreases yet further with an increase in temperature as expected for semiconductors and insulators. X-ray photoelectron spectroscopy indicates the air-side of the cobalt modified polyimides is predominantly Co3O4. The bulk resistivity of the air-side and activation energy of conduction for this surface are comparable to high purity sintered Co3O4. Charging characteristics at room temperature indicate a substantial polymer matrix contribution to both the glass-side and volume mode measurements but a negligible contribution to the air-side electrical properties. Volume electrical resistivity for similar additive levels is reduced by increasing the molecular flexibility of the host polymer.

  5. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  6. Optical studies of cobalt implanted rutile TiO2 (110) surfaces

    International Nuclear Information System (INIS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Mishra, Indrani; Malik, V.K.; Mishra, N.C.; Kanjilal, D.; Varma, Shikha

    2016-01-01

    Highlights: • The present study displays formation of nanostructures after Co implantation on TiO 2 surfaces. • Preferential sputtering leads to the creation of oxygen vacancies on the surface. • A large enhancement in visible light absorbance (nearly 5 times compared to pristine) is observed. • Creation of self-organized nanostructures and Ti 3+ oxygen vacancies promote photoabsorption. • Formation of Co-nanoclusters and Co–Ti–O phase play concerted role in enhancing photo-absorption. - Abstract: Present study investigates the photoabsorption properties of single crystal rutile TiO 2 (110) surfaces after they have been implanted with low fluences of cobalt ions. The surfaces, after implantation, demonstrate fabrication of nanostructures and anisotropic nano-ripple patterns. Creation of oxygen vacancies (Ti 3+ states), development of cobalt nano-clusters as well as band gap modifications have also been observed. Results presented here demonstrate that fabrication of self organized nanostructures, upon implantation, along with the development of oxygen vacancies and ligand field transitions of cobalt ion promote the enhancement of photo-absorbance in both UV (∼2 times) and visible (∼5 times) regimes. These investigations on nanostructured TiO 2 surfaces can be important for photo-catalysis.

  7. Studying the initial stages of film electrodeposition of magnetic cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Rachinskas, V.S.; Orlovskaya, L.V.; Parfenov, V.A.; Yasulajtene, V.V.

    1996-01-01

    Initial stages of magnetic film electrodeposition by recording potentiodynamic polarization and j c ,t-curves, determination of surface structure of electrolytically deposited films by the method of XPS and study of thin coating properties have been considered. It is shown that at initial stage of electrodeposition of magnetic Co-W-films a sharp decrease in cathode process rate and formation of Co(OH) 2 , WO 3 and/or WO 4 2- occur on Cu-cathode surface. Electrodeposition of metallic magnetic Co-W-alloy, consisting of Co, W and containing basic compounds of co-deposited metals, takes place after a certain time period depending on deposition E c . 6 refs.; 3 figs

  8. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  9. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  10. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    Science.gov (United States)

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  11. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  12. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  15. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy.

    Science.gov (United States)

    Gupta, Sharad; Mehta, Aruna S

    2012-01-01

    Remelting previously cast base metal alloy can adversely affect the mechanical properties of the alloy and necessitates addition of new alloy. To study the effect of remelting different combinations of new and used cobalt-chromium (Co-Cr) alloy on its mechanical properties and microstructure. Using induction casting, 24 tensile test specimens were prepared for eight different combinations of new and used Co-Cr alloy. The test specimens were assessed for yield strength and percentage elongation. Microhardness was evaluated using Vickers's hardness tester. The tensile testing was carried out on a 50 kN servo-hydraulic universal testing machine. Microstructure analysis was done using an optical photomicroscope on the fractured samples after acid etching. The mean values (±standard deviation) and coefficient of variation were calculated. Student's 't' test was used for statistical analysis. Statistical significance was assumed at P=.05. The mean yield strength of eight different combination groups were as follows: group A: 849 MPa, group B ₁ : 834 MPa, group B ₂ : 915 MPa, group B ₃ : 897 MPa, group C ₁ : 874 MPa, group C ₂ : 859 MPa, group D ₁ : 845 MPa, and group D ₂ : 834 MPa. The mean percentage elongation for the different groups were as follows: group A: 7%, group B ₁ : 7%, group B ₂ : 8%, group B ₃ : 7%, group C ₁ : 8%, group C ₂ : 7%, group D ₁ : 7%, and group D 2 : 8%. The mean hardness values were as follows: group A: 373 VHN, group B ₁ : 373 VHN, group B ₂ : 346 VHN, group B ₃ : 346 VHN, group C ₁ : 364 VHN, group C ₂ : 343 VHN, group D ₁ : 376 VHN, and group D ₂ : 373 VHN. Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight) of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in

  16. Application of the B.F.S. Method to Metallic Surfaces: Surface Alloys and Alloy Surfaces

    International Nuclear Information System (INIS)

    Bozzolo, Gullermo

    1997-01-01

    These notes introduce the BFS (Bozzolo-Ferrante-Smith) method for alloys, in the framework of what is available today in terms of computationally efficient and physically sound techniques for modeling of atomic systems. The BFS method belongs to the family of semi-empirical methods, which aim to balance scientific rigour with practical applications. The goal is to provide a tool that aids in the process of material analysis and development, supplementing the experimental work which by itself has limitations in terms of time, money, technology and human resources. One of the main advantages of the BFS method, basically tailored to assist in the problem of alloy design, is that it is easily applicable to the analysis of surface structure, with a satisfactory degree of accuracy. In these notes, first the role of semiempirical methods among the available tools for atomistic simulations is reviewed, followed by a description of the BFS method and a simple application in order to understand the operational procedure, and conclude reviewing some of the topics of current interest where techniques such as the BFS method play an important role in furthering the understanding os fundamental issues

  17. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  18. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  19. LASER SURFACE MODIFICATION OF TITANIUM ALLOYS — A REVIEW

    OpenAIRE

    Y. S. TIAN; C. Z. CHEN; D. Y. WANG; T. Q. LEI

    2005-01-01

    Recent developments of laser surface modification of titanium alloys for increasing their corrosion, wear and oxidation resistance are introduced. The effects of laser processing parameters on the resulting surface properties of titanium alloys are reviewed. The problems to be solved and the prospects in the field of laser modification of Ti alloys are discussed. Due to the intrinsic properties, a laser beam can be focused onto the metallic surface to produce a broad range of treatments depen...

  20. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grabias, A., E-mail: agnieszka.grabias@itme.edu.pl [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Kopcewicz, M. [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Latuch, J.; Oleszak, D. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Kowalczyk, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-07-15

    Highlights: • Nanocomposite alloys were formed by annealing of the rapidly quenched alloys. • Magnetically hard L1{sub 0} (Fe,Co)Pt and soft (Fe,Co){sub 2}B or (Fe,Co)B were formed. • Mössbauer spectra revealed Co substitution for Fe in L1{sub 0} FePt, FeB and Fe{sub 2}B phases. • Annealed alloys exhibit hard magnetic properties which depend on phase compositions. • Co addition was found to decrease the magnetization and the energy product. - Abstract: The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} (x = 0–26) and Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} (y = 0–40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840–880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L1{sub 0} tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20}) or (Fe,Co){sub 2}B (for Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15}). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L1{sub 0} phase and in iron borides. The nanocomposite Fe{sub 60−y}Co{sub y

  1. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.Z. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)], E-mail: mzhasan@princeton.edu; Qian, D. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Foo, M.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2007-09-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy ({approx}15 m{sub e} {approx} 3m{sub LDA}) quasiparticles with a negative effective hopping (t{sub eff} < 0). The observed ground state as given by the topology of the Fermi surface is found be very close to a collective charge instability with {radical}(3)x{radical}(3) symmetry. The measured electron dynamic parameters reveal the unusual character of the parent cobaltate class likely due to small and almost isotropic Fermi velocity (v{sub F}(k{sup {yields}}){approx}v{sub F}{approx}0.4{+-}0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements.

  2. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  3. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Qian, D.; Foo, M.; Cava, R.J.

    2007-01-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy (∼15 m e ∼ 3m LDA ) quasiparticles with a negative effective hopping (t eff F (k → )∼v F ∼0.4±0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements

  4. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  5. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...

  6. Removal of carbonaceous deposits from the surface of cobalt-molybdate catalyst via oxidative regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Y.; Furimsky, E.

    1986-10-01

    The oxidative regeneration of cobalt-molybdate catalyst used during the hydrodeoxygenation of a phenol solution and for hydrotreatment of Athabasca bitumen was carried out in a fixed-bed reactor. SO/sub 2/, CO and CO/sub 2/ were analysed as the major products. The surface area of the spent catalysts was the main factor influencing the initial rate of regeneration, i.e. the greater the surface area the higher the initial rate. A mechanism proposed includes 12 reactions which may play an important role in the overall burn-off of hydrotreatment catalysts. 10 refs., 4 figs., 3 tabs.

  7. Research progress on laser surface modification of titanium alloys

    International Nuclear Information System (INIS)

    Tian, Y.S.; Chen, C.Z.; Li, S.T.; Huo, Q.H.

    2005-01-01

    Recent developments on laser surface modification of titanium and its alloys are reviewed. Due to the intrinsic properties of high coherence and directionality, laser beam can be focus onto metallic surface to perform a broad range of treatments such as remelting, alloying and cladding, which are used to improve the wear and corrosion resistance of titanium alloys. In addition, the fabrication of bioactive films on the surface of titanium alloys to improve their biocompatibility can be performed by the method of laser ablation deposition. The effect of some laser processing parameters on the resulting surface properties of titanium alloys is discussed. The problems to be solved and the prospects in the field of laser modification of titanium and its alloys are elucidated

  8. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis

    Energy Technology Data Exchange (ETDEWEB)

    Avila G, A. [Departmento de Ingenieria Electrica, Seccion de Electronica del Estado Solido, CINVESTAV del I.P.N., Av. I.P.N. no. 2508, Ap. Postal 14-740, Mexico D. F., 07360 (Mexico); Barrera C, E. [Departamento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Ap. Postal 55-5340, Mexico, D. F. (Mexico); Huerta A, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2004-05-01

    Cobalt oxide films upon stainless steel substrates were deposited by using the pneumatic spray pyrolisis technique, starting from an inorganic salt (CoNO{sub 3}{center_dot}3H{sub 2}O) dissolved in a water-alcohol mixture. Stainless steel and nickeled stainless steel substrates were used. Absorptance and emittance, for selective surface applications, were evaluated from reflectance measurements in the UV-Vis and infrared ranges. X-ray diffraction, XPS and AFM measurements were done. The predominant cobalt phase is Co{sub 3}O{sub 4}, but also CoO and Co{sub 2}O{sub 3} phases, besides metallic cobalt, were detected. Films upon nickeled steel substrates at 400C exhibit high absorptances (0.86), but also the emittance is high (0.43), yielding a selectivity of 2.0. A similar film on steel substrate reaches only a figure of 0.77 absorptance, but the thermal emittance remains low (0.20), giving a selectivity of 3.85. These films are good prospects for selective solar absorption coatings.

  9. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    Science.gov (United States)

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Constitution, structure and magnetic properties of some rare-earth - cobalt-aluminium alloys

    International Nuclear Information System (INIS)

    Evans, J.; Harris, I.R.

    1982-01-01

    The constitution and structure of the alloys represented by the formulae Cesub(1-x)Alsub(x)Co 5 and Prsub(1-x)Alsub(x)Co 5 (where 0 = 5 produces a mixture of the 1:5 and 2:17 phases based on CeCo 5 and Ce 2 Co 17 ; there are two variations of the 2:17 phase which are isostructural with the hexagonal Th 2 Ni 17 -type and rhombohedral Th 2 Zn 17 -type phases. At the composition Cesub(0.76)Alsub(0.24)Co 5 (4 at % Al) the alloy consists only of the 2:17-type phases and metallographically the alloy is one phase in appearance. Further substitution of Al results in the precipitation of an fcc phase, based on the Co-Al solid solution, in the 2:17 matrix. The crystal structures of the Prsub(1-x)Alsub(x)Co 5 alloys are very similar to those of the equivalent cerium alloys. The metallographic structures of the Pr alloys in the composition range 1 to 3 at % Al show significant differences from the corresponding Ce alloys. Determination of the Curie temperatures of the Rsub(1-x)Alsub(x)Co 5 alloys (R = Ce and Pr) in the composition range 0 = 5 and PrCo 5 phases. (author)

  11. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  12. First principles analysis of hydrogen chemisorption on Pd-Re alloyed overlayers and alloyed surfaces

    DEFF Research Database (Denmark)

    Pallassana, Venkataraman; Neurock, Matthew; Hansen, Lars Bruno

    2000-01-01

    Gradient corrected periodic density functional theory (DFT-GGA) slab calculations were used to examine the chemisorption of atomic hydrogen on various Pd-Re alloyed overlayers and uniformly alloyed surfaces. Adsorption was examined at 33% surface coverage, where atomic hydrogen preferred the thre...

  13. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  14. Surface control alloy substrates and methods of manufacture therefor

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  15. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: comparison between alumina and cobalt-chrome heads.

    Science.gov (United States)

    Chang, Chong Bum; Yoo, Jeong Joon; Song, Won Seok; Kim, Deug Joong; Koo, Kyung-Hoi; Kim, Hee Joong

    2008-04-01

    We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt-chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty.

  16. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  17. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  18. Enhancing Surface Finish of Additively Manufactured Titanium and Cobalt Chrome Elements Using Laser Based Finishing

    Science.gov (United States)

    Gora, Wojciech S.; Tian, Yingtao; Cabo, Aldara Pan; Ardron, Marcus; Maier, Robert R. J.; Prangnell, Philip; Weston, Nicholas J.; Hand, Duncan P.

    Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids). In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated.

  19. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  20. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  1. Mitigation of cesium and cobalt contamination on the surfaces of RAM packages

    International Nuclear Information System (INIS)

    Krumhansl, J.; Bonhomme, F.; McConnell, P.; Kapoor, A.

    2004-01-01

    Techniques for mitigating the adsorption of 137 Cs and 60 Co on metal surfaces (e.g., RAM packages) exposed to contaminated water (e.g., spent-fuel pools) has been developed and experimentally verified. The techniques are also effective in removing some of the 60 Co and 137 Cs that may have been adsorbed on the surfaces after removal from the contaminated water. The principle for the 137 Cs mitigation technique is based upon ion-exchange processes. In contrast, 60 Co contamination primarily resides in minute particles of CRUD that become lodged on cask surfaces. CRUD is an insoluble Fe-Ni-Cr oxide that forms colloidal-sized particles as stainless steels corrode. Because of the similarity between Ni +2 and Co +2 , CRUD is able to scavenge and retain traces of cobalt as it forms. A number of organic compounds have a great specificity for combining with nickel and cobalt. Ongoing research is investigating the effectiveness of chemical complexing agent, EDTA, with regard to its ability to dissolve the host phase (CRUD) thereby liberating the entrained 60Co into a solution where it can be rinsed away

  2. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  3. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  4. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  5. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  6. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  7. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  8. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  9. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  10. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  11. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  12. Effect of stacking fault energy on high-temperature creep parameters of nickel-cobalt alloys

    International Nuclear Information System (INIS)

    Nerodenko, L.M.; Dabizha, E.V.

    1982-01-01

    Results of creep investigation are discussed for two alloys of the Ni-Co system. In terms of the structural creep model an analysis is made for the effect of stacking fault energy on averaged parameters of the dislocation structure: inovable dislocation density subgrain size, activation volume. The rate of steady-state creep is determined by the process of dislocation passing through the subgrain boundaries with activation energy of 171.0 and 211.5 kJ/mol for the Ni-25% Co and Ni-65% Co alloys, respectively

  13. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available with intermetallic phases and metal matrix composites were achieved during laser alloying. Brittle fracture of the SiC particles and transgranular cracking of the intermetallic phases was observed for the laser alloyed samples, while ductile fracture was observed...

  14. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  15. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  16. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    Science.gov (United States)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  17. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  18. Surface reactivity of colloidal corrosion product and alloys in PWR conditions

    International Nuclear Information System (INIS)

    Lefevre, Gregory; Leclercq, Stephanie; Cabanas, Bruna-Martin; Delaunay, Sophie; Mansour, Carine; Berger, Gilles

    2012-09-01

    The corrosion of metallic components of water circuits of Pressurized Water Reactors generates colloidal particles. These particles are transported in the circuits, they sorb dissolved species and they can deposit on alloys in given parts of the circuits. Sorption and deposition generate several technical drawbacks in both primary and secondary circuits. According to the DLVO theory, adhesion between two surfaces is controlled by electrostatic and Van der Waals forces. The latter are always attractive and does not depends on solution chemistry. On the contrary, electrostatic forces are connected to the surface charge and depend strongly on the chemical properties of the solids and on the chemistry of the solution. Depending on the relative charge of the surfaces, these forces are attractive or repulsive and can have a major effect on the deposition behavior of particles. According to the surface complexation theory, the surface charge of metallic oxides results from sorption or desorption of protons, leading to positive or negative surface sites, and thus, strongly depends on the solution pH. Dissolved species can sorb on the surface, depending on the ionic charge of these species and on the surface charge. Thus, the knowledge of the surface charge of corrosion particles and alloys, their affinity towards several ions as protons, nickel, cobalt, sulfate, or borate ions has been shown to be useful to predict the transport of the contamination in the primary circuit, or to understand the accumulation of impurities in the steam generator in the secondary circuit. At room temperature, these data can be easily measured, or found in literature. In PWR conditions (high temperature, high pressure), most of the usual protocols and commercial instruments cannot be used. For several years, collaboration between EDF R and D and CNRS has been developed to get information about the surface reactivity of iron oxides, ferrites, and alloys in such conditions. Some of the results

  19. Overview of surface alloying by ion, electron, and laser beams

    International Nuclear Information System (INIS)

    Rehn, L.E.; Picraux, S.T.; Wiedersich, H.

    1986-01-01

    Surface composition and microstructure play critical roles in determining the usefulness of many technological materials. For example, the mechanical interactions of an alloy with its environment such as friction and wear, chemical effects such as oxidation and corrosion, and even its outward appearance are all controlled by the properties of a very thin layer of material at the surface. For this reason, the properties required at the surface of an alloy for a given application are often different from, and frequently even incompatible with, property requirements for the bulk material. This constraint has spawned a great variety of traditional surface alloying and coating techniques, ranging from the simple application of paints, to considerably more sophisticated electroplating, nitriding, and surface diffusion treatments. In favorable circumstances, surface alloying can be used to independently optimize the surface and bulk properties of a material for a given application. Unfortunately, equilibrium solubility limits and low solid-state diffusivities impose severe restrictions on conventional surface alloying methods, and problems of adhesion frequently plague coating techniques

  20. Theory of surface enrichment in disordered monophasic binary alloys. Numerical computations for Ag-Au alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Boersma, M.A.M.

    1974-01-01

    The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these

  1. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    International Nuclear Information System (INIS)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem

    2015-01-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys

  2. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem, E-mail: haiderw@utpa.edu

    2015-04-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys.

  3. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  4. Phase-oriented surface segregation in an aluminium casting alloy

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Atanacio, Armand; Zhang, Wei; Prince, Kathryn E.; Hyland, Margaret M.; Metson, James B.

    2009-01-01

    There have been many reports of the surface segregation of minor elements, especially Mg, into surface layers and oxide films on the surface of Al alloys. LM6 casting alloy (Al-12%Si) represents a challenging system to examine such segregation as the alloy features a particularly inhomogeneous phase structure. The very low but mobile Mg content (approximately 0.001 wt.%), and the surface segregation of modifiers such as Na, mean the surface composition responds in a complex manner to thermal treatment conditions. X-ray photoelectron spectroscopy (XPS) has been used to determine the distribution of these elements within the oxide film. Further investigation by dynamic secondary ion mass spectrometry (DSIMS) confirmed a strong alignment of segregated Na and Mg into distinct phases of the structure.

  5. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages.

    Science.gov (United States)

    Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K

    2007-09-11

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  6. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco......, crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based...

  7. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  8. The α → ω Transformation in Titanium-Cobalt Alloys under High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Askar R. Kilmametov

    2017-12-01

    Full Text Available The pressure influence on the α → ω transformation in Ti–Co alloys has been studied during high pressure torsion (HPT. The α → ω allotropic transformation takes place at high pressures in titanium, zirconium and hafnium as well as in their alloys. The transition pressure, the ability of high pressure ω-phase to retain after pressure release, and the pressure interval where α and ω phases coexist depend on the conditions of high-pressure treatment. During HPT in Bridgeman anvils, the high pressure is combined with shear strain. The presence of shear strain as well as Co addition to Ti decreases the onset of the α → ω transition from 10.5 GPa (under quasi-hydrostatic conditions to about 3.5 GPa. The portion of ω-phase after HPT at 7 GPa increases in the following sequence: pure Ti → Ti–2 wt % Co → Ti–4 wt % Co → Ti–4 wt % Fe.

  9. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    Science.gov (United States)

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  10. Electrochemical Characterization of Surface Reactions on Biomedical Titanium alloys

    OpenAIRE

    Alkhateeb, Emad Hashim

    2008-01-01

    Titanium and its alloys are successfully used as implant materials for dental, orthopedic and osteosynthesis applications. The processes that take place at the implant tissue interface are important for the acceptance and integration of the implant. This thesis is divided into two parts: the first part deals with surface modification of titanium to improve the osseointegration, and the second part studies metastable pitting of titanium and its alloys. The weakly attached layer of a bone-like ...

  11. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  12. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  13. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  14. Structural relaxation in an amorphous rapidly quenched cobalt-based alloy

    International Nuclear Information System (INIS)

    Fradin, V.; Grynszpan, R.I.; Alves, F.; Houzali, A.; Perron, J.C.

    1995-01-01

    An amorphous melt-spun Co-based alloy (Metglas 2705 MN) is investigated by Doppler Broadening and Positron Lifetime techniques in order to follow the microstructural changes yielded by isochronal annealings before crystallization. The results are correlated with those of Differential Scanning Calorimetry and Coercive Field measurements. The quenched empty spaces underlined by Lifetime measurements are less than one atomic volume in size and migrate without clustering in larger voids. Both Positron Annihilation and Coercive Field investigations suggest that the overall decrease of free volume related to structural relaxation in this amorphous material, proceeds mainly via compositional short-range ordering. These local chemical rearrangements which lead to a partial disorientation of the magnetic moments act as strong pinning points for Bloch Walls. (orig.)

  15. Surface alloying in Sn/Au(111) at elevated temperature

    Science.gov (United States)

    Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy

    2018-04-01

    On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.

  16. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  17. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin

    2007-01-01

    in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I....../II were elevated in liver tissue. The present data do not tell whether kidney and liver are the primary target organs or what possible toxicological effect the different metal ions might have, but they show that metal ions are liberated from CoCrMo alloys that are not subjected to mechanical wear...... and that they accumulate in liver and kidney tissue. That the liberated metal ions affect the tissues is supported by an up-regulation of the detoxifying/pacifying metalloprotein I/II in the liver. Udgivelsesdato: 2007-Dec...

  18. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  19. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  20. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  1. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  2. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  3. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    Science.gov (United States)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  4. Studies on the Optical Properties and Surface Morphology of Cobalt Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Benny Joseph

    2008-01-01

    Full Text Available Thin films of Cobalt Phthalocyanine (CoPc are fabricated at a base pressure of 10-5 m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. The present studies reveal that the optical band gap energies of CoPc thin films are almost same on substrate temperature variation. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM, which show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are needle like, which are interconnected at high substrate temperatures. The optical band gap energy is almost same on substrate temperature variation. Trap energy levels are also observed for these films.

  5. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Vémolová, H.; Šob, Mojmír

    2017-01-01

    Roč. 25, č. 8 (2017), č. článku 085004. ISSN 0965-0393 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : local magnetic-moments * total-energy calculations * augmented-wave method * solute segregation * tilt boundaries * embrittling potency * alloying elements * hcp metals * basis-set * 1st-principles * grain boundary segregation * strengthening/embrittling energy * grain boundary magnetism * ab initio calculations * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.891, year: 2016

  6. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  7. Surface tension of liquid Al-Cu binary alloys.

    OpenAIRE

    Schmitz, Julianna; Brillo, Jürgen; Egry, Ivan; Schmid-Fetzer, Rainer

    2009-01-01

    Surface tension data of liquid Al–Cu binary alloys have been measured contactlessly using the technique of electromagnetic levitation. A digital CMOS-camera (400 fps) recorded image sequences of the oscillating liquid sample and surface tensions were determined from analysis of the frequency spectra. Measurements were performed for samples covering the entire range of composition and precise data were obtained in a broad temperature range. It was found that the surface tensions can ...

  8. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  9. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  10. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  11. The laser surface alloying of the surface layer of the plain carbon steel

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.

    2003-01-01

    The paper describes the microstructure and properties (chemical composition, microhardness and the effect of tribological test of the surface laser alloyed layer with tantalum. Scanning electron microscopy examinations show structure, which consist of martensite and Ta2C carbides. Samples covered with Ta and the carbon containing binder showed after laser alloying higher hardness than in case of using silicon-containing binder. (author)

  12. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  13. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  14. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  15. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  16. Structure and energetics of bimetallic surface confined alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Roetter, Ralf T.; Engstfeld, Albert K.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany); Gross, Axel [Institute for Theoretical Chemistry, Ulm University (Germany)

    2009-07-01

    The atomic distribution in a number of A{sub x}B{sub 1-x}/B type surface alloys was determined by STM imaging with chemical contrast and statistically evaluated. Whereas in the systems Au{sub x}Pt{sub 1-x}/Pt(111), Ag{sub x}Pt{sub 1-x}/Pt(111), and Pd{sub x}Ru{sub 1-x}/Ru(0001) we find preferences for larger homoatomic aggregates, the atom distribution in Pt{sub x}Ru{sub 1-x}/Ru(0001) and Ag{sub x}Pd{sub 1-x}/Pd(111) is very close to a random one[1]. In Ag{sub x}Pd{sub 1-x}/Pd(111), our data show a small tendency towards clustering for x{sub Ag}<0.5, whereas at x{sub Ag}>0.5 this is reversed to a slight preference for heteroatomic neighborhoods. Based on these experimental results, we have derived effective cluster interaction energies for all surface alloys. These allow us to calculate phase diagrams for the surface alloys that we compare to predictions from theoretical work and to the behaviour of the corresponding bulk systems. We also discuss in how far the different atom distributions affect chemical and catalytic properties of the surface alloys.

  17. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  18. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  19. Influence of Chromium-Cobalt-Molybdenum Alloy (ASTM F75) on Bone Ingrowth in an Experimental Animal Model.

    Science.gov (United States)

    Zuchuat, Jésica; Berli, Marcelo; Maldonado, Ysaí; Decco, Oscar

    2017-12-26

    Cr-Co-Mo (ASTM F75) alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days. Bone formation was observed in all of the cases, although the tibiae implanted with the standard membranes reached an augmentation of bone volume that agreed with the density values over the timecourse. In all cases, plasmatic exudate was found under the membrane and in contact with the new bone. Histological analysis indicated the presence of a large number of chondroblasts adjacent to the inner membrane surface in the first stages, and osteoblasts and osteocytes were observed under them. The bone formation was appositional. The Cr-Co-Mo alloy provides a scaffold with an adequate microenvironment for vertical bone volume augmentation, and the physical dimensions and disposition of the membrane itself influence the new bone formation.

  20. Influence of Chromium-Cobalt-Molybdenum Alloy (ASTM F75 on Bone Ingrowth in an Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Jésica Zuchuat

    2017-12-01

    Full Text Available Cr-Co-Mo (ASTM F75 alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days. Bone formation was observed in all of the cases, although the tibiae implanted with the standard membranes reached an augmentation of bone volume that agreed with the density values over the timecourse. In all cases, plasmatic exudate was found under the membrane and in contact with the new bone. Histological analysis indicated the presence of a large number of chondroblasts adjacent to the inner membrane surface in the first stages, and osteoblasts and osteocytes were observed under them. The bone formation was appositional. The Cr-Co-Mo alloy provides a scaffold with an adequate microenvironment for vertical bone volume augmentation, and the physical dimensions and disposition of the membrane itself influence the new bone formation.

  1. Surface modifications of magnesium alloys for biomedical applications.

    Science.gov (United States)

    Yang, Jingxin; Cui, Fuzhai; Lee, In Seop

    2011-07-01

    In recent years, research on magnesium (Mg) alloys had increased significantly for hard tissue replacement and stent application due to their outstanding advantages. Firstly, Mg alloys have mechanical properties similar to bone which avoid stress shielding. Secondly, they are biocompatible essential to the human metabolism as a factor for many enzymes. In addition, main degradation product Mg is an essential trace element for human enzymes. The most important reason is they are perfectly biodegradable in the body fluid. However, extremely high degradation rate, resulting in too rapid loss of mechanical strength in chloride containing environments limits their applications. Engineered artificial biomaterials with appropriate mechanical properties, surface chemistry, and surface topography are in a great demand. As the interaction between the cells and tissues with biomaterials at the tissue--implant interface is a surface phenomenon; surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Therefore, the ability to modify the surface properties while preserve the bulk properties is important, and surface modification to form a hard, biocompatible and corrosion resistant modified layer have always been an interesting topic in biomaterials field. In this article, attempts are made to give an overview of the current research and development status of surface modification technologies of Mg alloys for biomedical materials research. Further, the advantages/disadvantages of the different methods and with regard to the most promising method for Mg alloys are discussed. Finally, the scientific challenges are proposed based on own research and the work of other scientists.

  2. Influence of surface roughness on the corrosion behaviour of magnesium alloy

    International Nuclear Information System (INIS)

    Walter, R.; Kannan, M. Bobby

    2011-01-01

    Research highlights: → Surface roughness of AZ91 magnesium alloy plays a critical role in the passivation behaviour of the alloy. → The passivation behaviour of the alloy influences the pitting tendency. → Increase in surface roughness of AZ91 magnesium alloy increases the pitting tendency of the alloy. -- Abstract: In this study, the influence of surface roughness on the passivation and pitting corrosion behaviour of AZ91 magnesium alloy in chloride-containing environment was examined using electrochemical techniques. Potentiodynamic polarisation and electrochemical impedance spectroscopy tests suggested that the passivation behaviour of the alloy was affected by increasing the surface roughness. Consequently, the corrosion current and the pitting tendency of the alloy also increased with increase in the surface roughness. Scanning electron micrographs of 24 h immersion test samples clearly revealed pitting corrosion in the highest surface roughness (Sa 430) alloy, whereas in the lowest surface roughness (Sa 80) alloy no evidence of pitting corrosion was observed. Interestingly, when the passivity of the alloy was disturbed by galvanostatically holding the sample at anodic current for 1 h, the alloy underwent high pitting corrosion irrespective of their surface roughness. Thus the study suggests that the surface roughness plays a critical role in the passivation behaviour of the alloy and hence the pitting tendency.

  3. Ab-initio study of surface segregation in aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yifa, E-mail: yfqin10s@imr.ac.cn; Wang, Shaoqing

    2017-03-31

    Highlights: • A thorough study of surface segregation energies of 41 elements in Al is performed. • Segregation energies vary periodically with the atomic numbers of impurities. • 41 elements are classified into 3 groups according to the signs of segregation energies. • The results are validated by the surface/total concentration ratio in Al alloys. - Abstract: We have calculated surface segregation energies of 41 impurities by means of density functional theory calculations. An interesting periodical variation tendency was found for surface segregation energies derived. For the majority of main group elements, segregation energies are negative which means solute elements enrichment at Al surface is energetically more favorable than uniformly dissolution. Half of transition elements possess positive segregation energies and the energies are sensitive to surface crystallographic orientations. A strong correlation is found between the segregation energies at the Al surface and the surface energ of solute elements.

  4. Surface Modification of Mg and Mg Alloys

    OpenAIRE

    Turhan, Can Metehan

    2012-01-01

    Progressively, the well explored and studied mechanical properties of a bulk metal are compared with the corrosion behaviour obtained from its surface, which enables promising improvements in desired applications. An example is magnesium metal: where, by developing new types of surface modifications by understanding its inconsistent corrosion behaviour, it would be possible to apply this engineering metal safely as a biocompatible metal, in addition to its widely used application areas such a...

  5. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  6. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  7. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  8. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  9. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  10. Study on surface defects in milling Inconel 718 super alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liu; Chengzu, Ren; Guofeng, Wang; Yinwei, Yang; Lu, Zhang [Tianjin University, Tianjin (China)

    2015-04-15

    Nickel-based alloys have been extensively used as critical components in aerospace industry, especially in the key section of aero engine. In general, these sections are manufactured by milling process because most of them have complex forms. However, surface defects appear frequently in milling due to periodic impact force, which leads to the deterioration of the fatigue life. We conducted milling experiments under different cutting conditions and found that four kinds of defects, i.e., tear, cavity, build up edge (BUE) and groove, commonly appear on the machined surface. Based on the observed results, the morphology and generation regime of these defects are analyzed and the carbide particle cracking is discussed to explain the appearance of the nickel alloy defects. To study the effect of the cutting parameters on the severity of these surface defects, two qualitative indicators, which are named as average number of the defects per field and average area ratio of the defects per field, are presented and the influence laws are summarized based on the results correspondingly. This study is helpful for understanding the generation mechanism of the surface defects during milling process of nickel based super alloy.

  11. Evaluation of cobalt and nickel base materials for sliding and static contact applications in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.; Chang, J.Y.; Galioto, T.A.; Miller, R.L.; Schrock, S.L.; Whitlow, G.A.; Wilson, W.L.; Johnson, R.N.

    1976-01-01

    The paper covers pertinent metallurgical and tribological aspects of three alloys that are being considered for surfaces that must rub while immersed in liquid sodium coolant within a fast breeder reactor system. The alloys are cobalt-base hardfacing alloy type 6, Tribaloy 700, and Inconel 718. Topics discussed include chemistry and microstructure, hardness, and behavior in high-temperature sodium with respect to dynamic friction, diffusion bonding, and corrosion

  12. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  13. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  14. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  15. Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Dirscherl, Kai

    2014-01-01

    Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrat...

  16. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X...

  17. Monitorizing nitinol alloy surface reactions for biofouling studies

    International Nuclear Information System (INIS)

    Dinu, C.Z.; Dinca, V.C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-01-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities

  18. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  19. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  20. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  1. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  2. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  3. Surface modification of chitin using ultrasound-assisted and supercritical CO{sub 2} technologies for cobalt adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dotto, Guilherme L., E-mail: guilherme_dotto@yahoo.com.br; Cunha, Jeanine M., E-mail: jeaninecunha@gmail.com; Calgaro, Camila O., E-mail: camila.itepjr@gmail.com; Tanabe, Eduardo H., E-mail: edutanabe@yahoo.com.br; Bertuol, Daniel A., E-mail: dbertuol@gmail.com

    2015-09-15

    Highlights: • Chitin was modified by ultrasound-assisted (UA) and supercritical (SCO{sub 2}) technologies. • Chitin, UA-chitin and SCO{sub 2}-chitin were used as adsorbents for Co(II). • UA and SCO{sub 2} treatments provided increase of 20 and 3 times in chitin surface area. • The Co(II) adsorption capacity increased until 67.8%, using UA-chitin. - Abstract: Ultrasound-assisted (UA) and supercritical CO{sub 2} technologies (SCO{sub 2}) were used to modify the chitin surface and, improve its adsorption characteristics regarding to cobalt. Chitin, before and after the treatments, was characterized by N{sub 2} adsorption isotherms (BET), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Unmodified and surface modified chitins were used as adsorbents to remove cobalt from aqueous solutions. The adsorption study was performed by equilibrium isotherms and kinetic curves. The chitin particle characteristics, such as, surface area, pore volume and porosity were improved by the UA and SCO{sub 2} treatments. The crystallinity index decreased after the UA and SCO{sub 2} treatments, and also, intense surface modifications were observed. Langmuir and Freundlich models were adequate to represent the adsorption equilibrium. The maximum adsorption capacities were 50.03, 83.94 and 63.08 mg g{sup −1} for unmodified chitin, UA surface modified chitin and SCO{sub 2} surface modified chitin. The adsorption kinetic curves were well represented by the pseudo-second order model. UA and SCO{sub 2} technologies are alternatives to modify the chitin surface and improve its adsorption characteristics.

  4. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  5. Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing

    International Nuclear Information System (INIS)

    Gill, Puneet; Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard

    2015-01-01

    The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. - Highlights: • Magnetoelectropolishing (MEP) reduces the surface asperities of Nitinol alloys and formed stable oxides on the surface. • Improved corrosion resistance and reduced Nickel ion leaching were observed for MEP surfaces. • Ni–Ti alloyed with Cr showed improved mechanical properties. • Enhanced endothelial cell proliferation on ternary Nitinol alloys

  6. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages

    International Nuclear Information System (INIS)

    Piquer Caballero, J.

    2014-01-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  7. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  8. Surface coating Zr or Zr alloy nuclear fuel elements

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1980-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. (author)

  9. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng

    2018-03-18

    The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro study, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  11. Legirani praški za navarjanje z večžično elektrodo: Alloyed fluxes for surfacing with multiple - wire electrode:

    OpenAIRE

    Kejžar, Božena; Kejžar, Rajko

    1997-01-01

    Submerged arc surfacing with alloyed agglomerated fluxes permits unalloyed and low-alloy structural steels to be surfaced in one layer of high-alloyed claddings. Surfacing dilution produced by fusion of the parent metal, and burn-off of alloying elements are substituted by additional alloying by means of a welding flux, which is, in the case of the above-mentioned surfacing processes, the main carrier of alloying elements for surfacing alloying. With alloyed agglomerated fluxes, it is recomme...

  12. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    Science.gov (United States)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  13. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun; Luo, Liangfeng; Jiang, Zhiquan; Huang, Weixin

    2016-01-01

    were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface

  14. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  15. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou; Rodionov, Valentin

    2016-01-01

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  16. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  17. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  18. Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond

    International Nuclear Information System (INIS)

    Bai Yun; Buchner, Florian; Kellner, Ina; Schmid, Martin; Vollnhals, Florian; Steinrueck, Hans-Peter; Marbach, Hubertus; Michael Gottfried, J

    2009-01-01

    The adsorption of cobalt (II) octaethylporphyrin (CoOEP) and 2H-octaethylporphyrin (2HOEP) on Ag(111) was investigated with scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS/UPS), in order to achieve a detailed mechanistic understanding of the surface chemical bond of coordinated metal ions. Previous studies of related systems, especially cobalt (II) tetraphenylporphyrin (CoTPP) on Ag(111), have revealed adsorption-induced changes of the oxidation state of the Co ion and the appearance of a new valence state. These effects were attributed to a covalent interaction of the Co ion with the silver substrate. However, recent studies show that the porphyrin ligand of adsorbed CoTPP undergoes a pronounced saddle-shape distortion, which could alter the electronic structure and thus provide an alternative explanation for the new valence state previously attributed to the formation of a surface coordinative bond. With the octaethylporphyrins investigated here, which were found to adsorb in a flat, undistorted conformation on Ag(111), the effects of geometric distortion can be separated from those of the electronic interaction with the substrate. The CoOEP monolayer gives rise to an adsorption-induced shift of the Co 2p signal (-1.9 eV relative to the multilayer), a new valence state at 0.6 eV below the Fermi energy, and a work-function shift of -0.84 eV (2HOEP: -0.44 eV) relative to the clean surface. Comparison with data for the distorted CoTPP confirms the existence of a covalent ion-surface interaction that is insensitive to the conformation of the ligand.

  19. Proceedings of the sixth international workshop on rare earth-cobalt permanent magnets and their applications, August 31 - September 2, 1982, and third international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys, September 3, 1982

    International Nuclear Information System (INIS)

    Fidler, J.

    1982-01-01

    The first part (workshop) is concerned specifically with applications of rare earth-cobalt permanent magnets. The session headings are 1) electro-mechanical applications 2) electronic and miscellaneous applications 3) magneto-mechanical applications plus workshop on measurement methods 4) new materials and processes 5) industrial applications of REPM and future aspects. The second part (symposium) is concerned with physical properties of specific rare earth-transition metal alloys. (G.Q.)

  20. Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode

    International Nuclear Information System (INIS)

    Mashazi, Philani N.; Westbroek, Philippe; Ozoemena, Kenneth I.; Nyokong, Tebello

    2007-01-01

    Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards L-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for L-cysteine at potentials where metal oxidation (M III /M II ) takes place and this metal oxidation mediates the catalytic oxidation of L-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards L-cysteine at potentials where Mn IV /Mn III redox peak occurs and this redox peak mediates L-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10 -7 mol L -1 and good linearity for a studied concentration range up to 60 μmol L -1

  1. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  2. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    Science.gov (United States)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  3. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces.

    Science.gov (United States)

    Schmidt, Michael G; Tuuri, Rachel E; Dharsee, Arif; Attaway, Hubert H; Fairey, Sarah E; Borg, Keith T; Salgado, Cassandra D; Hirsch, Bruce E

    2017-06-01

    Stethoscopes may serve as vehicles for transmission of bacteria among patients. The aim of this study was to assess the efficacy of antimicrobial copper surfaces to reduce the bacterial concentration associated with stethoscope surfaces. A structured prospective trial involving 21 health care providers was conducted at a pediatric emergency division (ED) (n = 14) and an adult medical intensive care unit located in tertiary care facilities (n = 7). Four surfaces common to a stethoscope and a facsimile instrument fabricated from U.S. Environmental Protection Agency-registered antimicrobial copper alloys (AMCus) were assessed for total aerobic colony counts (ACCs), methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and vancomycin-resistant enterococci for 90 days. The mean ACCs collectively recovered from all stethoscope surfaces fabricated from the AMCus were found to carry significantly lower concentrations of bacteria (pediatric ED, 11.7 vs 127.1 colony forming units [CFU]/cm 2 , P stethoscopes was the most heavily burdened surface; mean concentrations exceeded the health care-associated infection acquisition concentration (5 CFU/cm 2 ) by at least 25×, supporting that the stethoscope warrants consideration in plans mitigating microbial cross-transmission during patient care. Stethoscope surfaces fabricated with AMCus were consistently found to harbor fewer bacteria. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chromium depletion on the surface of nickel based alloys

    International Nuclear Information System (INIS)

    Dille, E.R.; McDonald, J.L.; Berry, P.

    1988-01-01

    Successful selection of corrosion resistant materials for flue gas desuflurization applications is tricky business at best. Most simulated, accelerated, concentrated corrosion tests try to rank materials to known corrosive condition. If you check the actual data, occasionally you find anomalies such as highly corrosion resistant materials performing below what was expected, while the rest of the group is performing normally. In the field the authors have observed similar results with few acceptable explanations. Recently the authors have found numerous cases of Ni/Cr/Mo alloys with a surface analysis below the ASTM specified range for the element chromium. These surface analysis have been done with a portable X-ray Fluorescent Instrument with the initial results confirmed by an independent laboratory

  6. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  7. Surface studies of Os Re W alloy-coated impregnated tungsten cathodes

    International Nuclear Information System (INIS)

    Ares Fang, C.S.; Maloney, C.E.

    1990-01-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os Re W alloy at right angles were studied to compare the effects of Os Re W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os Re W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os Re W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os Re W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces

  8. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  9. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    International Nuclear Information System (INIS)

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  10. Laser surface alloying of 316L stainless steel with Ru and Ni mixtures

    CSIR Research Space (South Africa)

    Lekala, MB

    2012-05-01

    Full Text Available an economically sound approach of modifying corrosion properties of alloys. Furthermore, since corrosion is a surface phenomenon, an equally cost-effective approach is to add these only on the surface, where protection is most required. Laser surface... powders were preplaced on the steel surface using a chemical binder. The thickness of the preplaced powder coatings could be controlled to approxi- mately 1mm. The laser surface alloying was performed with a Rofin Sinar DY044 continuous wave Nd : YAG...

  11. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  12. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  13. Study on Modification of NaX Zeolites: The Cobalt (II-Exchange Kinetics and Surface Property Changes under Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Hoai-Lam Tran

    2016-01-01

    Full Text Available The cobalt (II ion-exchange process followed the Freundlich and Langmuir adsorption models as well as the pseudo-second-order kinetic model. The cobalt-exchanged contents increased when the initial Co(NO32 solution concentration increased up to 0.14 mol L−1 at the optimal pH of 6.05. The N2 adsorption isotherms are mixed types I/II isotherms and H3 type hysteresis. Both the micropore and mesopore adsorptions occurred during the adsorption process. The modification, which is both the cobalt (II exchange and thermal treatment, significantly improved the surface properties of NaX zeolites. Accordingly, the optimal temperature range is 500 to 600°C for a thermal treatment. This is consistent with the results of XRD analysis.

  14. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  15. Surface segregation in binary alloy first wall candidate materials

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Mendelsohn, M.H.; Susman, S.; Argonne National Lab., IL

    1982-01-01

    We have been studying the conditions necessary to produce a self-sustaining stable lithium monolayer on a metal substrate as a means of creating a low-Z film which sputters primarily as secondary ions. It is expected that because of the toroidal field, secondary ions originating at the first wall will be returned and contribute little to the plasma impurity influx. Aluminum and copper have, because of their high thermal conductivity and low induced radioactivity, been proposed as first wall candidate materials. The mechanical properties of the pure metals are very poorly suited to structural applications and an alloy must be used to obtain adequate hardness and tensile strength. In the case of aluminum, mechanical properties suitable for aircraft manufacture are obtained by the addition of a few at% Li. In order to investigate alloys of a similar nature as candidate structural materials for fusion machines we have prepared samples of Li-doped aluminum using both a pyro-metallurgical and a vapor-diffusion technique. The sputtering properties and surface composition have been studied as a function of sample temperature and heating time, and ion beam mass. The erosion rate and secondary ion yield of both the sputtered Al and Li have been monitored by secondary ion mass spectroscopy and Auger analysis providing information on surface segregation, depth composition profiles, and diffusion rates. The surface composition ahd lithium depth profiles are compared with previously obtained computational results based on a regular solution model of segregation, while the partial sputtering yields of Al and Li are compared with results obtained with a modified version of the TRIM computer program. (orig.)

  16. Surface coatings of mixed hard alloy powder metals sintered-on in vacuo

    International Nuclear Information System (INIS)

    Knotek, O.; Reimann, H.

    1980-01-01

    No technological difficulties are to be encountered in the processing of pseudo hard alloys in the form of powder compounds of conventional nickel base hard alloys with carbides. There is a great alloy influence on the resulting structures of the surface layers. Under some processing conditions the tungsten carbide is completely dissolved from molten matrix alloy. Hard phases on chromium carbide basis resulted upon cooling. Induced chromium carbide Cr 3 C 2 retains its structure while absorbing large amounts of iron into its grid. It can be concluded that not only alloying properties, but also eminently structural criterions are decisive for the stability of the applied supplementary hard phases. (orig.) [de

  17. Cobalt-boron amorphous alloy prepared in water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion as anode for alkaline secondary batteries

    International Nuclear Information System (INIS)

    Tong, D.G.; Wang, D.; Chu, W.; Sun, J.H.; Wu, P.

    2010-01-01

    Amorphous cobalt-boron (Co-B) with uniform nanoparticles was prepared for the first time via reduction of cobalt acetate by potassium borohydride in the water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion system. The sample was characterized by X-ray diffraction, transmission electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, inductively coupled plasma, cyclic voltammetry, differential scanning calorimetry, temperature-programmed desorption, scanning electron microscopy, charge-discharge test and electrochemical impedance spectra. The results demonstrate that electrochemical activity of the as-synthesized Co-B was higher than that of the regular Co-B prepared in aqueous solution. It indicates that the homogeneous distribution and large specific surface area helped the electrochemical hydrogen storage of the as-synthesized Co-B. Furthermore, the as-synthesized Co-B even had 347 mAh g -1 after 50 cycles, while the regular Co-B prepared in aqueous solution only had 254 mAh g -1 after 30 cycles at a current of 100 mA g -1 . The better cycling performance can be ascribed to its smaller interfacial impedance between electrode and electrolyte.

  18. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  19. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  20. Tool life and surface integrity aspects when drilling nickel alloy

    Science.gov (United States)

    Kannan, S.; Pervaiz, S.; Vincent, S.; Karthikeyan, R.

    2018-04-01

    Nickel based super alloys manufactured through powder metallurgy (PM) route are required to increase the operational efficiency of gas turbine engines. They are material of choice for high pressure components due to their superior high temperature strength, excellent corrosion, oxidation and creep resistance. This unique combination of mechanical and thermal properties makes them even more difficult-to-machine. In this paper, the hole making process using coated carbide inserts by drilling and plunge milling for a nickel-based powder metallurgy super alloy has been investigated. Tool life and process capability studies were conducted using optimized process parameters using high pressure coolants. The experimental trials were directed towards an assessment of the tendency for surface malformations and detrimental residual stress profiles. Residual stresses in both the radial and circumferential directions have been evaluated as a function of depth from the machined surface using the target strain gauge / center hole drilling method. Circumferential stresses near workpiece surface and at depth of 512 µm in the starting material was primarily circumferential compression which was measured to be average of –404 MPa. However, the radial stresses near workpiece surface was tensile and transformed to be compressive in nature at depth of 512 µm in the starting material (average: -87 Mpa). The magnitude and the depth below the machined surface in both radial and circumferential directions were primarily tensile in nature which increased with hole number due to a rise of temperature at the tool–workpiece interface with increasing tool wear. These profiles are of critical importance for the selection of cutting strategies to ensure avoidance/minimization of tensile residual stresses that can be detrimental to the fatigue performance of the components. These results clearly show a tendency for the circumferential stresses to be more tensile than the radial stresses

  1. Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces

    Science.gov (United States)

    Kołaczkiewicz, Jan; Oleksy, Czesław

    2018-03-01

    Work function change measurements, low energy electron diffraction (LEED) and density functional theory (DFT) are used to determine the structures formed on Ag/Mo(112) bimetallic surfaces upon deposition of 0.5 monolayer (ML) of holmium. As the bimetallic surfaces, we have chosen the Mo(112) substrate covered with 1 or 2 ML of Ag. Such surfaces have the same symmetry as the Mo(112) face but different electronic properties. LEED experiment indicates that the c(2 × 2) structure is formed on (1 ML Ag)/Mo(112) bimetallic surface upon deposition of 0.5 ML of Ho. DFT calculations show that a type of Ag-Ho surface alloy is formed, with Ho atoms 0.6 Å below the distorted layer of Ag. This is neither a substitutional nor a subsurface alloy. It is found that the adsorption structure formed on the (2 ML Ag)/Mo(112) bimetallic surface depends on the annealing temperature. After deposition of 0.5 ML of Ho at 300 K, the LEED pattern of p(2 × 2) symmetry is observed. Annealing of the overlayer at 640 K irreversibly changes the p(2 × 2) pattern into a pattern of c(2 × 2) type. The results of DFT computations show that the c(2 × 2) structure of the Ag-Ho surface alloy is energetically most favorable. In this structure, 0.5 ML of Ho is between the two monolayers of Ag, and the symmetry of the topmost layer is changed. The work function change calculated for the c(2 × 2) structure is in a good agreement with the measured value (0.22 eV). The results show that adsorption of Ho on the Ag/Mo(112) bimetallic surfaces is substantially different than on the clean Mo(112).

  2. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  3. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  4. Yield surface investigation of alloys during model disk spin tests

    Directory of Open Access Journals (Sweden)

    E. P. Kuzmin

    2014-01-01

    Full Text Available Gas-turbine engines operate under heavy subsequently static loading conditions. Disks of gas-turbine engine are high loaded parts of irregular shape having intensive stress concentrators wherein a 3D stress strain state occurs. The loss of load-carrying capability or burst of disk can lead to severe accident or disaster. Therefore, development of methods to assess deformations and to predict burst is one of the most important problems.Strength assessment approaches are used at all levels of engine creation. In recent years due to actively developing numerical method, particularly FEA, it became possible to investigate load-carrying capability of irregular shape disks, to use 3D computing schemes including flow theory and different options of force and deformation failure criteria. In spite of a wide progress and practical use of strength assessment approaches, there is a lack of detailed research data on yield surface of disk alloys. The main purpose of this work is to validate the use of basis hypothesis of flow theory and investigate the yield surface of disk alloys during the disks spin test.The results of quasi-static numerical simulation of spin tests of model disk made from high-temperature forged alloy are presented. To determine stress-strain state of disk during loading finite element analysis is used. Simulation of elastic-plastic strain fields was carried out using incremental theory of plasticity with isotropic hardening. Hardening function was taken from the results of specimens tensile test. Specimens were cut from a sinkhead of model disk. The paper investigates the model sensitivity affected by V.Mises and Tresca yield criteria as well as the Hosford model. To identify the material model parameters the eddy current sensors were used in the experimental approach to measure rim radial displacements during the load-unload of spin test. The results of calculation made using different material models were compared with the

  5. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  6. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings

    International Nuclear Information System (INIS)

    Kengne, Blaise-Alexis Fouetio; Alayat, Abdulbaset M.; Luo, Guanqun; McDonald, Armando G.; Brown, Justin; Smotherman, Hayden; McIlroy, David N.

    2015-01-01

    Graphical abstract: - Highlights: • Determined that the reduction of Co nanoparticles on silica nanosprings 200 °C higher than the reduction temperature of Co in a solgel support. • The high reduction temperature of Co supported on silica nanosprings is attributed to the heat transfer properties of the nanosprings due to their high surface area. Co-silica nanospring Fischer-Tropsch catalyst can be used to produce drop in fuels such as JP-4. - Abstract: The reduction of cobalt (Co) catalyst supported on silica nanosprings for Fischer-Tropsch synthesis (FTS) has been monitored by X-ray photoelectron spectroscopy (XPS) and compared to FT catalytic activity. The cobalt is present in the starting catalyst as a Co 3 O 4 spinel phase. A two-step reduction of Co 3 O 4 to CoO and then to Co 0 is observed, which is consistent with the results of H 2 -temperature programmed reduction. During the reduction the two steps occur concurrently. The deconvolution of the Co 2p core level state for the catalyst reduced at 385 °C and 1.0 × 10 −6 Torr of H 2 revealed signatures of Co 0 , CoO, and Co 3 O 4 . The reduction saturates at a Co o concentration of approximately 41% after 20 h, which correlates with the activity and lifetime of the catalyst during FTS testing. Conversely, at 680 °C and 10 Torr of H 2 , the catalyst is completely reduced after 10 h. The evolution of the Co d-band at the Fermi level in the valence band XPS spectrum definitively verifies the metallic phase of Co. FTS evaluation of the Co/NS catalyst reduced at 609 °C showed higher production rate (3-fold) of C 6 -C 17 hydrocarbons than the catalyst reduced at 409 °C and is consistent with the XPS analysis.

  7. Cobalt reduction of NSSS valve hardfacings for ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hak; Lee, Sang Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author).

  8. Cobalt reduction of NSSS valve hardfacings for ALARA

    International Nuclear Information System (INIS)

    Kim, Joo Hak; Lee, Sang Sub

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author)

  9. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel;Sintesis y caracterizacion de mezclas de oxidos de cobalto y titanio por aleado mecanico y Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M., E-mail: rafael.basurto@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO{sub 3}. With the first technique was used Co{sub 3}O{sub 4} obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO{sub 3}, the obtained Co{sub 3}O{sub 4} was mixed with TiO{sub 2} on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  10. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  11. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Calle Vallejo, Federico; Rossmeisl, Jan

    2009-01-01

    Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu to the sur......Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu...... to the surface of a CuPt near-surface alloy. The Cu surface segregation is driven by the formation of a stable self-organized CO/CuPt surface alloy structure and is rationalized in terms of the radically stronger Pt−CO bond when Cu is present in the first surface layer of Pt. The results, which are expected...

  12. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.F. [Xi' an High-technology Institute, Xi' an 710025 (China)], E-mail: xiaofang_liu@263.net; Wu, Q.Y.; Wang, H.G. [Xi' an High-technology Institute, Xi' an 710025 (China)

    2008-06-15

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion.

  13. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    International Nuclear Information System (INIS)

    Liu, X.F.; Wu, Q.Y.; Wang, H.G.

    2008-01-01

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion

  14. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  15. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    International Nuclear Information System (INIS)

    Cheng, Feng; He, Xiang; Chen, Zhao-Xu; Huang, Yu-Gai

    2015-01-01

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys

  16. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  17. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    Garcia C, M. A.

    2008-01-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H 2 SO 4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H 2 O 2 . All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70

  18. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy

    Science.gov (United States)

    Walter, R.; Kannan, M. Bobby; He, Y.; Sandham, A.

    2013-08-01

    In this study, the in vitro degradation behaviour of AZ91 magnesium alloy with two different surface finishes was investigated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The polarisation resistance (Rp) of the rough surface alloy immersed in SBF for 3 h was ~30% lower as compared to that of the smooth surface alloy. After 12 h immersion in SBF, the Rp values for both the surface finishes decreased and were also similar. However, localised degradation occurred sooner, and to a noticeably higher severity in the rough surface alloy as compared to the smooth surface alloy.

  19. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sankalp [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland); School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology (Ireland); Curtin, James [School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology (Ireland); Duffy, Brendan [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland); Jaiswal, Swarna, E-mail: swarna.jaiswal@dit.ie [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland)

    2016-11-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. - Highlights: • The Mg based alloys are promising candidates for orthopaedic applications. • The rapid corrosion of Mg can affect human cells, and causes infection and implant failure. • The various physiological factors and Mg alloying elements affect the corrosion and mechanical properties of implants. • The polymeric deposit coatings enhance the corrosion resistance and biocompatibility.

  20. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

    International Nuclear Information System (INIS)

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-01-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. - Highlights: • The Mg based alloys are promising candidates for orthopaedic applications. • The rapid corrosion of Mg can affect human cells, and causes infection and implant failure. • The various physiological factors and Mg alloying elements affect the corrosion and mechanical properties of implants. • The polymeric deposit coatings enhance the corrosion resistance and biocompatibility.

  1. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  2. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  3. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  4. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  5. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  6. Adsorption and decomposition of H{sub 2}O on cobalt surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, F.F.; Ma, S.H., E-mail: msh8586@163.com; Jiao, Z.Y.; Dai, X.Q.

    2016-10-30

    Highlights: • Molecular water weakly binds to Co surfaces and it is feasible to desorption from the clean surfaces. • The presence of atomic oxygen has a prominent promotion effect on the dissociation of water into hydroxyl, especially on O-covered Co(110) no extra energy is needed to dissociate H{sub 2}O. • Distinctively, the presence of hydroxyl hinders the dissociation of water molecule. • The analysis of microscopic decomposition behaviors demonstrates that molecular water adsorbs dissociatively with the aid of pre-adsorbed oxygen atom, forming OH radicals chemisorbed on the considered surfaces. - Abstract: Water adsorption and dissociation on clean and O-covered Co(100), Co(110) and Co(111) surfaces are studied using the density functional theory calculations. The results indicate that molecular water weakly binds to the surfaces and is feasible to desorption from the clean surfaces. Moreover, the pre-adsorption of O atom increases the binding of water to the surfaces, and prominently decreases the activation barriers of water dissociation into OH, especially on Co(110) surface. In contrast, the activation barrier for OH dissociation is slightly affected in the presence of O atom. Overall, this study reveals that O-assisted H{sub 2}O favorably adsorbs dissociatively, forming OH chemisorbed on the surfaces, which further hinders H{sub 2}O dissociation, and also illustrates the fact that molecular water dissociation is structure-sensitive on metal surfaces.

  7. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  8. Surface characterization of alloy Ti-6Al-7Nb treated plasma

    International Nuclear Information System (INIS)

    Moura, J.K.L.; Macedo, H.R.A.; Brito, E.M.; Brandim, A.S.

    2014-01-01

    Plasma surface modifications are subject of numerous studies to improve the quality of a given material. Titanium and its alloys are widely used in biomedical applications and plasma treatment technique is increasingly used to improve the surface properties thereof. The research have a objective in the comparative analysis of the change in microstructure of Ti-6Al-7Nb alloys after treatment of plasma nitriding. The technical are: nitriding with cathode cage (NGC) and planar discharge. The characterization was obtained by MEV (Scanning Electronic Microscope) and hardness. The results was compared about the better surface modification that meets future prospects of the biocompatibility of the alloy.(author)

  9. Microstructures of alloyed and dispersed hard particles in the aluminium surface

    CSIR Research Space (South Africa)

    Pityana, S

    2010-03-01

    Full Text Available Laser surface alloying of A1200 aluminium alloy was carried out using a 4.4 kW Nd:YAG laser. Powder mixtures of SiC and TiC hard particles were injected into the laser generated melt pool on the aluminium substrate using a commercial powder feeder...

  10. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.

    2003-01-01

    alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...

  11. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  12. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  13. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  14. Study of thermodynamic properties of binary and ternary liquid alloys of aluminium with the elements iron, cobalt, nickel and oxygen; Etude des proprietes thermodynamiques des alliages liquides binaires et ternaires de l'aluminium avec les elements fer, cobalt, nickel et l'oxygene

    Energy Technology Data Exchange (ETDEWEB)

    Vachet, F [CEA Vallee du Rhone, 26-Pierrelatte (France)

    1966-07-01

    The present work deals with the thermodynamic study of aluminium liquid alloys with the metals iron, cobalt and nickel. The experiments carried out lead to the activity, at 1600 deg C, of aluminium in the (Al, Fe), (Al, Co), (Al, Ni) liquid alloys. The experimental method used consists in studying the partition of aluminium between the liquid immiscible phases made up with the pairs of metals (Fe, Ag), (Co, Ag), (Ni, Ag). The informations so obtained are used for drawing the isothermal equilibrium phases diagrams sections of (Al, Fe, Ag), (Al, Co, Ag), (Al, Ni, Ag) systems. The study of the partition of silver between lead and aluminium joined with the determinations of several authors allows us to determine the aluminium activity, analytically presented, in the metal M (iron cobalt and nickel). The Wagner's interaction parameters of aluminium in metal M are determined. The results obtained as the equilibrium phases diagrams of (Al, M) systems allow to compare the thermodynamic properties of the Al Fe system in liquid and solid states and to estimate the enthalpies of melting of the AlCo and AlNi intermetallic compounds. The activity, at 1600 deg C, of aluminium in (Al, Fe, Co), (Al, Fe, Ni), (Al, Co, Ni) liquid alloys is estimated through thermodynamic properties of binary components systems by application of several methods leading to results in good agreement. The study of aluminium-oxygen interactions in the liquid metallic solvants M allows us to propose an explanation for the shape of the deoxidation equilibrium line of iron, cobalt and nickel by aluminium and to compare the de-oxidizing power of aluminium toward iron, cobalt and nickel oxides. (author) [French] Le travail presente se rapporte a l'etude thermodynamique des alliages liquides de l'aluminium avec les metaux fer, cobalt et nickel. Les experiences effectuees ont pour but de determiner l'activite, a 1600 C, de l'aluminium dans les alliages liquides (Al, Fe), (Al, Co), (Al, Ni). La methode

  15. New surface modification method of bio-titanium alloy by EB polishing

    International Nuclear Information System (INIS)

    Okada, Akira; Uno, Yoshiyuki; Iio, Atsuo; Fujiwara, Kunihiko; Doi, Kenji

    2008-01-01

    A new surface modification for bio-titanium alloy products by electron beam (EB) polishing is proposed. In this EB polishing method, high energy density EB can be irradiated without concentrating the beam. Therefore, large-area EB with a maximum diameter of 60 mm can be used for instantaneously melting or evaporating metal surface. Experimental results made it clear that surface characteristics, such as repellency, corrosion resistance and coefficient of friction could be improved simultaneously with the surface smoothing in a few minutes under a proper condition. Therefore, EB polishing method has a possibility of high efficient surface smoothing and surface modification process for bio-titanium alloy. (author)

  16. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  17. Surface hardness behaviour of Ti–Al–Mo alloys

    Indian Academy of Sciences (India)

    Wintec

    Such a report is lacking in literature in this class of alloys. Keywords. Ti–Al–Mo alloys; microhardness; slip steps. 1. Introduction. Ti-aluminides containing α2 and γ phases with lamellar morphology are expected to possess hardness that is higher than the β and γ phases (Li and Loretto 1994). Room temperature ductility is ...

  18. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  19. Adsorption of ethylene carbonate on lithium cobalt oxide thin films: A synchrotron-based spectroscopic study of the surface chemistry

    Science.gov (United States)

    Fingerle, Mathias; Späth, Thomas; Schulz, Natalia; Hausbrand, René

    2017-11-01

    The surface chemistry of cathodic lithium cobalt oxide (LiCoO2) in contact with the Li-ion battery solvent ethylene carbonate (EC) was studied via synchrotron based soft X-ray photoelectron spectroscopy (SXPS). By stepwise in-situ adsorption of EC onto an rf-magnetron sputtered LiCoO2 thin film and consecutive recording of SXPS spectra, the chemical and electronic properties of the interface were determined. EC partially decomposes and forms a predominantly organic adlayer. Prolonged exposure results in the formation of a condensed EC layer, demonstrating that the decomposition layer has passivating properties. Lithium ions deintercalate from the electrode and are dissolved in the adsorbate phase, without forming a large amount of Li-containing reaction products, indicating that electrolyte reduction remains limited. Due to a large offset between the LiCoO2 valence band and the EC HOMO, oxidation of EC molecules is unlikely, and should require energy level shifts due to interaction or double layer effects for real systems.

  20. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, Blaise-Alexis Fouetio [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); Alayat, Abdulbaset M. [Environmental Science Program, University of Idaho, Moscow, ID 83844-3006 (United States); Luo, Guanqun [Department of Forest, Rangeland & Fire Sciences, University of Idaho, Moscow, ID 83844-1132 (United States); McDonald, Armando G. [Environmental Science Program, University of Idaho, Moscow, ID 83844-3006 (United States); Department of Forest, Rangeland & Fire Sciences, University of Idaho, Moscow, ID 83844-1132 (United States); Brown, Justin; Smotherman, Hayden [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); McIlroy, David N., E-mail: dmcilroy@uidaho.edu [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States)

    2015-12-30

    Graphical abstract: - Highlights: • Determined that the reduction of Co nanoparticles on silica nanosprings 200 °C higher than the reduction temperature of Co in a solgel support. • The high reduction temperature of Co supported on silica nanosprings is attributed to the heat transfer properties of the nanosprings due to their high surface area. Co-silica nanospring Fischer-Tropsch catalyst can be used to produce drop in fuels such as JP-4. - Abstract: The reduction of cobalt (Co) catalyst supported on silica nanosprings for Fischer-Tropsch synthesis (FTS) has been monitored by X-ray photoelectron spectroscopy (XPS) and compared to FT catalytic activity. The cobalt is present in the starting catalyst as a Co{sub 3}O{sub 4} spinel phase. A two-step reduction of Co{sub 3}O{sub 4} to CoO and then to Co{sup 0} is observed, which is consistent with the results of H{sub 2}-temperature programmed reduction. During the reduction the two steps occur concurrently. The deconvolution of the Co 2p core level state for the catalyst reduced at 385 °C and 1.0 × 10{sup −6} Torr of H{sub 2} revealed signatures of Co{sup 0}, CoO, and Co{sub 3}O{sub 4}. The reduction saturates at a Co{sup o} concentration of approximately 41% after 20 h, which correlates with the activity and lifetime of the catalyst during FTS testing. Conversely, at 680 °C and 10 Torr of H{sub 2}, the catalyst is completely reduced after 10 h. The evolution of the Co d-band at the Fermi level in the valence band XPS spectrum definitively verifies the metallic phase of Co. FTS evaluation of the Co/NS catalyst reduced at 609 °C showed higher production rate (3-fold) of C{sub 6}-C{sub 17} hydrocarbons than the catalyst reduced at 409 °C and is consistent with the XPS analysis.

  1. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  2. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  3. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  4. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  5. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    Science.gov (United States)

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  6. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Directory of Open Access Journals (Sweden)

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  7. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  8. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  9. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  10. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  11. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  12. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    Science.gov (United States)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  13. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    International Nuclear Information System (INIS)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Xi, T F; Zhang, Z X; Zhang, D Y

    2009-01-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10 5 for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  14. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F; Lan, Q X [State Key Laboratory for Turbulence and Complex System and College of Engineering, Peking University, Beijing 100871 (China); Cheng, Y; Xi, T F [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Z X [Biomedical Engineering Research Center, Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Zhang, D Y, E-mail: gxn139888@pku.edu.c, E-mail: yfzheng@pku.edu.c, E-mail: 8lanqiuxiang@163.co, E-mail: chengyan@pku.edu.c, E-mail: top5460@163.co, E-mail: xitingfei@tom.co, E-mail: zhangdeyuan@lifetechmed.co [Lifetech Scientific (Shenzhen) Co. Ltd, Hi-Tech Park, Shenzhen 518000 (China)

    2009-08-15

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10{sup 5} for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  15. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  16. Improved catalytic activity of cobalt core–platinum shell nanoparticles supported on surface functionalized graphene for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Zhang, Mingmei; Li, Yuan; Yan, Zaoxue; Jing, Junjie; Xie, Jimin; Chen, Min

    2015-01-01

    Poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene supported bimetallic catalysts of shell platinum on core cobalt (Co@Pt/PDDA-G) are synthesized using a two-step procedure involving the microwave synthesis method and replacement method. TEM indicate that a uniform dispersion of Co@Pt nanoparticles on PDDA functionalized graphene have the average particle size of 1.9 nm. The composite is applied to electrocatalysis for methanol oxidation. And the electrochemical surface areas of the as-prepared Co@Pt/PDDA-G, Pt supported on PDDA-graphene (Pt/PDDA-G), Co@Pt supported on graphene (Co@Pt/G) are evaluated by cyclic voltammetry, which are calculated to be 105.6 m 2 g −1 Pt , 92.8 m 2 g −1 Pt , and 83.4 m 2 g −1 Pt , with respect to 37.8 m 2 g −1 Pt of commercial Pt/C (TKK) catalyst. The current being examined by chronoamperometry reach a constant at 23 mA mg −1 for Co@Pt/PDDA–G catalyst, which is roughly 3.3-fold higher than that of commercial Pt/C catalyst. The electrochemical tests show that the activity and stability of Co@Pt supported on PDDA-G is highly better than the widely used Pt supported on PDDA-graphene sheets, also better than that of Co@Pt on unfunctional graphene with the same Pt content on the electrode. This improved activity could be attributed to not only the PDDA playing a crucial role in the dispersion and stabilization of Co@Pt on graphene, but also the high use ratio of Pt for its shell structure and the electronic effect of the underlying metal and Pt surface layer

  17. Electron spectroscopy studies of surface In-Ag alloy formation on the tungsten surface

    International Nuclear Information System (INIS)

    Bukaluk, A.; Trzcinski, M.; Okulewicz, K.

    2008-01-01

    XPS and UPS investigations of ultrathin films of In/Ag and Ag/In, deposited onto the W(1 1 0) surface in the ultrahigh vacuum conditions have been performed. Indium and silver films were formed by 'in-situ' evaporation on W(1 1 0) substrate. XPS and UPS studies have been performed by means of SCIENTA ESCA200 instrument. The changes of In4d core-level and Ag4d valence band emissions with increasing Ag and In coverage were monitored to observe the energy shift and shape of the spin-orbit doublet of In4d and Ag4d lines in the Ag/In/W and In/Ag/W systems. UPS (HeI and HeII) measurements were supported by XPS AlK α measurements of In3d and W4p levels, as well as by investigations of Ag3d levels. XPS and UPS data allowed to evaluate the coverage and make conclusions concerning intermixing and surface alloying in the In/Ag/W and Ag/In/W systems. W(1 1 0) substrate can be cleaned after each deposition by thermal desorption and no alloying in the In/W and Ag/W systems is observed

  18. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  19. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Yang, Wei-En; Lee, Tzu-Hsin

    2014-01-01

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  20. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  1. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.

    Science.gov (United States)

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-11-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    Science.gov (United States)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  3. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  4. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  5. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  6. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  7. Surface and microstructural characterization of commercial breeder reactor candidate alloys exposed to 7000C sodium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.

    1979-03-01

    Sodium compatibility screening tests were performed on several commercial austenitic alloys at 700 0 C for 2000 hours for applications as breeder reactor fuel cladding. The sodium-exposed surfaces were characterized by Optical Metallography, Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). Sodium exposure generally resulted in the depletion of Ni, Cr, Ti, Si, Mn and Nb, and enrichment of Fe and Mo at the surface. The average thickness of the depleted zone was 5 μm. The alloys can be divided into three groups based on corrosion rate, and each group has its own characteristic surface structure. Grain-orientation dependent striations were seen in alloys with low corrosion rates, while alloys with intermediate corrosion rates displayed micron-size nodes enriched with Fe and Mo. The high corrosion rate alloys exhibited scale-like formations on the surface with irregularly shaped holes. In addition, the data importantly point out that a ferrite layer will form at the sodium-exposed surface of these austenitic alloys after prolonged exposure

  8. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour

    International Nuclear Information System (INIS)

    Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C.

    2003-01-01

    Cell attachment and spreading to titanium-based alloy surfaces is a major parameter in implant technology. In this paper, substratum surface hydrophobicity, surface free energy, interfacial free energy and surface roughness were investigated to ascertain which of these parameters is predominant in human fibroblast spreading. Two methods for contact angle measurement were compared: the sessile drop method and the captive bubble two-probe method. The relationship between surface roughness and the sessile drop contact angles of various engineered titanium surfaces such as commercial pure titanium (cp-Ti), titanium-aluminium-vanadium alloy (Ti-6Al-4V), and titanium-nickel (NiTi), was shown. Surface free energy (SFE) calculations were performed from contact angles obtained on smooth samples based on the same alloys in order to eliminate the roughness effect. SFE of the surfaces have been calculated using the Owens-Wendt (OW) and Van Oss (VO) approaches with the sessile drop method. The OW calculations are used to obtain the dispersive (γ d ) and polar (γ p ) component of SFE, and the VO approach allows to reach the apolar (γ LW ) and the polar acid-base component (γ ab ) of the surface. From captive bubble contact angle experiments (air or octane bubble under water), the interfacial free energy of the different surfaces in water was obtained. A relationship between cell spreading and the polar component of SFE was found. Interfacial free energy values were low for all the investigated surfaces indicating good biocompatibility for such alloys

  9. The influence of Ni, Mo, Si, Ti on the surface alloy layer quality

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2011-07-01

    Full Text Available The paper presents research results of microstructure and selected mechanical properties of alloy layer. The aim of the researches was to determine the influence of Ni, Mo, Si and Ti with high-carbon ferrochromium (added separately to pad on the alloy layer on the steel cast. Metallographic studies were made with use of light microscopy. During studies of usable properties measurements of hardness, microhardness and abrasive wear resistance of type metal-mineral for creation alloy layer were made. As thick as possible composite layer without any defects and discontinuity was required. The conducted researches allowed to take the suitable alloy addition of the pad material which improved the quality of the surface alloy layer.

  10. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    Science.gov (United States)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  11. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  12. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kumari, Renu; Besser, Heino; Scharnweber, Tim; Majumdar, Jyotsna Dutta

    2015-01-01

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti_2O_3 phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  13. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  14. The interaction of deuterium with AgPd/Pd(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diemant, Thomas; Martin, Jan; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2016-07-01

    AgPd/Pd(111) surface alloys, which consist of a reactive and an inert metal, represent an ideal test case for the study of ensemble effects on bimetallic surfaces. In the present contribution, we have studied their deuterium adsorption properties by temperature-programmed desorption (TPD) measurements. The structural properties (surface contents and atom distribution) were determined already earlier by high-resolution scanning tunnelling microscopy (STM), which enables us to correlate the structural properties of these surface alloys to their adsorption behaviour. Most prominently, a steady decrease of the adsorbate coverage with increasing Ag content is observed. The results will be compared to findings on the interaction of CO with these surface alloys.

  15. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  16. Control of Surface Attack by Gallium Alloys in Electrical Contacts.

    Science.gov (United States)

    1986-03-28

    and atmospheric control but does not allow visual observation of the contact brushes. This machine is a small homopolar motor built from mild steel...collectors,gallium, homopolar devices,liquid metals,~- is. ABSTRACT ICNI.. .. w 41N"w -~dv.mp.d Wrllt by Itabata" * Electrical contact between a copp’er...32 5 Test rig with felt metal brushes 32 6 Homopolar test apparatus 33 7 Rewetting of alloy track 33 8 Alloy track after running with finger 34 brushes

  17. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.-S.; Wu, H.-R.; Wang, Y.-Y.; Wan, C.-C. [National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Chemical Engineering

    2000-04-28

    The electrochemical performance of AB{sub 2}-type (Ti{sub 0.35}Zr{sub 0.65}Ni{sub 1.2}V{sub 0.6}Mn{sub 0.2}Cr{sub 0.2}) and AB{sub 5}-type (MmB{sub 4.3}(Al{sub 0.3}Mn{sub 0.4}){sub 0.5}) hydrogen storage alloys modified by hot KOH etching and electroless nickel coating has been investigated. It is found that the alloy modified with hot KOH solution shows quick activation but at the expense of cycle-life stability. The alloy coated with nickel was effectively improved in both cycle-life stability and discharge capacity. Both the exchange and limiting current densities were increased by modifying the alloys by hot KOH solution dipping or electroless nickel coating as compared with untreated alloy electrode. The electrode with higher exchange current density and limiting current density leads to increased high-rate dischargeability. A duplex surface modified alloy (i.e., alloy first treated with hot KOH solution and then coated with nickel) has been developed, which performs satisfactorily with respect to both quick activation and long cycle life. In addition, the high-rate dischargeability for the electrode with duplex surface modification is superior to that of electrode solely treated with KOH etching or Ni plating. (orig.)

  18. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  19. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  20. A surface-analytical examination of stringer particles in aluminum-lithium-copper alloys

    Science.gov (United States)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1984-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys are characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used where SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and LI with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  1. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  2. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  3. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting.

    Science.gov (United States)

    Antanasova, Maja; Kocjan, Andraž; Kovač, Janez; Žužek, Borut; Jevnikar, Peter

    2018-04-01

    The aim has been to determine the effect of thermo-mechanical cycling on shear-bond-strength (SBS) of dental porcelain to Co-Cr and Ti-based alloys fabricated by casting, computer-numerical-controlled milling, and selective-laser-melting (SLM). Seven groups (n=22/group) of metal cylinders were fabricated by casting (Co-Cr and commercially pure-cpTi), milling (Co-Cr, cpTi, Ti-6Al-4V) or by SLM (Co-Cr and Ti-6Al-4V) and abraded with airborne-particles. The average surface roughness (R a ) was determined for each group. Dental porcelain was applied and each metal-ceramic combination was divided into two subgroups - stored in deionized water (24-h, 37°C), or subjected to both thermal (6000-cycles, between 5 and 60°C) and mechanical cycling (10 5 -cycles, 60N-load). SBS test-values and failure modes were recorded. Metal-ceramic interfaces were analyzed with a focused-ion-beam/scanning-electron-microscope (FIB/SEM) and energy-dispersive-spectroscopy (EDS). The elastic properties of the respective metal and ceramic materials were evaluated by instrumented-indentation-testing. The oxide thickness on intact Ti-based substrates was measured with Auger-electron-spectroscopy (AES). Data were analyzed using ANOVA, Tukey's HSD and t-tests (α=0.05). The SBS-means differed according to the metal-ceramic combination (p<0.0005) and to the fatigue conditions (p<0.0005). The failure modes and interface analyses suggest better porcelain adherence to Co-Cr than to Ti-based alloys. Values of R a were dependent on the metal substrate (p<0.0005). Ti-based substrates were not covered with thick oxide layers following digital fabrication. Ti-based alloys are more susceptible than Co-Cr to reduction of porcelain bond strength following thermo-mechanical cycling. The porcelain bond strength to Ti-based alloys is affected by the applied metal processing technology. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Microstructures of tribologically modified surface layers in two-phase alloys

    International Nuclear Information System (INIS)

    Figueroa, C G; Ortega, I; Jacobo, V H; Ortiz, A; Bravo, A E; Schouwenaars, R

    2014-01-01

    When ductile alloys are subject to sliding wear, small increments of plastic strain accumulate into severe plastic deformation and mechanical alloying of the surface layer. The authors constructed a simple coaxial tribometer, which was used to study this phenomenon in wrought Al-Sn and cast Cu-Mg-Sn alloys. The first class of materials is ductile and consists of two immiscible phases. Tribological modification is observed in the form of a transition zone from virgin material to severely deformed grains. At the surface, mechanical mixing of both phases competes with diffusional unmixing. Vortex flow patterns are typically observed. The experimental Cu-Mg-Sn alloys are ductile for Mg-contents up to 2 wt% and consist of a- dendrites with a eutectic consisting of a brittle Cu 2 Mg-matrix with α-particles. In these, the observations are similar to the Al-Sn Alloys. Alloys with 5 wt% Mg are brittle due to the contiguity of the eutectic compound. Nonetheless, under sliding contact, this compound behaves in a ductile manner, showing mechanical mixing of a and Cu 2 Mg in the top layers and a remarkable transition from a eutectic to cellular microstructure just below, due to severe shear deformation. AFM-observations allow identifying the mechanically homogenized surface layers as a nanocrystalline material with a cell structure associated to the sliding direction

  5. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  6. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    International Nuclear Information System (INIS)

    Liu Wenyong; Luo Yuting; Sun Linyu; Wu Ruomei; Jiang Haiyun; Liu Yuejun

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  7. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  8. In vitro biocompatibility of titanium after plasma surface alloying with boron

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Mariusz, E-mail: markacz@ump.edu.pl [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Miklaszewski, Andrzej [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Karolina [Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan (Poland)

    2016-12-01

    Recently, the effect of different sizes of precursor powders during surface plasma alloying modification on the properties of titanium surface was studied. In this work we show in vitro test results of the titanium (α-Ti) after plasma surface alloying with boron (B). Ti-B nanopowders with 2 and 10 wt% B were deposited onto microcrystalline Ti substrate. The in vitro cytocompatibility of these biomaterials was evaluated and compared with a conventional microcrystalline Ti. During the studies, established cell line of human gingival fibroblasts and osteoblasts were cultured in the presence of tested materials, and its survival rate and proliferation activity were examined. For this purpose, MTT assay, flow cytometric and fluorescent microscopic evaluation were made. Biocompatibility tests carried out indicate that the Ti after plasma surface alloying with B could be a possible candidate for dental implants and other medicinal applications. Plasma alloying is a promising method for improving the properties of titanium, thus increasing the field of its applications. - Highlights: • this is first article carried out on the titanium after plasma surface alloying with different contents of boron; • microcrystalline titanium modified with boron changes the physicochemical features of conventional material; • Ti modified by boron is proper in terms of effects on survival and proliferative activity of cells of dental alveoli; • precursors with different content of boron in different ways influence the intensity and stability of cell growth;.

  9. Effect of surface reaction layer on grindability of cast titanium alloys.

    Science.gov (United States)

    Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya

    2006-03-01

    The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.

  10. Heat-resisting alloys for hard surfacing and sealing pad welding

    Directory of Open Access Journals (Sweden)

    R.O. Wielgosz

    2010-07-01

    Full Text Available The paper deals with heat-resisting alloys used to harden surfaces of elements operating in increased temperatures. It also deals with alloysused to seal cooperating surfaces of elements operating in the conditions of increased temperatures and aggressive utilities. Application methods and properties of thus obtained layers have been presented and adhesion of layers with matrix material has been assessed.

  11. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2007-01-01

    A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...

  12. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  13. On the evolution of surface roughness during deformation of polycrystalline aluminum alloys

    NARCIS (Netherlands)

    Vellinga, WP; van Tijum, Redmer; de Hosson, JTM

    Surface roughening of polycrystalline Al-Mg alloys during tensile deformation is investigated using white light confocal microscopy. Materials are tested that differ only in grain size. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length

  14. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  15. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  16. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  17. Nanotubular surface and morphology of Ti-binary and Ti-ternary alloys for biocompatibility

    International Nuclear Information System (INIS)

    Choe, Han-Cheol

    2011-01-01

    The nanotubular surface of Ti-binary and Ti-ternary alloys for biomaterials has been investigated using various methods of surface characterization. Binary Ti-xNb (x = 10, 20, 30, and 40 wt.%) and ternary Ti-30Ta-xNb (x = 3, 7 and 15 wt.%) alloys were prepared by using the high-purity sponges; Ti, Ta and Zr spheres. The nanotube on the alloy surface was formed in 1.0 M H 3 PO 4 with small additions of NaF (0.5 and 0.8 wt.%), using a potentiostat. For cell proliferation, an MC3T3-E1 mouse osteoblast was used. The surface characteristics were investigated using field-emission scanning electron microscope, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Binary Ti-xZr alloys had a lamellar and a needle-like structure, whereas, ternary Ti-30Ta-xZr alloys had equiaxed grains with a lamellar martensitic α' structure. The thickness of the needle-like laths of the α-phase increased as the Zr content increased. The nanotubes formed on the α phase and β phase showed a different size and shape appearance with Zr content. As the Zr content increased from 3 to 40 wt.%, the diameter of the nanotubes in Ti-xZr and Ti-30Ta-xZr alloy decreased from 200 nm to 50 nm. The nanotubular Ti-30Ta-15Zr alloy surface with a diameter of 50 nm provided a good osseointegration; cell proliferation, migration and differentiation.

  18. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  19. Quality assurance when surface welding nickel-based alloys; Qualitaetssicherung bei der Auftragsschweissung von Nickelbasislackierungen

    Energy Technology Data Exchange (ETDEWEB)

    Metschke, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    2003-07-01

    The cladding of evaporator heat exchanger surfaces in refuse incineration boilers with alloy 625 can effectively protect against the corrosive wear of the basic tube if the described rules concerning the pre-treatment, processing, quality control and after-care are observed. This statement is supported by the positive experience with this alloy at the Schwandorf refuse-fired power plant over a period of eight years now. Since the maximum service temperature is limited to 420 C, alloy 625 is only suitable for protecting superheater pipes subject to certain conditions. Long-term experience with alternative nickel-based alloys (alloy 622, alloy 686 and others) are not yet available. (orig.) [German] Die Schweissplattierung von Verdampferwaermetauscherflaechen in Muellverbrennungskesseln mit Alloy 625 kann einen wirksamen Schutz gegen den korrosiven Verschleiss des Grundrohres darstellen, wenn die vorstehenden Regeln ueber Vorbehandlung, Verarbeitung, Qualitaetskontrolle und laufende Nachsorgearbeiten beachtet werden. Diese Aussage wird durch die positiven Erfahrungen mit dieser Legierung im Muellkraftwerk Schwandorf ueber einen Zeitraum von nunmehr acht Jahren gestuetzt. (orig.)

  20. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  1. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  2. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  3. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  4. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  5. Effect of Nanosheet Surface Structure of Titanium Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Satoshi Komasa

    2014-01-01

    Full Text Available Titanium alloys are the most frequently used dental implants partly because of the protective oxide coating that spontaneously forms on their surface. We fabricated titania nanosheet (TNS structures on titanium surfaces by NaOH treatment to improve bone differentiation on titanium alloy implants. The cellular response to TNSs on Ti6Al4V alloy was investigated, and the ability of the modified surfaces to affect osteogenic differentiation of rat bone marrow cells and increase the success rate of titanium implants was evaluated. The nanoscale network structures formed by alkali etching markedly enhanced the functions of cell adhesion and osteogenesis-related gene expression of rat bone marrow cells. Other cell behaviors, such as proliferation, alkaline phosphatase activity, osteocalcin deposition, and mineralization, were also markedly increased in TNS-modified Ti6Al4V. Our results suggest that titanium implants modified with nanostructures promote osteogenic differentiation, which may improve the biointegration of these implants into the alveolar bone.

  6. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  7. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    International Nuclear Information System (INIS)

    Gray-Munro, J.E.; Luan, B.; Huntington, L.

    2008-01-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy

  8. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  9. Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru [National Research Tomsk State University (Russian Federation); Hu, Q. M.; Yang, R. [Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Institute of Metal Research (China)

    2016-12-15

    Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.

  10. Microbiologically-Facilitated Effects on the Surface Composition of Alloy 22, A Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    Horn, J; Lian, T; Martin, S I

    2001-01-01

    The effects of microbiological activities on the surface composition of Alloy 22 was investigated. Prior studies suggesting microbially-generated selective dissolution of chromium from Alloy 22 were based solely on analyzing solubilized Alloy 22 elements. These and other investigations point to the insufficiencies of analyzing solubilized (or solubilized and reprecipitated) alloying elements to discern between homogeneous/stoichiometric dissolution and selective/non-stoichiometric dissolution of alloying elements. Therefore, an approach using X-ray Photoelectron Spectroscopy (XPS) to interrogate the surface layers of treated Alloy 22 specimens was taken to resolve this issue. Sputtering into the surface of the samples, coupled with XPS analysis at given intervals, allowed a high resolution quantitative elemental evaluation of the alloy as a function of depth. Biotically-incubated Alloy 22 show a region that could be depleted of chromium. Surfacial XPS analysis of these same coupons did not detect the presence of re-precipitated Alloy 22 component elements, also supporting the possible occurrence of non-stoichiometric dissolution. Thus, these preliminary data do not exclude the possibility of selective dissolution. It also appears that this experimental approach shows promise to unequivocally resolve this issue. Further tests using smoother-surface, more highly polished coupons should allow for better resolution between surface layers to permit a decisive determination of the mode of Alloy 22 dissolution using sputtering XPS analysis

  11. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    Science.gov (United States)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  12. Study the formation of porous surface layer for a new biomedical titanium alloy

    Science.gov (United States)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  13. Surface hardening alloy VT6 of electric explosion and by electron beam

    International Nuclear Information System (INIS)

    Ivanov, Yu. F.; Kobzareva, T. Yu.; Gromov, V. E.; Soskova, N. A.; Budovskikh, E. A.; Raikov, S. V.

    2014-01-01

    The aim is to study the phase composition, structure and properties of the surface layer of the VT6 titanium alloy, subjected to combined treatment, consisting of alloying by the plasma of an electric explosion of a graphite fiber with a charge of the SiC powder and subsequent exposure by a high-intense electron beam. As a result of such treatment, a multiphase surface layer with a submicron and nanosize structure forms with the microhardness manifold exceeding its value in the sample volume are presented

  14. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  15. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages; Recargues Duros por Soldadura en la Fabricacion de Valvulas ; el Problema del Cobalto, alternativas, ventajas, inconvenientes

    Energy Technology Data Exchange (ETDEWEB)

    Piquer Caballero, J.

    2014-07-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  16. Behaviour of human endothelial cells on surface modified NiTi alloy.

    Science.gov (United States)

    Plant, Stuart D; Grant, David M; Leach, Lopa

    2005-09-01

    Intravascular stents are being designed which utilise the shape memory properties of NiTi alloy. Despite the clinical advantages afforded by these stents their application has been limited by concerns about the large nickel ion content of the alloy. In this study, the surface chemistry of NiTi alloy was modified by mechanical polishing and oxidising heat treatments and subsequently characterised using X-ray photon spectroscopy (XPS). The effect of these surfaces on monolayer formation and barrier integrity of human umbilical vein endothelial cells (HUVEC) was then assessed by confocal imaging of the adherens junctional molecule VE-cadherin, perijunctional actin and permeability to 42kDa dextrans. Dichlorofluoroscein assays were used to measure oxidative stress in the cells. XPS analysis of NiTi revealed its surface to be dominated by TiO(2). However, where oxidation had occurred after mechanical polishing or post polishing heat treatments at 300 and 400 degrees C in air, a significant amount of metallic nickel or nickel oxide species (10.5 and 18.5 at%) remained on the surface. Exposure of HUVECs to these surfaces resulted in increased oxidative stress within the cells, loss of VE-cadherin and F-actin and significantly increased paracellular permeability. These pathological phenomena were not found in cells grown on NiTi which had undergone heat treatment at 600 degrees C. At this temperature thickening of the TiO(2) layer had occurred due to diffusion of titanium ions from the bulk of the alloy, displacing nickel ions to sub-surface areas. This resulted in a significant reduction in nickel ions detectable on the sample surface (4.8 at%). This study proposes that the integrity of human endothelial monolayers on NiTi is dependent upon the surface chemistry of the alloy and that this can be manipulated, using simple oxidising heat treatments.

  17. Surface morphology study of some Cu–Ni reference alloys using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sheta, S.A. [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt); Di Carlo, G.; Ingo, G.M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Area della Ricerca Roma 1 Montelibretti, 00016, Monterotondo Scalo, Rome (Italy); Harith, M.A., E-mail: mharithm@niles.edu.eg [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt)

    2016-04-15

    In the present work a detailed study of the surface morphology of purposely-prepared Cu–Ni reference alloys has been performed. These alloys have been prepared via tailored casting methods in order to have samples with same chemical composition and different local chemical enrichments of both metals. A micro-LIBS system for surface spatial scanning was set up based on a second harmonic Nd:YAG laser at 532 nm and using a focusing lens of focal length 7 cm to disclose the local chemical composition variation. Surface morphological scanning was performed for some of the binary Cu–Ni reference alloys to differentiate between chemically homogeneous and heterogeneous alloys. LIBS results were compared with the information of the Scanning Electron Microscope coupled with Energy Dispersive X-ray (SEMEDS) investigation carried out to provide surface local large-area chemical analysis via EDS technique. It has been proved that LIBS is a simple, sensitive and direct technique in the determination of homogeneity or heterogeneity of the sample's surface. The LIBS results have been shown to be more sensitive and accurate in the heterogeneity determination than other used conventional analytical techniques. - Highlights: • Surface LIBS scanning was performed for Cu–Ni reference alloy samples. • LIBS system was based on a 2nd harmonic Nd:YAG laser and a focusing lens (f = 7 cm). • LIBS results were compared with SEM imaging and EDS chemical analysis. • Surface homogeneity and heterogeneity have been differentiated successfully. • LIBS is a sensitive analytical tool in surface metallurgical study.

  18. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  19. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  20. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  1. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys

    International Nuclear Information System (INIS)

    Amano, T.; Takezawa, Y.; Shiino, A.; Shishido, T.

    2008-01-01

    The high temperature oxidation behavior of Fe-20Cr-4Al, floating zone refined (FZ) Fe-20Cr-4Al, Fe-20Cr-4Al-0.5Pd, Fe-20Cr-4Al-0.5Pt and Fe-20Cr-4Al-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys was studied in oxygen for 0.6-18 ks at 1273-1673 K by mass gain measurements, X-ray diffraction and scanning electron microscopy. The mass gains of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys showed almost the same values. Those of FeCrAl-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys decreased with increasing yttrium of up to 0.1% followed by an increase with the yttrium content after oxidation for 18 ks at 1473 K. Needle-like oxide particles were partially observed on FeCrAl alloy after oxidation for 7.2 ks at 1273 K. These oxide particles decreased in size with increasing oxidation time of more than 7.2 ks at 1473 K, and then disappeared after oxidation for 7.2 ks at 1573 K. It is suggested that a new oxide develops at the oxygen/scale interface. The scale surface of FeCrAl alloy showed a wavy morphology after oxidation for 7.2 ks at 1273 K which then changed to planar morphology after an oxidation time of more than 7.2 ks at 1573 K. On the other hand, the scale surfaces of other alloys were planar after all oxidation conditions in this study. The scale surfaces of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys were rough, however, those of FeCrAl-(0.1, 0.2, 0.5)Y alloys were smooth. The oxide scales formed on FeCrAl-(0.1, 0.2, 0.5)Y alloys were found to be α-Al 2 O 3 with small amounts of Y 3 Al 5 O 12 , and those of the other alloys were only α-Al 2 O 3

  2. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  3. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  4. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  5. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  6. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  7. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  8. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dziadoń, Andrzej [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Mola, Renata, E-mail: rmola@tu.kielce.pl [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Błaż, Ludwik [Department of Structure and Mechanics of Solids, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  9. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  10. Rough surfaces of titanium and titanium alloys for implants and prostheses

    International Nuclear Information System (INIS)

    Conforto, E.; Aronsson, B.-O.; Salito, A.; Crestou, C.; Caillard, D.

    2004-01-01

    Titanium and titanium alloys for dental implants and hip prostheses were surface-treated and/or covered by metallic or ceramic rough layers after being submitted to sand blasting. The goal of these treatments is to improve the surface roughness and consequently the osteointegration, the fixation, and the stability of the implant. The microstructure of titanium and titanium alloys submitted to these treatments has been studied and correlated to their mechanical behavior. As-treated/covered and mechanically tested surfaces were characterized by scanning electron microscopy (SEM). Structural analyses performed by transmission electron microscopy (TEM), mainly in cross-section, reveal the degree of adherence and cohesion between the surface layer and the substrate (implant). We observed that, although the same convenient surface roughness was obtained with the two types of process, many characteristics as structural properties and mechanical behavior are very different

  11. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  12. Ion beam modifications of near-surface compositions in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Tang, S.; Yacout, A.M.; Rehn, L.E.; Stubbins, J.F.

    1990-11-01

    Changes in the surface and subsurface compositions of ternary alloys during elevated-temperature sputtering with inert-gas ions were investigated. Theoretically, a comprehensive kinetic model which includes all the basic processes, such as preferential sputtering, displacement mixing, Gibbsian segregation, radiation-enhanced diffusion and radiation-induced segregation, was developed. This phenomenological approach enabled to predict the effects of each individual process or of a combination of processes on the compositional modification in model alloys. Experimentally, measurements of compositional changes at the surface of a Ag-40at%Au -- 20at%Cu alloy during 3-keV Ne + bombardment at various temperatures were made, using ion scattering spectroscopy. These measurements were interpreted on the basis of the results of theoretical modeling. 8 refs., 2 figs

  13. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  14. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  15. Understanding of the correlation between work function and surface morphology of metals and alloys

    International Nuclear Information System (INIS)

    Xue, Mingshan; Wang, Wenfeng; Wang, Fajun; Ou, Junfei; Li, Changquan; Li, Wen

    2013-01-01

    Highlights: •The inherent correlation between the work function and surface morphology was focused on. •The change of the work function of metals and alloys as a function of surface roughness was investigated by scanning Kelvin probe. •The lightning rod effect was used to describe the electron transport at a rough surface. -- Abstract: The relationships between material behaviors and its structures are extremely complicated, and the understanding of these relationships is of much significance for revealing the physical, chemical and mechanical properties of various materials. In this study, the change of the work function (WF) of metals and alloys as a function of surface roughness was investigated by scanning Kelvin probe, with the aim of understanding the inherent correlation between the WF and surface morphology using a simple and intuitive way. It was demonstrated that at the rough surface of Cu and Ag, the sharp micro/nanostructures induced a lower WF, just as the lightning rod effect providing a direct and fast path for electron transport. While for Al and Mg alloys, the rough surface resulted in an increase of the WF owing to the effect of surface oxide layers, just as the anti-lightning rod effect providing a protected layer to confine the electron transport

  16. Overlay metallic-cermet alloy coating systems

    International Nuclear Information System (INIS)

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  17. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  18. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  19. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    Science.gov (United States)

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found

  20. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  1. Laser-induced surface modification of metals and alloys in liquid argon medium

    International Nuclear Information System (INIS)

    Kazakevich, V S; Kazakevich, P V; Yaresko, P S; Kamynina, D A

    2016-01-01

    Micro and nanostructuring of metals and alloys surfaces (Ti, Mo, Ni, T30K4) was considered by subnanocosecond laser radiation in stationary and dynamic mode in the liquid argon, ethanol and air. Depending of structures size on the samples surface from the energy density and the number of pulses were built. Non-periodic (NSS) and periodic (PSS) surface structures with periods about λ-λ/2 were obtained. PSS formation took place as at the target surface so at the NSS surface. (paper)

  2. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    International Nuclear Information System (INIS)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone; Chorkendorff, Ib

    2012-01-01

    Highlights: ► Impedance spectroscopy of Cu/Pt(1 1 1) near-surface alloy and Pt(1 1 1). ► Presence of oxygen changes little the adsorption dynamics. ► Adsorption dynamics similar on alloy and Pt(1 1 1). ► Electrosorption phenomena on alloy shifted in potential, relative to Pt(1 1 1). - Abstract: The adsorption dynamics of *OH and *O species at Pt(1 1 1) and Cu/Pt(1 1 1) near-surface alloy (NSA) surfaces in oxygen-free and O 2 -saturated 0.1 M HClO 4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(1 1 1) surface resulting in weaker bonding to adsorbates like *OH, *H or *O. This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16 V towards more positive potentials can be clearly monitored in absence of O 2 and under the oxygen reduction reaction (ORR) conditions for the Cu/Pt(1 1 1) NSA. In both cases, for Pt(1 1 1) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when oxygen reduction takes place at the surface. A ∼5-fold improvement in the ORR activity over the Pt(1 1 1) at 0.9 V (RHE) was measured for the Cu/Pt(1 1 1) near-surface alloy.

  3. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  4. Laser alloying of Al with mixed Ti and Ni powders to improve surface properties

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-07-01

    Full Text Available Aluminium is used in industry for various applications due to its low cost, light weight and excellent workability, but lacks wear resistance and hardness. Laser alloying is used to improve surface properties such as hardness and wear resistance...

  5. Improvement of hardness of aluminium AA1200 by laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  6. Novel surface treatment for hydrogen storage alloy in Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiangyu; Ma, Liqun; Ding, Yi; Yang, Meng; Shen, Xiaodong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2009-05-15

    A novel surface treatment for the MlNi{sub 3.8}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.2} (La-rich mischmetal) hydrogen storage alloy has been carried out by using an aqueous solution of HF and KF with a little addition of KBH{sub 4}. The results of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that rough surface was formed and Al was partly dissolved into the solution after the treatment. The result of XPS indicated the formation of Ni{sub 3}B and LaF{sub 3} compounds on the alloy surface by the treatment. The probable chemical reaction mechanism for the surface treatment was introduced. The treatment resulted in significant improvements in the activation property, discharge capacity and cycle life of the alloy, especially the high rate dischargeability (HRD). The HRD of the treated alloy still remained 54.9% while that of the untreated one was only 15.1% at a discharge current density of 1200 mA/g. (author)

  7. Atomic and electronic structure of V-Rh(110) near-surface alloy

    Czech Academy of Sciences Publication Activity Database

    Píš, I.; Stetsovych, V.; Mysliveček, J.; Kettner, M.; Vondráček, Martin; Dvořák, F.; Mazur, D.; Matolín, V.; Nehasil, V.

    2013-01-01

    Roč. 117, č. 24 (2013), s. 12679-12688 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : V−Rh(110) near-surface alloy * STM * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.835, year: 2013

  8. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  9. Surface properties of a nanocrystalline Fe-Ni-Nb-B alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Pavuk, M.; Sitek, J.; Sedlackova, K.

    2014-01-01

    In this work, we studied the impact of a neutron radiation on the surface properties of the nanocrystalline (Fe_0_._2_5Ni_0_._7_5)_8_1Nb_7B_1_2 alloy. Changes in topography and domain structure were observed by means of magnetic force microscopy (MFM). (authors)

  10. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  11. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    Science.gov (United States)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  12. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  13. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  14. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  15. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm

    Directory of Open Access Journals (Sweden)

    Abhijith

    2018-01-01

    Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.

  16. Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun Kumar; Dubey, Avanish Kumar [Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh (India)

    2013-07-15

    Laser cutting of titanium and its alloys is difficult due to it's poor thermal conductivity and chemical reactivity at elevated temperatures. But demand of these materials in different advanced industries such as aircraft, automobile and space research, require accurate geometry with high surface quality. The present research investigates the laser cutting process behavior of titanium alloy sheet (Ti-6Al-4V) with the aim to improve geometrical accuracy and surface quality by minimizing the kerf taper and surface roughness. The data obtained from L{sub 27} orthogonal array experiments have been used for developing neural network (NN) based models of kerf taper and surface roughness. A hybrid approach of neural network and genetic algorithm has been proposed and applied for the optimization of different quality characteristics. The optimization results show considerable improvements in both the quality characteristics. The results predicted by NN models are well in agreement with the experimental data.

  17. Evaluation and comparison of shear bond strength of porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ananya Singh

    2017-01-01

    Conclusion: It could be concluded that newer nickel and beryllium free Co-Cr alloys and titanium alloys with improved strength to weight ratio could prove to be good alternatives to the conventional nickel-based alloys when biocompatibility was a concern.

  18. Selected aspects of the action of cobalt ions in the human body.

    Science.gov (United States)

    Czarnek, Katarzyna; Terpiłowska, Sylwia; Siwicki, Andrzej K

    2015-01-01

    Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.

  19. Theoretical study of the surface resistivity of (111) surfaces of NixPt1-x(111) alloys

    International Nuclear Information System (INIS)

    Rous, P. J.

    2001-01-01

    A layer-Korringa - Kohn - Rostoker calculation is used to study the compositional dependence of the surface resistivity of the (111) surface of Ni x Pt 1-x (111) alloys. The compositional disorder in the bulk and at the surface is described by the coherent potential approximation. If it is assumed that the atomic planes near the (111) surface Ni x Pt 1-x have the same composition as the bulk layers, then a weak Nordheim effect is observed in the compositional dependence of the surface resistivity. However, we show that surface segregation in Ni x Pt 1-x (111) causes an inverse Nordheim dependence in the actual surface resistivity as the bulk composition is varied. [copyright] 2001 American Institute of Physics

  20. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  1. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  2. Modification of the surface of metal products with carbide coatings by electrospark alloying

    Science.gov (United States)

    Koshuro, Vladimir A.; Fomina, Marina A.; Fomin, Aleksandr A.

    2018-04-01

    Electrospark alloying (ESA) technology has existed for a long time (since the middle of the 20th century) but its potential has not been exhausted yet. In the present paper it is proposed to increase the mechanical properties of steel and titanium products by doping with a hard carbide alloy based on "WC-TiC-Co" system. As a result, the hardness of coatings obtained by ESA reaches at least 18-22 GPa with a layer thickness of up to 0.5 mm. The proposed solution can improve the functional qualities of various friction surfaces that are used in engineering, as well as in friction elements.

  3. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  4. Positron annihilation study on the Fermi surface of Cd-Mg alloys

    International Nuclear Information System (INIS)

    Koike, Shu-ichi; Hirabayashi, Makoto; Suzuki, Toshiharu; Hasegawa, Masayuki.

    1979-01-01

    Angular correlation measurements of annihilation photons have been made on single crystals of the Cd-Mg alloys over all compositions. It is found that the Fermi surfaces of the alloys in the Cd-rich region distort considerably from a free-electron sphere; the 3rd band ''stars'' and the 4th band horizontal ''cigars'' around the points L do not exist in Cd, and appear at 10 at % Mg accompanying an appreciable decrease of the energy gap at L. It is proposed that changes in the 4d core states cause the sudden decrease of the energy gap. (author)

  5. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  6. A theory of surface enrichment in ordered alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Sachtler, W.M.H.

    1974-01-01

    A simple theory was developed to explain exptl. data on surface enrichment in Pt3Sn. The computed surface enrichment is in accord with exptl. findings. The theory predicts that in the Pt3Sn system enrichment occurs by interchange of atoms of the element with the lower heat of sublimation from the

  7. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  8. U-Zr alloy: XPS and TEM study of surface passivation

    Science.gov (United States)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  9. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  10. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  11. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    International Nuclear Information System (INIS)

    Swaminathan, Srinivasan; Spiegel, Michael

    2007-01-01

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N 2 -5% H 2 gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal

  12. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)]. E-mail: s.swaminathan@mpie.de; Spiegel, Michael [High Temperature Reactions Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)

    2007-03-15

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot dip galvanizing. In order to understand the influence of common alloying elements on the surface chemistry after annealing, model alloys of binary (Fe-2Si, Fe-2Mn and Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr and Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were investigated. The specimens were annealed for 60 s at 820 deg. C in N{sub 2}-5% H{sub 2} gas atmospheres with different dew points -80 and -40 deg. C, respectively. Surface chemistry of the annealed specimens was obtained by using X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) was used to view surface morphology. At low dew point -80 deg. C, apart from the thermodynamical calculations such as solubility product of oxides and their critical solute concentrations, kinetics play a decisive role on the selective oxidation, i.e. oxygen competition. As expected, the amount of external selective oxidation of alloying elements are well pronounced at higher dew point -40 deg. C. An attempt has been made to explain the dominant process of Si and Mn on Cr-oxidation and segregation. It is observed that annealing of quarternary system at higher dew point shifts the Cr-oxidation from external to internal.

  13. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    Science.gov (United States)

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  14. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  15. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  16. Surface characterization for high purity Fe-Cr alloys

    International Nuclear Information System (INIS)

    Iwai, H.; Oiwa, R.; Takaki, S.; Abiko, K.

    1995-01-01

    Fe-50mass%Cr was prepared in a cold crucible furnace with induction heating, then refined by floating-zone melting (FZM). The chemistries on the surface before and after FZM were compared by XPS measurement. C and O were observed on top surfaces both before and after as a hydrocarbon, carbonyl group and carboxyl group which are adsorbed chemical components. The other impurities were observed on the surface in both cases; however, the number and level of impurities on the surface after FZM were much larger than those on the surface before FZM; these adhered to the surface during sample preparation for XPS measurement. It is concluded that sample preparation introduces contamination which affects the detection limit of chemical analytical instruments. Sn was only observed on the top surface after FZM. It was segregated Sn which was contained in chromium as a starting material. It must be eliminated before starting. From XPS depth profiling results, it was concluded that 0.2 nm thickness of carbon such as hydrocarbon and organic components are adsorbed on the 1 nm thickness of oxide layer. Below the oxide layer, a lack of Cr was observed down to a depth of 6 nm. (orig.)

  17. Influence of ecologically friendly cores on surface quality of castings based on magnesium alloys

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2014-07-01

    Full Text Available Constructional materials as Al - alloys can be replaced by other materials with high strength to low mass density ratio, e.g. Mg-alloys. In order to pre-casting of holes and cavities cores based on pure inorganic salt can be applied due to easy cleaning of even geometrically complex pre-cast holes. This technology is applied mainly for gravity and low-pressure casting technology. This contribution is aimed at studying of mutual interaction of the Mg-alloy and the salt core. Experiments were focused on surface quality; macro- and microstructure of testing casting samples determination. Metallographic analysis and scanning electron microscope (SEM with X-ray energy-dispersion superficial and spot microanalysis (EDAX were employed.

  18. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    Science.gov (United States)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  19. Synthesis and characterization of cobalt oxide and titanium mixtures using mechanical alloying and its response to oxygen reduction; Sintesis y caracterizacion de mezclas de oxidos de cobalto y titanio por aleado mecanico y su respuesta para la reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Basurto S, R.; Bonifacio-Martinez, J.; Fernandez, S.M [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: rafael.basurto@inin.gob.mx

    2009-09-15

    The synthesis of Co{sub 3}O{sub 4} and CoTiO{sub 3} oxides was conducted using mechanical alloying and combustion. Co{sub 3}O{sub 4} used was obtained using a SPEX ball mill with cobalt nitrate, Co(NO{sub 3})36H{sub 2}O plus urea, CH{sub 4}N{sub 2}O, in a molar ratio of 1:1 and a ball weight ratio of 1:4 with grinding times of 2.5 hours in an argon atmosphere. The material obtained after alloying underwent combustion at 400 degrees Celsius and 500 degrees Celsius, obtaining oxides of mixed cobalt valence. This material was mixed with TiO{sub 2} with a weight ratio of 1:1 and was mechanically alloyed with a ball weight ratio of 1:8; grinding was performed for 2.5 hours in argon atmosphere and it underwent combustion at 800 degrees Celsius. Characterization was performed using x-ray diffraction, low-vacuum sweep electron microscopy and EDS. The electrochemical performance was obtained in a galvanostat-potentiostat (Princenton Applied Research modelo 273). Both materials present electrocatalytic activity for oxygen reduction reaction in alkaline medium. [Spanish] La sintesis de los oxidos: Co{sub 3}O{sub 4} y CoTiO3 se realizo por la tecnica de aleado mecanico y combustion. El Co{sub 3}O{sub 4} utilizado, se obtuvo por con un molino de bolas SPEX, utilizando nitrato de cobalto, Co(NO{sub 3})36H{sub 2}O mas urea, CH{sub 4}N{sub 2}O, en una relacion molar 1:1.y una relacion en peso de bolas de 1:4 con tiempos de molienda de 2.5 horas, en atmosfera de argon, al termino del aleado el material obtenido se llevo a combustion a 400 grados centigrados y 500 grados centigrados, obteniendose el oxido de valencia mixta de cobalto. Este material se mezclo con TiO{sub 2}, en una relacion en peso de 1:1 y se aleo mecanicamente, con una relacion en peso de bolas de 1:8, por 2.5 horas de molienda en atmosfera de argon y llevandolo a combustion a 800 grados centigrados. La caracterizacion se hizo por: Difraccion de Rayos X, Microscopia Electronica de Barrido de Bajo Vacio y EDS El

  20. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    International Nuclear Information System (INIS)

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-01-01

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc

  1. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  2. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  3. Studies of the mechanisms involved in the laser surface hardening process of aluminum base alloys

    International Nuclear Information System (INIS)

    Silva, Luciana Ventavele da

    2011-01-01

    The Al-Si alloys are widely used in industry to replace the steel and gray cast iron in high-tech sectors. The commercial importance of these alloys is mainly due to its low weight, excellent wear (abrasion) and corrosion resistance, high resistance at elevated temperatures, low coefficient of thermal expansion and lesser fuel consumption that provide considerable reduction of emission of pollutants. In this work, Al-Si alloy used in the automotive industry to manufacture pistons of internal combustion engines, was undergone to surface treatments using LASER remelting (Nd:YAG, λ = 1.06 μm, pulsed mode). The LASER enables various energy concentrations with accurate transfer to the material without physical contact. The intense energy transfer causes the occurrence of structural changes in the superficial layer of the material. Experiments with single pulses and trails were conducted under various conditions of LASER processing in order to analyze microstructural changes resulting from treatments and their effects on the hardness. For the characterization of hardened layer was utilized the following techniques: optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray mapping, Vickers microhardness and maximum roughness tests. The high cooling rate caused a change in the alloy structure due to the refinement of the primary eutectic silicon particles, resulting in increase of the mechanical properties (hardness) of the Al-Si alloy. (author)

  4. Synthesis, structure, properties and immobilization on a gold surface of the monoribbed-functionalized tris-dioximate cobalt(II) clathrochelates and an electrocatalytic hydrogen production from H+ ions.

    Science.gov (United States)

    Voloshin, Y Z; Belov, A S; Vologzhanina, A V; Aleksandrov, G G; Dolganov, A V; Novikov, V V; Varzatskii, O A; Bubnov, Y N

    2012-05-28

    The cycloaddition of the mono- and dichloroglyoximes to the cobalt(II) bis-α-benzyldioximate afforded the cobalt(II) mono- and dichloroclathrochelates in moderate yields (40-60%). These complexes undergo nucleophilic substitution of their reactive chlorine atoms with aliphatic amines, alcohols and thiolate anions. In the case of ethylenediamine and 1,2-ethanedithiol, only the macrobicyclic products with α,α'-N(2)- and α,α'-S(2)-alicyclic six-numbered ribbed fragments were obtained. The cobalt(II) cage complexes with terminal mercapto groups were synthesized using aliphatic dithiols. The crystal and molecular structures of the six cobalt(II) clathrochelates were obtained by X-ray diffraction. Their CoN(6)-coordination polyhedra possess a geometry intermediate between a trigonal prism and a trigonal antiprism, and the encapsulated cobalt(II) ions are shifted from their centres due to the structural Jahn-Teller effect with the Co-N distances varying significantly (by 0.10-0.26 Å). The electrochemistry of the complexes obtained was studied by cyclic voltammetry (CV). The anodic waves correspond to the quasi-reversible Co(2+/3+) oxidations, whereas the cathodic ranges contain the quasi-reversibile waves assigned to the Co(2+/+) reductions; all the cobalt(i)-containing clathrochelate anions formed are stable in the CV time scale. The electrocatalytic properties of the cobalt complexes obtained were studied in the production of hydrogen from H(+) ions: the addition of HClO(4) resulted in the formation of the same catalytic cathodic reduction Co(2+/+) waves. The controlled-potential electrolysis with gas chromatography analysis confirmed the production of H(2) in high Faraday yields. The efficiency of this electrocatalytic process was enhanced by an immobilization of the complexes with terminal mercapto groups on a surface of the working gold electrode.

  5. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  6. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  7. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  8. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    Directory of Open Access Journals (Sweden)

    Agnieszka Witecka, Akiko Yamamoto, Henryk Dybiec and Wojciech Swieszkowski

    2012-01-01

    Full Text Available Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1, 3-aminopropyltriethoxysilane (S2, 3-isocyanatopyltriethoxysilane (S3, phenyltriethoxysilane (S4 and octadecyltriethoxysilane (S5. The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  9. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  10. Angular distribution of sputtered atoms from Al-Sn alloy and surface topography

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan

    1992-01-01

    If an alloy is sputtered the angular distribution of the sputtered atoms can be different for each component. At high ion energies in the range of linear cascade theory, different energy distributions for components of different mass in the solid are predicted. Upon leaving the surface, i.e. overcoming the surface binding energy, these differences should show up in different angular distributions. Differences in the angular distribution are of much practical interest, for example, in thin-film deposition by sputtering and surface analysis by secondary-ion mass spectroscopy and Auger electron spectroscopy. Recently our experimental work has shown that for Fe-W alloy the surface microtopography becomes dominant and determines the shape of the angular distribution of the component. However, with the few experimental results available so far it is too early to draw any general conclusions for the angular distribution of the sputtered constituents. Thus, the aim of this work was to study further the influence of the surface topography on the shape of the angular distribution of sputtered atoms from an Al-Sn alloy. (Author)

  11. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  12. Changes of electrical conductivity of the metal surface layer by the laser alloying with foreign elements

    Science.gov (United States)

    Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria

    1994-09-01

    Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.

  13. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H2SO4 0.5M

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2007-01-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H 2 SO 4 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  14. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    OpenAIRE

    Deng Zhenghua; Li Huaji; Zhao Wanjun

    2013-01-01

    Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in...

  15. Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD.

    Science.gov (United States)

    Ho, Chih-Sung; Martono, Eddie; Banerjee, Santanu; Roszell, John; Vohs, John; Koel, Bruce E

    2013-11-21

    Alloy formation and chemisorption at bimetallic surfaces formed by vapor-depositing Zn on a Pt(111) single crystal were investigated primarily by using X-ray photoelectron diffraction (XPD), X-ray photoelectron spectroscopy (XPS), low-energy alkali ion scattering spectroscopy (ALISS), low electron energy diffraction (LEED), and temperature programmed desorption (TPD). A wide range of conditions were investigated to explore whether deposition and annealing of Zn films could produce well-defined, ordered alloy surfaces, similar to those encountered for Sn/Pt(111) surface alloys. These attempts were unsuccessful, although weak, diffuse (2 × 2) spots were observed under special conditions. The particular PtZn bimetallic alloy created by annealing one monolayer of Zn on Pt(111) at 600 K, which has a Zn composition in the surface layer of about 5 at. %, was investigated in detail by using XPD and ALISS. Only a diffuse (1 × 1) pattern was observed from this surface by LEED, suggesting that no long-range, ordered alloy structure was formed. Zn atoms were substitutionally incorporated into the Pt(111) crystal to form a near-surface alloy in which Zn atoms were found to reside primarily in the topmost and second layers. The alloyed Zn atoms in the topmost layer are coplanar with the Pt atoms in the surface layer, without any "buckling" of Zn, that is, displacement in the vertical direction. This result is expected because of the similar size of Pt and Zn, based on previous studies of bimetallic Pt alloys. Zn atoms desorb upon heating rather than diffusing deep into the bulk of the Pt crystal. Temperature programmed desorption (TPD) measurements show that both CO and NO have lower desorption energies on the PtZn alloy surface compared to that on the clean Pt(111) surface.

  16. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  17. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  18. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  19. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  20. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  1. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  2. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  3. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  4. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  5. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application.

    Science.gov (United States)

    Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg

    2014-01-01

    Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and

  6. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  7. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  8. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A., E-mail: catledge@uab.edu

    2015-02-15

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B{sub 2}H{sub 6}) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  9. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  10. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  11. Effect of surface roughness on ultrasonic echo amplitude in aluminium-copper alloy castings

    International Nuclear Information System (INIS)

    Ambardar, R.; Pathak, S.D.; Prabhakar, O.; Jayakumar, T.

    1996-01-01

    In the present investigation, the influence of test surface roughness on ultrasonic back-wall echo (BWE) amplitude in Al-4.5%Cu alloy cast specimens has been studied. The results indicate that as the value of surface roughness of the specimen increases, the value of relating BWE amplitude at a given probe frequency decreases. However, under the present set of experimental conditions, the decrease in BWE amplitude with the increase in surface roughness of the test specimen is found to be appreciable at 10 MHz probe frequency. (author)

  12. ANALYSIS OF THE SURFACE PROFILE AND ITS MATERIAL SHARE DURING THE GRINDING INCONEL 718 ALLOY

    Directory of Open Access Journals (Sweden)

    Martin Novák

    2015-05-01

    Full Text Available Grinding is still an important method for surface finishing. At FPTM JEPU research, which deals with this issue is conducted. Experiments are carried out with grinding various materials under different conditions and then selected components of the surface integrity are evaluated. They include roughness Ra, Rm and Rz, Material ratio curve (Abbott Firestone curve and also the obtained roundness. This article deals with grinding nickel Inconel 718 alloy, when selected cutting grinding conditions were used and subsequently the surface profile and the material ratio curve were measured and evaluated.

  13. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    International Nuclear Information System (INIS)

    Feliu, S.; Llorente, I.

    2015-01-01

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS

  14. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  15. The Influence of Laser Surface Remelting on the Microstructure of EN AC-48000 Cast Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 μm. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.

  16. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  17. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  18. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    International Nuclear Information System (INIS)

    Panitz, J.K.G.; Sharp, D.J.

    1984-01-01

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  19. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  20. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  1. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  2. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Shvab, Ruslan [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Bram, Martin; Bitzer, Martin [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), D-52425 Jülich (Germany); Nyborg, Lars [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden)

    2016-12-01

    Highlights: • Powder particles of Ti, NiTi and Ti6Al4V are covered by homogeneous Ti-oxide layer. • Thickness of the Ti-oxide layer is in the range of 2.9 to 4.2 nm in as-atomized state. • Exposure to the air results in immediate oxide thickness increase of up to 30%. • Oxide thickness increase of only 15% during storage for 8 years. • High passivation of the Ti, NiTi and Ti6Al4V powder surface by Ti-oxide layer. - Abstract: High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a

  3. A New Phenomenon on the surface of FINEMET alloy

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Klimša, L.; Hendrych, A.; Jirásková, Yvonna; Buršík, Jiří

    2013-01-01

    Roč. 26, č. 4 (2013), s. 1349-1352 ISSN 1557-1939. [ICSM 2012 /3./. Istanbul, 29.04.2012-04.05.2012] R&D Projects: GA ČR(CZ) GAP108/11/1350 Keywords : Finemet * Quadratic magneto-optical Kerr effects * Nanocrystalline * Surface microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  4. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  5. Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys

    International Nuclear Information System (INIS)

    Liu, X.L.; Zhou, W.R.; Wu, Y.H.; Cheng, Y.; Zheng, Y.F.

    2013-01-01

    The aim of this work was to investigate the effect of various sterilization methods on surface characteristics and biocompatibility of MgCa alloy, with pure Mg as a comparison, including steam autoclave sterilization (SA), ethylene oxide steam sterilization (EO), glutaraldehyde sterilization (GD), dry heat sterilization (DH) and Co60 γ ray radiation sterilization (R) technologies. The surface characterizations were performed by environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, water contact angle and surface free energy measurement, whereas the cytotoxicity and hemocompatibility were evaluated by cellular adhesive experiment, platelet adhesion and hemolysis test. The results showed that the five sterilization processes caused more changes on the surface of MgCa alloy than that on the surface of pure Mg. The GD sterilization caused the most obvious changes on the surface of the pure Mg, and the SA sterilization made the largest alteration on the MgCa alloy surface. The GD and DH sterilization processes could cause increases on surface free energy for both pure Mg and MgCa alloys, while the other three sterilization processes reduced the surface free energy. The DH and GD sterilization processes caused the least alteration on the cell adhesion on pure Mg surface, whereas the EO sterilization performed the greatest impact on the cell adhesion on the Mg–Ca alloy surface. The hemolysis percentage of pure Mg and MgCa alloys were reduced by SA sterilization, meanwhile the other four sterilization processes increased their hemolysis percentages significantly, especially for the EO sterilization. - Highlights: • The effect of sterilization on surface chemistry and biocompatibility was studied. • Sterilization caused more surface changes on MgCa alloy than pure Mg. • Co60 γ ray radiation is the most appropriate sterilization process

  6. Relationship of microstructure to fracture topography in orthopedic alloys

    International Nuclear Information System (INIS)

    Gilbertson, L.N.

    1976-01-01

    Two major alloys used for orthopedic implants are 316L stainless steel and a cast cobalt--chromium--molybdenum alloy similar to Haynes Stellite 21. Another alloy that is just being introduced is Ti--6Al--4V. All three of these alloys are used in different conditions with different microstructures. Standard specimens with typical microstructures encountered in orthopedic applications were loaded to fracture in both overload and fatigue modes. Different rates of loading were also used in some cases. The fracture surfaces of these standard samples were analyzed in the Scanning Electron Microscope. An attempt was made to relate the fracture behavior, as evidenced by the fracture typography, to the microstructure of the alloy as revealed by metallography

  7. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  8. Morphological Analysis (SEM) of the Surface of a Non-Noble Dental Alloy Subjected to Electrocorrosion

    Science.gov (United States)

    Baciu, E. R.; Grădinaru, I.; Baciu, M.; Vasluianu, R. I.; Cimpoesu, R.; Baciu, C.; Bejinariu, C.

    2017-06-01

    Corrosion consists in the degradation of a material under the chemical or electrochemical action of the environment where it is placed. The investigations carried out aimed to show the structural modifications produced in Co-Cr-Mo alloy, Robur 400 (Eisenbacher Dental - Waren ED GmbH, Germany) subjected to electrocorrosion in Fusayama-Mayer artificial saliva. The specimens prepared by mechanical polishing were analysed structurally by using a scanning electron microscope. During the tests run we could notice a general corrosion of the surfaces of the specimens made from Robur alloy. Through 2D and 3D microscopy and qualitative determinations of the luminous variation we could notice the effects of electrocorrosion tests on the surface of the metal material.

  9. Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy

    International Nuclear Information System (INIS)

    Jin, Weihong; Wang, Guomin; Lin, Zhengjie; Feng, Hongqing; Li, Wan; Peng, Xiang; Qasim, Abdul Mateen; Chu, Paul K.

    2017-01-01

    Highlights: • Films comprising Ta_2O_5, Ta suboxide, and Ta are sputter-deposited on ZK60 Mg alloy. • The Ta-containing film significantly mitigates degradation of ZK60. • The modified ZK60 exhibits notably enhanced cell adhesion and proliferation. - Abstract: Tantalum (Ta) is introduced to the surface of the ZK60 Mg alloy by reactive magnetron sputtering to enhance the corrosion resistance and cytocompatibility. The film thickness and composition, corrosion behavior, and cytocompatibility are studied by various techniques systematically. The surface layer composed of Ta_2O_5, Ta suboxide, and Ta increases the corrosion resistance of ZK60 while simultaneously improving cell attachment, spreading, and proliferation in vitro. The enhancement mechanism is proposed and discussed.

  10. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    Science.gov (United States)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  11. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  12. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  13. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology,