WorldWideScience

Sample records for coaxial plasma gun

  1. Fueling by coaxial plasma guns

    International Nuclear Information System (INIS)

    Marshall, J.

    1978-01-01

    The operating principles of pulsed coaxial guns are reviewed. Some problems involved with the injection of plasma beams from these guns into containment fields are described. The injection during reactor operating conditions is then discussed

  2. Fueling by coaxial plasma guns

    International Nuclear Information System (INIS)

    Marshall, J.

    1977-01-01

    A review of the operational characteristics of ''snowplow'' and ''deflagration'' coaxial plasma guns is given. The injection of these plasmas into containment fields is discussed. The effect of a background plasma on low-beta injection is mentioned. The use of high-beta injection for reactor plasmas is described

  3. Plasma focusing in coaxial gun

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.; El-Khalafawy, T.

    1986-01-01

    A capacitor bank has been discharged between two coaxial electrodes of 6.6 cm outer diameter, 3.2 cm inner diameter and length of 31.5 cm. filled with hydrogen gas at pressure of 310 μHg. Results show that, the axial and radial plasma current reach a maximum value at a position adjacent to the gun muzzle, at which the plasma focus occurs. The measurement of the electron temperature and density and azimuthal electric field along the axis of the expansion chamber, gives a maximum value at z∼18 cm from the gun muzzle, while the axial plasma current and velocity has a minimum value at that position. These results indicate that a second point of a plasma focus has been formed at z∼18 cm from the gun muzzle, along the axis of the expansion chamber

  4. Arc Plasma Gun With Coaxial Powder Feed

    Science.gov (United States)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  5. Reconnection conditions for a coaxial plasma gun

    International Nuclear Information System (INIS)

    Berk, H.L.; Hammer, J.H.; Shearer, J.W.

    1982-01-01

    A fluid model for the flow conditions necessary to form a compact torus from the plasma ejected by a coaxial plasma gun is developed. This is done by finding the conditions for which the steady-flow equations break down. Results are found for two cases; variable external flux and variable outer-wall radius

  6. Experimental studies of coaxial plasma gun current

    International Nuclear Information System (INIS)

    Price, D.W.

    1988-01-01

    In this investigation of a coaxial plasma gun, plasma sheath currents and related behavior are examined. Plasma behavior in the gun affects gun characteristics. Plasma gun applications are determined by the plasma behavior. The AFWL PUFF capacitor bank (72 μF, 29 nH, 120 kV) drives the plasma gun using a deuterium fill gas. The gas breakdown site is isolated from the dielectric/vacuum interface in the AFWL system. Two gas values deliver gas in the system. The first delivers gas from the gun breech and the second optional valve delivers gas to the gun muzzle. Currents and voltages are measured by Rogowski coils, B probes and capacitive voltage probes. A O-D slug model is used to predict the current, inductance, gun voltage and plasma sheath velocity. The slug model assumes the sheath transits the gun with all mass in the sheath. In the snowplow mode, the plasma sheath is thin with a sharp current rise and drop. Our system operated in a transition mode between the snowplow and deflagration modes with early snowplow behavior and late deflagration behavior. Neutrons are produced in a plasma pinch at the gun muzzle, indicating snowplow behavior. The slug theory models overall gun behavior to experimental accuracy. Experimental results are compared to four theories for plasma sheath velocities: the Alfven collisionally limited model, the Rosenbluth model, the Fishbine saturated model and a single particle drift model. Experimental velocities vary from 10 5 to 10 6 m/s. Only the single particle drift and the slug model calculations are of the right magnitude (8 x 10 5 m/s). The Fishbine and the Rosenbluth models predict slower velocities (2 x 10 5 m/s). The Alfven model is not applicable to this system

  7. Dynamics of a coaxial plasma gun

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1977-01-01

    The dynamics of an ionizing wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionization velocity condition and in the second that the ionization rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionization within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (Auth.)

  8. Development of coaxial rotating-plasma gun

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1985-01-01

    A rotating-plasma gun has been devised to produce plasma streams with higher rotational velocities. The working mechanism of the gun and the results of a preliminary experiment have been described. (author)

  9. The breakdown phase in a coaxial plasma gun

    International Nuclear Information System (INIS)

    Donges, A.; Herziger, G.; Krompholz, H.; Ruehl, F.; Schoenbach, K.

    1980-01-01

    The electrical breakdown in a coaxial plasma gun was investigated by means of optical and electrical measurements. The optimum start and operation conditions of the gun turned out to be strongly dependent on material and length of the cylindrical insulator. (orig.)

  10. A contoured gap coaxial plasma gun with injected plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States)

    2009-08-15

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 {mu}g of plasma with density above 10{sup 17} cm{sup -3} to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 {mu}g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  11. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  12. A contoured gap coaxial plasma gun with injected plasma armature

    International Nuclear Information System (INIS)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-01-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 10 17 cm -3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  13. Plasma gun with coaxial powder feed and adjustable cathode

    Science.gov (United States)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  14. Electrical properties of a co-axial plasma gun

    International Nuclear Information System (INIS)

    Allam, T.M.Y.

    1997-01-01

    The main interest of this work is to study the power discharge of capacitor bank through a coaxial electrodes system. Such arrangement is called the coaxial gun or coaxial accelerator. It is used in jet propulsion and in triggering of discharge in turbo engines or in plasma combustion arrangement. The main goal is to find out the efficiency of the system in both cases. coaxial plasma gun system has been constructed for this course of study. The plasma gun system consists of the plasma gun tube and the discharge chamber, the capacitor bank, the triggering system the vacuum system, the power supply, and safety and dumping system. Simple and efficient diagnostic techniques were used to measure the different parameters concerning the coaxial discharge system such as the Rogowski loop, the voltage divider, the magnetic probes, the double electric probe. Results were obtained using argon gas with an operating pressure ranging from 0.1 torr to 1 torr. The peak discharge current in the first half cycle was 44 K A with rise time of 6.25 μs for a bank charging voltage of 10 kv and gas pressure of 0.9 torr. 4-26 figs., 4-8 tabs., 33 refs

  15. Contoured-gap coaxial guns for imploding plasma liner experiments

    Science.gov (United States)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  16. Analytical solution for a coaxial plasma gun: Weak coupling limit

    International Nuclear Information System (INIS)

    Dietz, D.

    1987-01-01

    The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature

  17. Plasma-filled diode based on the coaxial gun

    Science.gov (United States)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  18. Plasma-filled diode based on the coaxial gun.

    Science.gov (United States)

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  19. Plasma-filled diode based on the coaxial gun

    Energy Technology Data Exchange (ETDEWEB)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N. [Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055 Tomsk (Russian Federation)

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  20. Plasma-filled diode based on the coaxial gun

    International Nuclear Information System (INIS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-01-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  1. Coaxial plasma guns as injectors of high beta linear theta pinches

    International Nuclear Information System (INIS)

    Marshall, J.

    1975-01-01

    A brief review of research on coaxial plasma guns and their use is given. Some problems and possibilities of using this gun for beam injection experiments are pointed out. Some scaling laws for gun energy are described

  2. Spectral diagnostic of plasma in the coaxial gun

    International Nuclear Information System (INIS)

    Bacilek, J.; Hruska, J.; Kubes, P.

    1975-01-01

    Plasma ejected from a coaxial plasma gun was investigated spectroscopically. The coaxial gun consisted of two copper coaxial electrodes 57 and 100 mm in diameter, the length of the central electrode being 67 mm. The gun was fed by a 11 μF capacitor bank of 16 kV operating voltage. Hydrogen, helium and air were used as working gases. The emission spectra were recorded with spectrograph ISP-51 and with a monochromator-photomultiplier system. The plasma density reached its maximum of 4x10 15 cm -3 with the ejecting voltage applied some 20 to 30 μs after the gas injection. At this moment also the spectral lines of electrode material were most intensive. The electron temperature calculated from the presence of spectral lines of OII, CII and NII was about 2 eV. The velocity of fast hydrogen ions was 4x10 7 cmsec -1 calculated from the Hsub(β) line. (J.U.)

  3. Numerical modeling of deflagration mode in coaxial plasma guns

    Science.gov (United States)

    Sitaraman, Hariswaran; Raja, Laxminarayan

    2012-10-01

    Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)

  4. A steady-state fluid model of the coaxial plasma gun

    International Nuclear Information System (INIS)

    Herziger, G.; Krompholz, H.; Schneider, W.; Schoenbach, K.

    1979-01-01

    The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)

  5. Velocity limitations in coaxial plasma gun experiments with gas mixtures

    International Nuclear Information System (INIS)

    Axnaes, I.

    1976-04-01

    The velocity limitations found in many crossed field plasma experiments with neutral gas present are studied for binary mixtures of H 2 , He, N 2 O 2 , Ne and Ar. The apparatus used is a coaxial plasma gun with an azimuthal magnetic bias field. The discharge parameters are chosen so that the plasma is weakly ionized. In some of the mixtures it is found that one of the components tends to dominate in the sense that only a small amount (regarding volume) of that component is needed for the discharge to adopt a limiting velocity close to that for the pure component. Thus in a mixture between a heavy and a light component having nearly equal ionization potentials the heavy component dominates. Also if there is a considerable difference in ionization potential between the components, the component with the lowest ionization potential tends to dominate. (author)

  6. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  7. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  8. Startup of reversed-field mirror reactors using coaxial plasma guns

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Hartman, C.W.; Carlson, G.A.; Neef, W.S. Jr.; Eddleman, J.L.

    1979-01-01

    Preliminary calculations are given that indicate that a coaxial plasma gun might scale reasonably to reactor-grade operating conditions. Ongoing experiments and numerical simulations should shed some light on the validity of the described scaling laws

  9. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  10. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  11. Use of coaxial plasma guns to start up field-reversed-mirror reactors

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Carlson, G.A.; Eddleman, J.L.; Hartman, C.W.; Neef, W.S. Jr.

    1980-01-01

    Application of a magnetized coaxial plasma gun for start-up of a field-reversed-mirror reactor is considered. The design is based on preliminary scaling laws and is compared to the design of the start-up gun used in the Beta II experiment

  12. The Influence of the Axial Magnetic Field Upon-the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; EL-Demrdash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters of a coaxial plasma gun device. The experimental results are investigated with 0.5 KJ plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied

  13. Measurements of the neutron yield from a coaxial gun plasma

    International Nuclear Information System (INIS)

    Zolototrubov, I.M.; Krasnikov, A.A.; Kurishchenko, A.M.; Novikov, Yu.M.; Poryatuj, V.S.; Tolstolutskij, A.G.

    1977-01-01

    Neutron yield from deuterium plasma produced by a pulse coaxial accelerator was measured. The maximum neutron yield with 5 kj stored in a condenser battery is 3x10 6 neutron/pulse. The basis of the method of measuring neutron yield from the plasma was through the induced activity. It was shown that application of even a small uniform longitudinal magnetic field (up to 1 kOe) on the accelerator decreases several times the neutron yield. It is also shown that a small amount of stored discharge energy can produce high-temperature plasma at the output of pulse coaxial accelerator in the absense of the direct magnetic field. It is supposed that the reason for the reduction of neutron yield level in the case of applying the magnetic field is decreasing plasma density because of increasing the bunch cross-section

  14. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  15. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  16. Decay of plasma cluster accelerated by coaxial gun

    International Nuclear Information System (INIS)

    Kubes, P.; Hruska, J.; Bacilek, J.

    1978-01-01

    The decay of an air cluster accelerated in a vacuum tube is studied. The time dependence of electron density and electron temperature is introduced and the effect of different recombination processes is discussed. The observed plasma decay shows an exponential law, is independent of the gun regime and may be explained by ambipolar diffusion to the tube walls. (author)

  17. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    International Nuclear Information System (INIS)

    Mather, J.W.; Ahluwalia, H.S.

    1988-01-01

    The authors describe the complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results

  18. Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop

    International Nuclear Information System (INIS)

    Asano, Shiro; Ihara, Makoto; Fukao, Masayuki

    1989-01-01

    A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)

  19. Design and operation of a coaxial plasma gun at magnetic fields exceeding 0.5 megagauss

    International Nuclear Information System (INIS)

    Conte, D.; Bird, G.; Boyer, C.; Davis, J.; Seiler, S.; Turchi, P.

    1981-01-01

    The use of coaxial plasma guns to accumulate and concentrate electromagnetic and kinetic energy at high currents and power flux levels has been examined experimentally. For these studies, apparatus was designed to employ magnetic fields approaching 1MG, using the AFWL Shiva capacitor bank as the current source (1.9 MJ, 120 KV). The design divided the system into two major component regions: 1) a reusable cylindrical transition to the Shiva bank, an 2) disposable guns and feed plates

  20. Formation of compact toroidal plasmas by magnetized coaxial plasma gun injection into an oblate flux conserver

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    Initial results are reported on the formation of compact toroidal plasmas in an oblate shaped metallic flux conserver. A schematic of the experimental apparatus is shown. The plasma injector is a coaxial plasma gun with solenoid coils wound on the inner and outer electrodes. The electrode length is 100 cm, the diameter of the inner (outer) electrode is 19.3 cm (32.4 cm). Deuterium gas is puffed into the region between electrodes by eight pulsed valves located on the outer electrode 50 cm from the end of the gun. The gun injects into a cylindrically symmetrical copper shell (wall thickness = 1.6 mm) which acts as a flux conserver for the time scale of experiments reported here. The copper shell consists of a transition cylinder 30 cm long, 34 cm in diameter, a cylindrical oblate pill box 40 cm long, 75 cm in diameter and a downstream cylinder 30 cm long, 30 cm in diameter. The gap between the gun and transition cylinder is 6 cm. An axial array of coils outside the vacuum chamber can be used to establish an initial uniform bias field

  1. Centrifugal mass separation in rotating plasmas produced by a coaxial plasma gun

    International Nuclear Information System (INIS)

    Ikehata, T.; Suzuki, M.; Tanabe, T.; Mase, H.

    1989-01-01

    Rotating Cu/Zn plasmas produced by a coaxial plasma gun have been applied to plasma centrifuge. A separation factor of up to 10 is measured over a radius of 4 cm when a current of 13 kA and an axial magnetic field of 2.5 kG are applied. Plasma parameters are: rotation frequency ω=1.1x10 6 rad/s, density n∼10 15 cm -3 , and ion temperature T i =10 eV. The separation factor of 2 is attained even in the plasma core where the density is higher than one-half of the peak value. This is attributed to the fact that a strong centrifugal force forms a hollow density profile which gives the density peak at a radius of 2 cm

  2. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    Science.gov (United States)

    Mather, J. W.; Ahluwalia, H. S.

    1988-01-01

    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  3. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Hill, D.N.; Stallard, B.W.; Bulmer, R.; Cohen, B.; Holcomb, C.T.; Hooper, E.B.; McLean, H.S.; Moller, J.; Wood, R.D.

    2003-01-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  4. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  5. Results from AFWL 230 kJ coaxial plasma gun experiments

    International Nuclear Information System (INIS)

    Hall, D.J.; Baker, W.L.; Beason, J.D.; Clouse, C.J.; Degnan, J.H.; Dietz, D.; Hackett, K.E.; Higgins, P.L.; Holmes, J.L.; Price, D.W.

    1988-01-01

    A coaxial plasma gun has been operated on the AFWL 0.5 MJ capacitor bank. A Marshall valve actuated by an explosive detonator is used to puff hydrogen gas from a small high pressure plenum into the breech of the gun. After a set delay from the explosion the capacitor bank is discharged across the electrodes of the coaxial gun. The operating mode of the gun can be changed by varying the plenum pressure and the firing delay. Over 150 shots have been fired, varying delay, plenum pressure, and initial stored energy. Initial plenum pressures were varied from 250 to 750 psi, and firing delays ranged from 0.8 msec to 2.2 msec. Experiments were conducted at 90, 176, and 230 kJ of initial stored energy (50, 70, adn 80 kV charge). Rogowski coils were used to measure current and magnetic field within the plasma at 25 axial locations along the gun. The coils were installed in grooves on the inner surface of the outer conductor. Signals from the coils were passively integrated. Integrator time constants ranged from 95 to 114 μsec. Time histories of magnetic field profiles are presented. These are used to describe the operating mode of the gun

  6. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  7. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-01-01

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  8. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1986-01-01

    They discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub Theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  9. Coaxial Plasma Gun Development for the ARPA-E PLX- α Project

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel

    2015-11-01

    We describe the renewed effort to design and build coaxial plasma guns appropriate for a scaling study of spherically imploding plasma liners as a standoff magneto-inertial-fusion driver under the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. HyperV joins LANL, UAH, UNM, BNL, and Tech-X to develop, build, operate and analyze a 60 plasma gun experiment using the existing PLX facility at LANL. The guns will be designed to operate over a scaling range of operating parameters: 0.5-5.0 mg of Ar, Ne, N2, Kr, and Xe; 20-60 km/s; 1016 -1017 cm-3 muzzle density; and up to 7.5 kJ stored energy per gun. Each gun is planned to incorporate contoured gaps, fast dense gas injection and triggering, and innovative integral sparkgap switching and pfn configurations to reduce inductance, cost, and complexity, and to increase efficiency and system reliability. We will describe the overall design approach for the guns and pulsed power systems. This work supported by the ARPA-E ALPHA Program.

  10. Schlieren method diagnostics of plasma compression in front of coaxial gun

    International Nuclear Information System (INIS)

    Kravarik, J.; Kubes, P.; Hruska, J.; Bacilek, J.

    1983-01-01

    The schlieren method employing a movable knife edge placed in the focal plane of a laser beam was used for the diagnostics of plasma produced by a coaxial plasma gun. When compared with the interferometric method reported earlier, spatial resolution was improved by more than one order of magnitude. In the determination of electron density near the gun orifice, spherical symmetry of the current sheath inhomogeneities and cylindrical symmetry of the compression maximum were assumed. Radial variation of electron density could be reconstructed from the photometric measurements of the transversal variation of schlieren light intensity. Due to small plasma dimensions, electron density was determined directly from the knife edge shift necessary for shadowing the corresponding part of the picture. (J.U.)

  11. The Influence of the Axial Magnetic Field Upon- the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; El-Demardash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters and on the brightness (luminance) of argon plasma. The brightness was measured by with a photomultiplier type of IP28 RCA. The experimental results are investigated with plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied. It was found that the thickness of skin-layer δ about 0.01 cm and the wavelength λ, of the perturbation about 1.3 cm i.e. the instability has been satisfied. The growth rate γ of the instability about 10 6 sec -1 . (author)

  12. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    Science.gov (United States)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  13. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    International Nuclear Information System (INIS)

    Naragino, Hiroshi; Tominaga, Aki; Yoshitake, Tsuyoshi; Hanada, Kenji

    2015-01-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably. (author)

  14. Magnetohydrodynamic simulation of kink instability and plasma flow during sustainment of a coaxial gun spheromak

    International Nuclear Information System (INIS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2010-01-01

    Kink instability and the subsequent plasma flow during the sustainment of a coaxial gun spheromak are investigated by three-dimensional nonlinear magnetohydrodynamic simulations. Analysis of the parallel current density λ profile in the central open column revealed that the n = 1 mode structure plays an important role in the relaxation and current drive. The toroidal flow (v t ≈ 37 km/s) is driven by magnetic reconnection occurring as a result of the helical kink distortion of the central open column during repetitive plasmoid ejection and merging. (author)

  15. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    Science.gov (United States)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  16. Fast Plasma from a Coaxial Gun; Plasma Rapide Produit par un Canon Coaxial; Bystraya plazma iz koaksial'nogo inzhektora; Produccion de Plasma Rapido Mediante un Inyector Coaxial

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.; Henins, I. [Los Alamos Scientific Laboratory, Los Alamos, NM (United States)

    1966-04-15

    The coaxial gun in use here is a source or two different plasmas produced by separate mechanisms. Abundant slow ( Tilde-Operator 10{sup 7} cm/sec) deuterium plasma is produced directly by the j x B interaction of the radial plasma current and the magnetic field of the feed current along the centre electrode. The current disturbance moves through the injected gas toward the gun muzzle at Tilde-Operator 2.5 x 10{sup 7} cm/sec, storing energy behind it in magnetic field and plasma motion. The gun, with its stored energy, functions as a high power low impedance electrical generator to drive into the vacuum beyond the gun muzzle a jet of current which is the source of the fast plasma ( Tilde-Operator 5 x 10{sup 17} deuterons, Tilde-Operator 10{sup 8} cm/sec). The current jet and the plasma it produces are the subjects of these experiments. The mechanism of acceleration is complicated and imperfectly understood, but considerable insight has been gained by an extensive series of experiments, using as diagnostics the following: external diamagnetic pickup loops, intra vacuo Rogowsky loops, electric probes, external capacitive pickup electrodes, magnetic and electrostatic particle deflection analysis, spectroscopy, target light photography, time of flight with and without a guide field, d-d neutrons from the plasma volume and other methods. The picture which emerges is one of a complicated magneto-electric process taking place in front of the gun muzzle. The acceleration process depends on low gas density there as contrasted'with high density inside the gun. The fast plasma is largely derived from gas adsorbed on the electrodes. This makes necessary a clean vacuum so as to avoid contamination with highly ionized fast impurity ions (C{sup 5+}, 10{sup 8} cm/sec). Electrode material evaporates but appears not to be a serious contaminant because it comes late. The high voltage actually accelerating the ions is associated with the rapid expansion into vacuum of a magnetic flux

  17. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  18. Diagnostics and results from coaxial plasma gun development for the PLX- α project

    Science.gov (United States)

    Case, A.; Brockington, S.; Cruz, E.; Witherspoon, F. D.

    2016-10-01

    We present results from the diagnostics used during development of the contoured gap coaxial plasma guns for the PLX- α project at LANL. Plasma-jet diagnostics include fast photodiodes for velocimetry, a ballistic pendulum for total plasmoid momentum, and interferometry for line integrated density. Deflectometry will be used for line integrated perpendicular density gradients. Time-resolved high-resolution spectroscopy using a novel detector and time-integrated survey spectroscopy are used for measurements of velocity and temperature, as well as impurities. We will also use a Faraday cup for density, fast imaging for plume geometry, and time-integrated imaging for overall light emission. Experimental results are compared to the desired target parameters for the plasma jets (up to n 2 ×1016cm-3 , v 50km / s , mass 5gm , radius = 4cm , and length 10cm). This work supported by the ARPA-E ALPHA Program.

  19. Critical ionisation velocity and the dynamics of a coaxial plasma gun

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1978-01-01

    The dynamics of an ionising wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionisation velocity condition and in the second that the ionisation rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionisation within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (author)

  20. Coaxial plasma gun in the high density regime and injection into a helical field

    Energy Technology Data Exchange (ETDEWEB)

    Schaer, S.F. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in a potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/{mu}sec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs.

  1. Coaxial plasma gun in the high density regime and injection into a helical field

    International Nuclear Information System (INIS)

    Schaer, S.F.

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in the potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/μsec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs

  2. Characterization and optimization of the HyperV PLX- α coaxial-gun plasma jet

    Science.gov (United States)

    Case, Andrew; Brockington, Sam; Cruz, Edward; Witherspoon, F. Douglas

    2017-10-01

    We present results from characterizing and optimizing performance of the contoured gap coaxial plasma guns under development for the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. Plasma jet diagnostics include fast photodiodes for velocimetry and interferometry for line integrated density. Additionally we present results from spectroscopy, both time resolved high resolution spectroscopy using a novel detector and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. Fast imaging gives plume geometry and time integrated imaging gives overall light emission. Results from a novel long record length camera developed by HyperV will also be presented. Experimental results are compared to the desired target parameters for the plasma jets. The target values for the plasmoid are velocity of 50 km/s, mass of 3.5 mg, and length of 10 cm. The best results so far from the exploration of parameter space for gun operation are: 4 mg at >50 km/s, with a length of 10 cm. Peak axial density 34 cm downstream from the muzzle is 2 ×1016 cm-3. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566.

  3. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    Science.gov (United States)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  4. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    Science.gov (United States)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  5. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  6. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    Science.gov (United States)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  7. A coaxial plasma gun with a controllable streaming velocity in the range of 2-90 km secsup(-1)

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1981-01-01

    A coaxial plasma gun capable of producing a plasma stream of velocity ranging between 2 and 90 km secsup(-1) is described. The velocity of the stream is controlled by a variable (0.2-25 Ω) NaCl salt solution resistor in the discharge path of the energy storage connected across the gun. The resistor dissipates an energy of 200 J in the gun discharge current pulse period of 25 μ sec and the consequent heating and dissociation of the electrolyte are insignificant. The electron density of the plasma stream ranges between 10 18 and 10 19 msup(-3) and the temperature is approximately 10 eV. The total number of ions per plasma pulse is approximately 10 18 . The energy transfer efficiency of the gun is approximately 10%. The low transfer efficiency is explained in terms of the experimental requirements and the performance of the valve which admits gas into the gun region. For evaluation of the performance of the gun, several diagnostics have been deployed. A specially designed high voltage capacitor probe is described. (author)

  8. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  9. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  10. Magnetic structure in the entrance region of spheromaks sustained by a magnetized coaxial plasma gun under long pulse operation

    International Nuclear Information System (INIS)

    Amemiya, Naoyuki; Takaichi, Kazuaki; Katsurai, Makoto

    1989-01-01

    The magnetic structure in coaxial-gun-sustained spheromaks has been investigated. The plasma gun has been operated with a small axial/radial bias magnetic flux as compared to the azimuthal magnetic flux produced by the discharge current. Stronger magnetic field is observed in the entrance region (ER) than in the flux conserver (FC). In both ER and FC, the magnetic structure is nearly axisymmetric. The axial magnetic field in ER is amplified up to about sixteen times as large as the bias magnetic field. This amplification is limited by the drastic change in the magnetic structure, which occurs when the discharge current becomes very large. The magnetic structure before the drastic change is interpreted with the Bessel function model. The μ estimation shows that the magnetic structure is mainly determined by the boundary geometry, not by the external magnetic flux and current. (author)

  11. Analytical and experimental investigation of the coaxial plasma gun for use as a particle accelerator

    Science.gov (United States)

    Shriver, E. L.

    1972-01-01

    The coaxial plasma accelerator for use as a projectile accelerator is discussed. The accelerator is described physically and analytically by solution of circuit equations, and by solving for the magnetic pressures which are formed by the j cross B vector forces on the plasma. It is shown that the plasma density must be increased if the accelerator is to be used as a projectile accelerator. Three different approaches to increasing plasma density are discussed. When a magnetic field containment scheme was used to increase the plasma density, glass beads of 0.66 millimeter diameter were accelerated to 7 to 8 kilometers per second velocities. Glass beads of smaller diameter were accelerated to more than twice this velocity.

  12. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [College of Science and Technology, Nihon University, 1-8-14 Kanda, Chiyoda-ku, Tokyo 1018308 (Japan); Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-05-15

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.

  13. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    Science.gov (United States)

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.

  14. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-01-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10"2"1 m"−"3, ∼40 eV, and 0.5–1.0 × 10"1"9, respectively.

  15. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    Science.gov (United States)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  16. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  17. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-15

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W–Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (∼0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ∼0.3 MJ m{sup −2}, while a W–Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ∼0.3 MJ m{sup −2}, although surface melting and cracks in the resolidification layer occurred at higher energy density of ∼0.9 MJ m{sup −2}. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  18. Study of a plasma produced in a neutral gas chamber by the injection of a beam generated by a coaxial gun

    International Nuclear Information System (INIS)

    Castell, R.; Sanchez, A.; Mandelbaum, D.

    1982-01-01

    The design and operation of a plasma coaxial gun is described. The penetration and characteristics of the plasma emitted by the gun propagating in a expansion chamber with helium at 40 feBar is analyzed. The diagnostics is made with a double Langmuir probe observing the time variation of the electronic density along the propagation axis. Optical spectroscopy is used to measure one of the emission lines of the plasma radiation propaganting in the medium. The space-time description of the ion distribution function in a free-force field is made by the fit of an analytical model. (L.C.) [pt

  19. Co-axial electrodes gun characteristics

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.

    1981-01-01

    A coaxial electrodes gun is constructed with inner electrode diameter of 3.2 cm; outer electrode diameter of 6.6 cm and length of 25 cm it is connected to a condenser bank which delivers 4 K joule stored energy. The maximum power of the discharge is equal to 4.5x10 4 K watt; for 5 KV charging voltage. The inductance showed two main peak values of 0.257μH and 0.27μH. Theoretical calculations using one-dimension-single fluid model is μ sed, which shows that the maximum acceleration is at 0.5 sec, and the gas breakdown takes place at the gun breech; at the start of the discharge, will leave the gun after 1.625μ sec, also the drift velocity, the force and the magnetic field are given. The measured results show quite reasonable agreement with the calculations for most of the results, and the position of the plasma sheath inside the gun slightly deviated from the theoretical calculations due to viscosity and wall interaction, as well as other parameters which did not be take into consideration. The plasma current density of the sheath has its maximum value at Z=18 cm, the plasma will leave the coaxial source after 1.5μ sec, from the start of the discharge, which conferms with the theoretical model. Resistance of the gas between the electrodes, changes with time according to the particle injected from this source, and the maximum efficiency of the installation for charging voltage 5kV and pressure 80μ Hg is at approx.=10μ sec and 20.5μ sec

  20. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    Science.gov (United States)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  1. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    Science.gov (United States)

    2009-06-01

    a peak a current Igun~ 80 kA and gun voltages Vgun~1 kV utine operation at a bank voltage of 7.5 kV yiel plasm after breakdown. Typical Igun and...and D2 are power electronic diodes, SW is the dump relay and C is the bias flux capacitor bank. The SCR, controlled by a 1 kV Trigger Pulse...capacitor charging circuit is shown in Figure 8. Figure 8. Gas valve capacitor charging circuit diagram 0 kΩ. 1, D2 and D3 are power electronic

  2. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  3. Coaxial gun parameters and X-ray emission

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Aragi, G.M.; Saudy, A.H.; Masoud, M.M.

    1994-01-01

    The paper presents the results of investigation with 3 kJ coaxial plasma gun, which operated with argon gas at pressure 0.8 torr. The coaxial plasma gun parameters are investigated by pick up coils, double electric probe, and x-ray probe. The mean electron temperature and density of the ejected plasma are 25 eV and 10 15 cm -3 respectively. The maximum kinetic pressure of the ejected plasma in the expansion chamber appears after 10 μs from the start of the discharge current. The energetic electrons is detected by an x-ray probe which showed a single pulse of electrons with energy ≅ 3 Kev. (orig.)

  4. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  5. Bibliography of Documents Related to the Theory, Operation, Performance and Applications of Coaxial Plasma Guns. Revision

    Science.gov (United States)

    1990-11-01

    V., Grunberger, L. and Prior, W., "Observation of Solar Flare Type Processes in the Laboratory," in Solar Magnetic Fields, Symposium No. 43 of the...RF/FUS/84/6, Associazione EURATOM--Comitato Nazionale Energia Nucleare sulla Fusione, Centro di Frascati, Rome, Italy, September 1984. Brzosko, J. S...Energy Deuteron Beam Generation in Plasma Focus," Report No. 80.5, Associazione EURATOM--Comitato Nazionale Energia Nucleare sulla Fusione, Centro di

  6. Engineering design of the PLX- α coaxial gun

    Science.gov (United States)

    Cruz, E.; Brockington, S.; Case, A.; Luna, M.; Witherspoon, F. D.; Thio, Y. C. Francis; PLX-α Team

    2017-10-01

    We describe the engineering and technical improvements, as well as provide a detailed overview of the design choices, of the latest PLX- α coaxial gun designed for the 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion. Each coaxial gun incorporates a fast, dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured gap designed to suppress the blow-by instability. The evolution of the latest Alpha gun is presented with emphasis on its upgraded performance. Changes include a faster more robust gas valve, better-quality ceramic insulator material and enhancements to overall design layout. These changes result in a gun with increased repeatability, reduced potential failure modes, improved fault tolerance and better than expected efficiency. A custom 600- μF, 5-kV pfn and a set of six inline sparkgap switches operated in parallel are mounted directly to the back of the gun, and are designed to reduce inductance, cost, and complexity, maximize efficiency and system reliability, and ensure symmetric current flow. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566 and Strong Atomics, LLC.

  7. Plasma rotation in coaxial discharges

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; Elkhalafawy, T.A.

    1985-01-01

    Plasma rotation has been observed near the breech of the coaxial electrodes, which propagates inside the coaxial gun and moreover this has been detected in the expansion chamber. Azimuthal component of plasma current has been detected. The measuring of the axial magnetic field distribution in time along the expansion chamber-axis shows a single maximum peak for all position. Azimuthal component of electric field exists along the axis of the expansion chamber and results for two angular positions (0 0 , 180 0 ) at r 2.5 cm has been presented. Thus it is obvious that the whole plasma bulk moves in a screw configuration before and after the focus position. 9 fig

  8. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  9. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  10. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  11. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  12. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  13. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2005-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dy...

  14. Performance Improvement of a Magnetized Coaxial Plasma Gun by adopting Iron-core Bias Coil and New Pre-Ionization System

    Science.gov (United States)

    Edo, Takahiro; Asai, T.; Tanaka, F.; Yamada, S.; Hosozawa, A.; Gota, H.; Roche, T.; Allfrey, I.; Matsumoto, T.

    2017-10-01

    A magnetized coaxial plasma gun (MCPG) is a device used to generate a compact toroid (CT), which has a spheromak-like configuration. A typical MCPG consists of a set of axisymmetric cylindrical electrodes, bias coil, and gas-puff valves. In order to expand the CT operating range, the distributions of the bias magnetic field and neutral gas have been investigated. We have developed a new means of generating stuffing flux. By inserting an iron core into the bias coil, the magnetic field increases dramatically; even a small current of a few Amps produces a sufficient bias field. According to a simulation result, it was also suggested that the radial distribution of the bias field is easily controlled. The ejected CT and the target FRC are cooled by excess neutral gas that typical MCPGs require to initiate a breakdown; therefore, we have adopted a miniature gun as a new pre-ionization (PI) system. By introducing this PI system, the breakdown occurs at lower neutral gas density so that the amount of excess neutral gas can be reduced.

  15. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  16. Carbon plasma gun

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Zagar, D.M.; Mills, G.S.; Humphries, S. Jr.; Goldstein, S.A.

    1980-01-01

    A family of plasma guns supplying highly ionized carbon plasma is described. The guns are simple and inexpensive to construct and are pulsed by small capacitor banks of a few hundred joules. The output consists of 10 17 --10 18 multiply ionized carbon ions traveling at about 10 7 cm/s. Neutral output is very low and arrives well after the ionized carbon. The guns and pulsers are very reliable

  17. Coaxial-gun design and testing for the PLX- α Project

    Science.gov (United States)

    Witherspoon, F. Douglas; Brockington, Samuel; Case, Andrew; Cruz, Edward; Luna, Marco; Langendorf, Samuel

    2016-10-01

    We describe the Alpha coaxial gun designed for a 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). The guns operate over a range of parameters: 0.5-5.0 mg of Ar, Ne, N2, Kr, and Xe; 20-60 km/s; 2 × 1016 cm-3 muzzle density; and up to 7.5 kJ stored energy per gun. Each coaxial gun incorporates a fast dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured gap designed to suppress the blow-by instability. The latest design iteration incorporates a faster more robust gas valve, an improved electrode contour, a custom 600- μF, 5-kV pfn, and six inline sparkgap switches operated in parallel. The switch and pfn are mounted directly to the back of the gun and are designed to reduce inductance, cost, and complexity, maximize efficiency and system reliability, and ensure symmetric current flow. We provide a brief overview of the design choices, the projected performance over the parameter ranges mentioned above, and experimental results from testing of the PLX- α coaxial gun. This work supported by the ARPA-E ALPHA Program.

  18. Study of the electrical signals observed during the initial stage in a coaxial gun

    International Nuclear Information System (INIS)

    Moreno, C.; Vieytes, R.

    1995-01-01

    In this work high frequency oscillations further experimental data, along with its theoretical modeling will be given for initial phase in a coaxial gun constructed to be used in technological applications of plasma. Particular attention was devoted to find any dependence between the measured frequencies and the operating pressure and voltage. 1 ref., 1 fig., 1 tab

  19. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2006-11-15

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.

  20. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma...

  1. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  2. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  3. A Penning-assisted subkilovolt coaxial plasma source

    International Nuclear Information System (INIS)

    Wang Zhehui; Beinke, Paul D.; Barnes, Cris W.; Martin, Michael W.; Mignardot, Edward; Wurden, Glen A.; Hsu, Scott C.; Intrator, Thomas P.; Munson, Carter P.

    2005-01-01

    A Penning-assisted 20 MW coaxial plasma source (plasma gun), which can achieve breakdown at sub-kV voltages, is described. The minimum breakdown voltage is about 400 V, significantly lower than previously reported values of 1-5 kV. The Penning region for electrons is created using a permanent magnet assembly, which is mounted to the inside of the cathode of the coaxial plasma source. A theoretical model for the breakdown is given. A 900 V 0.5 F capacitor bank supplies energy for gas breakdown and plasma sustainment from 4 to 6 ms duration. Typical peak gun current is about 100 kA and gun voltage between anode and cathode after breakdown is about 200 V. A circuit model is used to understand the current-voltage characteristics of the coaxial gun plasma. Energy deposited into the plasma accounts for about 60% of the total capacitor bank energy. This plasma source is uniquely suitable for studying multi-MW multi-ms plasmas with sub-MJ capacitor bank energy

  4. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    International Nuclear Information System (INIS)

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs

  5. Sustained spheromak coaxial gun operation in the presence of an n=1 magnetic distortion

    International Nuclear Information System (INIS)

    Holcomb, C.T.; Jarboe, T.R.; Hill, D.N.; Woodruff, S.; Wood, R.D.

    2006-01-01

    The Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] uses a magnetized coaxial gun to form and sustain spheromaks by helicity injection. Internal probes give the magnetic profile within the gun. An analysis of these data show that a number of commonly applied assumptions are not completely correct, and some previously unrecognized processes may be at work. Specifically, the fraction of the available vacuum flux spanning the gun that is stretched out of the gun is variable and not usually 100%. The n=1 mode that is present during sustained discharges has its largest value of δB/B within the gun, so that instantaneously B within the gun is not axisymmetric. By applying a rigid-rotor model to account for the mode, the instantaneous field and current structure within the gun are determined. The current density is also highly nonaxisymmetric and the local value of λ≡μ 0 j parallel /B is not constant, although the global value λ g ≡μ 0 I g /ψ g closely matches that expected by axisymmetric models. The current distribution near the gun muzzle suggests a cross-field current exists, and this is explained as a line-tying reaction to plasma rotation

  6. Beta II plasma-gun mechanical design and construction

    International Nuclear Information System (INIS)

    Pedrotti, L.; Deis, G.; Wong, R.; Calderon, M.; Chargin, A.; Garner, D.

    1979-01-01

    The magnetized coaxial plasma gun (located on the east end of the Beta II facility at the Lawrence Livermore Laboratory) will be used to test a new method of initiating a field reversed mirror plasma. The field-reversed mirror is expected to improve the mirror-fusion reactor by enhancing the ratio of fusion power to injected power. This paper concentrates on the mechanical design and construction of the magnetized coaxial plasma gun and also discusses the diagnostic devices necessary to demonstrate the formation of field-reversed rings

  7. Gas injected washer plasma gun

    International Nuclear Information System (INIS)

    Jain, K.K.; John, P.I.; Punithavelu, A.M.; Rao, P.P.

    1980-01-01

    A plasma gun similar in geometry to the washer plasma gun has been operated with gas injected externally. hydrogen, nitrogen and argon plasmas have been ionised and accelerated to velocities of the order of 10 7 mm s -1 and densities 10 11 mm -3 . Higher parameter range is possible with higher electrical input power. (author)

  8. The PLX- α Plasma Guns: Progress and Plans

    Science.gov (United States)

    Witherspoon, F. D.; Brockington, S.; Case, A.; Cruz, E.; Luna, M.; Thio, Y. C. Francis; LANL PLX-α Team

    2017-10-01

    The ALPHA coaxial plasma guns are being developed to support a 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). Seven complete guns have been delivered to LANL with 6 guns currently undergoing simultaneous test firings on PLX. The guns are designed to operate over a range of parameters: 0.5-5.0 mg of Ar, Ne, N2, Kr, and Xe; 20-60 km/s; 2 × 1016 cm-3 muzzle density; and up to 7.5 kJ stored energy per gun. Each coaxial gun incorporates a fast dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured coaxial gap to suppress the blow-by instability. Optimizing parameter scans performed at HyperV have achieved : 4 mg at >50 km/s and length of 10 cm. Peak axial density 30 cm from the muzzle is 2 ×1016 cm-3. We will provide an overview of the experimental results, along with plans for further improvements in reliability, maintainability, fabricability, and plasma jet performance, with the latter focused on further improvements in the fast gas valve and the ignitors. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566 and Strong Atomics, LLC.

  9. Approach to the energetic coaxial gun of the steady-state mode operation

    International Nuclear Information System (INIS)

    Hirano, Kei-ichi

    1993-01-01

    Behaviors of a coaxial plasma gun operated in a steady-state mode have been studied. It is shown that the gun has potentialities to yield an energetic plasma beam, if a supersonic plasma flow is supplied instead of a neutral gas and if shorting out of the Hall potential is minimized on the surfaces of the electrodes. The former is necessary because a electromagnetic force chokes the subsonic flow appearing in the ionizing zone of the inlet gas. The latter is achieved if the electrodes are segmented into many insulated short elements along the axis. The required minimum number of the segmentation is estimated by the newly developed model based on the boundary layer concept. (author)

  10. Characterization of cable gun plasma with a charge collector array

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju; Kuai Bin; Qiu Aici; Yin Jiahui; Cong Peitian; Liang Tianxue

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cable plasma gun array have been measured with a charge collector array. The plasma is used to prefill a coaxial plasma-opening switch with a conducting time approaching 0.4 μs. The reproducibility of the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the opposite electrode, the plasma density amounts to 10 15 cm -3 , which is 2 times to 3 times that in the gap between the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed from the time of flight of the charged particles. Both plasma density and drift velocity increase almost linearly with the rise in charge voltage

  11. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  12. Ionization effects and linear stability in a coaxial plasma device

    Science.gov (United States)

    Kurt, Erol; Kurt, Hilal; Bayhan, Ulku

    2009-03-01

    A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.

  13. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2005-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, Phys. Rev. Lett. 90, 215002 (2003)]. An interpretation is proposed for how the n=1 central column instability provides flux amplification during spheromak formation and sustainment, and it is shown that jet collimation can occur within one rotation of the background poloidal field

  14. Momentum transfer to rotating magnetized plasma from gun plasma injection

    International Nuclear Information System (INIS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  15. Characterization of the C-2W Plasma Guns

    Science.gov (United States)

    Dubois, Ami; Sokolov, Vladimir; Korepanov, Sergey; Osin, Dima; Player, Gabriel; TAE Team

    2017-10-01

    Previous use of coaxial arc discharge plasma guns on the C-2U device exhibited great success in plasma stabilization and improved confinement. On the C-2W experiment, arc discharge plasma guns will again be used to facilitate the electrical connection between the plasma core and the divertor electrodes in order to maintain the electrode edge biasing and induce E x B shear to control plasma rotation. Each plasma gun contains an internal solenoid used to shape the plasma stream. Characterization of electron density (ne) , electron temperature (Te) , floating potential (Vf) , and total plasma flux in an arc discharge lasting 6 ms without the internal solenoid are presented. A Langmuir probe located 27 cm axially outside of the plasma gun anode measures a bell-like radial ne profile with peak ne 1018 m-3 and Te 2 - 10 eV. Observed spectral lines of impurity ions provide an estimate of Te, and Balmer series line ratios of the main ion component are used to evaluate ne at both the probe location and near the plasma gun anode. A calorimeter measures the plasma flux to be constant and equivalent to 1 kA.

  16. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Science.gov (United States)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  17. Formation of a compact torus using a toroidal plasma gun

    International Nuclear Information System (INIS)

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  18. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  19. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  20. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration

  1. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    Science.gov (United States)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  2. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  3. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  4. Flow morphing by coaxial type plasma actuator

    Science.gov (United States)

    Toyoizumi, S.; Aono, H.; Ishikawa, H.

    2017-04-01

    The purpose of study is to achieve the fluid drag reduction of a circular disk by Dielectric Barrier Discharge Plasma Actuator (DBD-PA). We here introduced “Flow Morphing” concept that flow around the body was changed by DBD-PA jet, such as the body shape morphing. Coaxial type DBD-PA injected axisymmetric jet, generating the vortex region on the pressure side of the circular disk. The vortex generated by axisymmetric plasma jet and flow around circular disk were visualized by tracer particles method. The fluid drag was measured by compression type load cell. In addition streamwise velocity was measured by an X-type hot wire probe. The extent of fluid drag reduction by coaxial type DBD-PA jet was influenced by the volume of vortex region and the diameter of plasma electrode.

  5. Recent development in high energy plasma production techniques by the deflagration plasma gun

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Chang, C.N.; Tripathi, P.P.

    1983-01-01

    This chapter reports experimental data and experience which establish the phenomenon of deflagration in plasma as unique and with quite different properties from the normal snowplow modes. Demonstrates that extremely high velocities and energies in plasma beams are possible with obvious applications in many field and, in particular, in fusion. Suggests that the potential of deflagration beams' scalability to very high energy quasi-neutral plasma beam is possible with present day technology. Discusses plasma deflagration in a T-tube; coaxial deflagration plasma guns; a typical deflagration gun and its operating procedures; electrical design considerations; kinetic theory point of view of the deflagration acceleration of particles; measurements and results; properties of the deflagration gun; applications; inertial confinement experiments; injection into magnetic confinement systems; interaction experiments; and highly energetic beams

  6. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  7. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  8. Break-down stage in a 20 kV coaxial gun

    International Nuclear Information System (INIS)

    Feugeas, J.; Massa, M.; VonPamel, O.

    1984-01-01

    The electrical break-down of hydrogen in a coaxial electrode system (similar to Mather-type Plasma Focus) was studied for a wide range of pressures. A squirrel's cage outer electrode (cathode) of 50 mm of diameter was used to allow lateral views of the discharge, with an inner electrode (anode) of 17 mm of diameter and a pyrex sleeve of 25 mm length as insulator located at the breech of the gun. A low inductance plane plate transmission line was discharged (20 kV) through a spark gap switch over the system, with a typical peak current of 22 kA, reached after 80 ns from onset of the discharge. The fine structure of the luminous current sheath was studied by frontal and lateral open shutter photographs and by monitoring the current distribution along and across the electrodes gap. The authors tests determine the relative importance of the resistivity related to particle collision effects (αiota) and of the inductive resistivity (α L-center dot) during the break-down stage (iota=length of break-down path, L=inductance)

  9. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Directory of Open Access Journals (Sweden)

    Kuroda Yusuke

    2013-11-01

    Full Text Available A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  10. Quasi-steady state, low current behaviour of a magnetized coaxial plasma source

    International Nuclear Information System (INIS)

    Gray, Travis K; Mayo, Robert M; Bourham, Mohamed A

    2005-01-01

    The Coaxial Plasma Source-1 facility (Mayo R M et al 1995 Plasma Sources Sci. Technol. 4 47) was modified from a short pulse, high current (SPHC) pulse forming network (PFN) with very low inductance (∼200 nH) to a large inductance ladder circuit. This modification allows for a longer, flat top gun current pulse that eliminates the under-damped, sinusoidal behaviour of the gun current with consequent interruptions in plasma parameters. The new PFN was designed to produce a current waveform for a much longer period (∼1 ms). As a consequence of increasing the pulse length, the magnitude of the gun current was reduced as no additional energy storage was added to the PFN. The characterization of the electrical and plasma behaviour of the experiment operated with the long pulse, low current (LPLC) PFN is presented. The gun currents produced by the LPLC PFN are approximately one-fifth in magnitude of the gun currents produced by the SPHC PFN. Axial plasma parameters were measured near the muzzle of the plasma source, and electron densities were found to range from 1 x 10 19 m -3 to 7 x 10 19 m -3 depending upon the axial location. These values are approximately 1-2 orders of magnitude less than the electron densities produced by the SPHC PFN at the same locations. Electron temperatures range from 30 to 60 eV at these locations and are very similar to those produced by the SPHC PFN. A resistive MHD model was applied as an order estimate of the plasma resistivity and demonstrates reasonable agreement with measured values of the magnetized coaxial gun resistance

  11. Quasi-steady state, low current behaviour of a magnetized coaxial plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Travis K; Mayo, Robert M; Bourham, Mohamed A [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States)

    2005-11-15

    The Coaxial Plasma Source-1 facility (Mayo R M et al 1995 Plasma Sources Sci. Technol. 4 47) was modified from a short pulse, high current (SPHC) pulse forming network (PFN) with very low inductance ({approx}200 nH) to a large inductance ladder circuit. This modification allows for a longer, flat top gun current pulse that eliminates the under-damped, sinusoidal behaviour of the gun current with consequent interruptions in plasma parameters. The new PFN was designed to produce a current waveform for a much longer period ({approx}1 ms). As a consequence of increasing the pulse length, the magnitude of the gun current was reduced as no additional energy storage was added to the PFN. The characterization of the electrical and plasma behaviour of the experiment operated with the long pulse, low current (LPLC) PFN is presented. The gun currents produced by the LPLC PFN are approximately one-fifth in magnitude of the gun currents produced by the SPHC PFN. Axial plasma parameters were measured near the muzzle of the plasma source, and electron densities were found to range from 1 x 10{sup 19} m{sup -3} to 7 x 10{sup 19} m{sup -3} depending upon the axial location. These values are approximately 1-2 orders of magnitude less than the electron densities produced by the SPHC PFN at the same locations. Electron temperatures range from 30 to 60 eV at these locations and are very similar to those produced by the SPHC PFN. A resistive MHD model was applied as an order estimate of the plasma resistivity and demonstrates reasonable agreement with measured values of the magnetized coaxial gun resistance.

  12. New approach to controlling impurity contamination of a plasma-gun-produced compact torus

    International Nuclear Information System (INIS)

    Post, R.F.; Turner, W.C.

    1982-01-01

    The presence of impurity ions, notably carbon and oxygen, has been determined to be a major factor limiting the lifetime of field-reversed plasma entities produced by coaxial plasma guns such as the Beta II gun at LLNL. Similar problems are encountered in other toroidal plasmas, e.g. those in tokamaks. However, the solution employed there, discharge cleaning, followed by initiation of the plasma at low density (where impurity radiation losses are exceeded by ohmic heating rates) is not applicable here. This note discusses a proposed means for drastically reducing the level of impurities. (These are believed to be evolved from the gun electrode surfaces as a result of thermal shock associated with UV emission from the gun plasma). The idea: take advantage of the UV pulse preferentially to release hydrogen from the electrode surfaces. These surfaces are to be coated with a few-micron-thick layer of titanium, outgassed by preheating and subsequently loaded with hydrogen

  13. Study of 750 J plasma coaxial accelerator

    International Nuclear Information System (INIS)

    Mehanna, E.A.; Hassouba, M.A; Abd al-halim, M.A.

    2009-01-01

    A 750 J plasma coaxial accelerator is used to produce plasma using air at 0.2 torr pressure and 8 kv charging voltage. The discharge current and voltage traces showed that the total circuit inductance was about 1750 μH. The experimental results showed that the plasma sheath reached the muzzle after 6 μs with velocity equal to 4 cm/μs, after then it decreased, while the simulation model showed that the plasma sheath reaches the muzzle with velocity of 3 cm/μs and after one microsecond it increases to reach about 4 cm/μs after 12 μs then it decreased. The plasma temperature measurements showed that the plasma sheath reached the muzzle with temperature of about 9 eV and increase to reach about 12 eV after 8.5 μs then after it decrease. The simulation model showed that the plasma temperature at the muzzle is about 10.5 eV and continue to increase to reach 17.5 eV after 12 μs then it decrease

  14. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  15. Investigations of the magnetic structure and the decay of a plasma-gun-generated compact torus

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Hammer, J.H.; Hartman, C.W.; Prono, D.S.; Taska, J.

    1983-01-01

    The results of a series of experimental measurements of compact toroidal (CT) plasmas produced by a magnetized coaxial plasma gun injecting into a flux-conserving metallic liner are reported. The experiments were performed on the Beta II facility at Lawrence Livermore National Laboratory. The magnetic equilibria are well described by a force-free eigenmode structure that results from an extension of Taylor's theory of the reversed-field pinch. Consideration of helicity conservation during relaxation of the composite plasma-gun flux-conserver system to the final state equilibrium yields theoretical expressions that are compared with the experiment

  16. Effects of a precursor plasma on a coaxial-to-radial transition discharge

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    The Quick-Fire series of experiments on the AFWL SHIVA-Star 9.6 megajoule capacitor bank utilizes a coaxial plasma gun as a power conditioning and switching element driving an imploding plasma liner in what is essentially a hollow z-pinch. Initially, the liner is a thin, cylindrical plastic-and-metal foil. Ideally, the foil remains undisturbed until switching action occurs, and steps have been taken to minimize the amount of hot material that is accelerated into the plasma region ahead of the main coaxial discharge. The condition of the foil and the surrounding region prior to switching has been studied both with nitrogen laser shadowgraphy and with a technique which measures the deflection of a helium-neon laser beam due to the presence of density gradients in the switching region. Estimates of the density of precursor plasmas and their effects on foil condition are presented

  17. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  18. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  19. Characterisation of plasma in a rail gun

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  20. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  1. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of

  2. Trapping of gun-injected plasma by a tokamak

    International Nuclear Information System (INIS)

    Leonard, A.W.; Dexter, R.N.; Sprott, J.C.

    1986-01-01

    It is shown that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. Gun injection raises the line-averaged density and peaks the density profile. Trapping of the gun-injected plasma is explainable in terms of a depolarization current mechanism

  3. Electrothermal plasma gun as a pellet injector

    International Nuclear Information System (INIS)

    Kincaid, R.W.; Bourham, M.A.

    1994-01-01

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet's energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots

  4. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  5. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  6. Streaming metal plasma generation by vacuum arc plasma guns

    International Nuclear Information System (INIS)

    MacGill, R.A.; Dickinson, M.R.; Anders, A.; Monteiro, O.R.; Brown, I.G.

    1998-01-01

    We have developed several different embodiments of repetitively pulsed vacuum arc metal plasma gun, including miniature versions, multicathode versions that can produce up to 18 different metal plasma species between which one can switch, and a compact high-duty cycle well-cooled version, as well as a larger dc gun. Plasma guns of this kind can be incorporated into a vacuum arc ion source for the production of high-energy metal ion beams, or used as a plasma source for thin film formation and for metal plasma immersion ion implantation and deposition. The source can also be viewed as a low-energy metal ion source with ion drift velocity in the range 20 - 200 eV depending on the metal species used. Here we describe the plasma sources that we have developed, the properties of the plasma generated, and summarize their performance and limitations. copyright 1998 American Institute of Physics

  7. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  8. Experimental Studies of Electrothermal Plasma Gun

    International Nuclear Information System (INIS)

    Diab, F.B.A.

    2013-01-01

    The aim of the present work is to study the capillary plasma discharge dynamics and characteristics. The capillary plasma device is a new technology for producing high density plasma after ablating the capillary wall using a pulsed electric power. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.28 μH) connected in parallel to a plasma source by means of one high power supply. The gun was operated in open air at discharge energies between 35 J - 3.5 kJ according to charging voltage. The work presented in this thesis covers the following items, 1- Measurements of the basic parameters and characterizations of the pretest results of the electrical circuits and capillary plasma discharge using Rogowski coil, voltage probe and Photomultiplier. 2- Material processing including (physics of the surface modifications, the morphology of the surface by using Scanning Electron Microscope (SEM) at different conditions, compositions of the materials by using X-ray Fluorescence (XRF), Micro hardness test and material particle deposition.

  9. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Science.gov (United States)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  10. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, I., E-mail: eu13z002@steng.u-hyogo.ac.jp; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-15

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  11. Energy balance in a coaxial plasma diode

    International Nuclear Information System (INIS)

    Ivanov, A.A. Jr.

    1999-01-01

    The energy fluxes in a coaxial system with a propagating convective magnetic-field wave are considered in an electron MHD model with inertia-free electrons. In contrast to the previous results obtained by other authors, it is shown that, with allowance for a finite electron pressure after the passage of the wave front, the energy flux at the boundary between the generator and coaxial system is continuous. The balance of energy fluxes in the system is studied. The angular anode point is shown to play an important role in this balance

  12. Electrical model of cold atmospheric plasma gun

    Science.gov (United States)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  13. Acceleration of solid pellets using a plasma gun

    International Nuclear Information System (INIS)

    Buller, T.L.; Turnbull, R.J.; Kim, K.

    1979-01-01

    The use of solid pellets of hydrogen isotopes to refuel thermonuclear fusion reactors based on the tokamak configuration will require that the pellets be accelerated to high velocities. One possible method of acceleration is to interact a fast plasma from a plasma gun with the pellets. In this paper preliminary results are given on the acceleration of solid pellets with a plasma gun. The plasma-gun requirements for successful acceleration to high velocities are discussed

  14. A novel carbon gun for use with plasma opening switches

    International Nuclear Information System (INIS)

    Stevenson, P.; Gregory, K.; Cliffe, R.J.; Smith, I.R.

    2001-01-01

    The carbon gun is probably the most common plasma source used in plasma opening switches. Nevertheless, it either produces a contaminated plasma, as the flashover surface erodes, or requires regular treatment with graphite paint. The novel form of the plasma gun described in this paper overcomes the disadvantages of existing designs and produces a cleaner plasma. Experimental results illustrate the performance of a prototype system. (author)

  15. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  16. Magnetized gun experiments

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Marshall, J.; Sherwood, A.R.

    1981-01-01

    In the Los Alamos Magnetized Gun Experiment we are attempting to produce a compact torus in a manner similar to an earlier experiment of Alfven. In our experiment a solenoidal coil is placed inside the inner electrode of a coaxial plasma gun. This coil produces an axial magnetic field inside the inner electrode which diverges and becomes a largely radial field in front of the gun muzzle. The idea is that when the gun is fired, the plasma escaping from the gun stretches these radial fields along the axial direction away from the gun, and these field lines can reconnect behind the plasma forming the poloidal field of the compact torus. The magnetic field generated by the gun current becomes the toroidal field and the major axis of the compact torus will be the same as the axis of the coaxial gun. Recent interest in this possible method of compact torus generation was stimulated by C. Hartman, and the approach is also being pursued in the field-reversed plasma gun experiment at LLL

  17. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    Science.gov (United States)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  18. Preventing Clogging In A Vacuum Plasma Spray Gun

    Science.gov (United States)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  19. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide

    International Nuclear Information System (INIS)

    Wu Jianqiang

    2004-01-01

    Using the self-consistent linear field theory, Cherenkov radiation excitated by the beam-wave interaction of a thin annular relativistic electron beam in a plasma-filled, dielectric coaxial cylindrical waveguide was analyzed. The dispersion equation of the interaction, the synchronized condition and the wave growth rate were derived. The energy exchange between the wave and the electron beam in the presence of background plasma was discussed, and the effects of plasma density on the dispersion characteristics, the wave growth rate and the beam-wave energy exchange were calculated and discussed. It was clear that the Cherenkov radiation results from the coupling between the slow TM mode propagated along the waveguide and the negative-energy space-charge mode propagated along the beam, and the coupling strength is proportional to the beam density. It was theoretically demonstrated that due to the background plasma, the plasma-filled coaxial cylindrical Cherenkov maser could operate at higher frequency, get higher wave growth rate, or have higher beam current at the same operating frequency, leading to higher microwave output power. (authors)

  20. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  1. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  2. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  3. Modeling of thermalization phenomena in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  4. Density profile measurements from a two-gun plasma focus device

    International Nuclear Information System (INIS)

    Tzeng, C.C.; Yen, C.K.; Yeh, T.R.; Kuo, Y.Y.; Shang, D.J.; Yu, Y.Z.; Hou, W.S.

    1990-01-01

    The dynamics of the plasma evolution in a two-gun plasma focus device has been studied using the laser shadowgraphy as well as the laser interferometry. The experiments were carried out from a 700 kJ two-gun plasma focus device reported earlier, which consisted of a pair of Mather type coaxial electrodes connected muzzle to muzzle. Previous results indicated that the simultaneous formation of the two deuterium plasma foci occurred earlier and then after ∼ 100 ns a disk-shaped plasma of ∼ 1.5 cm in diameter appeared in the middle region between the anodes. It is, therefore, the authors' goal to study the density profiles in the plasma foci and the middle region in order to understand further the formation of the plasma foci and their time evolution. The laser shadowgraphy was done with a XeCl excimer pumped dye laser system which operated at 550 nm with pulse width of ∼ 10 ns. The laser interferometry, on the other hand, was carried out using a TEA-TEA oscillator-amplifier N 2 -laser system with 337.1 nm and subnano-second pulse width. Both results show that the maximum electron density is ≥2 x 10 19 cm -3 and, in addition, the growth of the hydrodynamic instabilities are observed. These results together with the detailed density profiles are presented and discussed

  5. Plasma sheath axial phase dynamics in coaxial device

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)); Masoud, M.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt))

    1994-10-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.).

  6. Plasma sheath axial phase dynamics in coaxial device

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1994-01-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.)

  7. Trapping of gun-injected plasma by a tokamak

    International Nuclear Information System (INIS)

    Leonard, A.W.; Dexter, R.N.; Sprott, J.C.

    1986-10-01

    It is shown that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. Gun injection raises the line-averaged density and peaks the density profile. Trapping of the gun-injected plasma is explainable in terms of a depolarization current mechanism. A model is developed which describes the slowing of a plasma beam crossing into the magnetic field of a tokamak. The slowing down time is shown to go as tau/sub s/ ∞ n -1 /sub b/T 3 /sub e/(α 0 /L) 2 , where n/sub b/ and T/sub e/ are the density and temperature of the plasma beam and α 0 /L is the pitch of the field lines per unit length in the direction in which the beam is traveling. Experimental tests of this model are consistent with the scaling predictions

  8. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  9. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  10. Computational Simulation of High Energy Density Plasmas

    Science.gov (United States)

    2009-10-30

    the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in

  11. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  12. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    Science.gov (United States)

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  13. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  14. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  15. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  16. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  17. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  18. Overview and Recent Results from the HyperV Plasma Gun

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We present an overview of research at HyperV to develop high velocity dense plasma jets for application to fusion and HEDP. The approach uses symmetrical pulsed injection of high density plasma into a coaxial EM accelerator having a cross-section tailored to prevent formation of the blow-by instability. Two development paths are followed to accomplish this injection step: we compare large arrays of capillary discharges to sparkgaps arranged in a toroidal configuration. Experiments on three test fixtures are described: a 2pi configuration with 64 capillary injectors, a 32 injector prototype gun designed to drive rotation in the Maryland MCX experiment, and a second gun using 112 sparkgap electrodes for injection. Data is presented from visible light spectroscopy, fast optical imaging, Rogowski coils, pressure probes, Bdot probes, photodiodes, and a laser interferometer. Ballistic pendulum tests indicate plasma jets with mass 160 micrograms at 70 km/s have been achieved with plasma density above 10^15 cm-3.

  19. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  20. Understanding the Effect of Gas Dynamics in Plasma Gun Performance for Simulating Fusion Wall Response to Disruption Events

    Science.gov (United States)

    Riedel, Will; Underwood, Thomas; Righetti, Fabio; Cappelli, Mark

    2017-10-01

    In this work, the suitability of a pulsed coaxial plasma accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on both the properties of the plasma flow and the manner in which such jets couple with material interfaces. Specific emphasis is placed on quantifying the variation in these properties using tungsten tokens exposed to the plasma plume as the gun volume is progressively filled with more neutral gas. These results are mapped to the operational dynamics of the gun via a time-resolved Schlieren cinematic visualization of the density gradient within the flow. Resulting videos indicate the existence of two distinct modes with vastly different characteristic timescales, spatial evolution, and plasma properties. Time resolved quantification of the associated plasma heat flux for both modes, including a range spanning 150 MW m-2 - 10 GW m-2, is presented using both a fast thermocouple gauge and an IR camera. Both diagnostics in conjunction with a heat transfer model provide an accurate description of the energy transfer dynamics and operational characteristics of plasma guns. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program.

  1. Trapping of gun-injected plasma by a tokamak

    International Nuclear Information System (INIS)

    Leonard, A.W.; Dexter, R.N.; Sprott, J.C.

    1987-01-01

    It has been seen that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. This trapping of a gun-injected plasma is explained in terms of a depolarization current mechanism. A model is developed that describes the slowing of a plasma beam crossing into the magnetic field of a tokamak. The slowing down time is shown to go as tau/sub s/proportionalT/sup 3/2//sub e/L 2 /n/sub b/α 2 0 , where n/sub b/ and T/sub e/ are the density and temperature of the plasma beam and α 0 /L is the pitch of the field lines per unit length in the direction in which the beam is traveling. Experimental tests of this model are consistent with the scaling predictions

  2. Macroparticle acceleration from a modified mather-type plasma gun

    International Nuclear Information System (INIS)

    Hou, W.S.; Yeh, T.R.; Wen, M.; Yeh, C.K.; Shang, D.J.

    1987-01-01

    The use of electromagnetic force to accelerate projectiles of a few grams in a plasma-driven railgun device was described recently. Since then, subsequent research along this development has been exploited at many laboratories. As part of the plasma focus research project, an effort of modified Mather-type plasma gun has also been constructed at the Institute of Nuclear Energy Research (INER) for impact studies. The idea takes the advantage of accelerating plasmas with JxB force toward the muzzle of the gun and then strikes the projecticle to transfer their kinetic energy. Preliminary results indicate that the projecticle velocity of 1.1 km/sec can be achieved routinely with a 1.2-gram stainless steel projectile

  3. Characterization of a dielectric barrier plasma gun discharging at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Guangqiu; Ge Yuanjing; Zhang Yuefei; Chen Guangliang

    2004-01-01

    The authors develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, authors find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies. (author)

  4. Results of the AFWL deflagration gun experiments

    International Nuclear Information System (INIS)

    Hackett, K.E.; Baker, W.L.; Beason, J.D.

    1987-01-01

    The snowplow and deflagration modes of coaxial plasma gun operation have been experimentally investigated and computationally simulated at the Air Force Weapons Laboratory. The snowplow mode occurs when the gun is prefilled to a uniform gas density. The initial breakdown forms near the insulator at the gun breech. It heats the gas and creates a shock wave that travels down the gun, ionizing gas and producing a thin current sheath that travels just behind the shock front. The shock front piles up the gas in front of itself as it moves down the gun - hence the name ''snowplow''. Deflagration occurs when gas is injected into an evacuated gun so that the initial breakdown forms as the gas fills the gun. The ionized gas is accelerated into the vacuum region carrying current and magnetic field with it. A quasi-stationary diffuse discharge develops. Gas still entering the gun is processed through the deflagrating discharge and accelerated out the gun muzzle

  5. Energy efficiency of the CTX magnetized coaxial plasma source

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Barnes, C.W.; Jarboe, T.R.; Knox, S.O.; Platts, D.A.; McKenna, K.F.

    1985-01-01

    The energy efficiency of the CTX coaxial plasma source in creating spheromaks is determined experimentally to be in agreement with the theoretical prediction of lambda/sub sp//lambda/sub g/, where del x B = lambda/sub sp/ B in the spheromak, and lambda/sub g/ identical with μ 0 I/sub g//phi/sub g/ with I/sub g/ the source current and phi/sub g/ the magnetic flux through either source electrode. This is shown to be equivalent to magnetic helicity conservation. The spheromak impurity radiation was measured using an absolutely calibrated single chord bolometer system. The theoretical efficiency is within the experimental uncertainty of the ratio of spheromak radiated energy to source input energy in a group of ''dirty'' discharges. But the radiation measurement uncertainty is too large to determine whether a substantial part of the excess source energy not used in the production of spheromak magnetic energy is radiated from the spheromak volume

  6. Experimental demonstration of plasma startup by coaxial helicity injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Hamp, W.T.; Izzo, V.A.; O'Neill, R.G.; Redd, A.J.; Sieck, P.E.; Smith, R.J.

    2004-01-01

    Experimental results on the transfer of a coaxial-helicity-injection (CHI) produced discharge to inductive operation are reported. CHI assisted plasma startup is more robust than inductive only operation and reduces volt-seconds consumption. After handoff to inductive operation, the initial 100 kA of CHI produced current drops to 50 kA, then ramps up to 180 kA, using only 30 mVs, about 40% higher than that produced by induction alone. Results show that initiation of CHI discharges at lower densities produce higher levels of coupling current. Coupling a CHI produced discharge to induction from a precharged central solenoid has produced record currents of 290 kA using only 52 mWb of central solenoid flux. CHI discharges can also be generated while the central transformer is in the process of being precharged, during which period it induces a negative loop voltage on the CHI discharge. These significant results were obtained on the Helicity Injected Torus-II (HIT-II) [T.R. Jarboe, Fusion Technol. 15, 7 (1989)] spherical torus experiment (major/minor radius of 0.3/0.2 m and elongation of 1.5)

  7. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  8. Observation of plasma motion in a coaxial plasma opening switch with a chordal laser interferometer

    International Nuclear Information System (INIS)

    Teramoto, Y.; Urakami, H.; Akiyama, H.; Kohno, S.; Katsuki, S.

    2002-01-01

    Electron densities in a coaxial plasma opening switch were measured at many lines-of-slight. In the present experiment, electron density was measured by a He-Ne laser interferometer with chordal lines-of sight. In order to observe the motion of the POS plasma, the electron density contours during the conduction, opening and post-opening phases were drawn by combining the results of interferometer experiments. The radial and axial motion of POS plasma was investigated from the density contours. As conduction time progressed, the POS plasma moved toward downstream. At 800 ns, which corresponds to the time of opening in the current waveform, low-density region less than 10 15 cm -2 is seen at 10 mm from the cathode. After the opening was completed, the low-density gap disappeared and the shape of the corn-shape-like plasma was distorted. (author)

  9. Observation of plasma motion in a coaxial plasma opening switch with a chordal laser interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Y.; Urakami, H.; Akiyama, H. [Kumamoto Univ., Graduate School of Science and Technology, Kumamoto (Japan); Kohno, S. [Ariake National College of Technology, Dept. of Electrical Engineering, Fukuoka (Japan); Katsuki, S. [Kumamoto Univ., Dept. of Electrical and Computer Engineering, Kumamoto (Japan)

    2002-06-01

    Electron densities in a coaxial plasma opening switch were measured at many lines-of-slight. In the present experiment, electron density was measured by a He-Ne laser interferometer with chordal lines-of sight. In order to observe the motion of the POS plasma, the electron density contours during the conduction, opening and post-opening phases were drawn by combining the results of interferometer experiments. The radial and axial motion of POS plasma was investigated from the density contours. As conduction time progressed, the POS plasma moved toward downstream. At 800 ns, which corresponds to the time of opening in the current waveform, low-density region less than 10{sup 15} cm{sup -2} is seen at 10 mm from the cathode. After the opening was completed, the low-density gap disappeared and the shape of the corn-shape-like plasma was distorted. (author)

  10. High density plasma gun generates plasmas at 190 kilometers per second

    Science.gov (United States)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  11. Plasma target output from a magnetically augmented, gas-injected, washer-stack plasma gun

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    This article describes a new washer-stack gun design developed for the application of plasma target production for the startup of neutral-beam trapping in a fusion research magnetic confinement system. The gun is a Mo anode type that is D 2 injected and has an auxiliary pulsed magnet for control of plasma-flux mapping. One of the principal features of 2--10-ms duration pulses for gun operation in a suitable magnetic field is the formation of an arc column along magnetic field lines from the gun's central cathode electrode to the vacuum chamber walls (at common anode potential). The primary power output from a 5.0-cm-i.d. gun is typically carried along this arc column by a stream of approximately 2000 A of 50--250-eV electrons. This primary stream of relatively low-density energetic electrons efficiently ionizes the injected gas, forming a quasi-dc source of denser secondary plasma of approx.10 13 /cm 3 at a few eV, which is able to flow or diffuse away along a somewhat larger column of magnetic field lines. In plasma-target production tests on a test stand, a gun operated at a D 2 gas flow of 22 Torr ls -1 yielded 250 A of equivalent plasma flow

  12. Influence of plasma parameters in pulsed plasma gun on modification processes in exposed structural materials

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Garkusha, V.V.; Makhai, V.A.; Tereshin, V.I.

    2011-01-01

    This paper is focused on investigation of helium, nitrogen and krypton plasma streams generated by pulsed plasma gun (PPA). The main objection of this study is adjustment of plasma treatment regimes for different materials that allows achieving optimal thickness of modified layer with simultaneously minimal value of surface roughness. Features of materials alloying from gas and metallic plasma as a result of the plasma ions mixing with the steel substrate in liquid phase are discussed also.

  13. Optimization and analysis of shape of coaxial electrode for microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi

    2010-01-01

    The effect of the shape of the electrode to generate 2.45 GHz microwave plasma in pure water is examined. Three variations of a common coaxial electrode are proposed, and compared according to the power required for plasma ignition and the position of plasma ignition in pure water at 6 kPa using a high-speed camera. These coaxial electrodes are calculated using three-dimensional finite-difference time-domain method calculations. The superior shape of coaxial electrode is found to be one with a flat plane on the tip of the inner electrode and dielectric substance located below the tip of the outer electrode. The position of the plasma ignition is related to the shape of the coaxial electrode. By solving the heat-conduction equation of water around the coaxial electrode taking into account the absorption of the microwave energy, the position of the plasma ignition is found to be not where electric field is the largest, but rather where temperature is maximized.

  14. Prospects for deflagration guns

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Tripathi, P.P.; Chang, C.N.

    1978-01-01

    Deflagration is a process of fluid expansion with energy addition. Its existence in plasma physics was first discovered in the back-strapped T-tube experiments. In the coaxial plasma gun configuration the operation can be simple and yet produce a clean, high density (5 x 10 15 cm -3 ), and high kinetic energy (10 to 50 keV) collimated plasma beam. Plasma acceleration mechanism was thought to be driven by J x B force. Tapered electrodes have been used to obtain plasma beams. Scaling of the gun can be performed according to simple theory based on momentum and energy balance. Proposed plasma fueling and injection to magnetic fusion systems will be discussed

  15. Physical properties of compact toroids generated by a coaxial source

    Energy Technology Data Exchange (ETDEWEB)

    Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; McKenna, K.F.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    In the CTX experiments we have been studying CTs generated with a magnetized coaxial plasma gun. CTs have been generated in prolate and oblate cylindrically symmetric metallic flux conservers. The plasma and magnetic field properties are studied through the use of magnetic probes, Thomson scattering, interferometry, and spectroscopy.

  16. A simple model of the plasma deflagration gun including self-consistent electric and magnetic fields

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    At the Air Force Weapons Laboratory, interest has continued for some time in energetic plasma injectors. A possible scheme for such a device is the plasma deflagration gun. When the question arose whether it would be possible to scale a deflagration gun to the multi-megajoule energy level, it became clear that a scaling law which described the fun as a circuit element and allowed one to confidently scale gun parameters would be required. The authors sought to develop a scaling law which self-consistently described the current, magnetic field, and velocity profiles in the gun. They based this scaling law on plasma parameters exclusively, abandoning the fluid approach

  17. Investigation and optimisation of a plasma cathode electron beam gun for material processing applications

    OpenAIRE

    Del Pozo Rodriguez, Sofia

    2016-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London. This thesis describes design, development and testing work on a plasma cathode electron beam gun as well as plasma diagnosis experiments and Electron Beam (EB) current measurements carried out with the aim of maximising the power of the EB extracted and optimising the electron beam gun system for material processing applications. The elements which influence EB gun design are described...

  18. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  19. Ion-plasma gun for ion-milling machine

    Science.gov (United States)

    Kaminsky, Manfred S.; Campana, Jr., Thomas J.

    1976-01-01

    An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.

  20. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  1. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    Science.gov (United States)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  2. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  3. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  4. Some experimental results of plasma cumulation in a rod plasma gun obtained by means of laser interferometry

    International Nuclear Information System (INIS)

    Appelt, J.; Kurzyna, J.

    1980-01-01

    Some experimental studies of the plasma gun with ''particle transparent'' electrodes are described. In order to ascertain whether a plasma cumulation occurred the laser interferometry and soft X-ray measurements have been applied. The filament shaped plasma formation was observed with densities of the order of 10 18 cm -3 . A strong correlation between the occurrence of a dense plasma and the voltage peak at the gun electrodes was established. (author)

  5. Interaction of a supersonic plasma jet with a coaxial dipole magnetic field

    International Nuclear Information System (INIS)

    Landes, K.

    1975-01-01

    A low pressure plasma jet of considerable conductivity can be influenced by a magnetic field. On the other hand the influencing magnetic field is changed by currents induced in the plasma jet. New astrophysical examples of suchlike interaction have been found in the investigation of the moon, where the partially not currentfree solar wind is influenced by locally confined magnetic fields. In the experiment reported, the interaction of a supersonic plasma jet with a coaxial, dipole-shaped magnetic field is investigated. A current is superimposed to the plasma jet. (Auth.)

  6. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  7. Theoretical and experimental investigation of plasma and wave characteristics of coaxial discharges at low pressures

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2006-01-01

    The paper discusses a new configuration of the surface-wave sustained plasma - 'the coaxial structure'. The coaxial structure is investigated on the base of one-dimensional axial fluid model. That model is adequate enough for low pressure plasma, when the main process for charged particles production is the direct ionization from the ground state and the loss of electrons is due to diffusion to the wall. The role of the geometric factors is evaluated and discussed, varying the discharge conditions in the theoretical model. The main equations of the model - the local dispersion relation and the wave energy balance equation are obtained from Maxwell's equations with appropriate boundary conditions. The phase diagrams, the radial profiles of the electric field and the axial profiles of dimensionless electron number density, wave number, wave power are obtained at various plasma radii and dielectric tube thickness. The results are compared with those for the typical cylindrical plasma column at similar conditions. For the purpose of modelling at low pressure of a coaxial discharge sustained by a travelling electromagnetic wave, some important characteristics of the propagation of surface waves have been investigated experimentally. The axial profiles of the propagation coefficient and radial profiles of the electric field at different experimental conditions have been obtained and discussed

  8. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  9. The Energy Balance of Plasma in a Coaxial Plasma Opening Switch

    International Nuclear Information System (INIS)

    Xu Xiang; Wang Younian

    2006-01-01

    The two-dimensional energy balance in a coaxial plasma opening switch (POS) is studied based on the single-fluid magnetohydrodynamic (MHD) equations coupled with the generalized Ohm's law. The energy transfers between the plasma and the magnetic field are considered during the penetration of the magnetic field as the Ohmic heating is included in the energy-balance equation. The focus is on the energy partition between the magnetic-field energy and the dissipated magnetic-field energy in a high-density POS with different rise-in-time electric currents at the generator boundary. The simulation code is tested in two cases: the constant-in-time current case and the linear rise-in-time current case. For the sinusoidally rise-in-time current similar to that of the experiments, it is shown that at the end of the conduction phase the dissipated magnetic-field energy is 36.5% of the input electromagnetic energy, which is consistent with the experimental results

  10. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  11. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  12. 6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank

    Science.gov (United States)

    2011-06-01

    of Hawk, including the POS, is shown in Fig. 2a. The POS consists of 12 plasma guns made from coaxial cables that inject ionized plasma radially...inward between two coaxial conductors prior to firing the generator. The POS plasma conducts the generator current as a short circuit for about 700...vacuum gap in the plasma . High-energy electron- and ion-beams form in the plasma -filled coaxial region, with ions from the plasma and the polyethylene

  13. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  14. Production of a rapidly rotating plasma by cross-field injection of gun-produced plasma

    International Nuclear Information System (INIS)

    Ohzu, Akira; Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1984-01-01

    Cross-field plasma injection with use of a JxB plasma gun is described as a method to produce rapidly rotating plasma in a crossed electric and magnetic field system. The rotational velocity of the plasma is seriously limited by neutrals surrounding the plasma through strong interactions at the boundary layer. The concentration of neutrals can be reduced by the injection of fully or partially ionized plasma into the discharge volume instead of filling the volume with an operating gas. With use of this method, it is observed that the rotational velocity increases by a factor of 2 to 3 when compared with the conventional method of stationary gas-filling. (author)

  15. Dense-plasma-driven ultrafast formation of FePt organization on ...

    Indian Academy of Sciences (India)

    1Kyushu Institute of Technology, Iizuka, Fukuoka 8208502, Japan. 2Department of Physics ... e-beam, and imprint lithography used for nano-patterning and array ... 2. Experimental. The plasma focus device (figure 1a) is a coaxial plasma gun.

  16. Dependence of polar effect on parameters of coaxial plasma-erosive switches

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Ivanov, I.B.; Krasik, Ya.E.; Ryzhakin, N.N.; Sinebryukhov, A.A.; Tolmacheva, V.G.

    1988-01-01

    The results of experimental investigations and numerical simulation of the polar effect in a coaxial plasma-erosive switch (PES) established in a circuit of a strong-current nanosecond accelerator are presented. PES characteristics (energy losses, impedance, rate of its increase, etc.) are investigated depending on mutual direction of accelerator current and plasma flow as well as on the cathode radius in the PES region. It is experimentally shown that the magnetic fields near the cathode determined by this electrode radius influences mainly on PES characteristics. Mutual direction of accelerator current and plasma flow is the second significance factor influencing on PES characteristics. The optimal mode of PES operation is realized when providing the less with respect to the positive electrode, cathode radius and coinciding in direction accelerator current and plasma flow. Numerical simulation of dynamic processes in coaxial PES for different ratios of cathode and anode radii and mutual directions of accelerator current and plasma flow gives qualitative agreement with the experimental results

  17. Studies of the ablated plasma from experimental plasma gun disruption simulations

    International Nuclear Information System (INIS)

    Rockett, P.D.; Hunter, J.A.; Bradley, J.T. III; Gahl, J.M.; Litunovsky, V.N.; Ovchinnokov, I.B.; Ljublin, B.V.; Kuznetsov, B.E.; Titov, V.A.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.

    1995-01-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense plasma shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1-40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 10-100 MJ/m 2 . A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of similar 1 mm. Time-resolved data with 40-200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. ((orig.))

  18. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    International Nuclear Information System (INIS)

    Lebreton, J.P.; Anderson, R.; Harvey, C.; Torbert, R.

    1982-01-01

    This chapter describes typical observations of the waves stimulated during the electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath and the solar wind. Topics considered include orbits of gun electrons, an electric field antenna, gun operation in the magnetosphere, natural waves in the magnetosheath and the solar wind, gun operation magnetosheath, and gun operation in the solar wind. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population is proposed to explain the observations above the electron plasma frequency. It is demonstrated that on board the ISEE-1 satellite, the injection of an electron beam current of the order of 10 to 60 251A with energies ranging from 0 to 40 eV produced enhancements in the electric wave spectrum

  19. Equivalent circuit of a coaxial-line-based nozzleless microwave 915 MHz plasma source

    International Nuclear Information System (INIS)

    Miotk, R; Jasiński, M; Mizeraczyk, J

    2016-01-01

    This paper presents a new concept of an equivalent circuit of a microwave plasma source (MPS) used for gas treatment. The novelty of presented investigations is the use of the Weissfloch circuit as equivalent of an area of waveguide discontinuity in the MPS which is a result of entering a coaxial-line structure. Furthermore, in this area the microwave discharge is generated. Verification of the proposed method was carried out. The proposed equivalent circuit enabled calculating the MPS tuning characteristics and comparing them with those measured experimentally. This process allowed us to determine the impedance Z_P ofplasma in the MPS. (paper)

  20. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    Science.gov (United States)

    Cornish, S.; Khachan, J.

    2016-02-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.

  1. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    International Nuclear Information System (INIS)

    Cornish, S.; Khachan, J.

    2016-01-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required. (paper)

  2. Studies of the ablated plasma from experimental plasma gun disruption simulations

    International Nuclear Information System (INIS)

    Rockett, P.D.; Hunter, J.A.; Bradley, J.T.

    1994-01-01

    Extensive simulations of Tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1--40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 1--10 kJ/cm 2 . A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ∼1 mm resolution. Time-resolved data with 40--200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface

  3. Plasma Start-up in HIT-II and NSTX using Transient Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Ono, M.

    2008-01-01

    The method of transient coaxial helicity injection (CHI) has previously been used in the HITII experiment at the University of Washington to produce 100 kA of closed flux current. The generation of the plasma current by CHI involves the process of magnetic reconnection, which has been experimentally controlled in the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory to allow this potentially unstable phenomenon to reorganize the magnetic field lines to form closed, nested magnetic surfaces carrying a plasma current up to 160 kA. This is a world record for non-inductive closed-flux current generation, and demonstrates the high current capability of this method

  4. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    International Nuclear Information System (INIS)

    Upadhyay, J.; Im, Do; Popović, S.; Vušković, L.; Valente-Feliciano, A.-M.; Phillips, L.

    2015-01-01

    The understanding of the Ar/Cl 2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl 2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. To understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate

  5. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  6. Formation and sustainment of a low aspect ratio tokamak by a series of plasma injections

    International Nuclear Information System (INIS)

    Shimamura, Shin; Taniguchi, Makoto; Takahashi, Tsutomu; Nogi, Yasuyuki

    1995-01-01

    A low aspect ratio tokamak plasma was generated and sustained by injecting a series of plasmas from a magnetized coaxial gun into a flux conserver with toroidal field. The magnetized coaxial gun was supplied by an oscillating current with a d.c. component. The first few current pulses injected plasma and helicity into the flux conserver. This pulse helicity injection method worked effectively to maintain the low aspect ratio tokamak. 8 refs., 5 figs

  7. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  8. Electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    Smith, J.R.; Luo, C.M.; Schneider, R.F.; Rhee, M.J.

    1984-01-01

    Operation of a plasma focus as a Compact Pulsed Accelerator (CPA) for ions has been previously reported. The CPA consists of: (1) a 15 μF, 3 kJ capacitor, (2) a triggered spark gap, (3) a coaxial transmission line, and (4) a Mather geometry plasma gun. Recently the authors have investigated application of the CPA as an accelerator for electrons. In the previously reported work using the standard Mather plasma gun geometry, ions were accelerated away from the plasma gun and were therefore conveniently extracted for analysis, but electrons were directed into the hollow anode where extraction is blocked by the coaxial transmission line. For investigation of accelerated electrons a new plasma gun design which allows extraction of electrons has been developed. Details of the new plasma gun design and further results of beam diagnostics are discussed

  9. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  10. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  11. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  12. The electrical Discharge Characteristics of the 3.5 KJ Electrothermal Plasma Gun Experiment

    International Nuclear Information System (INIS)

    Diab, F.; El-Aragi, G.M.; El-Kashef, G.M.; Saudy, A.H.

    2013-01-01

    In order to better understand the operating characteristics of an electrothermal plasma gun and its design, a variety of operation characteristics including ( the length of the capillary, applied voltage, diameter of the capillary tube, circuit inductance) were investigated to determine performance effects and viability in a real system. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.3 μH) connected in parallel to a plasma source by means of one high power plane transmission line by mean of a switch triggered by negative pulse 360/385 V. For the present studies a simple RLC was chosen, which allowed the circuit parameters to be easily measure d. The electrothermal discharge characteristics of the plasma gun operated in open air, So that at atmospheric pressure the main parameters were measured. The gun voltage and discharge current are measured with voltage divider and Rogowiski coil respectively. From the results recorded we found that, the current lagged the voltage i-e the plasma source has an inductive reactivity. Moreover, the current value was changed by changing the circuit parameters, including the discharge voltage and circuit inductance, and the wire properties such as the length and diameter. The maximum gun current ranged between (5 - 50 KA) according to the charging voltage of capacitors between (1-7 KV), a typical discharge times are on the order r of 125 μS.

  13. Impulse electron gun with plasma cathode for realization of large diameter tube-shaped beams

    International Nuclear Information System (INIS)

    Antipov, V.S.; Karpukhin, V.I.; Kornilov, E.A.

    1999-01-01

    There are presented the results of investigations of a plasma electron source based on the gas discharge in a coaxial system of electrodes with longitudinal magnetic field. The examination is fulfilled from the viewpoint of applying the source as a plasma cathode for hybrid plasma-waveguide slow-wave structures on the basis of a disk-loaded coaxial. The source is optimized in order to get a powerful (up to 100 kW) nonrelativistic electron beam with the annular cross-section of a large diameter in the regime of relatively long current pulses (up to 0.2 ms) under the gas pressure ∼ 5 centre dot 10 -4 mm Hg in the area of the discharge burning

  14. Vacuum UV spectroscopy of armor erosion from plasma gun disruption simulation experiments

    International Nuclear Information System (INIS)

    Rockett, P.D.; Gahl, J.M.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.; Ovchinnokov, I.; Kuznetsov, V.E.; Titov, V.A.

    1995-01-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Two transmission grating vacuum ultraviolet (VUV) spectrographs were designed and utilized to study the plasma-material interface in plasma gun simulation experiments. Target materials included POCO graphite, ATJ graphite, boron nitride and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ca. 0.7mm resolution on VIKA at Efremov and on 2MK-200 at Troitsk. Time-resolved data with 40-200ns resolution were then recorded along with the same spatial resolution on 2MK-200. The VIKA plasma gun directly illuminated a target with a high-intensity plasma pulse of 2-100MJm -2 with low-energy ions of ca. 100eV. The 2MK-200 plasma gun illuminated the target via a magnetic cusp that permitted only deuterium to pass with energies of ca. 1keV, but which produced a fairly low intensity of 2MJm -2 . Power densities on target ranged from 10 7 to 10 8 Wcm -2 . Emitted spectra were recorded from 15 to 450A over a distance from 0 to 7cm above the armor target surface. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. This apparently constituted the absorption region, which confirmed past computer simulations. Spectra indicated both the species and ionization level that were being ablated from the target, demonstrating impurity content, and showing plasma ablation velocity. Graphite samples clearly showed CV lines as well as impurity lines from O V and O VI. The BN tiles produced textbook examples of BIV and BV, and extensive NIV, V and VI lines. These are being compared with radiation-hydrodynamic calculations. (orig.)

  15. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  16. Design and experimental results of a new electron gun using a magnetic multipole plasma generator

    International Nuclear Information System (INIS)

    Tanaka, S.; Yokoyama, K.; Akiba, M.; Araki, M.; Dairaku, M.; Inoue, T.; Mizuno, M.; Okumura, Y.; Ohara, Y.; Seki, M.; Watanabe, K.

    1991-01-01

    A new electron gun utilizing a magnetic multipole plasma generator was designed and fabricated as the heat source of the high heat flux test facility, called JEBIS (JAERI electron beam irradiation stand). By changing the acceleration grids, this electron gun is able to produce a pencil to a sheetlike electron beams up to 4 A at 100 keV for 1 ms to continuous mode. In this electron gun, magnetic lens system is not adopted to focus the electron beam, but the space charge neutralization effect by the beam plasma produced downstream of the electron gun is utilized to prevent the blow-up of the electron beam. In addition, high permeability metal is embedded in the first and the second grids to magnetically shield the earth field and the stray field from the beam bending magnet. It was experimentally demonstrated that wide range of heat flux from 0.2 MW/m 2 to over 2000 MW/m 2 can be realized at the test sample position about 1.7 m downstream of the electron gun

  17. Plasma diagnostics by electron guns and electric field probes on ISEE-1

    International Nuclear Information System (INIS)

    Pedersen, A.

    1982-01-01

    The use of electron guns to control the potential of a satellite with conductive surfaces is discussed with reference to the results of the ISEE-1 satellite experiment. The two electron guns carried by the satellite can emit electrons with energies up to 48 eV, and the emitted electron current has a maximum value of 0.5-1.0 mA. The satellite potential, with or without gun operation, can be measured with reference to one or two spherical electric field probes positioned on booms at a distance of 36 m from the satellite. The probes are biased with a negative current from a high-impedance source to be slightly positive (0.5-1.0 V) relative to the plasma, and the spacecraft is normally several volts more positive and can be further positively charged by operating the electron gun. Plasma diagnostics can be carried out by appropriate sweeps of gun currents and energy of emitted electrons to obtain information about density and characteristic energy of ambient electrons. 9 references

  18. Fast-acting calorimeter measures heat output of plasma gun accelerator

    Science.gov (United States)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  19. Application of electron beam equipment based on a plasma cathode gun in additive technology

    Science.gov (United States)

    Galchenko, N. K.; Kolesnikova, K. A.; Semenov, G. V.; Rau, A. G.; Raskoshniy, S. Y.; Bezzubko, A. V.; Dampilon, B. V.; Sorokova, S. N.

    2016-11-01

    The paper discusses the application of electron beam equipment based on a plasma cathode gun for three-dimensional surface modification of metals and alloys. The effect of substrate surface preparation on the adhesion strength of gas thermal coatings has been investigated.

  20. Rail gun performance and plasma characteristics due to wall ablation

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  1. Development of a double plasma gun device for investigation of effects of vapor shielding on erosion of PFC materials under ELM-like pulsed plasma bombardment

    Science.gov (United States)

    Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is considered that thermal transient events such as type I edge localized modes (ELMs) could limit the lifetime of plasma-facing components (PFCs) in ITER. We have investigated surface damage of tungsten (W) materials under transient heat and particle loads by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The capacitor bank energy for the plasma discharge is 144 kJ (2.88 mF, 10 kVmax). Surface melting of a W material was clearly observed at the energy density of ˜2 MJ/m2. It is known that surface melting and evaporation during a transient heat load could generate a vapor cloud layer in front of the target material [1]. Then, the subsequent erosion could be reduced by the vapor shielding effect. In this study, we introduce a new experiment using two MCPG devices (MCPG-1, 2) to understand vapor shielding effects of a W surface under ELM-like pulsed plasma bombardment. The capacitor bank energy of MCPG-2 is almost same as that of MCPG-1. The second plasmoid is applied with a variable delay time after the plasmoid produced by MCPG-1. Then, a vapor cloud layer could shield the second plasma load. To verify the vapor shielding effects, surface damage of a W material is investigated by changing the delay time. In the conference, the preliminary experimental results will be shown.[4pt] [1] A. Hassanein et al., J. Nucl. Mater. 390-391, pp. 777-780 (2009).

  2. Expansion of a plasma injected from an electrodeless gun along a magnetic field

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1978-04-01

    The dynamics of a plasma injected from an electrodeless plasma gun (conical theta pinch) into a longitudinal magnetic field is studied theoretically. For the experiments referred to, conditions are collisionless for the ions and range from collision dominated to collisionless for the electrons. During the expansion of the injected plasma the electrons are trapped by an ambipolar electric field maintaining charge neutrality and a magnetic mirror at the gun. The development of the ion and electron distribution functions for the completely collisionless case is considered in detail. Assuming that the acceleration of the ions is negligible and taking the action integral over an electron oscillation to be an adiabatic invariant self similar solutions are found. The electrons lose energy adiabatically as a result of the plasma expansion and it is suggested that a re-thermalisation process must operate in experimental situations to account for the observed electron energies

  3. Investigation of a washer-stack plasma gun on the Auburn torsatron

    International Nuclear Information System (INIS)

    Austin, M.E. Jr.

    1986-01-01

    A pulsed device for producing a highly-ionized plasma in the Auburn Torsatron is described and construction details given. A plasma is formed by discharging a 14 uF capacitor charged to 6 to 12 kV through a titanium washer impregnated with hydrogen. The ions and electrons are injected transversely into the Torsatron confinement field and the plasma is studied with an x-band microwave interferometer and H-alpha spectral-line detectors. The results of initial measurements to determine the optimal performance parameters for the gun, such as discharge voltage and position, are presented. Also, peak electron density and decay time of the guns plasma are given for different machine and souce conditions

  4. Production of field-reversed configurations with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshali, J.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    Compact toroids were generated which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 μs. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 μs. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time

  5. Production of field-reversed configurations with a magnetized coaxial plasma gun

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshali, J.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    Compact toroids were generated which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 ..mu..s. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 ..mu..s. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time.

  6. Bibliography of Documents Related to the Theory, Operation and Performance of Coaxial Plasma Guns

    Science.gov (United States)

    1988-09-01

    Nazionale per l’Energia Nucleare, Rome, Italy, 1970. Bostick, W. H., Nardi, V., Grunberger, L. and Prior, W., "Observation of Solar Flare Type...Processes in the Laboratory," in Solar Magnetic Fields, Symposium No. 43 of the International Astronomical Union, Paris, France, 31 August--4 September 1970...Nazionale Energia Nucleare sulla Fusione, Centro di Frascati, Rome, Italy, September 1984. Bugrova, A. I., Morozov, A. I. and Kharchevnlkov, V. K

  7. Investigation of the residue in an electric rail gun employing a plasma armature

    Science.gov (United States)

    Bauer, D. P.; Barber, J. P.

    1984-01-01

    The performance of dc electric rail guns using plasma-armature-accelerated projectiles was studied. It was found that the initial rail launcher acceleration profile was consistent with the simulation, but that after the projectile had traveled approximately 25 to 30 cm along the gun, a considerable portion of the current in the projectile armature commutated into a secondary current path. Also noted were the lower than expected muzzle velocities. It was proposed that the secondary current path was a relatively high conductivity layer of residue on the launcher bore.

  8. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    Science.gov (United States)

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  9. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  10. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    Science.gov (United States)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  11. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  12. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Roger Raman; Jarboe, Thomas R.; Bell, Michael G.; Dennis Mueller; Nelson, Brian A.; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-01

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX

  13. Plasma Dynamics of the Arc-Driven Rail Gun

    Science.gov (United States)

    1980-09-01

    Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics (McGraw-Hill New York, 1963), Chap. 8. ’ 16 k T P = (1 +cO...Energy, and Forces (Wiley, New York, 1960), Chap. 9. 10. Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics

  14. Compact 5 x 1012 AMP/SEC rail-gun pulser for a laser plasma shutter

    International Nuclear Information System (INIS)

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.

    1979-01-01

    We have developed a rail-gun plasma source to produce a plasma of 10 12 cm -3 particle density and project it with a velocity of 3.9 cm/μs. This device will be used in a output spatial filter of Nova to project a critical density plasma across an optical beam path and block laser retroreflected light. The object of this paper is to describe the design of a pulser appropriate to the Shiva laser fusion facility, and to describe the preliminary design of a higher current prototype pulser for Nova the laser fusion research facility under construction at Lawrence Livermore Laboratory

  15. The role of plasma radius as a condition for sustaining a coaxial discharge at various wave modes

    International Nuclear Information System (INIS)

    Ivanov, K; Bogdanov, T; Benova, E

    2012-01-01

    A gas discharge can be produced and sustained by travelling electromagnetic waves in various geometries: planar, spherical, cylindrical and coaxial. An electromagnetic wave travelling along a dielectric tube can produce plasma outside the tube when a metal rod is placed along the tube axis, which is the typical arrangement of a coaxial surface-wave-sustained discharge (CSWD). The CSWD has been studied intensively both theoretically and experimentally since 1998. In the case of a SWD in cylindrical geometry, plasma is mainly produced and sustained by the azimuthally symmetric waves. In coaxial geometry, there are both experimental and theoretical indications showing that higher wave modes may also produce and sustain plasma under certain conditions. In order to find out these conditions theoretically, we developed a one-dimensional fluid model. The purpose of this work is to investigate theoretically the behavior of wave phase diagrams under various discharge conditions and to find the discharge conditions under which plasma can be produced, as well as those conditions when this is not possible.

  16. Simulating the effects of plasma disruption with a 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  17. Simulating the effects of plasma disruption with A 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  18. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  19. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    Science.gov (United States)

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel

    1998-01-01

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.

  20. First experiments at the QSPA-Be plasma gun facility

    International Nuclear Information System (INIS)

    Kovalenko, D V; Klimov, N S; Podkovyrov, V L; Muzichenko, A D; Zhitlukhin, A M; Khimchenko, L N; Kupriyanov, I B; Giniyatulin, R N

    2011-01-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m - 2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m - 2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  1. First experiments at the QSPA-Be plasma gun facility

    Science.gov (United States)

    Kovalenko, D. V.; Klimov, N. S.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Khimchenko, L. N.; Kupriyanov, I. B.; Giniyatulin, R. N.

    2011-12-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m-2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m-2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  2. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  3. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    International Nuclear Information System (INIS)

    Chung, K.S.; Chung, Kyoung-Jae; Jung, B.K.; Hwang, Y.S.

    2013-01-01

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 10 19 m −3 and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments

  4. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  5. Charge modes of pulsed high energy and high density plasma injection source

    International Nuclear Information System (INIS)

    Cheng, D.Y.

    1974-01-01

    Detonation (snowplow), deflagration and other modes of discharge can be produced in a single coaxial plasma gun. Conservation laws of mass, momentum and energy together with the entropy production condition of the discharge phenomena are used to identify dense discharge modes. The Rankine-Hugoniot relation for a magnetized plasma is derived. Discussions of how to design a deflagration plasma gun to yield a prescribed plasma kinetic energy and plasma beam density are given

  6. Electron emission and plasma generation in a modulator electron gun using ferroelectric cathode

    International Nuclear Information System (INIS)

    Chen Shutao; Zheng Shuxin; Zhu Ziqiu; Dong Xianlin; Tang Chuanxiang

    2006-01-01

    Strong electron emission and dense plasma generation have been observed in a modulator electron gun with a Ba 0.67 Sr 0.33 TiO 3 ferroelectric cathode. Parameter of the modulator electron gun and lifetime of the ferroelectric cathode were investigated. It was shown that electron emission from Ba 0.67 Sr 0.33 TiO 3 cathode with a positive triggering pulse is a sort of plasma emission. Electrons were emitted by the co-effect of surface plasma and non-compensated negative polarization charges at the surface of the ferroelectric. The element analyses of the graphite collector after emission process was performed to show the ingredient of the plasma consist of Ba, Ti and Cu heavy cations of the ceramic compound and electrode. It was demonstrated the validity of the Child-Langmuir law by introducing the decrease of vacuum gap and increase of emission area caused by the expansion of the surface plasma

  7. International Workshop on Magneto-Plasma Aerodynamics (8th)

    Science.gov (United States)

    2010-05-14

    outer conductor of coaxial waveguide. (b) (1 − 3) − different positions of a plasma channel in nonsteady-state plasmatron. The microwave power is...out at MIPT. Nanosecond DBD discharge in a special coaxial geometry of electrodes was used to produce a thin layer of quasi-uniform plasma in the...discharge cell, diagnostics means, high-voltage sources and commutation units. Cell commutation was effected by a plasma gun actuated by a start unit

  8. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    International Nuclear Information System (INIS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-01-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation. (orig.)

  9. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-05

    R and Pouvesle J M 2009 Experimental study of a compact nanosecond plasma gun Plasma Processes and Polymers 6 795—802 [11] Heinlin J, Morfill G...radially symmetrical geometry. The thickness of the plasma layer in the direction perpendicular to the dielectric plane is about 1 mm. The central coaxial ...Positive and negative polarity discharge at elevated pres- sures Discharge in coaxial geometry has been developed for plasma assisted ignition at high

  10. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  11. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  12. Plasma guns for controlled fussion at megagauss energy-densities

    International Nuclear Information System (INIS)

    Turchi, Peter J.; Roderick, Norman F.; Degnan, James H.; Frese, Michael H.

    2008-01-01

    Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.

  13. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Device Innovation Center, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-06-15

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  14. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    Science.gov (United States)

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  15. Beta II compact torus experiment plasma equilibrium and power balance

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.

    1982-01-01

    In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments

  16. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  17. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  18. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  19. Experimental and theoretical study of plasma-water interaction in electrothermal guns

    International Nuclear Information System (INIS)

    Arensburg, Alex.

    1993-05-01

    This thesis comprises an experimental and theoretical study of the plasma- jet-water interaction in electrothermal guns. In the present work the plasma jet was produced by high current pulsed discharge in a plasma injector consisting of polyethylene capillary, closed at one end by a metallic anode and supported at the other end with a hollow cathode. A thin aluminium fuse placed inside the capillary and connecting both electrodes, provided an initial conducting element. A pulse forming network delivering a high current pulse through the fuse, exploded it and produced an aluminium plasma. Subsequently, ablation of the capillary wall begun as a result of its exposure to radiation from the fuse plasma. The ablation products were heated by the pulse current until ionized, replacing the fuse plasma by a polyethylene plasma thus sustaining the ablation process. The experimental investigation reported here used x-ray shadowgraphy to observe the plasma-working fluid interaction process. The working fluid was an aqueous solution of 92% water and 8% lead acetate gelatinized with agar. The penetration of the plasma jet into the working fluid was exposed on films at successive time intervals by means of x-ray shadowgraphy. When the water interacts with the plasma it also ablated. This ablation rate was estimated from energy conservation considerations. Peak pressures up to 3.5*10 8 Pa were measured during the process. At such pressure water does not undergo phase transformation when heated. Thus the mass density at the plasma water interface should be regarded as a continuous function of temperature. The determination of the temperature profile at the interface between the capillary plasma and the water requires the solution of the heat transfer and radiative transfer equations under ablation conditions. This constituted the main theoretical part of the present work. 36 refs., 4 tabs., 29 figs

  20. Coaxial Transducer

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2008-01-01

    The invention as disclosed is of a coaxial transducer that uses lead zirconate titanate ceramic or other suitable material as an isolator between the conductors in a coaxial cable to transmit acoustic...

  1. Neutron localization measurements from a two-gun plasma focus device

    International Nuclear Information System (INIS)

    Yeh, T.R.; Wen, M.; Tzeng, C.C.; Shang, D.J.; Yeh, C.K.; Wu, K.S.; Kuo, Y.Y.; Hou, W.S.

    1989-01-01

    The simultaneous formation of the two deuterium plasma foci has been reported recently by Hou, W.S., et al, in Procs I.E.E.E. Int. Conf. on Plasma Science, 1986, 87, in a Mather type two-gun plasma focus assembly with maximum bank energy of ∼700 kJ. In addition, these plasmas will evolve and then produce a disk-shaped plasma in the middle of the two plasma foci. Soft X-ray filter techniques which allow measurements of the electron temperature at both pinch points and the middle point yielded a few hundred eV for these three regions. Neutron localization measurements which were carried out with a collimator and a scintillator-fiber-photomultiplier assembly indicate that an enhancement of ∼80% in neutron yield is observed in the middle region as the separation between two electrodes is 9.1 cm. Further experimental evidence shows that the neutron production in the middle region is the result of the beam-beam interaction in nature. (author)

  2. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  3. Characteristics of a wire ion plasma source and a secondary emission electron gun

    International Nuclear Information System (INIS)

    Hotta, Eiki; Osawa, Teruya; Urai, Hajime; Suzuki, Mitsuaki; Yasui, Hiroyuki; Tamagawa, Tohru

    1993-01-01

    Electrical characteristics of a wire ion plasma source (WIPS) and a secondary emission electron gun, for which the WIPS is used as an ion source, will be reported. The WIPS is a cold-cathode gaseous discharge device, in which a radial electron trapping permits an extremely low pressure gaseous discharge with very low applied voltages. The time evolutions of temperature and density of afterglow plasma were measured with a double probe. In the case of P 0 = 25 mTorr He and the maximum discharge current of 200 A, the temperature and density of electron were about 20 eV and of the order of 10 18 m -3 , respectively, just after the distinction of discharge. The ion current density measured by a biased ion collector (BIC) on the discharge tube wall was found to reach up to 300 mA/cm 2 . A secondary emission electron gun was set on the discharge tube wall opposite to the BIC. An earthed mesh net is installed at a height of 8 mm just in front of the cathode. The maximum negative bias voltage applied to the cathode is limited to -50 kV by the local breakdown in the gun, which occurred synchronously with the WIPS discharge. The electron beam current was measured by the BIC, in which an aluminum foil with a width of 2 μm was placed on instead of the earthed mesh net. At the cathode voltage of -30 kV, the measured beam current density was 220 mA/cm 2 . The extraporation of the resulted curve indicates that if the cathode voltage is -100 kV, the current density will reach to 1 A/cm 2 . The energy spectrum of the electron beam was measured with a magnetic energy analyzer, which was set in place of the BIC. The energy spread is about 300 eV at the central energy of 40 keV. Thus, they demonstrated the possibility of a high current density secondary emission electron gun, for which a WIPS is used as an ion source

  4. Cross-field plasma injection into mirror geometry

    Energy Technology Data Exchange (ETDEWEB)

    Uzun-Kaymak, I U; Clary, R; Ellis, R; Elton, R; Teodorescu, C; Young, W [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Messer, S; Bomgardner, R; Case, A; Witherspoon, F D, E-mail: uzunkaymak@wisc.ed [HyperV Technologies Corp., Chantilly, VA 20151 (United States)

    2009-09-15

    The Maryland Centrifugal Experiment (MCX) and HyperV Technologies Corp. are collaborating on a series of experiments to test the use of a plasma gun to inject mass and momentum into a magnetic-confinement device. HyperV has designed, built and installed a prototype coaxial gun to drive rotation in MCX. The gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. Preliminary measurements at HyperV indicate the gun generates plasma jets with a mass of 160 {mu}g, velocities up to 90 km s{sup -1} and plasma density in the high 10{sup 14} cm{sup -3}. This paper emphasizes characteristics of the plasma gun and penetration of the plasma jet through the MCX magnetic field. Plans for future injection experiments are briefly discussed.

  5. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  6. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  7. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  8. Deposition of SiOx on Metal Surface with a DBD Plasma Gun at Atmospheric Pressure for Corrosion Prevention

    International Nuclear Information System (INIS)

    Han Erli; Chen Qiang; Zhang Yuefei; Chen Fei; Ge Yuanjing

    2007-01-01

    In this study, SiO x films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). It was shown that an uniform and cross-linking structure film was formed by the DBD gun. As an application, the SiO x films were deposited on a carbon steel surface for the anti-corrosion purpose. The experiment was carried out in a 0.1 M NaCl solution. It was found that a very good anti-corrosive property was obtained, i.e., the corrosion rate was decreased c.a. 15 times in 5% NaCl solution compared to the non-SiO x coated steel, as detected by the potentiodynamic polarization measurement

  9. ELECTRON GUN

    Science.gov (United States)

    Christofilos, N.C.; Ehlers, K.W.

    1960-04-01

    A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

  10. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  11. Robe Development for Electrical Conductivity Analysis in an Electron Gun Produced Helium Plasma

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Bitteker, Leo; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The use of magnetohydrodynamic (MHD) power conversion systems, potentially coupled with a fission power source, is currently being investigated as a driver for an advanced propulsion system, such as a plasma thruster. The efficiency of a MHD generator is strongly dependent on the electrical conductivity of the fluid that passes through the generator; power density increases as fluid conductivity increases. Although traditional MHD flows depend on thermal ionization to enhance the electrical conductivity, ionization due to nuclear interactions may achieve a comparable or improved conductivity enhancement while avoiding many of the limitations inherent to thermal ionization. Calculations suggest that nuclear-enhanced electrical conductivity increases as the neutron flux increases; conductivity of pure He-3 greater than 10 mho/m may be achievable if exposed to a flux greater than 10(exp 12) neutrons/cm2/s.) However, this remains to be demonstrated experimentally. An experimental facility has been constructed at the Propulsion Research Center at the NASA Marshall Space Flight Center, using helium as the test fluid. High energy electrons will be used to simulate the effects of neutron-induced ionization of helium gas to produce a plasma. These experiments will be focused on diagnosis of the plasma in a virtually static system; results will be applied to future tests with a MHD system. Initial experiments will utilize a 50 keV electron gun that can operate at up to a current of 200 micro A. Spreading the electron beam over a four inch diameter window results in an electron flux of 1.5x 10(exp 13) e/sq cm/s. The equivalent neutron flux that would produce the same ionization fraction in helium is 1x10(exp 12) n/sq cm/s. Experiments will simulate the neutron generated plasma modeled by Bitteker, which takes into account the products of thermal neutron absorption in He-3, and includes various ion species in estimating the conductivity of the resulting plasma. Several

  12. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  13. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    International Nuclear Information System (INIS)

    Sundararajan, G.; Rao, D.S.; Prasad, K.U.M.; Joshi, S.V.

    1998-01-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, Al 2 O 3 , and Cr 3 C 2 -NiCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. Among all the coating materials studied, D-gun sprayed WC-12% Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al 2 O 3 shows least wear resistance to every wear mode

  14. The impedance of energy efficiency of a coaxial magnetized plasma source used for spheromak formation and sustainment

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jarboe, T.R.; Marklin, G.J.; Knox, S.O.; Henins, I.

    1989-01-01

    Electrostatic (dc) helicity injection has previously been shown to successfully sustain the magnetic fields of spheromaks and tokamaks. The magnitude of the injected magnetic helicity balances (within experimental error) the flux lost be resistive decay of the toroidal equilibrium. The problem of optimizing this current drive scheme hence involves maximizing the injected helicity (the voltage-connecting-flux product) while minimizing the current (which multiplied by the voltage represents the energy input and also possible damage to the electrodes). The impedance (voltage-to-current ratio) and energy efficiency of a dc helicity injection experiment are studied on the CTX spheromak. Over several years changes were made in the physical geometry of the coaxial magnetized plasmas source as well as changes in the external electrical circuit. The source could be operated over a wide range of external charging voltage (and hence current), applied axial flux, and source gas flow rate. A database of resulting voltage, helicity injection, efficiency, electron density, and rotation has been created. These experimental results are compared to an ideal magnetohydrodynamic theory of magnetic flux flow. The theory is parameterized by the dimensionless Hall parameter, the ratio of electric to mass current. For a constant Hall parameter the theory explains why the voltage depends quadratically on the current at constant flux. The theory also explains the approximately linear dependence of the impedance-to-current ratio on the current-to-flux ratio of the source. 9 refs., 6 figs

  15. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  16. Surface multipole guide field for plasma injection

    International Nuclear Information System (INIS)

    Breun, R.A.; Rael, B.H.; Wong, A.Y.

    1977-01-01

    Described here is a surface guide field system which is useful for injection of plasmas into confinement devices. Experimental results are given for 5--25-eV hydrogen plasmas produced by a coaxial discharge (Marshall) gun. It is found that better than 90% of the plasma produced by the gun is delivered to the end of the guide 180 cm away, while the neutral component falls by more than an order of magnitude. For these results the rod current providing the magnetic field had to be large enough to provide at least 1.5-ion gyroradii from the center of the guide to the surface of the inner rod

  17. Preliminary study of cross-field plasma injection in 2XIIB

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Hartman, C.W.; Simonen, T.C.

    1978-01-01

    Preliminary results are presented of a study of cross-field plasma injection in the 2XIIB mirror machine. Plasma accelerated by a coaxial deflagration gun was observed to pass 3.5M across the vacuum field, and some trapping was observed when the gun plasma intersected a plasma streaming along B at the center of the magnetic well. Parameters for the experiment are: gun plasma kinetic energy 50 to 200 eV, n/sub gun/ = 3 x 10 13 cm -3 , streaming plasma 25 to 50 eV and n/sub streaming/ = 6 x 10 11 cm -3 , duration of both 100 to 200 μsec. For the trapped plasma, n = 2.4 x 10 12 cm -3 , and the decay time is t/sub 1 / 2 / = 400 μsec consistent with Coulomb scattering loss at 100 eV mean ion energy

  18. Gun Play

    Science.gov (United States)

    Mechling, Jay

    2008-01-01

    Biology and the particular gun culture of the United States come together to explain the persistent and powerful attraction of American boys to both real guns and toy guns. The 1990s saw adults begin to conflate "the gun problem" with "the boy problem," sparking attempts (largely failed) to banish toy guns from homes and…

  19. Development of a two-stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.; Gouge, M.J.; Fehling, D.T.; Sparks, D.O.

    1988-01-01

    The development of a two-stage light gas gun to accelerate hydrogen isotope pellets to high speeds is under way at Oak Ridge National Laboratory. High velocities (>2 km/s) are desirable for plasma fueling applications, since the faster pellets can penetrate more deeply into large, hot plasmas and deposit atoms of fuel directly in a larger fraction of the plasma volume. In the initial configuration of the two-stage device, a 2.2-l volume (/ 3 for frozen hydrogen isotopes). However, the use of sabots to encase and protect the cryogenic pellets from the high peak pressures will probably be required to realize speeds of ∼3 km/s or greater. The experimental plan includes acceleration of hydrogen isotopes as soon as the gun geometry and operating parameters are optimized; theoretical models are being used to aid in this process. The hardware is being designed to accommodate repetitive operation, which is the objective of this research and is required for future applications. 25 refs., 6 figs., 1 tab

  20. CO-AXIAL DISCHARGES

    Science.gov (United States)

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  1. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    Science.gov (United States)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  2. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  3. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  4. Implantation of β-emitters on biomedical implants: 32 P isotropic ion implantation using a coaxial plasma reactor

    International Nuclear Information System (INIS)

    Fortin, M.A.; Paynter, R.W.; Sarkissian, A.; Stansfield, B.L.; Terreault, B.; Dufresne, V.

    2003-01-01

    The development of endovascular brachytherapy and the treatment of certain types of cancers (liver, lung, prostate) often require the use of beta-emitters, sometimes in the form of radioisotope-implanted devices. Among the most commonly used isotopes figures 32 P, a pure beta-emitter (maximum energy: 1.7 MeV), of which the path in biological tissues is of a few cm, restricting the impact of electron bombardment to the immediate environment of the implant. Several techniques and processes have been tried to elaborate surfaces and devices showing strongly bonded, or implanted 32 P. Anodizing, vapor phase deposition, grafting of oligonucleotides, as well as ion implantation processes have been investigated by several research groups as methods to implant beta-radioisotopes into surfaces. A coaxial plasma reactor was developed at INRS to implant radioisotopes into cylindrical metallic objects, such as coronary stents commonly used in angioplasty procedures. The dispersion of 32 P atoms on the interior surfaces of the chamber can be investigated using radiographs, contributing to image the plasma ion transport mechanisms that guide the efficiency of the implantation procedure. The amount of radioactivity on the wall liner, on the internal components, and on the biomedical implants are quantified using a surface barrier detector. A comparative study establishes a relationship between the gray scale of the radiographs, and dose measurements. A program was developed to convert the digitized images into maps showing surface dose density in mCi/cm 2 . An integration process allows the quantification of the doses on the walls and components of the reactor. Finally, the resulting integral of the 32 P dose is correlated to the initial amount of radioactivity inserted inside the implanter before the dismantling procedure. This method could be introduced as a fast and reliable way to test, qualify and assess the amount of radioactivity present on the as-produced implants

  5. Progress In Plasma Accelerator Development for Dynamic Formation of Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Cassibry, Jason T.; Griffin, Steven; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a coaxial pulsed plasma thruster (Figure 1). It has been tested experimentally and plasma jet velocities of approx.50 km/sec have been obtained. The plasma jet has been photographed with 10-ns exposure times to reveal a stable and repeatable plasma structure (Figure 2). Data for velocity profile information has been obtained using light pipes and magnetic probes embedded in the gun walls to record the plasma and current transit respectively at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  6. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  7. Modeling electron beam parameters and plasma interface position in an anode plasma electron gun with hydrogen atmosphere

    Science.gov (United States)

    Krauze, A.; Virbulis, J.; Kravtsov, A.

    2018-05-01

    A beam glow discharge based electron gun can be applied as heater for silicon crystal growth systems in which silicon rods are pulled from melt. Impacts of high-energy charged particles cause wear and tear of the gun and generate an additional source of silicon contamination. A steady-state model for electron beam formation has been developed to model the electron gun and optimize its design. Description of the model and first simulation results are presented. It has been shown that the model can simulate dimensions of particle impact areas on the cathode and anode, but further improvements of the model are needed to correctly simulate electron trajectory distribution in the beam and the beam current dependence on the applied gas pressure.

  8. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  9. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  10. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  11. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  12. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    Science.gov (United States)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  13. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    Science.gov (United States)

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  14. Formation of magnetized plasma stream in the CTCC-I experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, K.; Ozaki, A.; Uyama, T.; Satomi, N.; Watenabe, K. (Osaka Univ., Suita (Japan). Faculty of Engineering)

    1981-10-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields.

  15. Formation of magnetized plasma stream in the CTCC-I experiment

    International Nuclear Information System (INIS)

    Ikegami, Kazunori; Ozaki, Atsuhiko; Uyama, Tadao; Satomi, Norio; Watanabe, Kenji

    1981-01-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields. (author)

  16. Coaxial slow source

    International Nuclear Information System (INIS)

    Brooks, R.D.; Jarboe, T.R.

    1990-01-01

    Field reversed configurations (FRCs) are a class of compact toroid with not toroidal field. The field reversed theta pinch technique has been successfully used for formation of FRCs since their inception in 1958. In this method an initial bias field is produced. After ionization of the fill gas, the current in the coil is rapidly reversed producing the radial implosion of a current sheath. At the ends of the coil the reversed field lines rapidly tear and reconnect with the bias field lines until no more bias flux remains. At this point, vacuum reversed field accumulates around the configuration which contracts axially until an equilibrium is reached. When extrapolating the use of such a technique to reactor size plasmas two main shortcomings are found. First, the initial bias field, and hence flux in a given device, which can be reconnected to form the configuration is limited from above by destructive axial dynamics. Second, the voltages required to produce rapid current reversal in the coil are very large. Clearly, a low voltage formation technique without limitations on flux addition is desirable. The Coaxial Slow Source (CSS) device was designed to meet this need. It has two coaxial theta pinch coils. Coaxial coil geometry allows for the addition of as much magnetic flux to the annular plasma between them as can be generated inside the inner coil. Furthermore the device can be operated at charging voltages less than 10 kV and on resistive diffusion, rather than implosive time scales. The inner coil is a novel, concentric, helical design so as to allow it to be cantilevered on one end to permit translation of the plasma. Following translation off the inner coil the Annular Field Reversed Configuration would be re-formed as a true FRC. In this paper we investigate the formation process in the new parallel configuration., CSSP, in which the inner and outer coils are connected in parallel to the main capacitor bank

  17. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  18. Excitation of plasma waves by electron guns at the ISEE-1 satellite

    International Nuclear Information System (INIS)

    Lebreton, Zh.P.; Torbert, R.; Anderson, R.; Kharvi, K.

    1985-01-01

    Study of the effects resulting from excitation of plasma waves by electron beams injected from JSEE-1 satellite is carried out. Cases of the satellite traversing the magnetosphere magnetosheath and solar wind are considered. 10-60 μA and 0-40 V electron beam injection from the satellite increased electrostatic waves spectral intensity. The waves below ionic plasma frequency are interpreted as ion acoustic waves. To explain the-above-electron-plasma-frequency wave oscillation a communication system between electron plasma mode and electron flux with the velocities above the mean thermal velocity of plasma cold electrons is suggested

  19. Gun Safety

    Science.gov (United States)

    Many U.S. households have guns, but they can cause harm if not handled properly. Here are some things you can do to keep yourself and ... safe: Teach children that they shouldn't touch guns and that if they see a gun, to ...

  20. Plasma impurity-control studies in CTX

    International Nuclear Information System (INIS)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 μs and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 μs. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver

  1. Plasma impurity-control studies in CTX

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 ..mu..s and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 ..mu..s. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver.

  2. Compact toroids generated by a magnetized coaxial source in the CTX experiment

    International Nuclear Information System (INIS)

    Sherwood, A.R.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; McKenna, K.F.; Linford, R.K.; Marshall, J.; Platts, D.A.

    1981-01-01

    Compact toroids containing both toroidal and poloidal magnetic field (Spheromak-type) have been generated in CTX using a magnetized coaxial plasma gun. These CTs tear loose from the gun by magnetic field line reconnection, and they are trapped in flux conservers having various geometries. In a straight cylindrical flux conserver the CTs are observed to be unstable to a gross tilting mode. Stability to the tilting mode has been demonstrated in flux conservers having an oblate trapping region; however, the geometry of the entrance region leading to the trapping volume can also have important effects. Lifetimes of about 150 μs for the CTs are typically observed. Interferometric measurements give a value of about 2 x 10 14 cm -3 for the initial plasma density. The plasma temperature measured at a single spot near the minor magnetic axis decreases to around 10 eV by the time the magnetic reconnection is complete. Spectrographic measurements and pressure probe results are in agreement with this temperature. A snipper coil has been installed to induce the CT to tear loose from the gun sooner. The use of this coil is observed to speed up the magnetic field reconnection process by about a factor of 2

  3. Compact toroids generated by a magnetized coaxial source in the CTX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, A.R.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; McKenna, K.F.; Linford, R.K.; Marshall, J.; Platts, D.A.

    1981-01-01

    Compact toroids containing both toroidal and poloidal magnetic field (Spheromak-type) have been generated in CTX using a magnetized coaxial plasma gun. These CTs tear loose from the gun by magnetic field line reconnection, and they are trapped in flux conservers having various geometries. In a straight cylindrical flux conserver the CTs are observed to be unstable to a gross tilting mode. Stability to the tilting mode has been demonstrated in flux conservers having an oblate trapping region; however, the geometry of the entrance region leading to the trapping volume can also have important effects. Lifetimes of about 150 ..mu..s for the CTs are typically observed. Interferometric measurements give a value of about 2 x 10/sup 14/ cm/sup -3/ for the initial plasma density. The plasma temperature measured at a single spot near the minor magnetic axis decreases to around 10 eV by the time the magnetic reconnection is complete. Spectrographic measurements and pressure probe results are in agreement with this temperature. A snipper coil has been installed to induce the CT to tear loose from the gun sooner. The use of this coil is observed to speed up the magnetic field reconnection process by about a factor of 2.

  4. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  5. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  6. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Titberidze, Mikheil

    2017-10-01

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm -1 . Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations are

  7. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Titberidze, Mikheil

    2017-10-15

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm{sup -1}. Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations

  8. Sustainment of spherical tokamak by means of repetitive injection of compact torus plasma

    International Nuclear Information System (INIS)

    Shimamura, Shin; Matsura, Ken; Takahashi, Tsutomu; Nogi, Yasuyuki

    2000-01-01

    Sustainment of spherical tokamak (S.T.) has been studied. A compact torus (C.T.) plasma was injected into confinement region by magnetized coaxial gun. For start-up and sustainment of large main spherical tokamak, single pulsed injection of small C.T. is not sufficient in many cases. C.T.plasma injection of high repetition rate is required. For this purpose magnetized coaxial gun was driven with high repetition rate current. The first injected C.T. plasma could start-up S.T. without other help. The repetitive C.T. injection grew and sustained the S.T. plasma. A CCD camera with fast gated image intensifier took a cross sectional view of S.T. during the repetitive C.T. injection. (author)

  9. Electric-gun studies of conductors in high magnetic fields and experiments in dynamic flux compression

    International Nuclear Information System (INIS)

    Osher, J.E.; Chau, H.H.; Lee, R.S.; Tipton, R.E.; Weingart, R.C.

    1990-01-01

    Electric guns operate by discharging a fast capacitor bank through a thin, metallic bridge-foil load. The explosion of the foil and the accompanying magnetic forces acting on the bridge-foil plasma accelerate a thin flyer plate of dielectric material initially placed on top of the bridge foil. In hypervelocity impact studies with the linear electric gun, a thin, flat flyer is punched out of a cover sheet of dielectric (or dielectric/metallic composite) material by the explosion of the bridge foil and accelerated down a short barrel to impact on a target. In the coaxial gun, a cylindrical bridge foil is used to implode a cylindrical dielectric or dielectric/metallic composite (liner) flyer to produce a high peak compression through axial convergence. In this paper the authors discuss the range of currents, their rate of rise, and the magnetic fields attained by their fast capacitor banks, which supply power to the electric gun to explode the bridge foil. Also included is a study of the change of resistance of the bridge-foil element as a function of time for various flyer mass loadings for the linear geometry of the gun

  10. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    Science.gov (United States)

    Lebreton, J.-P.; Torbert, R.; Anderson, R.; Harvey, C.

    1982-01-01

    The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency.

  11. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    International Nuclear Information System (INIS)

    Lebreton, J.P.; Torbert, R.; Anderson, R.; Harvey, C.

    1982-01-01

    The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency. 9 references

  12. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  13. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  14. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  15. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani (India); Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India)

    2016-03-15

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  16. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    International Nuclear Information System (INIS)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur

    2016-01-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  17. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  18. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  19. Isothermal oxidation of metallic coatings deposited by a water-stabilized plasma gun

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Nop, P.; Kopřiva, P.; Kolman, Blahoslav Jan; Dubský, Jiří

    2006-01-01

    Roč. 44, č. 1 (2006), s. 41-48 ISSN 0023-432X R&D Projects: GA ČR(CZ) GA106/03/0710 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * metallic coatings * oxidation tests * oxidation kinetics * oxide structure * element distribution Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.138, year: 2006

  20. Gun Safety (For Kids)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gun Safety KidsHealth / For Kids / Gun Safety What's in ... from guns outside the home. If You Have Guns in Your Home If your parents keep guns ...

  1. Sanoli Gun

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences. Sanoli Gun. Articles written in Proceedings – Mathematical Sciences. Volume 119 Issue 3 June 2009 pp 275-281. Remarks on some Zero-Sum Theorems · S D Adhikari Sanoli Gun Purusottam Rath · More Details Abstract Fulltext PDF. In the present paper, we give a ...

  2. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  3. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  4. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  5. Gun Control, Gun Ownership, and Suicide Prevention.

    Science.gov (United States)

    Lester, David

    1988-01-01

    Explored relationship between the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States. Found gun ownership, rather than the strictness of gun control laws, was the strongest correlate of the rates of suicide and homicide by guns. (Author)

  6. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Case, Andrew [HyperV Technologies Corp., Chantilly, VA (United States); Brockington, Samuel [HyperV Technologies Corp., Chantilly, VA (United States); Messer, Sarah [HyperV Technologies Corp., Chantilly, VA (United States); Bomgardner, Richard [HyperV Technologies Corp., Chantilly, VA (United States); Phillips, Mike [HyperV Technologies Corp., Chantilly, VA (United States); Wu, Linchun [HyperV Technologies Corp., Chantilly, VA (United States); Elton, Ray [Univ. of Maryland, College Park, MD (United States)

    2014-11-11

    /s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding

  7. The Xygra gun simulation tool.

    Energy Technology Data Exchange (ETDEWEB)

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  8. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  9. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    Barnyakov, A.M.; Levichev, A.E.; Chernousov, Yu.D.; Ivannikov, V.I.; Shebolaev, I.V.

    2015-01-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  10. Coaxial short pulsed laser

    Science.gov (United States)

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  11. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    Science.gov (United States)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  12. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    Science.gov (United States)

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  13. Electron gun

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Hughes, R.H.

    1979-01-01

    The invention described relates to cathode ray tubes, and particularly to color picture tubes of the type useful in home television receivers and therefore to electron guns. The invention is especially applicable to self-converging tube-yoke combinations with shadow mask tubes of the type having plural-beam in-line guns disposed in a horizontal plane, an apertured mask with vertically oriented slit-shaped apertures, and a screen with vertically oriented phosphor stripes. The invention is not, however, limited to use in such tubes and may in fact be used, e.g., in dot-type shadow mask tubes and index-type tubes. (Auth.)

  14. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  15. ITER ECFR Coaxial gyrotron and window development (EU-T360). Pt. 1: Coaxial gyrotron development. Final report

    International Nuclear Information System (INIS)

    Piosczyk, B.; Braz, O.; Dammertz, G.; Kuntze, G.; Michel, G.; Moebius, A.; Thumm, M.

    1999-02-01

    Based on the experience gained with the inverse magnetron injection gun (IMIG) for coaxial cavity gyrotrons, a new 4.5 MW electron gun for operation at a cathode voltage of 90 kV and a beam current of 50 A has been designed and is currently under fabrication at Thomson Tubes Electroniques (TTE). The gun is of the diode type. Different from the LaB 6 IMIG currently used, the emission of the electrons will not be directed towards the coaxial insert but towards the anode similar like in conventional MIG gyrotron electron guns. The inner conductor is supported from the gun inner conductor side and can be aligned in a reproducible way in the fully assembled tube. The insert is cooled as required for operation at long pulses up to cw. The cathode will be equipped with an impregnated tungsten matrix emitter as used in industrial tubes. A 160/170 GHz, 1.5 MW, 100 ms pulse length coaxial gyrotron employing the new electron gun and a single-stage depressed collector has been designed. The advanced quasi-optical converter for transforming the TE -31,17 cavity mode at 165 GHz into a single RF-output wave beam (only one output window) consists of a simple launcher and two mirrors. The first mirror is quasi-elliptical and the second mirror has a non-quadratic phase-correcting surface to generate an approximately homogeneous RF-field distribution with a high fundamental Gaussian content in the window plane. First test experiments with the new gyrotron have been performed employing the available LaB 6 -IMIG. (orig.)

  16. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  17. Plasma jet acceleration of dust particles to hypervelocities

    International Nuclear Information System (INIS)

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-01-01

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10 22 m -3 or higher, and low temperature ∼1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  18. Characteristics of ion spectrum in a low energy nitrogen operated plasma focus: application to the metallic substrates thermal treatment

    International Nuclear Information System (INIS)

    Kelly, H.; Lepone, A.; Marquez, A.

    1998-01-01

    Full text: This work presents the nitrogen ion spectrum characteristics in a Plasma Focus device, determined using a Thomson spectrometer and a Faraday cup, operated in the secondary electron collective mode. It is also discussed the thermal treatment and the re coating induce by ions incident on a metallic surface (AISI 304 steel) placed in front of the coaxial gun, when the device is operated with a Ti implant at the end of the central electrode

  19. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  20. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  1. Water gun vs air gun: A comparison

    Science.gov (United States)

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  2. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  3. Development of the Antares electron gun

    International Nuclear Information System (INIS)

    Stine, R.; Leland, W.; Mansfield, C.; Rosocha, L.; Jansen, J.; Gibson, R.; Allen, G.

    1984-01-01

    Antares is the Los Alamos National Laboratory 40-kJ, 1-ns, CO 2 laser system that is now operational. This laser system was developed for the Intertial Confinement Fusion (ICF) program and is beginning target experiments. The distributed circuit modeling, design and operation of the large electron gun developed for the final laser power amplifier are reviewed. This gun is significant because of the large electron current area, 9 m 2 ; the number of emitter blades, 48; the dual cathode current return; and the coaxial geometry and grid control. The gun components and their development are discussed. These include the emitter blades, the coaxial grid (to maintain constant electron current during the 5-μs pulse), the bonded stacked-ring insulator (to electrically insulate the grid/cathode), the Kapton/aluminum electron transmission windows (to provide an interface between gun vacuum and laser gas) and the vacuum shell (operated at a vacuum of 10 -6 torr). A unique pressure diagnostic is also discussed

  4. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  5. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Cohen, B.I.; Hooper, E.B.; Mclean, H.S.; Stallard, B.W.; Hill, D.N.; Holcomb, C.T.; Romero-Talamas, C.; Wood, R.D.; Cone, G.; Sovinec, C.R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B∼1% on the midplane edge) yields T e profiles peaked at >200 eV. Trends indicate a limiting beta (β e ∼4%-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB/B∼2% and large voltage fluctuations (δV∼1 kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  6. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R

    2005-04-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B∼1% on the midplane edge) yields T e profiles peaked at > 200eV. Trends indicate a limiting beta (β e ∼ 4-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ∼2% and large voltage fluctuations ((delta)V ∼ 1kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  7. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  8. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    Science.gov (United States)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; hide

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  9. Quick-fire: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion. Experiments have been conducted using the SHIVA STAR capacitor bank operating at 6 MJ stored energy in which performance has been monitored by electrical diagnostics, magnetic probes, and axial and radial viewing high speed visible and X-Ray photographs to assess the performance of the coaxial run and coaxial to radial transition. Time and spectrally resolved X-Ray diagnostics are used to assess implosion quality and performance and results are compared to kinematic and MHD models

  10. Characteristics of (Ti,Ta)N thin films prepared by using pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Li Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Lv Guohua [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Xianhui [College of Science, Changchun University of Science and Technology, Changchun 130022, Jilin Province (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-07-21

    (Ti,Ta)N films were prepared by pulsed high energy density plasma (PHEDP) from a coaxial gun in N{sub 2} gas. The coaxial gun is composed of a tantalum inner electrode and a titanium outer one. Material characteristics of the (Ti,Ta)N film were investigated by x-ray photoelectron spectroscopy and x-ray diffraction. The microstructure of the film was observed by a scanning electron microscope. The elemental composition and the interface of the film/substrate were analysed using Auger electron spectrometry. Our results suggest that the binary metal nitride film (Ti,Ta)N, can be prepared by PHEDP. It also shows that dense nanocrystalline (Ti,Ta)N film can be achieved.

  11. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    International Nuclear Information System (INIS)

    Ruzic, David N.

    2013-01-01

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o-normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas

  12. Hard-driven rail-gun tests

    International Nuclear Information System (INIS)

    Peterson, D.R.; Adams, D.F.; Cummings, C.E.; Fowler, C.M.; Kerrisk, J.F.; Marsh, S.P.; Parker, J.V.

    1983-01-01

    A number of prototype rail-gun designs have been tested, powered by explosive magnetic flux compression generators. Peak currents as high as 1.3 MA were delivered. Rail guns with 50-mm-thick Kevlar fiberwound structural shells were able to survive these high currents with minimum mechanical damage and were refired after enlarging the bores 0.2 to 0.4 mm to remove arc damage. In some tests, mechanical damage occurred that was apparently caused by the rebound of the gun after firing. Although the Kevlar shells had more than adequate strength, they appeared to lack sufficient stiffness, allowing excessive deflections. The use of a steel structural shell with a Kevlar sleeve was an improvement. Intrusion into the seams of the rail guns and condensation of material from the plasma armature were observed. Improved sealing of seams is indicated. In some cases, we suspect maldistribution of current within the gun; that is, not all the current delivered to the breech of the gun seemed to reach the plasma armature. Experiments are being designed to quantify the effects discussed. Rail guns of advanced design are being fabricated. An 18-g titanium projectile was accelerated to 2.4 km/s in a 16-mm-round-bore, 0.6-m-long gun, 4-6 g polycarbonate projectiles were accelerated to 3.5 km/s in 13-mm-square-bore, 1.2-m-long rail guns. All tests were conducted at atmospheric pressure

  13. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  14. Analysis of a prototype of a novel 1.5 MW, 170 GHz coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Rzesnicki, T.

    2007-06-01

    A 170 GHz, 2 MW coaxial cavity gyrotron is under development at the Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM) at Forschungszentrum Karlsruhe (FZK) which will be used as a high power microwave source for heating, current drive and stability control of plasmas in the International Thermonuclear Experimental Reactor (ITER). At frequencies above about 100 GHz the output power of conventional gyrotrons with cylindrical hollow waveguide cavities is limited to 1 MW in CW operation mainly due to the high Ohmic losses and the space charge voltage depression of the electron beam. The coaxial geometry enables a reduction of the mode competition in the gyrotron resonator and decreases also the influence of the beam voltage depression. As result a very high order operating mode (for example TE34,19 at 170 GHz) can be chosen which ultimately allows to increase the output power of the gyrotron in CW operation to a value as high as 2 MW. A first prototype of the 170 GHz, 2 MW coaxial cavity gyrotron has been designed, built and experimentally tested in short pulse operation at FZK. The main goal of this work was to investigate experimentally the design of the critical gyrotron components such as electron gun, resonator and a quasi-optical RF system. Those components are same as used in the first industrial coaxial prototype gyrotron for ITER. During the experiments a strong instability was observed inside the gyrotron tube due to the excitation of parasitic low frequency oscillations. The mechanism of the oscillations has been studied and possibilities for their suppression of these oscillations are proposed and experimentally verified. The RF output system is one of the most critical components. It is responsible for the coupling of the gyrotron power out of the gyrotron by converting the microwave power generated in the TE 34,19 -mode into a fundamental free space TEM 0,0 ''Gaussian'' mode. The performance of the RF output system has been tested in low

  15. Low Energy Electron Gun on Board a Scientific Satellite GEOTAIL

    OpenAIRE

    TSUTSUI, Minoru; ONISHI, Yoshiaki; MATSUMOTO, Hiroshi; KIMURA, Iwane; 筒井, 稔; 大西, 嘉昭; 松本, 紘; 木村, 磐根

    1988-01-01

    A low energy electron gun to be used for beam-plasma interaction experiments by a scientific satellite GEOTAIL has been designed and manufactured. Electrodes of the gun have been modified from the Pierce type gun because of the use of a directly heated cathode. Spatial density distributions of beam electrons emitted from the new gun have been measured in a large vacuum chamber, and characteristic curves of emission currents for some beam energies and cathode powers have been checked repeatedl...

  16. Electro Thermal Chemical Gun Technology Study

    National Research Council Canada - National Science Library

    Diamond, P

    1999-01-01

    .... Michael Stroscio. Electro Thermal Chemical (ETC) gun technology refers to the use of plasma devices in place of traditional chemical ignitors to initiate the burning of high energy propellants in a controlled manner...

  17. QUICK-FIRE: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion

  18. Gun ownership and social gun culture.

    Science.gov (United States)

    Kalesan, Bindu; Villarreal, Marcos D; Keyes, Katherine M; Galea, Sandro

    2016-06-01

    We assessed gun ownership rates in 2013 across the USA and the association between exposure to a social gun culture and gun ownership. We used data from a nationally representative sample of 4000 US adults, from 50 states and District of Columbia, aged >18 years to assess gun ownership and social gun culture performed in October 2013. State-level firearm policy information was obtained from the Brady Law Center and Injury Prevention and Control Center. One-third of Americans reported owning a gun, ranging from 5.2% in Delaware to 61.7% in Alaska. Gun ownership was 2.25-times greater among those reporting social gun culture (PR=2.25, 95% CI 2.02 to 2.52) than those who did not. In conclusion, we found strong association between social gun culture and gun ownership. Gun cultures may need to be considered for public health strategies that aim to change gun ownership in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Encyclopedia of Gun Control and Gun Rights.

    Science.gov (United States)

    Utter, Glenn H.

    This reference volume provides information on gun control and gun rights, including resources on the debate surrounding the Second Amendment and individuals and organizations focused on gun issues, along with statutes, court cases, events, and publications surrounding this current topic. Highlighted are the important organizations and their…

  20. Coaxial foilless diode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng [College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  1. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  2. Coaxial pulse matching transformer

    International Nuclear Information System (INIS)

    Ledenev, V.V.; Khimenko, L.T.

    1986-01-01

    This paper describes a coaxial pulse matching transformer with comparatively simple design, increased mechanical strength, and low stray inductance. The transformer design makes it easy to change the turns ratio. The circuit of the device and an expression for the current multiplication factor are presented; experiments confirm the efficiency of the transformer. Apparatus with a coaxial transformer for producing high-power pulsed magnetic fields is designed (current pulses of 1-10 MA into a load and a natural frequency of 100 kHz)

  3. Coaxial transmission line - Equalization

    International Nuclear Information System (INIS)

    Bonnerue, J.L.; Fremont, Jacques; Haubtmann, Jack; Pillon, Gerard.

    1981-09-01

    The transmission of electrical signal through a coaxial line is not perfect and signal distortions are increased as much as the frequency spectrum is extended. We have designed and achieved passive filters (named equalizers) with transfer functions which are inverse of coaxial transfer functions. Doing so our attempt is to avoid definitive loss of information in the recorded data. The main feature of our equalization method lies in the fact it could be either an electrical or a numerical correction or both of them. Some examples in the use of this technique are also proposed [fr

  4. Gun control saves lives

    African Journals Online (AJOL)

    gun control legislation. One study estimated that more than 4 500 lives were saved across five SA cities from 2001 to 2005.[5] Pro-gun interest groups seeking to promote gun ownership and diffusion have attacked these findings, suggesting that stricter gun control was only enacted in 2004 following the publication of ...

  5. Gun Sales. Firearm Facts.

    Science.gov (United States)

    Duker, Laurie, Ed.

    Minimal federal regulations on firearm sales have facilitated the proliferation of guns, gun owners, and gun dealers in the United States. This fact sheet offers data on the growing number of firearm dealers, the relative ease of obtaining and keeping a license to sell guns from the Federal Bureau of Alcohol, Tobacco, and Firearms, the lack of…

  6. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    Science.gov (United States)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  7. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    International Nuclear Information System (INIS)

    Raitt, W.J.; Banks, P.M.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon. 5 references

  8. Coaxial antenna for lower hybrid heating

    International Nuclear Information System (INIS)

    Le Gardeur, R.J.

    1981-02-01

    A coaxial antenna for the heating of toroidal plasmas has been conceived and constructed. Being wholly metallic (stainless steel), the several coaxial ceramic passages assuring the transit of the H.F. energy into vacuum being situated far from the plasma, the use of such antennas can be envisaged in next generation machines where the environment is particularily severe. The coaxial design (having a lower internal impedance than a wave guide) reduces the electric fields present in the antenna-plasma interface, assuring, at the same time, a spatial uniformity of the fields making possible a substantial reduction in the transmitted power density. The main technological advantages (with respect to a wave guide grill structure) are: (a) simplification of the construction especially in multi-channel systems (b) quasi-elimination of the problems associated with the ceramic windows transmitting the H.F. energy (c) absence of a low frequency cut-off making possible to place launching structures in vertical chimneys where space is limited (d) an eventual reduction of certain phenomena inherent to this type of heating such as particle acceleration, space charge separation, pondemotive forces etc

  9. Characterisation of target plasma required for REB-plasma interaction studies using cylindrical Langmuir probes

    International Nuclear Information System (INIS)

    Roychowdhury, P.; Paithankar, A.S.; Iyyengar, S.K.; Rohatgi, V.K.

    1987-01-01

    The target plasma required for relativistic electron beam (REB)-plasma interaction studies has been generated by coaxial plasma gun. The measurement of electron density and temperature has been carried out using cylindrical Langmuir probes. Probes both oriented parallel and transverse to the flow have been used. The spatial as well as temporal variation of electron density and temperature have been studied. The typical electron density and temperature measured by probe were in the range of 9.0-3.5 x 10 13 cm -3 and 5-7 eV respectively. The typical e-folding decay time of density was 6.2 μs, while no appreciable change in electron temperature was observed until 10 μs after the peak density. The density decays by about 50% at distance of 30 cm from the gun. The plasma flow velocity has been measured by the time of flight technique and was found to be 2.5 x 10 6 cm s -1 . The plasma radius measured by dosimeter film, at distance of 30 cm from the gun was 3 cm. (author)

  10. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    Science.gov (United States)

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  11. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  12. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high-power electron-beam-sustained CO 2 -laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3 to 6 μs duration, average current densities of 40 to 60 mA/cm 2 , and electron energies of 450 to 500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current-density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun are also presented

  13. Performance of the Antares large area cold cathode electron gun

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Mansfield, C.R.

    1983-01-01

    The performance of the electron gun which supplies ionization for the Antares high power electron beam sustained CO 2 laser power amplifier is described. This electron gun is a coaxial cylindrical cold cathode vacuum triode having a total electron aperture area of approximately 9 m 2 . Electrons are extracted from the gun in pulses of 3-6 μs duration, average current densities of 40-60 ma/cm2, and electron energies of 450-500 keV. The main areas of discussion in this paper are the performance in terms of grid control, current density balance, and current runaway due to breakdown limitations. Comparison of the experimental results with the predictions of a theoretical model for the electron gun will also be presented

  14. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  15. Quasistatic modelling of the coaxial slow source

    International Nuclear Information System (INIS)

    Hahn, K.D.; Pietrzyk, Z.A.; Vlases, G.C.

    1986-01-01

    A new 1-D Lagrangian MHD numerical code in flux coordinates has been developed for the Coaxial Slow Source (CSS) geometry. It utilizes the quasistatic approximation so that the plasma evolves as a succession of equilibria. The P=P (psi) equilibrium constraint, along with the assumption of infinitely fast axial temperature relaxation on closed field lines, is incorporated. An axially elongated, rectangular plasma is assumed. The axial length is adjusted by the global average condition, or assumed to be fixed. In this paper predictions obtained with the code, and a limited amount of comparison with experimental data are presented

  16. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  17. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  18. Investigation of electron and ion flows in the microsecond plasma opening switch on the terawatt power level

    International Nuclear Information System (INIS)

    Bastrikov, A.N.; Bugaev, S.P.; Volkov, A.M.; Kim, A.A.; Kovalchuk, B.M.; Kokshener, V.M.; Yakovlev, V.A.; Bystritskii, V.M.; Grigoriev, S.V.; Krasik, Ya.E.

    1989-01-01

    The results of an investigation of ion and electron flows in the coaxial microsecond plasma opening switch (POS) at generator GIT-4 are given. The 1 mks front duration POS with outer and inner electrodes of 210 mm and 75 mm diameters respectively switched 1 MA pulse during 0.1 mks to the short circuited coaxial line with the same diameters and 120 cm of length. The polarity of the inner electrode was negative. The plasma of the POS was injected from outer electrode by 32 plasma guns of capillary type. The typical POS voltage was 0.9-1.2 MV. The calculated energy losses in the POS during the switching phase reached (0.1-0.15) MJ. The calorimetric measurements of the energy dissipated on both electrodes gave the same value. The location and distribution of the head absorbed along the POS electrodes were determined

  19. Conference on electromagnetic guns and launchers, 1980

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Proceedings includes 31 papers dealing with the physical principles and engineering technology associated with the development of electromagnetic propulsion, with emphasis on its use for guns, launchers as well as other military equipment. Topics covered include: rail guns, projectiles, mass accelerators, electric motors and generators, nuclear reactors, superconducting devices, plasma acceleration and confinement, traveling magnetic waves, aerospace propulsion, space shuttles, homopolar generators, fusion reactors, tokamaks, impact fusion, and electric power generation. All papers are abstracted and indexed separately

  20. Preparation of Ta(C)N films by pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Yan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Gu Weichao [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Guling [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China)

    2007-04-07

    The pulsed high energy density plasma (PHEDP) is generated in the working gas due to a high-voltage high-current discharge, within a coaxial gun. In PHEDP surface modification, discharge is applied for preparing the amorphous and nanostructured high-melting materials as thin films deposited on various substrates. In this investigation, Ta(C)N films were deposited using PHEDP on stainless steel. Pure tantalum and graphite were used as the inner and outer electrodes of the PHEDP coaxial gun, respectively. Nitrogen was used as the working gas and also one of the reactants. Preliminary study on the films prepared under different conditions shows that the formation of Ta(C)N is drastically voltage dependent. At lower gun voltage, no Ta(C)N was detected in the films; when the gun voltage reaches or exceeds 3.0 kV, Ta(C)N occurred. The films are composed of densely stacked nanocrystallines with diameter less than 30 nm, and some grains are within 10 nm in diameter.

  1. ORELA electron guns

    International Nuclear Information System (INIS)

    Christian, O.W.; Lewis, T.A.

    1981-09-01

    The most recent information concerning the production and performance of ORELA electron guns is presented. Included are descriptions of procedures for gun fabrication, cathode conditioning and high voltage processing. Highlights of the performance characteristics are also included

  2. Electron gun for SSRF

    International Nuclear Information System (INIS)

    Sheng Shugang; Lin Guoqiang; Gu Qiang; Li Deming

    2003-01-01

    A 100 kV triode-electron-gun has been designed and manufactured for the Linac of Shanghai Synchrotron Radiation Facility (SSRF). In this paper the performance of the gun and some key components are described

  3. Guns and Violence. Current Controversies.

    Science.gov (United States)

    Kim, Henny H., Ed.

    This book focuses on gun violence and gun control, presenting both sides of arguments about firearms ownership and gun control. Each of five chapters poses a question about gun control and provides answers for both sides of the question. The following essays are included: (1) "Gun Violence Is Becoming an Epidemic" (Bob Herbert); (2) "Gun Violence…

  4. ECR ion source with electron gun

    Science.gov (United States)

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  5. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Science.gov (United States)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  6. Gun Theft and Crime.

    Science.gov (United States)

    Cook, Philip J

    2018-06-01

    Some law enforcement officials and other observers have asserted that theft is the primary source of guns to crime. In fact, the role of theft in supplying the guns used in robbery, assault, and murder is unknown, and current evidence provides little guidance about whether an effective program to reduce gun theft would reduce gun violence. The current article analyzes publicly available national data on gun theft together with a unique data set for Chicago. The results tend to support a conclusion that stolen guns play only a minor role in crime. First, publicly available data are used to calculate that thefts are only about 1% of all gun transactions nationwide. Second, an analysis of original data from Chicago demonstrates that less than 3% of crime guns recovered by the police have been reported stolen to the Chicago Police Department (CPD). If a gun is reported stolen, there is a 20% chance that it will be recovered, usually in conjunction with an arrest for illegal carrying. Less than half of those picked up with a stolen gun have a criminal record that includes violent offenses. Third, results from surveys of convicted criminals, both nationally and in Chicago, suggest that it is rare for respondents to have stolen the gun used in their most recent crime. The data on which these results are based have various shortcomings. A research agenda is proposed that would provide more certainty about the role of theft.

  7. Description of the plasma diagnostics package (PDP) for the OSS-1 Shuttle mission and JSC plasma chamber test in conjunction with the fast pulse electron gun (FPEG)

    Science.gov (United States)

    Shawhan, S. D.

    1982-01-01

    The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.

  8. Whose guns are stolen? The epidemiology of Gun theft victims.

    Science.gov (United States)

    Hemenway, David; Azrael, Deborah; Miller, Matthew

    2017-12-01

    Gun theft is an important source of guns used by criminals. Yet no empirical work has focused on the characteristics of gun owners that distinguish those who have had their guns stolen from those who have not. In this study, we examine the demographics and behavioral characteristics of gun owners who report having had a gun stolen. Data come from a nationally representative probability-based online survey conducted in April 2015, with a linked follow-up survey in November 2015 that asked gun owners about any theft of their guns in the past 5 years. Of 1,604 gun-owning respondents, 2.4% (95% CI 1.6,3.6) reported that one or more guns had been stolen, with a mean number of guns stolen per theft of 1.5 (95% CI 1.0,2.0]. Risk factors for having a gun stolen were owning 6 or more guns, owning guns for protection, carrying a gun in the past month, storing guns unsafely, and living in the South region of the United States. The South accounts for 37% of US households, 43% of gun owners, and two-thirds of all gun thefts. We estimate that there are approximately 250,000 gun theft incidents per year, with about 380,000 guns stolen. We find that certain types of gun owners-who own many guns, who carry guns, and who do not store guns safely-are at higher risk to have their guns stolen. Tracing data show that states in the South are exporters of crime guns used in other states. Our survey results find that the majority of guns stolen in the US come from the South.

  9. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    Energy Technology Data Exchange (ETDEWEB)

    Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dammertz, G [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dumbrajs, O [Department of Engineering Physics and Mathematics, Helsinki University of Technology, Association EURATOM-TEKES, FIN-02150 Espoo (Finland)] (and others)

    2005-01-01

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse ({approx} few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun.

  10. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Nishijima, D. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Kawai, T.; Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukumoto, N. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of {approx}0.5 ms, incident ion energy of {approx}30 eV, and surface absorbed energy density of {approx}0.3-0.7 MJ/m{sup 2}. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of {approx}0.7 MJ/m{sup 2}, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  11. Performance of a plasma opening switch in positive polarity on Gamble I using flashboard plasma sources

    International Nuclear Information System (INIS)

    Renk, T.J.

    1995-01-01

    The successful development of the Plasma Opening Switch (POS) for inductive storage applications has been largely confined to negative polarity operation. Some models of POS behavior suggest that this is because in a positive polarity coaxial configuration, the weaker magnetic field at the cathode position retards the switch opening process. This article describes experiments in which both conductor radii in the POS region were significantly reduced. Anode- and cathode-side current monitors indicate that voltages greater than open-circuit are generated at the POS position, but there is a significant amount of electron flow out of the POS, depending upon load impedance. Flow impedance analysis indicates that a relatively small gap appears in the POS plasma after switch opening. Switch performance is also compared between flashboard and carbon gun plasma sources, with the latter operated both in positive and negative polarity

  12. Study of opening switch characteristics of a plasma focus

    International Nuclear Information System (INIS)

    Rhee, M.J.; Schneider, R.F.

    1985-01-01

    It is shown that a current charged transmission line and an opening switch can be used as an inductive energy storage system to produce a high power pulse. A plasma focus device, in which a transmission line is inserted in series with the capacitor bank and a coaxial gun, is considered as an inductive energy storage system. The m = 0 instability in the plasma focus is utilized as an opening switch and the disrupted plasma column is considered as bipolar diode. The system is described preferably by the transmission line theory rather than the lumped circuit theory. The relationship between the output voltage and the current drop is given by V = ΔIZ, where Z is the characteristic impedance of the transmission line. The current drop ΔI depends on the mismatched load impedance of the plasma diode which is governed by nature of the m = 0 instability

  13. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Energy Technology Data Exchange (ETDEWEB)

    Vinatier, T., E-mail: vinatier@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Bruni, C. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Roux, R. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire d' Etude des Eléments Légers, CEA IRAMIS, bâtiment 524, 91191 Gif sur Yvette Cedex (France); Brossard, J. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire Astroparticule et Cosmologie, Université Paris 7, UMR 7164, bâtiment Condorcet, 75205 Paris Cedex (France); Chancé, S.; Cayla, J.N.; Chaumat, V. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); and others

    2015-10-11

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  14. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  15. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  16. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  17. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1981-10-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  18. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1982-01-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  19. Simplified pipe gun

    International Nuclear Information System (INIS)

    Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-01-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar

  20. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  1. Spheromak experiment using separate guns for formation and sustainment

    International Nuclear Information System (INIS)

    Brown, M.R.; Martin, A.

    1996-01-01

    An experiment is described that incorporates the use of separate magnetized plasma guns for formation and sustainment of a spheromak. It is shown that energy coupling efficiency approaches unity if the gun and spheromak are of comparable size. A large gun should be able to operate at lower current and therefore lower voltage. In addition, it is expected that a gun matched to the size of the spheromak will cause less perturbation to the equilibrium. It is proposed to use a smaller gun for spheromak formation and a large, efficient gun for sustainment. The theoretical basis for the experiment is developed, and the details of the experiment are described. A prediction of the equilibrium magnetic flux surfaces using the EFIT code is presented. 28 refs., 3 figs., 1 tab

  2. Electron guns for accelerators

    International Nuclear Information System (INIS)

    Rangarajan, L.M.; Mahadevan, S.; Ramamurthi, S.S.

    1995-01-01

    The high voltage, high current electron guns developed elsewhere for Linacs are based on cathode pulsing with direct emitting cathodes. Our grid pulsed triode gun employs indirect emitting cathode pellet under electron bombardment or a direct cathode emitter. Electron beam from the gun is injected to the accelerator guide at 40 kV and pulse duration is 2.8μsec. The gun is limited to axially symmetric geometry and electron optical design is optimized by computer programming. The gun with a water cooled Faraday cup is connected to a vacuum system comprising of a sputter ion pump and sorption pump. Working pressure is 1x10 -6 Pa. Gun is designed to be baked as an assembly at temperatures of 400 degC while vacuum processing. Materials are therefore restricted to refractory metals, SS, OFHC copper and all the electrodes are housed inside a ceramic tube. Lower Z graphite is used as a base material of Faraday cup. Grid is non-intercepting modulator anode, a new feature introduced, as compared to meshed grid system by others. CAT gun delivers 160 mA current pulses at 40 kV and its working characteristics such as perveance, emittance and beam radius compare well with SLAC and Hermosa guns. The above guns can be used for electron beam machines such as medical Linacs, industrial accelerators and EB welding equipment. (author). 2 refs., 2 figs

  3. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  4. Computational modeling of plasma-flow switched foil implosions

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1985-01-01

    A ''plasma-flow'', or ''commutator'', switch has been proposed as a means of achieving high dI/dt in a radially imploding metallic foil plasma. In this concept, an axially moving foil provides the initial coaxial gun discharge path for the prime power source and provides and ''integral'' inductive storage of magnetic energy. As the axially moving foil reaches the end of the coaxial gun, a radially imploding load foil is switched into the circuit. The authors have begun two-dimensional computer modeling of the two-foil implosion system. They use a magnetohydrodynamic (MHD) model which includes tabulated state and transport properties of the metallic foil material. Moving numerical grids are used to achieve adequate resolution of the moving foils. A variety of radiation models are used to compute the radiation generated when the imploding load foil converges on axis. These computations are attempting to examine the interaction of the switching foil with the load foil. In particular, they examine the relationship between foil placement and implosion quality

  5. Degradation of aqueous phenol solutions by coaxial DBD reactor

    Science.gov (United States)

    Dojcinovic, B. P.; Manojlovic, D.; Roglic, G. M.; Obradovic, B. M.; Kuraica, M. M.; Puric, J.

    2008-07-01

    Solutions of 2-chlorophenol, 4-chlorophenol and 2,6-dichlorophenol in bidistilled and water from the river Danube were treated in plasma reactor. In this reactor, based on coaxial dielectric barrier discharge at atmospheric pressure, plasma is formed over a thin layer of treated water. After one pass through the reactor, starting chlorophenols concentration of 20 mg/l was diminished up to 95 %. Kinetics of the chlorophenols degradation was monitored by High Pressure Liquid Chromatography method (HPLC).

  6. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    Science.gov (United States)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. A high current high frequency ions gun

    International Nuclear Information System (INIS)

    Coutant, J.; Prevot, F.; Vienet, R.

    1959-01-01

    A 10 mA protons gun has been developed for different purposes. The first part of the report studies the plasma production with a RF electromagnetic field. Then the ion extraction process is analysed with particular reference to space charge phenomena. The last part describes a three electrode electrostatic lens which focusses the beam. (author) [fr

  8. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  9. Coaxial test fixture

    Science.gov (United States)

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  10. Gun Safety (For Parents)

    Science.gov (United States)

    ... from the home of a relative or friend. Teens should never be able to get to a gun and bullets without an adult being there. People of any age who are depressed are at increased risk of suicide. If someone in the family has depression, or has had thoughts of suicide, all guns ...

  11. Guns at College.

    Science.gov (United States)

    Miller, Matthew; Hemenway, David; Wechsler, Henry

    1999-01-01

    Surveyed undergraduate students nationwide concerning firearm possession. About 3.5% possessed working firearms. Students with guns were more likely to be male, White, or Native American; binge drink; live off-campus; and live with a spouse or significant other. Students with guns were more likely to engage in activities that put themselves and…

  12. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  13. The PLX- α project: demonstrating the viability of spherically imploding plasma liners as an MIF driver

    Science.gov (United States)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team

    2015-11-01

    Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.

  14. Properties of the Dense Plasma Produced in Plasma Focus

    International Nuclear Information System (INIS)

    Peacock, N.J.; Wilcock, P.D.; Speer, R.J.; Morgan, P.D.

    1969-01-01

    The plasma produced by the focus or quasi-cylindrical magnetic compression which occurs at the open end of a metal-walled, coaxial plasma gun has been studied, using the electrical waveforms and the electromagnetic and reaction particle, emission. The electromagnetic radiation in the XUV region of the spectrum has previously been briefly reported, and the present paper describes further more detailed analyses of the line emission at wavelengths shorter than 10 Å when impurities are added to the gas filling. The emission is characteristic of a plasma with a temperature of a few keV and a density greater than 10 19 cm -3 , while the appearance of optical transitions in highly stripped ions, e. g. A XVIII, gives a measure of the thermalization in the plasma. The stored electrical energy has been doubled and the scaling of the neutron emission with the applied voltage and the initial particle density is presented. The duration of the neutron and X-ray emission is considerably longer than the observed instability growth time in the plasma filament. Calculations of the mode of heating and the confinement of the plasma are compared with experimental observations. (author)

  15. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Science.gov (United States)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  16. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  17. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  18. rf traveling-wave electron gun for photoinjectors

    Science.gov (United States)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  19. rf traveling-wave electron gun for photoinjectors

    Directory of Open Access Journals (Sweden)

    Mattia Schaer

    2016-07-01

    Full Text Available The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  20. Atmospheric pressure DBD gun and its application in ink printability

    International Nuclear Information System (INIS)

    Chen Qiang; Zhang Yuefei; Han Erli; Ge Yuanjing

    2005-01-01

    In this paper, a plasma source discharging at atmospheric pressure and its characterization diagnosed by a Langmuir probe and a digital camera are presented. As an application the dielectric barrier discharge (DBD) gun modifying an ultraviolet cured resin surface for ink printability is reported. The results from the digital camera indicate the uniformity and homogeneity of the plasma generated from the gun in the downstream but depending on the input power, diameter of electrodes, gas flow rates and the distance between the substrates and the nozzle. The contact angle measurement proves the efficiency of gun during the surface modification. The ink printability following DBD gun processing described here was significantly improved. The performed surface analysis using Fourier transform infrared indicates that the polarity of surface grafted in plasma is responsible for the film printability

  1. Start-up assist by magnetized plasma flow injection in TPE-RX reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Nagata, M. [Graduate School of Engineering, University of Hyogo, Himeji (Japan); Koguchi, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Hirano, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Sakakita, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Yambe, K. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kiyama, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)

    2006-11-15

    A reversed-field pinch (RFP) start-up assisted by a magnetized plasma flow injection was demonstrated for the first time on a TPE-RX machine. This sequence of experiments aimed to establish a new method of ionization, gas-fill and helicity injection in the start-up phase of an RFP. In this start-up method, magnetized and well-ionized plasma is formed by a magnetized coaxial plasma gun and injected into the torus chamber as an initial pre-ionized plasma for RFP formation. In the initial experiments, attenuated density pump-out and comparatively slow decay of the toroidal flux and plasma current were observed as evidence of its being an effective start-up method.

  2. Microminiature coaxial cable and methods manufacture

    Science.gov (United States)

    Bongianni, W.L.

    1986-04-08

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  3. Calculable resistors of coaxial design

    International Nuclear Information System (INIS)

    Kucera, J; Vollmer, E; Schurr, J; Bohacek, J

    2009-01-01

    1000 Ω and 1290.64 Ω coaxial resistors with calculable frequency dependence have been realized at PTB to be used in quantum Hall effect-based impedance measurements. In contradistinction to common designs of coaxial resistors, the design described in this paper makes it possible to remove the resistive element from the shield and to handle it without cutting the outer cylindrical shield of the resistor. Emphasis has been given to manufacturing technology and suppressing unwanted sources of frequency dependence. The adjustment accuracy is better than 10 µΩ Ω −1

  4. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  5. Observation of a relaxed plasma state in a quasi-infinite cylinder.

    Science.gov (United States)

    Gray, T; Brown, M R; Dandurand, D

    2013-02-22

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v ≥ 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of [Symbol: see text] × B = λB.

  6. Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder

    Science.gov (United States)

    Gray, T.; Brown, M. R.; Dandurand, D.

    2013-02-01

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v≥50km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of ∇×B=λB.

  7. Experimental studies of microwave interaction with a plasma-covered planar conducting surface

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; DeGrange, J.E.; Segalov, Z.

    1990-01-01

    The authors present experimental studies of the reflection and absorption of microwave radiation from a plasma-covered planar conducting surface. In the experiments, microwave radiation from both highpower, short pulse (10 GHz, 100 MW, 30 ns) and low power (10 GHz, 10 mW, CW) sources is radiated at a 30 cm diameter conducting plate. A time-varying plasma is created on the surface of the conductor by 19 coaxial plasma guns embedded in the surface of the plate and discharged using a fast-rise capacitor bank. The plasma density distribution on the conducting surface is a function of time and the charging voltage on the capacitor bank. Incident and reflected microwave radiation has been measured for a wide variety of experimental conditions

  8. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  9. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  10. Gun control saves lives.

    Science.gov (United States)

    Matzopoulos, Richard

    2016-05-19

    Reducing firearm mortality by means of stricter gun control is one of the most important short- to medium-term measures to address the burden of violence in South Africa, while longer-term interventions and policy measures take effect.

  11. Teen Suicide and Guns

    Science.gov (United States)

    ... Issues Listen Text Size Email Print Share Teen Suicide and Guns Page Content Article Body Protect Your ... of a passing problem, not the outcome! Teen Suicide—A Big Problem Suicide is one of the ...

  12. Gas gun dynamics

    International Nuclear Information System (INIS)

    Denny, Mark

    2013-01-01

    The mechanics and thermodynamics of one- and two-stage gas guns are developed. Very high projectile muzzle speed can be obtained by the two-stage version. The physics of simple gas guns, such as air rifles, is accessible to undergraduates and the same level of presentation is used here to understand more complex designs. Numerical solutions to the equations of motion are shown, along with insightful analytic approximations. (paper)

  13. Particle transport and gas feed during gun injection

    International Nuclear Information System (INIS)

    Fowler, T K.

    1999-01-01

    It is shown that ion and neutral transport during gun injection tends to equalize the density in the spheromak to that in the open-line current channel. Since a gun operating at or near the ion saturation current requires a minimum density, because of transport these gun requirements also determine a minimum density in the spheromak that increases as the field increases. Hence attaining high fields by gun injection sets lower limits on the density, which in turn limits the temperature of the plasma and increases its ohmic resistance. Estimates of these effects are given using 0-D models calibrated to CTX, as guidance to 2-D UEDGE calculations in progress. For gun power levels in SSPX and the Pulsed Spheromak reactor, we find that buildup persists to the highest field levels of interest

  14. Plasma density evolution in plasma opening switch obtained by a time-resolved sensitive He-Ne interferometer

    Science.gov (United States)

    Chen, Lin; Ren, Jing; Guo, Fan; Zhou, LiangJi; Li, Ye; He, An; Jiang, Wei

    2014-03-01

    To understand the formation process of vacuum gap in coaxial microsecond conduction time plasma opening switch (POS), we have made measurements of the line-integrated plasma density during switch operation using a time-resolved sensitive He-Ne interferometer. The conduction current and conduction time in experiments are about 120 kA and 1 μs, respectively. As a result, more than 85% of conduction current has been transferred to an inductive load with rise time of 130 ns. The radial dependence of the density is measured by changing the radial location of the line-of-sight for shots with the same nominal POS parameters. During the conduction phase, the line-integrated plasma density in POS increases at all radial locations over the gun-only case by further ionization of material injected from the guns. The current conduction is observed to cause a radial redistribution of the switch plasma. A vacuum gap forms rapidly in the plasma at 5.5 mm from the center conductor, which is consistent with the location where magnetic pressure is the largest, allowing current to be transferred from the POS to the load.

  15. Properties of coaxial magnetocumulative generators

    International Nuclear Information System (INIS)

    Kidder, R.E.

    1983-01-01

    The properties of a coaxial magnetocumulative generator (MCG) in which the current increases exponetially with time are derived and discussed. Such an exponential MCG possess highly desirable performance characteristics that are readily derived and expressed in terms of simple formulas. It is concluded that an exponential MCG may approach a capability of delivering 100 megajoules to a 1 nanohenry load in 1 microsecond

  16. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  17. Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets

    Science.gov (United States)

    Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.

    2018-03-01

    Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.

  18. Spectroscopic investigation of species separation in opening switch plasmas

    Science.gov (United States)

    Jackson, S. L.; Phipps, D. G.; Richardson, A. S.; Commisso, R. J.; Hinshelwood, D. D.; Murphy, D. P.; Schumer, J. W.; Weber, B. V.; Boyer, C. N.; Doron, R.; Biswas, S.; Maron, Y.

    2015-11-01

    Interactions between magnetic fields and current-carrying plasmas that lead to the separation of plasma species in multi-species plasmas are being studied in a plasma opening switch geometry. Several Marshall guns are used to inject single or multi-species plasmas between coaxial conductors connected to the output of the Naval Research Laboratory's Hawk pulsed-power generator. Following injection of the plasma, the generator is used at roughly half power to apply an electrical pulse with a peak current of 450 kA, a peak voltage of 400 kV, and a rise time of 1.2 μs. The resulting magnetic field interacts with the plasma through a combination of field penetration and magnetohydrodynamic (MHD) pushing that is not well understood but can lead to the separation of plasma species in multi-species plasmas. An ICCD-coupled spectrometer has been used in combination with magnetic probes, a ribbon-beam interferometer, and particle-in-cell (PIC) modeling to diagnose and understand conditions in the plasma from the time it is injected until the end of the conduction phase of the opening switch. This work supported by the Naval Research Laboratory Base Program and the Office of Naval Research.

  19. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  20. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  1. A compact and continuously driven supersonic plasma and neutral source

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y. [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2010-10-15

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  2. A compact and continuously driven supersonic plasma and neutral source.

    Science.gov (United States)

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  3. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  4. Electromagnetic Guns versus Conventional Guns - a performance comparison

    NARCIS (Netherlands)

    Reus, N.M. de; Weijden, J. van der

    1993-01-01

    Performance improvement is one of the key issues of Electromagnetic gun systems compared to conventional gun systems. Due to higher muzzle velocities, the gun's fire control computer will be able to predict the target's future position more accurately because prediction time will be smaller. In this

  5. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  6. PHERMEX electron gun development

    International Nuclear Information System (INIS)

    Builta, L.A.; Elliott, J.C.; Moir, D.C.; Starke, T.P.; Vecere, C.A.

    1983-01-01

    The PHERMEX facility is a 50-MHz standing-wave linear accelerator. Electrons are injected, accelerated, and transported to a tungsten target where bremsstrahlung x rays are generated for flash radiography of hydrodynamic systems. The purpose of this article is to describe the progress of PHERMEX electron gun development. The goal of this program is to generate and transport a 200-ns, 1-MV, 1-kA electron beam into the first PHERMEX accelerating cavity. The standard gun is operated at a pulse voltage of 550 kV, which is the limit determined by internal breakdown of the vacuum insulator. This insulator has been redesigned, and the gun has been pulsed at 750 kV without internal breakdown. At present, the current output is not limited by voltage but by a phenomenon called pulse shortening, which occurs at a pulse voltage of approximately 650 kV. The phenomenon has been investigated and the results are presented

  7. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  8. Coaxial fundus camera for opthalmology

    Science.gov (United States)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  9. Glue Guns: Aiming for Safety

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    While glue guns are very useful, there are safety issues. Regardless of the temperature setting, glue guns can burn skin. The teacher should demonstrate and supervise the use of glue guns and have a plan should a student get burned. There should be an initial first aid protocol in place, followed by a visit to the school nurse. An accident report…

  10. Low emittance thermionic electron guns

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1989-01-01

    The author discusses self-field effects and external field effects for electron guns. He also discusses designs of electron guns and their uses in electron cooling systems and as an injector for electrostatic free electron lasers. He closes by looking at electron guns for linear accelerators. 20 references, 3 figures

  11. A cold cathode of a gas-discharge electron-ion gun

    International Nuclear Information System (INIS)

    1974-01-01

    A cold cathode of a gas-discharge electron-ion gun is constructed in order to continuously replace the eroded material by feeding a wire or a set of coaxial cylinders in the spot where the ions hit the cathode. In this way, the form of the cathode and the electric-field configuration is preserved which guarantees the conservation of a sharp narrow electron beam profile

  12. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  13. Guns, Germs and Steel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 1. Guns, Germs and Steel - A Short History of Everybody for the Last 13,000 years. Suri Venkatachalam. Book Review Volume 6 Issue 1 January 2001 pp 84-88. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. 120 Hz Gun Review

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E.

    2005-01-31

    The review was held at SLAC on September 11 and 12, 2001. Presentations concerning the thermal analysis, mechanical design, integration with the laser and accelerator, general beam dynamics considerations, a load lock mechanism, and symmetric power feed options comprised the review. Slides from these presentations are available elsewhere. The review committee was charged with evaluating the 120 Hz gun design including proposed load lock and power feed options and recommending improvements. Broader evaluation of the injector as a whole (including focusing and diagnostic systems that do no impact the envelope of the gun itself) is expected to be covered in a future review and will not be commented on here. In general, the long operational experience with four generations of s-band RF guns at numerous labs worldwide has led to considerable experience in design, fabrication, and operation aspects, and provides an excellent base on which to design the higher duty factor LCLS injector. While open questions remain on obtaining the design performance from these injectors, the microwave design of the gun has reached a state of relative maturity.

  15. Gun Dealers, USA.

    Science.gov (United States)

    Duker, Laurie; And Others

    In the United States, more than 11,500 adolescents' and young adults' lives are taken each year by firearms. Although Federal law prohibits minors from purchasing handguns, they typically get them by asking someone of legal age (18 years or older) to purchase them from one of the 256,771 Federally licensed gun dealers. This pamphlet answers…

  16. Magnetron injection gun scaling

    International Nuclear Information System (INIS)

    Lawson, W.

    1988-01-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations

  17. TRAIL: a tokamak rail gun limiter

    International Nuclear Information System (INIS)

    Yu, W.S.; Powell, J.R.; Usher, J.L.

    1980-01-01

    An attractive new limiter concept is investigated. The TRAIL (Tokamak Rail Gun Limiter) system impacts a stream of moderate velocity pellets (100 to 200 m/sec through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled after cooling, to the injector of an E-M mass accelerator. Heat fluxes of approx. 30,000 W/cm 2 can be readily accommodated by the pellets, with very low recirculating power requirements (approx. 0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state of the art (several Km/sec). Accelerators injecting pellets at approx. 1 Km/sec can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs

  18. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  19. The HelCat basic plasma science device

    Science.gov (United States)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  20. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    Science.gov (United States)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  1. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  2. First Production of C60 Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER

    Science.gov (United States)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.

    2012-10-01

    Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (˜35 cm length, 96 kJ energy) using a solid state TiH2/C60 pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (>10^23 m-3), C60 plasma jet in ˜0.5 ms, with ˜1-2 ms overall response-delivery time. We present the TiH2/C60 cartridge injector output characterization (˜180 mg of sublimated C60 gas) and first production results of a high momentum C60 plasma jet (˜0.6 g.km/s).

  3. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  4. The HART I augmented electric gun facility

    International Nuclear Information System (INIS)

    Fikse, D.A.; Ciesar, J.A.; Wehrli, H.A.; Rimersma, H.; Docherty, E.F.; Pipich, C.W.

    1991-01-01

    This paper reports on an augmented electric gun system that has been commissioned. This system, called HART I (Hypervelocity Augmented Railgun Test), is built around a double augmented rail arrangement with a 1.27-cm square bore. It is powered by the SUVAC II 5.6-MJ distributed capacitor power supply. This arrangement allows operation in a simple, series augmented, or transaugmented gun system configuration. The objective of this facility is to perform materials research augmentation studies, and armature development in the 10-km/s regime. Armature masses of 2 to 4 g will be accelerated in a 4-m long barrel. Baseline bore materials will begin with conventional G9/GlidCop systems and then move into pyrolytic boron nitride/refractory materials. Hybrids, plasma, and ablation stabilized armature systems are planned. The gun system is instrumented with plasma and rail B probes for inbore velocity measurements. In addition, breech and muzzle voltages, currents, and external velocities are measured. The HART I system is currently performing hypervelocity experiments to verify the augmentation models

  5. Practical XHV electron gun

    International Nuclear Information System (INIS)

    Urata, Tomohiro; Ishikawa, Tsuyoshi; Cho, Boklae; Oshima, Chuhei

    2008-01-01

    We have developed practical XHV chambers of a electron gun, of which the operating pressures are 1x10 -9 Pa in a stainless-steel one and 4x10 -9 Pa in a permalloy one. By mounting a noble single-atom electron source with high brightness and high spatial coherence on the electron gun including electron optics, we demonstrated highly collimated electron-beam emission: ∼80% of the total emission current entered the electron optics. This ratio was two or three orders of magnitude higher than those of the conventional electron sources. In XHV, in addition, we confirmed stable electron emission up to 20 nA, which results in the specimen current high enough for scanning electron microscopes. (author)

  6. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  7. Downhole transmission system comprising a coaxial capacitor

    Science.gov (United States)

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy; Rawle, Michael [Springville, UT

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  8. Realistic simulations of coaxial atomisation

    Science.gov (United States)

    Zaleski, Stephane; Fuster, Daniel; Arrufat Jackson, Tomas; Ling, Yue; Cenni, Matteo; Scardovelli, Ruben; Tryggvason, Gretar

    2015-11-01

    We discuss advances in the methodology for Direct Numerical Simulations of coaxial atomization in typical experimental conditions. Such conditions are extremely demanding for the numerical methods. The key difficulty seems to be the combination of high density ratios, surface tension, and large Reynolds numbers. We explore how using a momentum-conserving Volume-Of-Fluid scheme allows to improve the stability and accuracy of the simulations. We show computational evidence that the use of momentum conserving methods allows to reduce the required number of grid points by an order of magnitude in the simple case of a falling rain drop. We then apply these ideas to coaxial atomization. We show that in moderate-size simulations in air-water conditions close to real experiments, instabilities are still present and then discuss ways to fix them. Among those, removing small VOF debris and improving the time-stepping scheme are two important directions.The accuracy of the simulations is then discussed in comparison with experimental results and in particular the angle of ejection of the structures. The code used for this research is free and distributed at http://parissimulator.sf.net.

  9. Mole gun injury.

    Science.gov (United States)

    Pistré, V; Rezzouk, J

    2013-09-01

    A mole gun is a weapon, which is used to trap and kill moles. This report provides an overview of the state of knowledge of mole gun injuries, comparable to blast injuries caused by fireworks, explosive or gunshot. Over a 2-year period, the authors reported their experience with ten hand injuries caused by mole gun. Radial side of the hand was often concerned, particularly the thumb. The authors explain their choices in the management of such lesions. Surgery was performed primarily and a large debridement currently seemed to offer the best outcome for the patient. Blast, crush, burns and lacerations may explain the higher rate of amputation to the digits. A long period of physiotherapy, specifically of the hand, was needed before the patient could return to work. This ballistic hand trauma encountered by surgeons requires knowledge and understanding of these injuries. It should be in accordance with firearms law because of severe injuries encountered and possible lethal wounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  11. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    International Nuclear Information System (INIS)

    Rawat, R S

    2015-01-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 10 10 J/m 3 . The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I 4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  12. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    International Nuclear Information System (INIS)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    2009-01-01

    Preliminary results of a 600 J (3.7 μF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltage across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0±0.5 μbar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.

  13. Study of the injection of plasma into a magnetic field of double curvature geometry; Etude de l'injection de plasma dans un champ magnetique a double courbure

    Energy Technology Data Exchange (ETDEWEB)

    Lasry, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-06-15

    An hydrogen plasma puff is injected along the lines of a magnetic field with a double curvature geometry. The plasma is produced by a coaxial gun with an annular preionization system. It is shown theoretically that the electric drift of the plasma can be cancelled if a depolarizing current flows along the field lines towards a region of good transverse conductivity. The experiment shows that in these conditions the curvature drift of the ions of the plasma may be used as a very efficient process to purify the fast component of the plasma puff. The depolarizing electron currents are measured and the mutual cancellation of the electric fields developing into the oppositely curved region is demonstrated to be possible. The current densities agree with the values deduced of the curvature drift of the ions. (author) [French] Un plasma d'hydrogene est injecte le long des lignes de force d'un champ magnetique a double courbure. Le plasma est produit par un canon coaxial a preionisation annulaire. Il est montre theoriquement que la derive electrique du plasma peut etre annulee si un courant de depolarisation circule le long des lignes de force vers une region de conductivite transversale elevee. L'experience montre que dans ces conditions, la derive de courbure des ions peut etre utilisee comme un moyen efficace de purification de la composante rapide du plasma. Les courants electroniques de depolarisation sont mesures et l'annulation mutuelle des champs electriques se developpant dans les regions de courbures opposees est demontree. Les densites de courant sont en accord avec les valeurs deduites de la derive de courbure des ions. (auteur)

  14. Middle Ground on Gun Control

    Science.gov (United States)

    2016-12-01

    34 Australian Institute of Criminology, July 7, 2015, http://www.aic.gov.au/ statistics /homicide/weapon.html. 0 100 200 300 400 500 600 700 Total Gun...firearms is not the business of a single Australian , so it is immeasurably easier for politicians to categorically ban types of guns because there is...not an Australian version of Smith and Wesson that is going to be put out of business . Additionally, because all of the guns in Australia are

  15. The ALS gun electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-01-01

    The ALS Gun Electronics system has been designed to accommodate the gun with a custom made socket and a high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  16. The ALS Gun Electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-05-01

    The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  17. Properties of spheromaks generated by a magnetized coaxial source

    International Nuclear Information System (INIS)

    Hoida, H.W.; Henins, I.; Jarboe, T.R.; Linford, R.K.; Lipson, J.; Marshall, J.; Platts, D.A.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In gun-generated spheromaks impurity contamination plays an important role in determining the energy loss. Metallic impurities can be reduced by an appropriate change of source parameters. The reduction of the level of metal impurities results in a spectrum showing a preponderance of oxygen and carbon lines and OIV radiation is observed to increase indicating a warmer plasma. However, the plasma lifetime is not changed. Discharge cleaning techniques appear to be necessary. It is still possible that electron heat conduction during the reconnection processs will be found to be important once the impurities are reduced

  18. Properties of spheromaks generated by a magnetized coaxial source

    Energy Technology Data Exchange (ETDEWEB)

    Hoida, H.W.; Henins, I.; Jarboe, T.R.; Linford, R.K.; Lipson, J.; Marshall, J.; Platts, D.A.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In gun-generated spheromaks impurity contamination plays an important role in determining the energy loss. Metallic impurities can be reduced by an appropriate change of source parameters. The reduction of the level of metal impurities results in a spectrum showing a preponderance of oxygen and carbon lines and OIV radiation is observed to increase indicating a warmer plasma. However, the plasma lifetime is not changed. Discharge cleaning techniques appear to be necessary. It is still possible that electron heat conduction during the reconnection processs will be found to be important once the impurities are reduced.

  19. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  20. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

    Science.gov (United States)

    Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG

    2018-03-01

    A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.