WorldWideScience

Sample records for coated s-fap crystal

  1. The mercury laser system - An average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

    Energy Technology Data Exchange (ETDEWEB)

    Bibeau, C.; Bayramian, A.; Armstrong, P.; Ault, E.; Beach, R.; Benapfl, M.; Campbell, R.; Dawson, J.; Ebbers, C.; Freitas, B.; Kent, R.; Liao, Z.; Ladran, T.; Menapace, J.; Molander, B.; Moses, E.; Oberhelman, S.; Payne, S.; Peterson, N.; Schaffers, K.; Stolz, C.; Sutton, S.; Tassano, J.; Telford, S.; Utterback, E. [Lawrence Livermore National Lab., Livermore, CA (United States); Randles, M. [Northrop Grumman Space Technologies, Charlotte, NC (United States); Chain, B.; Fei, Y. [Crystal Photonics, Sanford, Fl (United States)

    2006-06-15

    We report on the operation of the Mercury laser with fourteen 4*6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2*10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 {mu}m. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB crystal was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz. (authors)

  2. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Simpson, Peter J.; Taylor, Jonathan; Benjamin, Stefi V.; Tagliaferri, Camille; Cota, Ernesto [Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Chen, Yi-Ywan M. [Department of Microbiology and Immunology, and Research Center for Pathogenic Bacteria, Chang Gung University, Tao-Yuan, Taiwan (China); Wu, Hui [Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL 35294 (United States); Matthews, Stephen, E-mail: s.j.matthews@imperial.ac.uk [Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Crystal structure of Streptococcus parasanguinis Fap1-NR{sub {alpha}} at pH 5.0. Black-Right-Pointing-Pointer pH-dependent conformational changes mediated through electrostatic potential of Fap1-NR{sub {alpha}}. Black-Right-Pointing-Pointer Fap1 facilitates pH-dependent biofilms. Black-Right-Pointing-Pointer We model inter-Fap1 biofilm interactions. -- Abstract: The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR) is composed of two domains (Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}}) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}} domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR{sub {alpha}} at pH 5.0 at 3.0 A resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates 'opening' and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.

  3. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation

    International Nuclear Information System (INIS)

    Garnett, James A.; Simpson, Peter J.; Taylor, Jonathan; Benjamin, Stefi V.; Tagliaferri, Camille; Cota, Ernesto; Chen, Yi-Ywan M.; Wu, Hui; Matthews, Stephen

    2012-01-01

    Highlights: ► Crystal structure of Streptococcus parasanguinis Fap1-NR α at pH 5.0. ► pH-dependent conformational changes mediated through electrostatic potential of Fap1-NR α . ► Fap1 facilitates pH-dependent biofilms. ► We model inter-Fap1 biofilm interactions. -- Abstract: The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR) is composed of two domains (Fap1-NR α and Fap1-NR β ) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR α and Fap1-NR β domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR α at pH 5.0 at 3.0 A resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates ‘opening’ and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.

  4. Change of offices for the FAP Department

    CERN Multimedia

    FAP Department

    2016-01-01

    The FAP Department would like to inform personnel that, due to office renovation work, a number of FAP services currently located on the third floor of building 4 and on the first floor of building 33 will move to temporary offices in building 653 as from late June.   The following services will be relocated to: Accounting services (J. Robinson): FAP-ACC-AP – Accounts Payable, to bldg 653-R-008 – C. Marme FAP-ACC-GA – General Accounting, to bldg 653-1-007 – C. Poncet FAP-ACC-PA – Salary Office, to bldg 653-R-011 – S. Baudat FAP-ACC-PA – Claims, to bldg 653-R-007 – S. Baudat   And the section FAP-TPR-MI - Monitoring and reporting (L. Lockwood) will be located in the office 653-1-016.   The removals will take place from Thursday 30 June until Tuesday 5 July 2016 inclusive and during this period, telephone and e-mail contact may be disrupted. Temporary office number...

  5. Decomposition of dual hydroxyapatite/fluoroapatite coatings on metal substrates

    International Nuclear Information System (INIS)

    Wei, M.; Evans, J.H.; Wentrup-Byrne, E.

    2000-01-01

    In order to prevent the formation of tricalcium phosphate (TCP), a relatively weak and rapidly biodegradable biomaterial, during sintering of hydroxyapatite (Hap) onto metal substrates, a novel two layer coating was applied. This was achieved by pre-coating the substrate with either Hap or fluorapatite (Fap) which preserved the purity of the Hap top coating. However, Fap is more stable thermally than Hap. The composition of Hap and Fap were determined by x-ray diffraction and infrared spectroscopy. A scanning electron microscope was also used to characterise the surface morphologiy of the coatings. By using Fap the formation of TCP was totally prevented through out the coatings at a sintering temperature of 1050 deg C at which a relatively dense Hap outer coating was produced. Copyright (2000) The Australian Ceramic Society

  6. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  7. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    International Nuclear Information System (INIS)

    Ghorbel, Halima Feki; Guidara, Awatef; Danlos, Yoan; Bouaziz, Jamel; Coddet, Christian

    2017-01-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al 2 O 3 /Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al 2 O 3 and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates

  8. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbel, Halima Feki, E-mail: ghorbel.halima@yahoo.fr [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Guidara, Awatef [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Danlos, Yoan [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Bouaziz, Jamel [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Coddet, Christian [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France)

    2017-02-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al{sub 2}O{sub 3}/Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al{sub 2}O{sub 3} and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates.

  9. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  10. Transthyretin familial amyloid polyneuropathy (TTR-FAP): Parameters for early diagnosis.

    Science.gov (United States)

    Escolano-Lozano, Fabiola; Barreiros, Ana Paula; Birklein, Frank; Geber, Christian

    2018-01-01

    Familial transthyretin amyloidosis is a life-threatening disease presenting with sensorimotor and autonomic polyneuropathy. Delayed diagnosis has a detrimental effect on treatment and prognosis. To facilitate diagnosis, we analyzed data patterns of patients with transthyretin familial amyloid polyneuropathy (TTR-FAP) and compared them to polyneuropathies of different etiology for clinical and electrophysiological discriminators. Twenty-four patients with TTR-FAP and 48 patients with diabetic polyneuropathy (dPNP) were investigated (neurological impairment score NIS; neurological disability score NDS) in a cross-sectional design. Both groups were matched for gender and presence of pain. Quantitative sensory testing (QST), sympathetic skin response (SSR), heart rate variability (HRV), and nerve conduction studies (NCV) were performed. Both groups were compared using univariate analysis. In a stepwise discriminant analysis, discriminators between both neuropathies were identified. These discriminators were validated comparing TTR-FAP patients with a cohort of patients with chemotherapy-induced polyneuropathy (CIN) and chronic inflammatory demyelinating neuropathy (CIDP). TTR-FAP patients scored higher in NDS and NIS and had impaired cold detection (CDT, p  = .024), cold-warm discrimination (TSL, p  = .019) and mechanical hyperalgesia (MPT, p  = .029) at the hands, SSR (upper limb, p  = .022) HRV and ulnar and sural NCS (all p  < .05) were more affected in TTR-FAP. Ulnar nerve sensory NCV, CDT, and the MPT but not the other parameters discriminated TTR-FAP from dPNP (82% of cases), from CIN (86.7%) and from CIDP (68%; only ulnar sNCV). Low ulnar SNCV, impaired cold perception, and mechanical hyperalgesia at the hands seem to characterize TTR-FAP and might help to differentiate from other polyneuropathies.

  11. Continuous API-crystal coating via coacervation in a tubular reactor.

    Science.gov (United States)

    Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G

    2014-11-20

    We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Method for fabricating apatite crystals and ceramics

    Science.gov (United States)

    Soules, Thomas F.; Schaffers, Kathleen I.; Tassano, Jr., John B.; Hollingsworth, Joel P.

    2013-09-10

    The present invention provides a method of crystallizing Yb:C-FAP [Yb.sup.3+:Ca.sub.5(PO.sub.4).sub.3F], by dissolving the Yb:C-FAP in an acidic solution, following by neutralizing the solution. The present invention also provides a method of forming crystalline Yb:C-FAP by dissolving the component ingredients in an acidic solution, followed by forming a supersaturated solution.

  13. Novel APC mutations in Czech and Slovak FAP families: clinical and genetic aspects

    Directory of Open Access Journals (Sweden)

    Vesela Kamila

    2007-04-01

    Full Text Available Abstract Background Germline mutations in the adenomatous polyposis gene (APC result in familial adenomatous polyposis (FAP. FAP is an autosomal dominantly inherited disorder predisposing to colorectal cancer. Typical FAP is characterized by hundreds to thousands of colorectal adenomatous polyps and by several extracolonic manifestations. An attenuated form of polyposis (AFAP is characterized by less than 100 adenomas and later onset of the disease. Methods Here, we analyzed the APC gene for germline mutations in 59 Czech and 15 Slovak FAP patients. In addition, 50 apparently APC mutation negative Czech probands and 3 probands of Slovak origin were screened for large deletions encompassing the APC gene. Mutation screening was performed using denaturing gradient gel electrophoresis and/or protein truncation test. DNA fragments showing an aberrant electrophoretic banding pattern were sequenced. Screening for large deletions was performed by multiplex ligation dependent probe amplification. The extent of deletions was analyzed using following microsatellite markers: D5S299, D5S82, D5S134 and D5S346. Results In the set of Czech and Slovak patients, we identified 46 germline mutations among 74 unrelated probands. Total mutation capture is 62,2% including large deletions. Thirty seven mutations were detected in 49 patients presenting a classical FAP phenotype (75,5% and 9 mutations in 25 patients with attenuated FAP (36%. We report 20 novel germline APC mutations and 3 large deletions (6% encompassing the whole-gene deletions and/or exon 14 deletion. In the patients with novel mutations, correlations of the mutation localization are discussed in context of the classical and/or attenuated phenotype of the disease. Conclusion The results of the molecular genetic testing are used both in the establishment of the predictive diagnosis and in the clinical management of patients. In some cases this study has also shown the difficulty to classify clinically

  14. Fibro/Adipogenic Progenitors (FAPs): Isolation by FACS and Culture.

    Science.gov (United States)

    Low, Marcela; Eisner, Christine; Rossi, Fabio

    2017-01-01

    Fibro/adipogenic progenitors (FAPs ) are tissue-resident mesenchymal stromal cells (MSCs). Current literature supports a role for these cells in the homeostasis and repair of multiple tissues suggesting that FAPs may have extensive therapeutic potential in the treatment of numerous diseases. In this context, it is crucial to establish efficient and reproducible procedures to purify FAP populations from various tissues. Here, we describe a protocol for the isolation and cell culture of FAPs from murine skeletal muscle using fluorescence -activated cell sorting (FACS), which is particularly useful for experiments where high cell purity is an essential requirement. Identification, isolation, and cell culture of FAPs represent powerful tools that will help us to understand the role of these cells in different conditions and facilitate the development of safe and effective new treatments for diseases.

  15. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice

    DEFF Research Database (Denmark)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua

    2016-01-01

    , intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent...... within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180....... Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP...

  16. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    Science.gov (United States)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  17. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  18. Tri-component phononic crystals for underwater anechoic coatings

    International Nuclear Information System (INIS)

    Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2007-01-01

    Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band

  19. Optical and environmentally protective coatings for potassium dihydrogen phosphate (KDP) harmonic converter crystals

    International Nuclear Information System (INIS)

    Thomas, I.M.

    1991-01-01

    Potassium dihydrogen phosphate (KDP) crystals have been used as harmonic converters on the Nova laser at LLNL for over six years. All crystals were coated with a single layer, quarterwave AR coating of porous silica with a refractive index of 1.22. This was prepared by a sol-gel process and was applied from a colloidal suspension by spin coating at room temperature. A few crystals were also coated with a methyl silicone coating prior to the application of the AR coating for environmental protection. The initial optical performance of all crystals was very good but there has been some deterioration over the years because of environmental and laser damage degradation. The deterioration in the silicone samples was, however, much less than the others. We are now in the process of replacing all ten KDP arrays with new crystals and will apply the silicone undercoat to all samples. Recently we have been evaluating a new perfluorinated organic polymer coating which has a refractive index of 1.29. This material is soluble in fluorinated solvents and can be applied by dip coating from solution at room temperature. We hope that this can provide environmental protection when applied to KDP and also act as an AR coating at the same time. The optical performance is not as good as our porous silica because of the higher index; about 0.3% reflection per surface is obtained. 4 refs., 10 figs., 1 tab

  20. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition

    Directory of Open Access Journals (Sweden)

    Takumi Chikada

    2016-12-01

    Full Text Available Yttrium oxide coatings were fabricated on reduced activation ferritic/martensitic steels by metal organic decomposition with a dip-coating technique, and their deuterium permeation behaviors were investigated. The microstructure of the coatings varied with heat-treatment temperature: amorphous at 670ºC (amorphous coating and crystallized at 700ºC (crystallized coating. Deuterium permeation flux of the amorphous coating was lower than the uncoated steel by a factor of 5 at 500ºC, while that of the crystallized coating was lower by a factor of around 100 at 400‒550ºC. The permeation fluxes of both coatings were drastically decreased during the measurements at higher temperatures by a factor of up to 790 for the amorphous coating and 1000 for the crystallized one, indicating a microstructure modification occurred by an effect of test temperature with hydrogen flux. Temperature dependence of deuterium diffusivity in the coatings suggests that the decrease of the permeation flux has been derived from a decrease of the diffusivity. Characteristic permeation behaviors were observed with different annealing conditions; however, they can be interpreted using the permeation mechanism clarified in the previous erbium oxide coating studies.

  1. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  2. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    International Nuclear Information System (INIS)

    Gu Yu; Li Qiang

    2015-01-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. (paper)

  3. Quantitation of fibroblast activation protein (FAP-specific protease activity in mouse, baboon and human fluids and organs

    Directory of Open Access Journals (Sweden)

    Fiona M. Keane

    2014-01-01

    Full Text Available The protease fibroblast activation protein (FAP is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  4. Surface dynamics and mechanics in liquid crystal polymer coatings

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.; Chien, L.-C.; Coles, H.J.; Kikuchi, H.; Smalyukh, I.I.

    2015-01-01

    Based on liquid crystal networks we developed 'smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that

  5. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  6. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  7. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2013-07-01

    Full Text Available Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  8. Guidelines for the clinical management of familial adenomatous polyposis (FAP)

    DEFF Research Database (Denmark)

    Vasen, H.F.; Moslein, G.; Alonso, A.

    2008-01-01

    BACKGROUND: Familial adenomatous polyposis (FAP) is a well-described inherited syndrome, which is responsible for cancer (CRC) cases. The syndrome is characterised by the development of hundreds to thousands of adenomas in the colorectum. Almost all patients will develop CRC...... if they are not identified and treated at an early stage. The syndrome is inherited as an autosomal dominant trait and caused by mutations in the APC gene. Recently, a second gene has been identified that also gives rise to colonic adenomatous polyposis, although the phenotype is less severe than typical FAP. The gene...... is the MUTYH gene and the inheritance is autosomal recessive. In April 2006 and February 2007, a workshop was organised in Mallorca by European experts on hereditary gastrointestinal cancer aiming to establish guidelines for the clinical management of FAP and to initiate collaborative studies. Thirty...

  9. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D

    2011-01-01

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1 -integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  10. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    Science.gov (United States)

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  11. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  12. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi, E-mail: kumasaka@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  13. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  14. Surface dynamics and mechanics in liquid crystal polymer coatings

    Science.gov (United States)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  15. Study on the correlation of MLCK and FAP expression with uterine fibroid cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Wei Lin1

    2017-06-01

    Full Text Available Objective: To study the correlation of myosin light chain kinase (MLCK and fibroblast activation protein (FAP expression with uterine fibroid cell proliferation and invasion. Methods: Uterine fibroids samples and normal uterine muscle samples next to fibroids that were surgically removed in Wuhan Red Cross Hospital between May 2014 and January 2017 were chosen, fluorescence quantitative PCR kits were used to deterct MLCK and FAP mRNA expression, and enzyme-linked immunosorbent assay kits were used to determine proliferation and invasion gene protein expression. Results: MLCK and FAP mRNA expression in uterine fibroids samples were significantly higher than those in normal uterine muscle samples, and Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression were significantly higher than those in normal uterine muscle samples; Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression in uterine fibroids samples with high MLCK and FAP expression were significantly higher than those in uterine fibroids samples with low MLCK and FAP expression. Conclusion: Highly expressed MLCK and FAP in uterine fibroids can promote the proliferation and invasion of uterine fibroids.

  16. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  17. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  18. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  19. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    Science.gov (United States)

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  20. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  1. A PMMA coated PMN–PT single crystal resonator for sensing chemical agents

    International Nuclear Information System (INIS)

    Frank, Michael; Kassegne, Sam; Moon, Kee S

    2010-01-01

    A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator

  2. Drug Combo Decreases Colorectal Polyps in People with FAP

    Science.gov (United States)

    In people with familial adenomatous polyposis, or FAP, a combination treatment of erlotinib (Tarceva) and sulindac (Aflodac) decreased the number of precancerous colorectal polyps, according to recently published clinical trial results.

  3. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  4. Electrochemical and surface characterisation of carbon-film-coated piezoelectric quartz crystals

    International Nuclear Information System (INIS)

    Pinto, Edilson M.; Gouveia-Caridade, Carla; Soares, David M.; Brett, Christopher M.A.

    2009-01-01

    The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN) 6 3-/4- and [Ru(NH 3 ) 6 ] 3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.

  5. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    Energy Technology Data Exchange (ETDEWEB)

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  6. Functional regulation of Pb-Ti/MoS_2 composite coatings for environmentally adaptive solid lubrication

    International Nuclear Information System (INIS)

    Ren, Siming; Li, Hao; Cui, Mingjun; Wang, Liping; Pu, Jibin

    2017-01-01

    Highlights: • Co-doped Pb-Ti/MoS_2 composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS_2 composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS_2 composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS_2 are easily affected by water to form MoO_3 that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS_2 in high humidity condition, the co-doped Pb-Ti/MoS_2 composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS_2-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS_2 coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS_2 composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS_2 composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS_2 coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS_2 coatings as the environmentally adaptive lubricants.

  7. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  8. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo; Liu, Yucheng; Ren, Xiaodong; Yang, Zhou; Li, Ruipeng; Su, Hang; Yang, Xiaoming; Xu, Junzhuo; Xu, Hua; Hu, Jian-Yong; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2017-01-01

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  9. Fibroblast activation protein (FAP as a novel metabolic target

    Directory of Open Access Journals (Sweden)

    Miguel Angel Sánchez-Garrido

    2016-10-01

    Conclusions: We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  10. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  11. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    Science.gov (United States)

    Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.

    2016-05-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile

  12. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations.

    Science.gov (United States)

    Cardinal, Andrea J; Whetten, Rebecca; Wang, Sanbao; Auclair, Jérôme; Hyten, David; Cregan, Perry; Bachlava, Eleni; Gillman, Jason; Ramirez, Martha; Dewey, Ralph; Upchurch, Greg; Miranda, Lilian; Burton, Joseph W

    2014-01-01

    fap 1 mutation is caused by a G174A change in GmKASIIIA that disrupts a donor splice site recognition and creates a GATCTG motif that enhanced its expression. Soybean oil with reduced palmitic acid content is desirable to reduce the health risks associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mutation, determine its molecular basis, estimate the amount of phenotypic variation in fatty acid composition explained by this locus, determine if there are epistatic interactions between the fap1 and fap nc loci and, determine if the fap1 mutation has pleiotropic effects on seed yield, oil and protein content in three soybean populations. This study detected two major QTL for 16:0 content located in chromosome 5 (GmFATB1a, fap nc) and chromosome 9 near BARCSOYSSR_09_1707 that explained, with their interaction, 66-94 % of the variation in 16:0 content in the three populations. Sequencing results of a putative candidate gene, GmKASIIIA, revealed a single unique polymorphism in the germplasm line C1726, which was predicted to disrupt the donor splice site recognition between exon one and intron one and produce a truncated KASIIIA protein. This G to A change also created the GATCTG motif that enhanced gene expression of the mutated GmKASIIIA gene. Lines homozygous for the GmKASIIIA mutation (fap1) had a significant reduction in 16:0, 18:0, and oil content; and an increase in unsaturated fatty acids content. There were significant epistatic interactions between GmKASIIIA (fap1) and fap nc for 16:0 and oil contents, and seed yield in two populations. In conclusion, the fap1 phenotype is caused by a single unique SNP in the GmKASIIIA gene.

  13. Microstructure and wear characterization of self-lubricating Al2O3 - MoS2 composite ceramic coatings

    International Nuclear Information System (INIS)

    Koshkarian, K.A.; Kriven, W.M.

    1989-01-01

    The authors report the results of composite ceramic coatings of alumina Al 2 O 3 containing some molybdenum disulfide MoS 2 electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of Al 2 O 3 and electrophoresis of MoS 2 . The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS, TEM, SAD and relative wear resistance measurements. The coatings consisted mostly of Al 2 O 3 with some and present as well. The coatings were porous and microcracked. SEM showed them to consist of circular splats which had rapidly crystallized from the molten state in areas of dielectric breakdown in the coating. In the TEM the microstructure was seen to contain sets of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS 2 was incorporated in coatings fabricated from 5g/1 solutions. SEM/EDS as well as TEM/SAD/EDS identified 1-3 μ particles of MoS 2 incorporated into the 5g/1 solution derived coatings. These coatings exhibited 50% lower wear rate than pure alumina coatings deposited under the same condition

  14. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application. The solution thinning and thin film formation were monitored in situ by optical reflectometry and grazing incidence wide angle X-ray scattering, respectively, both of which were performed during spin-coating. We find that OSC thin film formation is akin to a quenching process, marked by a deposition rate of ∼100 nm s-1, nearly three orders of magnitude faster than drop-casting. This is then followed by a more gradual crystallization and healing step which depends upon the spinning speed. We associate this to further crystallization and healing of defects by residency of the residual solvent trapped inside the kinetically trapped film. The residency time of the trapped solvent is extended to several seconds by slowing the rotational speed of the substrate and is credited with improving the carrier mobility by nearly two orders of magnitude. Based on this insight, we deliberately slow down the solvent evaporation further and increase the carrier mobility by an additional order of magnitude. These results demonstrate how spin-coating conditions can be used as a handle over the crystallinity of organic semiconductors otherwise quenched during initial formation only to recrystallize and heal during extended interaction with the trapped solvent. This journal is © the Partner Organisations 2014.

  15. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  16. Functional regulation of Pb-Ti/MoS{sub 2} composite coatings for environmentally adaptive solid lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Hao [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Pu, Jibin, E-mail: pujibin@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Highlights: • Co-doped Pb-Ti/MoS{sub 2} composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS{sub 2} composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS{sub 2} composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS{sub 2} are easily affected by water to form MoO{sub 3} that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS{sub 2} in high humidity condition, the co-doped Pb-Ti/MoS{sub 2} composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS{sub 2}-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS{sub 2} coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS{sub 2} composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS{sub 2} composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS{sub 2} coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS{sub 2} coatings as the environmentally adaptive

  17. Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation

    International Nuclear Information System (INIS)

    Órfão, Eliana Fernandes; Dohnal, Vladimír; Blahut, Aleš

    2013-01-01

    Highlights: • Limiting activity coefficients and gas–liquid partition coefficients for 30 VOCs were determined by GLC. • Solution thermodynamic quantities were derived and analyzed. • [MO-EMPYR][FAP] and [HO-EMIM][FAP] were identified as ILs of very low and very high cohesivity, respectively. • [HO-EMIM][FAP] is an IL of extreme H-bond acidity exhibiting superior performance for petrochemical separations. • Both studied [FAP] ILs were indicated to separate some azeotropic mixtures of alcohols with aprotic oxygenates. -- Abstract: Interactions of volatile organic compounds with two ionic liquids (ILs) containing tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation, 1-(2-hydroxyethyl)-3-methylimidazolium ([HO-EMIM]) and 1-(2-methoxyethyl)-1-methylpyrrolidinium ([MO-EMPYR]), were explored through systematic GLC retention measurements. Infinite dilution activity coefficients γ 1 ∞ and gas–liquid partition coefficients K L of 30 selected solutes in [HO-EMIM][FAP] and [MO-EMPYR][FAP] were determined at five temperatures in the range from (318.15 to 353.15) K. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the γ 1 ∞ values. The Linear Free Energy Relationship (LFER) solvation model was used to correlate the K L values. The LFER correlation parameters and excess thermodynamic functions were analyzed to identify molecular interactions operating between the ILs and the individual solutes. By comparing the behaviors of the studied ILs and of their closely similar unfunctionalized analogs, net effects imparted by cation functionalization were also disclosed. The cohesivity of the two ILs was shown to differ dramatically: while [MO-EMPYR][FAP] ranks among ILs to the least cohesive, [HO-EMIM][FAP] belongs to the most cohesive ones. Both [HO-EMIM][FAP] and [MO-EMPYR][FAP] are capable of interacting with solutes specifically through dipolarity/polarizibility and

  18. In-Line Measurement of Water Content in Ethanol Using a PVA-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2014-01-01

    Full Text Available An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared spectroscopy.

  19. First Steps in FAP: Experiences of Beginning Functional Analytic Psychotherapy Therapist with an Obsessive-Compulsive Personality Disorder Client

    Science.gov (United States)

    Manduchi, Katia; Schoendorff, Benjamin

    2012-01-01

    Practicing Functional Analytic Psychotherapy (FAP) for the first time can seem daunting to therapists. Establishing a deep and intense therapeutic relationship, identifying FAP's therapeutic targets of clinically relevant behaviors, and using contingent reinforcement to help clients emit more functional behavior in the therapeutic relationship all…

  20. Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients

    International Nuclear Information System (INIS)

    Mihalatos, Markos; Fountzilas, George; Agnantis, Niki J; Nasioulas, Georgios; Apessos, Angela; Dauwerse, Hans; Velissariou, Voula; Psychias, Aristidis; Koliopanos, Alexander; Petropoulos, Konstantinos; Triantafillidis, John K; Danielidis, Ioannis

    2005-01-01

    Familial Adenomatous Polyposis (FAP) is caused by germline mutations in the APC (Adenomatous Polyposis Coli) gene. The vast majority of APC mutations are point mutations or small insertions / deletions which lead to truncated protein products. Splicing mutations or gross genomic rearrangements are less common inactivating events of the APC gene. In the current study genomic DNA or RNA from ten unrelated FAP suspected patients was examined for germline mutations in the APC gene. Family history and phenotype were used in order to select the patients. Methods used for testing were dHPLC (denaturing High Performance Liquid Chromatography), sequencing, MLPA (Multiplex Ligation – dependent Probe Amplification), Karyotyping, FISH (Fluorescence In Situ Hybridization) and RT-PCR (Reverse Transcription – Polymerase Chain Reaction). A 250 Kbp deletion in the APC gene starting from intron 5 and extending beyond exon 15 was identified in one patient. A substitution of the +5 conserved nucleotide at the splice donor site of intron 9 in the APC gene was shown to produce frameshift and inefficient exon skipping in a second patient. Four frameshift mutations (1577insT, 1973delAG, 3180delAAAA, 3212delA) and a nonsense mutation (C1690T) were identified in the rest of the patients. Screening for APC mutations in FAP patients should include testing for splicing defects and gross genomic alterations

  1. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. An improved pyrolysis route to synthesize carbon-coated CdS quantum dots with fluorescence enhancement effect

    International Nuclear Information System (INIS)

    Zhang Kejie; Liu Xiaoheng

    2011-01-01

    Well-dispersed carbon-coated CdS (CdS-C) quantum dots were successfully prepared via the improved pyrolysis of bis(1-dodecanethiol)-cadmium(II) under nitrogen atmosphere. This simple method effectively solved the sintered problem resulted from conventional pyrolysis process. The experimental results indicated that most of the as-prepared nanoparticles displayed well-defined core-shell structures. The CdS cores with diameter of ∼5 nm exhibited hexagonal crystal phase, the carbon shells with thickness of ∼2 nm acted as a good dispersion medium to prevent CdS particles from aggregation, and together with CdS effectively formed a monodisperse CdS-Carbon nanocomposite. This composite presented a remarkable fluorescence enhancement effect, which indicated that the prepared nanoparticles might be a promising photoresponsive material or biosensor. This improved pyrolysis method might also offer a facile way to prepare other carbon-coated semiconductor nanostructures. - Graphical abstract: We demonstrated a facile approach to synthesize well-dispersed carbon-coated CdS quantum dots. The as-prepared nanoparticles presented remarkable fluorescence enhancement effect. Highlights: → Carbon-coated CdS quantum dots were synthesized by an one-step pyrolysis method. → Well-dispersed CdS-carbon nanoparticles were obtained by an acid treatment process. → As-prepared nanoparticles presented remarkable fluorescence enhancement effect.

  3. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    Science.gov (United States)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  4. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Proportion quantitative analysis and etching of {110} planes on tungsten single crystal coating surface

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rende, E-mail: dallasbiam@163.com [Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Department 5, P.O. Box 81-5, Beijing 100095 (China); Tan, Chengwen; Yu, Xiaodong [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-05-05

    Tungsten single crystal and poly crystal were treated by electrolytic etching in a 3% by weight solution of NaOH in distilled water. The method for determining the proportion of {110} planes and characteristic morphology on the coating surface after electrolytic etching were investigated using EBSD and auto-focusing microscope. Then the optimization of process parameters for electrolytic etching is achieved. In order to compare the effect of process parameters, three process parameters were selected for the tungsten single crystal electrolytic etching. Through analyzing the change of {110} planes' proportion, we found that when the coatings are etched with 1.4 amp/cm{sup 2} and 3 min, {110} planes can be exposed in the greatest degree that can reach 61.4% on tubular surfaces. The proposed approach greatly improves the proportion of {110} planes relative to the original surface. - Highlights: • Tungsten single/poly crystals treated by electrolytic etching in solution of NaOH. • The {110} planes have the lower surface free energy than {112}. • Some {112} planes etched firstly, the {110} planes exposed at last during etching. • {110} planes exposed to the greatest extent with 1.4 amp/cm{sup 2} and 3 min.

  6. COL11A1 in FAP polyps and in sporadic colorectal tumors

    International Nuclear Information System (INIS)

    Fischer, Heléne; Salahshor, Sima; Stenling, Roger; Björk, Jan; Lindmark, Gudrun; Iselius, Lennart; Rubio, Carlos; Lindblom, Annika

    2001-01-01

    We previously reported that the α-1 chain of type 11 collagen (COL11A1), not normally expressed in the colon, was up-regulated in stromal fibroblasts in most sporadic colorectal carcinomas. Patients with germline mutations in the APC gene show, besides colonic polyposis, symptoms of stromal fibroblast involvement, which could be related to COL11A1 expression. Most colorectal carcinomas are suggested to be a result of an activated Wnt- pathway, most often involving an inactivation of the APC gene or activation of β-catenin. We used normal and polyp tissue samples from one FAP patient and a set of 37 sporadic colorectal carcinomas to find out if the up-regulation of COL11A1 was associated with an active APC/β-catenin pathway. In this study we found a statistically significant difference in COL11A1 expression between normal tissue and adenomas from one FAP patient, and all adenomas gave evidence for an active APC/β-catenin pathway. An active Wnt pathway has been suggested to involve stromal expression of WISP-1. We found a strong correlation between WISP-1 and COL11A1 expression in sporadic carcinomas. Our results suggest that expression of COL11A1 in colorectal tumors could be associated with the APC/β-catenin pathway in FAP and sporadic colorectal cancer

  7. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  8. Effects of B{sub 2}O{sub 3} content and sintering temperature on crystallization and microstructure of CBS glass–ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials and Engneering, Beihang University, Beijing 100191 (China); Liu, Jianggao; Feng, Mengjie; Yang, Xinwang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: (a) TEM photogram of CG3 sintered at 800 °C, crystals are obvious; (b) the XRD patterns of CG3 glass samples sintered at various temperatures; (c) SEM photogram of CG3 sintered at 800 °C; (d) Kissinger, Augis–Bennett and Ozawa kinetics plots of CG3 glass samples. - Highlights: • Combining sol–gel method with direct sintering method to reduce the temperature of coatings formation. • Characterizing CaO–SiO{sub 2}–B{sub 2}O{sub 3} glass–ceramic coatings on porous substrates. • Surface crystallization of CBS glass–ceramic coatings: nucleation and kinetics. • Activation energies for crystal growth in CBS glass–ceramics with different contents of B{sub 2}O{sub 3}. - Abstract: Borosilicate glass–ceramics precursors with varying compositional ratios in the CaO–SiO{sub 2}–B{sub 2}O{sub 3} (CBS) system were synthesized by sol–gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass–ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass–ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (E{sub c}) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass–ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The E{sub c} values of CBS glasses and glass–ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B{sub 2}O{sub 3} content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  9. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  10. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  11. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  12. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.

    Science.gov (United States)

    Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang

    2018-03-07

    Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.

  13. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP).

    Science.gov (United States)

    Planté-Bordeneuve, V; Ferreira, A; Lalu, T; Zaros, C; Lacroix, C; Adams, D; Said, G

    2007-08-14

    Transthyretin familial amyloid polyneuropathies (TTR-FAPs) are autosomal dominant neuropathies of fatal outcome within 10 years after inaugural symptoms. Late diagnosis in patients who present as nonfamilial cases delays adequate management and genetic counseling. Clinical data of the 90 patients who presented as nonfamilial cases of the 300 patients of our cohort of patients with TTR-FAP were reviewed. They were 21 women and 69 men with a mean age at onset of 61 (extremes: 38 to 78 years) and 17 different mutations of the TTR gene including Val30Met (38 cases), Ser77Tyr (16 cases), Ile107Val (15 cases), and Ser77Phe (5 cases). Initial manifestations included mainly limb paresthesias (49 patients) or pain (17 patients). Walking difficulty and weakness (five patients) and cardiac or gastrointestinal manifestations (five patients), were less common at onset. Mean interval to diagnosis was 4 years (range 1 to 10 years); 18 cases were mistaken for chronic inflammatory demyelinating polyneuropathy, which was the most common diagnostic error. At referral a length-dependent sensory loss affected the lower limbs in 2, all four limbs in 20, and four limbs and anterior trunk in 77 patients. All sensations were affected in 60 patients (67%), while small fiber dysfunction predominated in the others. Severe dysautonomia affected 80 patients (90%), with postural hypotension in 52, gastrointestinal dysfunction in 50, impotence in 58 of 69 men, and sphincter disturbance in 31. Twelve patients required a cardiac pacemaker. Nerve biopsy was diagnostic in 54 of 65 patients and salivary gland biopsy in 20 of 30. Decreased nerve conduction velocity, increased CSF protein, negative biopsy findings, and false immunolabeling of amyloid deposits were the main causes of diagnostic errors. We conclude that DNA testing, which is the most reliable test for TTR-FAP, should be performed in patients with a progressive length-dependent small fiber polyneuropathy of unknown origin, especially when

  14. NCO-sP(EO-stat-PO Coatings on Gold Sensors—a QCM Study of Hemocompatibility

    Directory of Open Access Journals (Sweden)

    Frank K. Gehring

    2011-05-01

    Full Text Available The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide—polypropylene oxide co-polymers NCO-sP(EO-stat-PO when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM sensors were coated with ultrathin NCO-sP(EO-stat-PO films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP, followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP. Thrombin antithrombin-III complex (TAT, β-thromboglobulin (β-TG and platelet factor 4 (PF4 were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules.

  15. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  16. Surveillance of FAP: a prospective blinded comparison of capsule endoscopy and other GI imaging to detect small bowel polyps

    Directory of Open Access Journals (Sweden)

    Tescher Paul

    2010-04-01

    Full Text Available Abstract Background Familial adenomatous polyposis (FAP is a hereditary disorder characterized by polyposis along the gastrointestinal tract. Information on adenoma status below the duodenum has previously been restricted due to its inaccessibility in vivo. Capsule Endoscopy (CE may provide a useful adjunct in screening for polyposis in the small bowel in FAP patients. This study aims to evaluate the effectiveness of CE in the assessment of patients with FAP, compared to other imaging modalities for the detection of small bowel polyps. Method 20 consecutive patients with previously diagnosed FAP and duodenal polyps, presenting for routine surveillance of polyps at The Royal Melbourne Hospital were recruited. Each fasted patient initially underwent a magnetic resonance image (MRI of the abdomen, and a barium small bowel follow-through study. Capsule Endoscopy was performed four weeks later on the fasted patient. An upper gastrointestinal side-viewing endoscopy was done one (1 to two (2 weeks after this. Endoscopists and investigators were blinded to results of other investigations and patient history. Results Within the stomach, upper gastrointestinal endoscopy found more polyps than other forms of imaging. SBFT and MRI generally performed poorly, identifying fewer polyps than both upper gastrointestinal and capsule endoscopy. CE was the only form of imaging that identified polyps in all segments of the small bowel as well as the only form of imaging able to provide multiple findings outside the stomach/duodenum. Conclusion CE provides important information on possible polyp development distal to the duodenum, which may lead to surgical intervention. The place of CE as an adjunct in surveillance of FAP for a specific subset needs consideration and confirmation in replication studies. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12608000616370

  17. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    López, M.M. Machado, E-mail: machadolopez23@gmail.com [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico); Fauré, J. [Laboratoire Ingénierie et Sciences des Matériaux (LISM EA 4695) - Université de Reims Champagne-Ardenne, 21 rue Clément Ader, Reims, BP 138 Cedex 02, 51685 France (France); Cabrera, M.I. Espitia [Facultad de ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “D”, C.P. 58000, Morelia, Michoacán, México (Mexico); García, M.E. Contreras, E-mail: eucontre@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico)

    2016-04-15

    Graphical abstract: - Highlights: • Bioglass 45S5 nanostructured films were obtained by colloidal electrophoretic deposition (CEDP) method, proposed in this work, on Ti6Al4 V substrates. • Ti6Al4 V corrosion resistance in Hank's solution was increased with bioglass 45S5 coating. • Crystalline phases of 45S5 bioglass xerogels were obtained and characterized by XRD. • The model of chemical anchoring between Ti6Al4 V and bioglass 45S5 is proposed. - Abstract: In the present work, 45S5 bioglass coatings were deposited on the Ti6Al4 V alloy substrate through the cathodic colloidal electrophoretic deposition process (CEDP) proposed in this work. The coatings were thermally treated at temperatures of 500, 600, 700, and 800 °C for 2 h, and their structure was characterized by FESEM and DRX. Nanostructure and phase evolution of the coatings and xerogels was followed as a function of temperature. The corrosion resistance of the Ti6Al4 V alloy and the 45S5/Ti6Al4 V coating was studied by means of Tafel extrapolation in Hank's solution, at 37 °C, simulating the conditions inside the mouth. The 45S5 bioglass coatings displayed an amorphous nanostructure at lower temperatures, and partial crystallization at higher temperatures. An increase in the corrosion resistance was observed in the 45S5/Ti6l4 V coating treated at 700 °C because it reduced the i{sub corr}, and there was a change in the E{sub corr} towards more noble values. A model of the chemical anchorage of the 45S5 bioglass coating on Ti6Al4 V was proposed.

  18. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  20. On the compatibility of single crystal superalloys with a thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Reed, R.C. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)], E-mail: r.reed@birmingham.ac.uk

    2008-02-15

    The compatibility of three Co-containing prototype single crystal nickel-based superalloys with a thermal barrier coating (TBC) system is examined. These contain 2.1, 8.4 and 12.6 at.% Co; the concentrations of Al, Cr, Ta, W, Re, Hf are identical and chosen to be representative of advanced grades of these alloys. The TBC consists of an yttria-stabilized zirconia (YSZ) layer formed by electron beam physical vapour deposition (EB-PVD) and a bond coat made by electrodeposited platinum with a subsequent interdiffusion heat treatment - a so-called 'platinum-diffused' bond coat. The resistance to spallation of the TBC system is degraded as the Co content of the substrate increases. Wavelength-dispersive X-ray analysis and secondary ion mass spectrometry indicate that quantities of Co are present in the thermally grown oxide (TGO) by the time that failure occurs, this effect being most pronounced when the Co content of the substrate is high; the TGO is then more wavy and convoluted. The bond coat consists exclusively of the {gamma} and {gamma}' phases, with the balance shifting towards {gamma} with increasing thermal exposure; the loss of Al from the bond coat due to TGO formation means that the TGO is eventually in contact with the {gamma} phase solely, which is enriched in Co.

  1. FAP Group Supervision: Reporting Educational Experiences at the University of Sao Paulo, Brazil

    Science.gov (United States)

    Wielenska, Regina Christina; Oshiro, Claudia Kami Bastos

    2012-01-01

    The present article describes and analyzes educational experiences related to the teaching of FAP for psychology graduate students and psychiatry residents at the University of Sao Paulo. The first experience involved psychology graduate students and includes an example of the shaping process occurring within the supervisor-supervisee…

  2. K-ras2 Activation and Genome Instability Increase Proliferation and Size of FAP Adenomas

    Directory of Open Access Journals (Sweden)

    Anna Rapallo

    1999-01-01

    Full Text Available The possible role of K‐ras2 mutations and aneuploidy toward increase of proliferation and adenoma size in Familial Adenomatous Polyposis (FAP adenomas is not known. The present study addresses these issues by investigating 147 colorectal adenomas obtained from four FAP patients. The majority of adenomas had size lower than or equal to 10 mm (86%, low grade dysplasia (63%, and were preferentially located in the right colon (60%. Normal mucosa samples were obtained from 19 healthy donors. Three synchronous adenocarcinomas were also investigated. K‐ras2 mutation spectrum was analysed by PCR and Sequence Specific Oligonucleotide (SSO hybridization, while flow cytometry (FCM was used for evaluating degree of DNA ploidy and S‐phase fraction. Overall, incidences of K‐ras2 mutations, DNA aneuploidy and high S‐phase values (>7.2% were 6.6%, 5.4% and 10.5%, respectively. In particular, among the adenomas with size lower than 5 mm, K‐ras2 mutation and DNA aneuploidy frequencies were only slightly above 1%. Statistically significant correlations were found between K‐ras2 and size, DNA ploidy and size and K‐ras2 and S‐phase (p. In particular, among the wild type K‐ras2 adenomas, high S‐phase values were detected in 8% of the cases versus 57% among the K‐ras2 mutated adenomas (p=0.0005. The present series of FAP adenomas indicates that K‐ras2 activation and gross genomic changes play a role toward a proliferative gain and tumour growth in size.

  3. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  4. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  5. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  6. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  7. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  9. Synthesis of porous CuInS2 crystals

    International Nuclear Information System (INIS)

    Akaki, Yoji; Matsubara, Takanori; Ohno, Yuki; Momiki, Takanori; Ide, Kazuki

    2009-01-01

    CuInS 2 crystals were grown from starting materials CuCl 2 .2H 2 O, InCl 3 .4H 2 O and thiourea with ethylene glycol solution, that were placed into a flask, heated, and refluxed for 1 hour. The diffraction peaks only from CuInS 2 phase appear for all the samples. The morphology of CuInS 2 crystal was porous, and the porous crystals exist in two kinds. One kind was flower-like crystals which complexly lack the flakes, another one was sphere-like crystals existed with a number of the poles. The sizes of sphere-like porous crystals were approximately 1.0 μm. The specific surface area of the samples grown at 180 C and 600 rpm estimated approximately 30 m 2 /g. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2015-10-01

    Full Text Available A quartz crystal microbalance (QCM was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate (PMMA binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread.

  11. Corrosion of lanthanum magnesium hexaaluminate as plasma-sprayed coating and as bulk material when exposed to molten V2O5-containing salt

    International Nuclear Information System (INIS)

    Chen, Xiaolong; Cao, Xueqiang; Zou, Binglin; Gong, Jun; Sun, Chao

    2015-01-01

    Highlights: • Corrosion behavior of LaMgAl 11 O 19 bulk and plasma sprayed coating has been compared. • Degradation mechanism is investigated based on LaMgAl 11 O 19 ’s crystal chemistry. • LaMgAl 11 O 19 coating displays inferior corrosion resistance to well crystallized bulk. - Abstract: Corrosion of LaMgAl 11 O 19 (LaMA) bulk and plasma sprayed coating was studied in molten V 2 O 5 -containing salt at 710–1050 °C in air. Results indicate that the well crystallized LaMA bulk exhibited prior corrosion resistance to the plasma sprayed LaMA coating with amorphous phase and reduced chemical bond strength in its crystal structure. La–O chemical bonds with the lowest bond energies were the easiest bonds in the LaMA crystal to be broken by molten V 2 O 5 -containing salt attack to form LaVO 4 at each temperature level for both LaMA bulk and coating. Corrosion products of the LaMA coating were much different at temperature below 900 °C

  12. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  13. In situ coating multiwalled carbon nanotubes with CdS nanoparticles

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian

    2005-01-01

    CdS nanoparticles were homogeneously coated on multiwalled carbon nanotubes by an in situ method through introducing thiol groups onto the tube wall using a novel method. A cationic polyelectrolyte containing reactive imine groups, polyethyleneimine (PEI), was firstly adsorbed on the surface of nanotubes. 3-Mercaptopropionic acid (MPA) was then anchored by an amidation reaction between its carboxyl group and the imine group of the polyelectrolyte under the activation of carbodiimide reagents. These -SH terminated MWCNTs were coated with CdS nanoparticles by an in situ method. The phase composition, microstructure, and the UV-vis properties of the CdS coated MWCNTs were characterized. The addition of the carbodiimide reagents played an important role in linking the MPA with PEI covalently and subsequently coating the MWCNTs with CdS homogeneously. A blue shift in the absorption edge was observed for the MWCNTs-CdS hybrid material due to the quantum size effect

  14. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  15. Overcoming artefact: anticipation in 284 Portuguese kindreds with familial amyloid polyneuropathy (FAP) ATTRV30M.

    Science.gov (United States)

    Lemos, Carolina; Coelho, Teresa; Alves-Ferreira, Miguel; Martins-da-Silva, Ana; Sequeiros, Jorge; Mendonça, Denisa; Sousa, Alda

    2014-03-01

    Early-onset (≤40 years) and later-onset (≥50 years) cases of familial amyloid polyneuropathy (FAP) ATTRV30M are not different entities, often coexisting in the same family, and showing anticipation (earlier age-at-onset (AO) in younger generations, usually associated with more severe phenotype). Historically, anticipation has been ascribed to ascertainment biases. Our aim was to study anticipation in a very large number of FAP kindreds, removing possible biases, and gain further insight into parent-of-origin effects. We analysed 926 parent-offspring pairs (from the Unidade Clínica de Paramiloidose roster, collected in 70 years), both clinically observed and had well-established AO, correcting for intrafamilial correlations. Women had a significantly higher AO, either for daughters (mean: 33.70, SD: 6.84) vs sons (29.43, 6.08); or mothers (39.57, 11.75) vs. fathers (35.62, 11.62). Also, 291 pairs showed marked anticipation (≥10 years); the transmitting parent was the mother in 203 pairs. Mother-son pairs showed larger anticipation (10.43, 9.34), while father-daughter pairs showed only a residual anticipation (1.23, 9.77). Gender of offspring and parents was highly significant (with no interaction). To remove possible biases, we repeated analyses: (1) excluding the proband; (2) removing pairs with simultaneous onset; and (3) excluding offspring born after 1960. Anticipation was found in all subsamples, with the same trend for a parent-of-origin effect. Noteworthy, parents with AO ≤40 years never had offspring with AO ≥50. These findings confirm anticipation as a true biological phenomenon, also in FAP ATTRV30M. Acknowledgment of anticipation may have important clinical implications in genetic counselling of offspring and in follow-up of mutation carriers.

  16. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo; Munir, Rahim; Fan, Yuanyuan; Niu, Tianqi; Liu, Yucheng; Zhong, Yufei; Yang, Zhou; Tian, Yuansi; Liu, Bo; Sun, Jie; Smilgies, Detlef-M.; Thoroddsen, Sigurdur T; Amassian, Aram; Zhao, Kui; Liu, Shengzhong (Frank)

    2018-01-01

    with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short

  17. Diode-pumped Yb:Sr5(PO4)3F laser performance

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Smith, L.K.

    1995-01-01

    The performance of the first diode-pumped Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from spectroscopic techniques. Up to 1.7 J/cm 3 of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 μs pulses

  18. Reuse of London’s crystal palaces

    Directory of Open Access Journals (Sweden)

    Lara Slivnik

    2003-01-01

    Full Text Available The architecture and use of both London crystal palaces, namely Crystal Palace at Sydenham and Alexandra Palace on Muswell Hill are described. They share some common characteristics. Built for two World Fairs, their iron structure was later disassembled, remodelled and consequently rebuilt slightly modified at another location. Both were located outside the city centre, at a central viewpoint within a vast park. Both hosted cultural, educational, and sports events and in the second half of the nineteenth century became the two most visited London leisure time attractions. Advantages and drawbacks of the crystal palace as a building type are reviewed and the role of crystal palaces in Ebenezer Howard’s Garden City is stressed.

  19. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors

    International Nuclear Information System (INIS)

    Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2014-01-01

    Hexamethyldisiloxane (HMDSO) thin films coated quartz crystal microbalance (QCM) electrodes have been characterized for the detection of volatile organic compounds (VOCs). The sensitive coatings were plasma polymerized in pure vapor of HMDSO and HMDSO/O 2 mixture. The sensor sensitivity was evaluated by monitoring the frequency shift (∆f) of the coated QCM electrode exposed to different concentrations of VOC vapors, such as ethanol, methanol, benzene and chloroform. The isotherm response characteristics showed good reproducibility and reversibility. For all types of analyte, ∆f were found to be linearly correlated with the concentration of VOC vapor. It was shown that it is possible to tune the chemical affinity of the sensor by changing the oxygen ratio in the deposition gas mixture. Contact angle measurements (CA), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study surface wettability, chemical composition and surface morphology of the coated QCM electrodes. ATR-FTIR analysis showed the presence of methyl groups around 840 cm −1 due to Si-(CH 3 ) 3 rocking vibration making the elaborated sensor surface hydrophobic. When the coating is performed in HMDSO/O 2 mixture, AFM and SEM images showed an increase in the effective specific surface area of the sensor due to the increase in surface roughness. Surface morphology combined with chemical composition significantly affects the sensitivity of the QCM-based sensor. - Highlights: • Hexamethyldisiloxane layers were evaluated for volatile organic compounds detection. • The kinetic response of the sensor showed good reproducibility and reversibility. • Hydrophobic coating and high specific surface area increase the sensor sensitivity. • Sensor affinity can be controlled by controlling oxygen proportion in the mixture

  20. Structure of MeCrAlY + AlSi coatings deposited by Arc-PVD method on CMSX4 single crystal alloy

    International Nuclear Information System (INIS)

    Swadzba, L.; Hetmanczyk, M.; Mendala, B.; Saunders, S.R.J.

    2002-01-01

    Investigations of depositing high temperature resistant coatings on the Ni base superalloys by Arc-PVD method using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C in vacuum, NiAl diffusion coating containing 21% at. Al and 50 μm thick were obtained. In the next stage coatings with more complex chemical composition - MeCrAlY were formed. The MeCrAlY coatings were made from two targets. Good correlation between the chemical composition of the targets and a uniform distribution of elements in the coatings was shown. Then the surface was also covered with aluminium by the Arc-PVD method . In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation of NiAl intermetallics of high Co, Cr, Y content was initiated. The final heat treatment of coatings was conducted in vacuum at 1323 K. Strong segregation of yttrium into the oxide scale in the specimens heated in the air was shown. It was possible to form NiAl and intermetallics phase coatings modified by Co, Cr and Y by the Arc-PVD method. The coatings were formed on a single crystal CMSX-4. The structure, morphology and phase composition of coatings was carried out. (author)

  1. Optical properties of GaS:Ho3+ and GaS:Tm3+ single crystals

    International Nuclear Information System (INIS)

    Jin, Moon-Seog; Kim, Chang-Dae; Kim, Wha-Tek

    2004-01-01

    GaS:Ho 3+ and GaS:Tm 3+ single crystals were grown by using the chemical transport reaction method. We measured the optical absorption, the infra-red absorption, and the photoluminescence spectra of the single crystals. The direct and the indirect energy band gaps of the single crystals at 13 K were identified. Infra-red absorption peaks at 6 K appeared in the single crystals. Broad emission bands at 6 K were observed at 464 nm and 580 nm for GaS:Ho 3+ and 462 nm and 581 nm for GaS:Tm 3+ . These broad emission bands were identified as originating from donor-acceptor pair recombinations. Sharp emission peak groups were observed near 435 nm, 495 nm, and 660 nm for GaS:Ho 3+ and near 672 nm for GaS:Tm 3+ . These sharp emission peak groups were identified as being due to the electron transitions between the energy levels of Ho 3+ and Tm 3+ . Especially, white photoluminescence was obtained in the GaS:Ho 3+ single crystal.

  2. Crystal manyfold universes in /AdS space

    Science.gov (United States)

    Kaloper, N.

    2000-02-01

    We derive crystal braneworld solutions, comprising of intersecting families of parallel /n+2-branes in a /4+n-dimensional /AdS space. Each family consists of alternating positive and negative tension branes. In the simplest case of exactly orthogonal families, there arise different crystals with unbroken /4D Poincaré invariance on the intersections, where our world can reside. A crystal can be finite along some direction, either because that direction is compact, or because it ends on a segment of /AdS bulk, or infinite, where the branes continue forever. If the crystal is interlaced by connected /3-branes directed both along the intersections and orthogonal to them, it can be viewed as an example of a Manyfold universe proposed recently by Arkani-Hamed, Dimopoulos, Dvali and the author. There are new ways for generating hierarchies, since the bulk volume of the crystal and the lattice spacing affect the /4D Planck mass. The low energy physics is sensitive to the boundary conditions in the bulk, and has to satisfy the same constraints discussed in the Manyfold universe. Phenomenological considerations favor either finite crystals, or crystals which are infinite but have broken translational invariance in the bulk. The most distinctive signature of the bulk structure is that the bulk gravitons are Bloch waves, with a band spectrum, which we explicitly construct in the case of a /5-dimensional theory.

  3. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    Science.gov (United States)

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An investigation into biological recognition coatings for piezoelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Sharron

    2002-07-01

    The concept of harvesting chemicals from nature and employing them with piezoelectric crystals for biosensor development is investigated. Literature is reviewed for information theory relating to molecular structure, biosensors, immobilisation techniques, piezoelectric transducers and biosensor applications of quartz crystals. Three types of molecules were investigated for their biosensing potential, saccharides (pectic acid and alginic acid), an enzyme (galactose oxidase) and an antibody (specific for Botrytis cinerea). Immobilisation procedures using {gamma}-aminopropyltrimethoxy silane, polyethyleneimine and glutaraldehyde cross-linking are developed for pectic acid, alginic acid, galactose oxidase and the Botrytis antibody. These materials are immobilised onto the gold electrode area of an AT-cut quartz crystal microbalance. Operating conditions, either dip and dry batch monitoring or dynamic real-time monitoring using a flow cell are outlined. Ageing of the piezoelectric crystal sensor through erosion of coatings or during physical cleaning of crystals, prior to recoating, is featured and is particularly important to future cost effective commercial piezoelectric crystal sensor systems. Scanning tunnel microscopy is selected and an example from literature is used to evidence possible mechanisms of primary coat bonding to the gold electrodes. The associated cleaning problems and explanation of memory effects are then postulated. Calibrating data with sensitivities and limits of detection are presented for Cu{sup 2+} (pectic acid coating, Cu{sup 2+} range of 0.002mM (0.128ppm) to 0.5mM (32ppm); galactose oxidase coating, Cu{sup 2+} range of 0.002mM (0.128ppm) to 0.5mM (32ppm)); and for Pb{sup 2+} (alginic acid coating, Pb{sup 2+} range of 0.002mM (0.414ppm) to 0.1mM (20.7ppm)). Interference effects of Pb, Co, Ni, Zn, Ca and Mg on Cu{sup 2+} detection and measurement are presented. Similarly interference effects of Cu, Co, Ni, Zn and Ca on Pb{sup 2+} detection

  5. Synthesis of porous CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Akaki, Yoji; Matsubara, Takanori; Ohno, Yuki; Momiki, Takanori; Ide, Kazuki [Department of Electrical and Computer Engineering, Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo, Miyazaki (Japan)

    2009-05-15

    CuInS{sub 2} crystals were grown from starting materials CuCl{sub 2}.2H{sub 2}O, InCl{sub 3}.4H{sub 2}O and thiourea with ethylene glycol solution, that were placed into a flask, heated, and refluxed for 1 hour. The diffraction peaks only from CuInS{sub 2} phase appear for all the samples. The morphology of CuInS{sub 2} crystal was porous, and the porous crystals exist in two kinds. One kind was flower-like crystals which complexly lack the flakes, another one was sphere-like crystals existed with a number of the poles. The sizes of sphere-like porous crystals were approximately 1.0 {mu}m. The specific surface area of the samples grown at 180 C and 600 rpm estimated approximately 30 m{sup 2}/g. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Indentation creep behavior of cold sprayed aluminum amorphous/nano-crystalline coatings

    Energy Technology Data Exchange (ETDEWEB)

    Babu, P. Suresh [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, Andhra Pradesh (India); Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Jha, R.; Guzman, M. [Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, Andhra Pradesh (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-03-21

    In this study, we report room temperature creep properties of cold sprayed aluminum amorphous/nanocrystalline coating using nanoindentation technique. Creep experiments were also performed on heat treated coatings to study the structural stability and its influence on the creep behavior. The peak load and holding time were varied from 1000 to 4000 µN and 0 to 240 s respectively. Stress exponent value (n) vary from 5.6 to 2.3 in as-sprayed (AS) coatings and 7.2–4.8 in heat treated (HT) coatings at peak load of 1000–4000 µN at 240 s hold time. Higher stress exponent value indicates heat treated coatings have more resistance to creep deformation than as-sprayed coatings. Relaxed, partially crystallized structure with less porosity, and stronger inter-splat boundaries restrict the deformation in heat treated coatings as compared to greater free volume generation in amorphous as-sprayed coatings. The computed activation volume of heat treated coatings is twice of as-sprayed coatings indicating greater number of atom participation in shear band formation in heat treated coatings. The proposed mechanism was found to be consistent with the stress exponent values.

  7. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  8. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  9. Enhanced photocatalytic performance of mesoporous TiO{sub 2} coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Lin, Xiao; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Chen, Feitai

    2016-03-15

    Highlights: • Highly uniform mesoporous TiO{sub 2} nanopartices were coated SBA-15. • MT showed smaller crystallite size, higher hydroxyl content and surface area. • MT/SBA-15 show enhanced photocatalytic activity and high reused activity. • The optimum MT loading rate and calcination temperature were obtained to be 15% and 400 °C, respectively. • Photocatalytic behaviors are discussed in terms of the Langmuir–Hinshelwood model. - Abstract: Mesoporous TiO2 coated SBA-15 (MT@S) nanocomposites were fabricated through supercritical CO{sub 2} deposition aided by liquid-crystal template. The as-prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and so on. The results reveal that MT uniformly deposited onto silica with titania incorporated in SBA-15 channels, showed smaller crystallite size, higher hydroxyl content and surface area than nonporous TiO{sub 2} coated SBA-15 (NT@S) obtained by a similar route without template. With TiO{sub 2} loading ratio of 15 wt% and calcination temperature of 400 °C, 15%MT@S-400 showed the enhanced degradation efficiency for azo dyes (methylene blue, methyl orange, and rhodamine B) and phenol in comparsion with 15%NT@S-400, due to those improved textural and physicochemical properties. Meanwhile, the reused MT@S also showed high photoactivity. Additionally, the effects of MT content and calcination temperature have been examined as operational parameters. Photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir–Hinshelwood model.

  10. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  11. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo

    2018-05-07

    Summary Here, we have identified that the key issue for rational transitioning from spin-coating to blade-coating processes of perovskite films arises from whether intermediate phases participate in the phase transition. In situ characterizations were carried out to provide a comprehensive picture of structural evolution and crystal growth mechanisms. These findings present opportunities for designing an effective process for blade-coating perovskite film: a large-grained dense perovskite film with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short circuit and open circuit, and photovoltaic properties with efficiencies of 18.74% (0.09 cm2) and 17.06% (1 cm2) in planar solar cells. The significant advances in understanding how the phase transition links spin-coating and blade-coating processes should provide a path toward high-performance printed perovskite devices.

  12. Measurements of wall-shear-stress distribution on an NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Fujisawa, N; Oguma, Y; Nakano, T

    2009-01-01

    Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV

  13. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  14. Chemical forms of 35S in KCl crystals doped with elementary 35S. Pt. 1

    International Nuclear Information System (INIS)

    Maddock, A.G.; Todorovsky, D.S.

    1983-01-01

    KCl crystals have been doped with 35 S at low chemical concentrations. Upon solution of the doped crystals in cyanide solution and analysis by the method of Kasrai and Maddock, the 35 S appears in the same chemical forms as are found for the 35 S produced in similar crystals by the (n, p) reaction. Reactions are suggested whereby these products may be produced. (orig.)

  15. Crystallization of mouse S-adenosyl-l-homocysteine hydrolase

    International Nuclear Information System (INIS)

    Ishihara, Masaaki; Kusakabe, Yoshio; Ohsumichi, Tsuyoshi; Tanaka, Nobutada; Nakanishi, Masayuki; Kitade, Yukio; Nakamura, Kazuo T.

    2010-01-01

    Mouse S-adenosyl-l-homocysteine hydrolase has been crystallized in the presence of the reaction product adenosine. Diffraction data to 1.55 Å resolution were collected using synchrotron radiation. S-Adenosyl-l-homocysteine hydrolase (SAHH; EC 3.3.1.1) catalyzes the reversible hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homocysteine. For crystallographic investigations, mouse SAHH (MmSAHH) was overexpressed in bacterial cells and crystallized using the hanging-drop vapour-diffusion method in the presence of the reaction product adenosine. X-ray diffraction data to 1.55 Å resolution were collected from an orthorhombic crystal form belonging to space group I222 with unit-cell parameters a = 100.64, b = 104.44, c = 177.31 Å. Structural analysis by molecular replacement is in progress

  16. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  17. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    Science.gov (United States)

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  19. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  20. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Nayereh, E-mail: nayereh.soltani@gmail.com [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rezaee, Kadijeh [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2014-01-30

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  1. Dielectric and baric characteristics of TlS single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S.N., E-mail: solmust@gmail.com [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan); Asadov, M.M. [Institute of Chemical Problems, ANAS, G. Javid prosp. 29, Az 1143 Baku (Azerbaijan); Ismailov, A.A. [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan)

    2014-11-15

    The investigation of the frequency dependences of the dielectric coefficients and ac-conductivity of the TlS single crystals made it possible to elucidate the nature of dielectric loss and the charge transfer mechanism. Moreover, we evaluated the density and energy spread of localized states near the Fermi level, the average hopping time and the average hopping length. It was shown that the dc-conductivity of the TlS single crystals can be controlled by varying the hydrostatic pressure. This has opened up possibilities for using TlS single crystals as active elements of pressure detectors.

  2. Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades

    Institute of Scientific and Technical Information of China (English)

    Jing-Yong Sun; Yan-Ling Pei; Shu-Suo Li; Hu Zhang; Sheng-Kai Gong

    2017-01-01

    Active control of turbine blade tip clearance for aircraft engine continues to be a concern in engine operation,because turbine blades are subjected to wear and therefore cause an increasing tip clearance between the rotating blades and the shroud and also reduce the engine efficiency.In this work,a Ni-rich Ni3Al coating with γ'/γtwo-phase microstructure was deposited by electron beam physical vapor deposition (EB-PVD),which worked as repairing the worn blade tips of single crystal blades.Nb molten pool was used to increase the molten pool temperature and thus to enhance the deposition rate.The microstructures and mechanical properties can be modified by the deposition temperatures and the following heat treatments.All coatings consist of γ'and γ phases.At deposition temperature of 600 ℃,a dense microstructure can be achieved to produce a coating with grain size of ~ 1 μm and microhardness of ~HV 477.After being heated for 4 h at a temperature of 1,100 ℃,the coatings have a more uniform microstructure,and microhardness maintains at a high level of ~ HV 292.Effect of Hf and Zr on EB-PVD Ni3Al repair coating will be further investigated.

  3. Tribological characteristics of electroless Ni–P–MoS2 composite coatings at elevated temperatures

    International Nuclear Information System (INIS)

    Li Zhen; Wang Jingbo; Lu Jinjun; Meng Junhu

    2013-01-01

    Highlights: ► Uniform Ni–P–MoS 2 composite coatings are deposited by electroless plating. ► Friction coefficient of composite coating decreases with the increase of temperature. ► Formation of lubricious oxide film leads to excellent tribological property. - Abstract: Ni–P–MoS 2 composite coatings were deposited on AISI-1045 steel plate by electroless plating followed by a heat treatment at 300 °C for 2 h. The high-temperature tribological characteristics of the composite coatings were evaluated under dry sliding conditions in a tribometer with ball-on-disk configuration. The effect of the co-deposition of MoS 2 on the friction and wear behaviors of composite coatings at elevated temperature was investigated. Scanning electron microscopy was used to determine the morphology of the worn surface of composite coating. The chemical states of some typical elements on the worn surfaces were determined by X-ray photoelectron spectroscope. The results indicate that friction coefficient of the composite coatings decreases with the increase of test temperature up to 500 °C, and the best tribological properties of Ni–P–MoS 2 composite coatings are achieved at 400 °C. The worn surface of Ni–P–MoS 2 composite coatings are characterized by mild scuffing and deformation. The improvement of tribological properties of the composite coatings was attributed to the formation of the lubricious oxide film composed of oxides of Ni and Mo at high temperatures. With the test temperature increasing to 600 °C, the tribological properties of the composite coating begin to deteriorate due to softening of the coating.

  4. Crystalline Coating and Its Influence on the Water Transport in Concrete

    Directory of Open Access Journals (Sweden)

    Pavel Reiterman

    2016-01-01

    Full Text Available The presented paper deals with an experimental study of the efficiency of surface coating treatment based on secondary crystallization as an additional protection of the subsurface concrete structure loaded by moisture or ground water pressure. The aim of the experimental program was the evaluation of the depth impact of the crystalline coating and the assessment of the reliability of construction joints performed on models simulating real conditions of the concrete structure. The evolution of the secondary crystallizing process was monitored using the water absorption test carried out at different depths of the samples. The coefficient of adsorption decreased to 60% of the reference mixture for a surface layer of up to 40 mm at 28 days and to 50% at 180 days after the coating’s application. Furthermore, the electrical resistivity method was applied with respect to the nature of measurement and the low accessibility of real subsurface concrete structures. The results of moisture measurement at a depth of 180–190 mm from the surface treated with a crystalline coating showed an essential decrease in moisture content percentage in comparison with untreated specimens (measured 125 days after the coating’s application.

  5. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  6. Hydrogen permeation through steel coated with erbium oxide by sol-gel method

    International Nuclear Information System (INIS)

    Yao Zhenyu; Suzuki, Akihiro; Levchuk, Denis; Chikada, Takumi; Tanaka, Teruya; Muroga, Takeo; Terai, Takayuki

    2009-01-01

    Er 2 O 3 coating is formed on austenitic stainless steel 316ss by sol-gel method. The results showed good crystallization of coating by baking in high purity flowing-argon at 973 K, and indicated that a little oxygen in baking atmosphere is necessary to crystallization of coating. The best baking temperature could be thought as 973 K, to get good crystallization of coating and avoid strong oxidation of steel substrate. The deuterium permeation test was performed for coated and bare 316ss, to evaluate the property of Er 2 O 3 sol-gel coating as a potential tritium permeation barrier. In this study, the deuterium permeability of coated 316ss is about 1-2 orders of magnitude lower than that of bare 316ss, and is about 2-3 orders of magnitude than the referred data of bare Eurofer97 and F82H martensitic steel.

  7. Tribological Performance of MoS2 Coatings in Various Environments

    Directory of Open Access Journals (Sweden)

    Thomas Gradt

    2016-09-01

    Full Text Available Molybdenum disulfide (MoS2 is a well-known solid lubricant for tribosystems running in vacuum or dry gases. Problems arise due to its sensitivity to humidity, which is a drawback for its application under ambient conditions. However, by using a physical vapor deposition (PVD process, deposition parameters can be optimized not only to gain a coatings structure with favorable frictional properties but also to minimize the sensitivity to attack by water molecules. Therefore, an improved tribological behavior even under moist conditions can be achieved. MoS2 coatings are also candidates for being applied at cryogenic temperatures. They already have proven their suitability, e.g., for sliding support elements between superconducting magnets of the nuclear fusion-experiment Wendelstein 7-X. However, these coatings were exclusively produced for this particular application and the utilization for more common tribosystems may be precluded due to cost considerations. In view of a wider range of applications, pure and Cr containing PVD-MoS2 coatings with an optimized structure were tested under varying environments including hydrogen gas and cryogenic temperatures. Results of the most promising variant are presented in this paper.

  8. Tribological Properties of New Cu-Al/MoS2 Solid Lubricant Coatings Using Magnetron Sputter Deposition

    Directory of Open Access Journals (Sweden)

    Ming Cao

    2018-04-01

    Full Text Available The increasing demands of environmental protection have led to solid lubricant coatings becoming more and more important. A new type of MoS2-based coating co-doped with Cu and Al prepared by magnetron sputtering, including Cu/MoS2 and Cu-Al/MoS2 coatings, for lubrication applications is reported. To this end, the coatings were annealed in an argon atmosphere furnace. The microstructure and the tribological properties of the coatings prior to and following annealing were analyzed using scanning electron microscopy, energy dispersive spectrometry, X-ray diffractometry (XRD and with a multi-functional tester for material surface properties. The results demonstrated that the friction coefficient of the Cu/MoS2 coating was able to reach as low as 0.07, due to the synergistic lubrication effect of the soft metal Cu with MoS2. However, the wear resistance of the coating was not satisfied. Although the lowest friction coefficient of the Cu-Al/MoS2 coatings was 0.083, the wear resistance was enhanced, which was attributed to the improved the toughness of the coatings due to the introduction of aluminum. The XRD results revealed that the γ2-Cu9Al4 phase was formed in the specimen of Cu-Al/MoS2 coatings. The comprehensive performance of the Cu-Al/MoS2 coatings after annealing was improved in comparison to substrate heating, since the heat-treatment was beneficial for the strengthening of the solid solution of the coatings.

  9. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  10. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  11. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    The thin films of Cu2S deposited on CoS-precoated glass substrates from chemical baths and annealed at 100oC were found to have desirable solar control characteristics superior to commercial tinted glass and magnetron sputtered multilayer metallic solar control coatings. These include: transmission spectra in the ...

  12. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  13. Gold nanoparticles on MoS2 layered crystal flakes

    International Nuclear Information System (INIS)

    Cao, Wei; Pankratov, Vladimir; Huttula, Marko; Shi, Xinying; Saukko, Sami; Huang, Zhongjia; Zhang, Meng

    2015-01-01

    Inorganic layered crystal MoS 2 is considered as one of the most promising and efficient semiconductor materials for future transistors, photoelectronics, and electrocatalysis. To boost MoS 2 -based material applications, one direction is to grow physically and chemically reactive nanoparticles onto MoS 2 . Here we report on a simple route to synthesis crystalized MoS 2 –Au complexes. The gold nanoparticles were grown on MoS 2 flakes through a wet method in the oxygen free environment at room temperature. Nanoparticles with diameters varying from 9 nm to 429 nm were controlled by the molar ratios of MoS 2 and HAuCl 4 precursors. MoS 2 host flakes keep intrinsic honeycomb layered structures and the Au nanoparticles cubic-center crystal microstructures. From product chemical states analysis, the synthesis was found driven by redox reactions between the sulphide and the chloroauric acid. Photoluminescence measurement showed that introducing Au nanoparticles onto MoS 2 stacks substantially prompted excitonic transitions of stacks, as an analogy for doping Si wafers with dopants. Such composites may have potential applications in wide ranges similar as the doped Si. - Highlights: • The Au nanoparticles were decorated on MoS 2 in oxygen free ambiences via a wet method. • The Au nanoparticles are size-controllable and crystalized. • Chemical reaction scheme was clarified. • The MoS 2 –Au complexes have strong photoluminescent properties

  14. Interference lithography for optical devices and coatings

    Science.gov (United States)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self

  15. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    low molecular weight recombinant human gelatin: development of a substitute for animal- derived gelatin with superior features, Protein Expr. Purif...by the honey - bee , could be modified to a form that was no longer hydro- lyzed by the native activator protease DPP4 but, instead, was hydrolyzed by...TITLE: Evaluation of Fibroblast Activation Protein -Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer PRINCIPAL

  16. Crystallization and preliminary X-ray analysis of S-ribosylhomocysteinase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Li, Hui; Zhao, Hongyan; Zhu, Laikuan; Hong, Lihua; Zhang, Hong; Lin, Fanjing; Xu, Chunyan; Li, Shentao; Zhang, Zhimin

    2012-01-01

    S-Ribosylhomocysteinase (LuxS) encoded by the LuxS gene from Streptococcus mutans was solubly expressed in Escherichia coli, purified and crystallized. Diffraction by the crystal extended to 2.4 Å resolution. S-Ribosylhomocysteinase (LuxS) encoded by the luxS gene from Streptococcus mutans plays a crucial role in the quorum-sensing system. LuxS was solubly expressed in Escherichia coli with high yield. The purity of the purified target protein, which was identified by SDS–PAGE and MALDI–TOF MS analysis, was >95%. The protein was crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as the primary precipitant. X-ray diffraction data were collected at Beijing Synchrotron Radiation Facility (BSRF). Diffraction by the crystal extended to 2.4 Å resolution and the crystal belonged to space group C222 1 , with unit-cell parameters a = 55.3, b = 148.7, c = 82.8 Å

  17. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  18. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  19. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  20. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  1. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  2. Effect of Annealing Temperature and Spin Coating Speed on Mn-Doped ZnS Nanocrystals Thin Film by Spin Coating

    Directory of Open Access Journals (Sweden)

    Noor Azie Azura Mohd Arif

    2017-01-01

    Full Text Available ZnS:Mn nanocrystals thin film was fabricated at 300°C and 500°C via the spin coating method. Its sol-gel was spin coated for 20 s at 3000 rpm and 4000 rpm with metal tape being used to mold the shape of the thin film. A different combination of these parameters was used to investigate their influences on the fabrication of the film. Optical and structural characterizations have been performed. Optical characterization was analyzed using UV-visible spectroscopy and photoluminescence spectrophotometer while the structural and compositional analysis of films was measured via field emission scanning electron microscopy and energy dispersive X-ray. From UV-vis spectra, the wavelength of the ZnS:Mn was 250 nm and the band gap was within the range 4.43 eV–4.60 eV. In room temperature PL spectra, there were two emission peaks centered at 460 nm and 590 nm. Under higher annealing temperature and higher speed used in spin coating, an increase of 0.05 eV was observed. It was concluded that the spin coating process is able to synthesize high quality spherical ZnS:Mn nanocrystals. This conventional process can replace other high technology methods due to its synthesis cost.

  3. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  4. Synthesis of porous CuInS2 crystals using a stirrer

    International Nuclear Information System (INIS)

    Akaki, Yoji; Ohno, Yuki; Momiki, Takanori

    2013-01-01

    Porous CuInS 2 crystals were grown from starting materials CuCl 2 .2H 2 O, InCl 3 .4H 2 O and thiorea with ethylene glycol solution, that were placed into a flask, heated, and refluxed for 1 hour. The diffraction peaks only from CuInS 2 phase appear for all the samples. The morphology of CuInS 2 crystal was porous, and the porous crystals exist in two kinds. One kind was flower-like crystals which complexly lack the flakes, another one was sphere-like crystals existed with a number of the poles. The specific surface area of the samples grown by stirring starting materials with In to Cu ratio of 4.3 for 30 minutes was found approximately to be 55 m 2 /g. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Carrier mobility and crystal perfection of tetracene thin film FET

    International Nuclear Information System (INIS)

    Moriguchi, N.; Nishikawa, T.; Anezaki, T.; Unno, A.; Tachibana, M.; Kojima, K.

    2006-01-01

    It is well-known that the carrier mobility of an organic field effect semiconductor (FET) depended on the crystal quality and/or the crystal perfection of the organic thin films [T.W. Kelly, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc. 771 (2003) L6.5.1; D.J. Gundlach, J.A. Nichols, L. Zhou, T.N. Jackson, Appl. Phys. Lett. 80 (2002) 2925; H.K. Lauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 (2002) 5259; M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81 (2002) 268; D. Knipp, R.A. Street, A.R. Volkel, Appl. Phys. Lett. 82 (2003) 3907; R. Ruiz, A.C. Mayer, G.G. Malliaras, Appl. Phys. Lett. 85 (2004) 4926; R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. A 201 (2004) 1031]. To improve the crystal quality of the thin film many efforts were made. One of the important improvements was the surface treatment of the substrate. The tetracene thin film FET (top contact structure) was fabricated using the substrate, which was coated by a spin-coating method with a 0.1% poly α-methylstyrene (AMS) solution. The crystal quality was improved by this treatment so that the carrier mobility was higher than that of non-treatment. The maximum mobility of the AMS-treated sample was obtained to be 0.12 cm 2 /V s

  6. Revealing the nanostructure of calcium phosphate coatings using HRTEM/FIB techniques

    International Nuclear Information System (INIS)

    Solla, E.L.; Rodríguez-González, B.; Aguiar, H.; Rodríguez-Valencia, C.; Serra, J.; González, P.

    2016-01-01

    Herein, we report on the micro- and nanostructure of the calcium phosphate coating produced by pulsed laser deposition (PLD), using focused ion beam (FIB) lamella sample preparation and transmission electron microscopy (TEM) as the characterization technique. The initial selected area electron diffraction (SAED) data demonstrated the presence of hydroxyapatite (HA) over any other possible calcium phosphate crystalline structure and the polycrystalline nature of the coating. Moreover, the SAED analyses showed clear textured ring patterns coherent with the presence of a preferred orientation in the HA nano-crystal growth. The SAED data also indicated that the coating appears to be textured in the 〈002〉 crystalline direction. Dark-field images obtained using 002 as the working reflection showed a clear oriented crystal growth in columns, from bottom to top. These columns have a peculiar arrangement of nano-crystals since, in some cases, the preferred orientation appears to start at a certain distance from the substrate. Direct d-spacing measurements on high-resolution TEM images provided further proof of the presence of an HA nano-crystal structure. The reported data may be of interest in the future to adjust the microstructure of the HA coatings. - Highlights: •The FIB lift-out technique allows a very site-specific sample preparation method for HRTEM analysis. •It also permits a fast assessment of the HA coating thickness and elemental composition (EDS). •The coatings exhibit a nano-crystalline nature, with a texturing effect along the 002 planes. •PLD is suitable for the production of crystalline c-axis oriented hydroxyapatite coatings. •The crystalline HA phase in the PLD coating is very similar to the present in bone.

  7. Revealing the nanostructure of calcium phosphate coatings using HRTEM/FIB techniques

    Energy Technology Data Exchange (ETDEWEB)

    Solla, E.L., E-mail: esolla@uvigo.es [Servicio de Microscopía Electrónica, CACTI, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo (Spain); Rodríguez-González, B. [Servicio de Microscopía Electrónica, CACTI, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo (Spain); Aguiar, H.; Rodríguez-Valencia, C.; Serra, J.; González, P. [Applied Physics Department, School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo (Spain)

    2016-12-15

    Herein, we report on the micro- and nanostructure of the calcium phosphate coating produced by pulsed laser deposition (PLD), using focused ion beam (FIB) lamella sample preparation and transmission electron microscopy (TEM) as the characterization technique. The initial selected area electron diffraction (SAED) data demonstrated the presence of hydroxyapatite (HA) over any other possible calcium phosphate crystalline structure and the polycrystalline nature of the coating. Moreover, the SAED analyses showed clear textured ring patterns coherent with the presence of a preferred orientation in the HA nano-crystal growth. The SAED data also indicated that the coating appears to be textured in the 〈002〉 crystalline direction. Dark-field images obtained using 002 as the working reflection showed a clear oriented crystal growth in columns, from bottom to top. These columns have a peculiar arrangement of nano-crystals since, in some cases, the preferred orientation appears to start at a certain distance from the substrate. Direct d-spacing measurements on high-resolution TEM images provided further proof of the presence of an HA nano-crystal structure. The reported data may be of interest in the future to adjust the microstructure of the HA coatings. - Highlights: •The FIB lift-out technique allows a very site-specific sample preparation method for HRTEM analysis. •It also permits a fast assessment of the HA coating thickness and elemental composition (EDS). •The coatings exhibit a nano-crystalline nature, with a texturing effect along the 002 planes. •PLD is suitable for the production of crystalline c-axis oriented hydroxyapatite coatings. •The crystalline HA phase in the PLD coating is very similar to the present in bone.

  8. MULTILAYER COMPOSITE PLASMA COATINGS ON SCREEN PROTECTION ELEMENTS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available The paper contains results of investigations pertaining to an influence of plasma jet parameters (current, spraying distance, consumption of plasma formation gas (nitrogen, fractional composition of initial powder and degree of cooling with compressed air on anti-meteoric coating characteristics. Optimum modes (arc current 600 A; spray distance of 110 mm; consumption of plasma formation gas (nitrogen – 50 l/min; fractional composition of zirconium dioxide powder <50 μm; compressed air consumption for cooling – 1 m3/min; p = 4 bar make it possible to obtain anti-meteoric coatings based on zirconium dioxide with material utilization rate of 62 %, total ceramic layer porosity of 6 %. After exposure of compression plasma flows on a coating in the nitrogen atmosphere a cubic modification of zirconium oxide is considered as the main phase being present in the coating. The lattice parameter of cubic zirconium oxide modification is equal to 0.5174 nm. Taking into consideration usage of nitrogen as plasma formation substance its interaction with zirconium coating atoms occurs and zirconium nitride (ZrN is formed with a cubic crystal lattice (lattice parameter 0.4580 nm. Melting of pre-surface layer takes place and a depth of the melted layer is about 8 μm according to the results of a scanning electron microscopy. Pre-surface layer being crystallized after exposure to compression plasma flows is characterized by a homogeneous distribution of ele-ments and absence of pores formed in the process of coating formation. The coating structure is represented by a set of lar- ge (5–7 μm and small (1–2 μm zirconium oxide particles sintered against each other. Melting of coating surface layer and speed crystallization occur after the impact of compression plasma flows on the formed coating. Cracking of the surface layer arises due to origination of internal mechanical stresses in the crystallized part. While using a scanning electron microscopy a

  9. Slurry Coating System Statement of Work and Specification

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for a new system. This document presents the specifications and requirements for the system.

  10. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    Science.gov (United States)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  11. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  12. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets

    Science.gov (United States)

    Nan, Feng; Cai, Tianyi; Ju, Sheng; Fang, Liang

    2018-04-01

    Bismuth vanadate (BiVO4) has been considered as one of the promising Photoelectrochemical (PEC) photoanode materials. However, the performances remain poorly rated due to inefficient carrier separation, short carrier diffusion length, and sluggish water oxidation kinetics. Herein, a photoanode consisting of MoS2 nanosheet coating on the three-dimensional ordered BiVO4 inverse opal is fabricated by a facile combination of nanosphere lithography and hydrothermal methods. By taking advantage of the photonic crystal and two-dimensional material, the optimized MoS2/BiVO4 inverse opal photoanode exhibits a 560% improvement of the photocurrent density and threefold enhancement of the incident photon-to-current efficiency than that of the pristine BiVO4 film photoanode. Systematic studies reveal that the excellent PEC activity should be attributed to enhanced light harvesting and charge separation efficiency.

  13. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Durham, John W. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Allen, Matthew J. [Department of Veterinary Medicine, University of Cambridge, Cambridge (United Kingdom); Rabiei, Afsaneh, E-mail: arabiei@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  14. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    International Nuclear Information System (INIS)

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  15. Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.

    Science.gov (United States)

    Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata

    2018-05-08

    Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.

  16. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel

    International Nuclear Information System (INIS)

    Yun, Hong; Li, Jing; Chen, Hong-Bo; Lin, Chang-Jian

    2007-01-01

    Nano-titania coatings doped with anions of nitrogen, sulfur and chlorine have been supplied on the surface of 316L stainless steel by a sol-gel process and dip-coating technique. The measurements of XRD, SEM, ATR-IR, Raman and XPS were carried out to characterize the chemical composition and structure for the prepared samples. The corrosion performances of the coating in 0.5 M NaCl were evaluated by electrochemical impedance spectroscopy (EIS) and polarization measurements. According to the measurements of EIS and electrochemical polarization, the N-modified TiO 2 nano-coatings show a highest corrosion resistance among the prepared coatings. It is revealed, from the SEM, XRD and Raman characterizations, that the surface of N-modified TiO 2 nano-coatings are more compact and uniform, relatively well-crystallized and able to act as an optimal barrier layer to metallic substrates. The XPS analysis confirms the presence of low concentration of N element in two forms, atomic β-N (interstitial state) and chemisorbed γ-N 2 on the surface of TiO 2 nano-coatings. It is suggested that the addition of nitrogen is beneficial to improve the compact structure and enhance the hydrophobic property

  17. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation

    International Nuclear Information System (INIS)

    Roncali, Emilie; Schmall, Jeffrey P; Viswanath, Varsha; Berg, Eric; Cherry, Simon R

    2014-01-01

    Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm 3  crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a

  18. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    Science.gov (United States)

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  19. Investigation on Nano-Self-Lubricant Coating Synthesized by Laser Cladding and Ion Sulfurization

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    2015-01-01

    Full Text Available The composite processing between laser cladding and low temperature (300°C ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM, atomic force microscope (AFM, X-ray diffraction (XRD, X-ray photoelectron spectroscope (XPS, and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists of γ-(Fe, Ni, M23C6 carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.

  20. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    International Nuclear Information System (INIS)

    Chowdhury, S.; Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-01-01

    The present study compares structural and optical modifications of bare and silica (SiO 2 ) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni 12+ ion beam with fluences 10 12 to 10 13 ions/cm 2 . Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one

  1. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    Science.gov (United States)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  2. Adherence of urease-induced crystals to rat bladder epithelium.

    Science.gov (United States)

    Grenabo, L; Hedelin, H; Pettersson, S

    1988-01-01

    Apart from urine supersaturation with respect to struvite and calcium phosphate caused by urease-producing microorganisms, retention of formed crystals in the urinary tract is necessary for the formation of infection stones. This study was performed to investigate the role of the mucous coat lining the urothelium in the adhesion of urease-induced crystals. Removal of this glycosaminoglycan-containing layer from rat bladders increased the adherence of struvite and calcium phosphate crystals 5-6 times compared to that in intact rat bladders. Heparin completely restored the antiadherence capacity while chondroitin sulphate had a very weak restorative effect and human urine had no restorative effect. These findings support the view that the mucous coat is of importance in preventing retention of urease-induced crystals.

  3. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  4. ESR of Ag2+ ions in S2F2 crystal

    International Nuclear Information System (INIS)

    Zaripov, M.M.; Ulanov, V.A.; Falin, M.L.

    1989-01-01

    Experimental data on investigation of bivalent silver ions in S 2 F 2 crystals are presented. Due to the investigation of the grown crystals it is determined that centres of univalent silver ore formed in SrF 2 during crystal growth. X-ray irradiation at room temperature results in the transition of these centres in bivalent staes. Investigation of temperature dependence of ESR spectra type has allowed to make the conclusion about the presence of Jahn-Teller dynamic effect. Analysis of experimental data allows to develop a model of the investigated paramagnetic complex in S 2 F 2 crystal where Ag 2* ion has coordination polyhedron in the form of eight F - ion cube distorted by C 3 3 axis

  5. Synthesis of porous CuInS{sub 2} crystals using a stirrer

    Energy Technology Data Exchange (ETDEWEB)

    Akaki, Yoji; Ohno, Yuki; Momiki, Takanori [Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo, Miyazaki 885-8567 (Japan)

    2013-08-15

    Porous CuInS{sub 2} crystals were grown from starting materials CuCl{sub 2}.2H{sub 2}O, InCl{sub 3}.4H{sub 2}O and thiorea with ethylene glycol solution, that were placed into a flask, heated, and refluxed for 1 hour. The diffraction peaks only from CuInS{sub 2} phase appear for all the samples. The morphology of CuInS{sub 2} crystal was porous, and the porous crystals exist in two kinds. One kind was flower-like crystals which complexly lack the flakes, another one was sphere-like crystals existed with a number of the poles. The specific surface area of the samples grown by stirring starting materials with In to Cu ratio of 4.3 for 30 minutes was found approximately to be 55 m{sup 2}/g. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values

    International Nuclear Information System (INIS)

    Tomozawa, Masanari; Hiromoto, Sachiko

    2011-01-01

    Hydroxyapatite (HAp) coatings with and without octacalcium phosphate (OCP) were uniformly formed on pure magnesium by a hydrothermal treatment using a Ca-EDTA solution. The crystal structure, crystallographic orientation and lattice images were investigated using transmission electron microscopy (TEM) and high-resolution TEM. It was demonstrated that the crystal phase and microstructure of the calcium phosphate-coatings can vary with the pH of the treatment solution. In a weak acid treatment solution, a dual-layer structure was formed: an outer coarse layer consisting of plate-like OCP crystals and an inner dense layer consisting primarily of HAp crystals. One piece of the OCP plate corresponded to a single OCP crystal growing parallel to the (1 0 0) OCP . In a weak alkali treatment solution, a dual-layer structure was also formed: an outer coarse layer consisting of rod-like HAp crystals and an inner dense layer consisting of HAp crystals. One piece of the HAp rod corresponded to a single HAp crystal growing along [0 0 2] HAp . In a strong alkali treatment solution, needle-like HAp crystals were formed. No defect was observed in the lattice image of the OCP and HAp. The corrosion current density of pure magnesium in a 3.5 wt.% NaCl solution decreased with the HAp coating more significantly than the OCP + HAp coating. It is revealed that the degree of protection afforded by calcium phosphate-coatings varies with their crystal phase and microstructure.

  7. Crystallization and preliminary X-ray analysis of human S100A13

    International Nuclear Information System (INIS)

    Imai, Fabiana Lica; Nagata, Koji; Yonezawa, Naoto; Yu, Jinyan; Ito, Eriko; Kanai, Saeko; Tanokura, Masaru; Nakano, Minoru

    2006-01-01

    Human S100A13 protein was cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals obtained belonged to space group P2 1 2 1 2 1 and diffracted to a resolution of 1.8 Å. S100A13 is a member of the S100 family of EF-hand-containing calcium-binding proteins and plays an important role in the secretion of fibroblast growth factor-1 and interleukin 1α, two pro-angiogenic factors released by the endoplasmic reticulum/Golgi-independent non-classical secretory pathway. Human S100A13 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.8 Å resolution and the space group was assigned as primitive orthorhombic P2 1 2 1 2 1

  8. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  9. Crystallization and preliminary X-ray analysis of βC–S lyases from two oral streptococci

    International Nuclear Information System (INIS)

    Kezuka, Yuichiro; Yoshida, Yasuo; Nonaka, Takamasa

    2009-01-01

    The βC-S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, were cloned, overproduced, purified and crystallized. The obtained crystals were characterized by X-ray diffraction. Hydrogen sulfide, which causes oral malodour, is generally produced from l-cysteine by the action of βC–S lyase from oral bacteria. The βC–S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, have been cloned, overproduced, purified and crystallized. X-ray diffraction data were collected from the two types of crystals using synchrotron radiation. The crystal of S. anginosus βC–S lyase belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 67.0, b = 111.1, c = 216.4 Å, and the crystal of S. gordonii βC–S lyase belonged to the same space group, with unit-cell parameters a = 58.0, b = 73.9. c = 187.6 Å. The structures of the βC–S lyases were solved by molecular-replacement techniques

  10. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  11. Effects of Y2O3 upon mechanical properties of laser coating

    Institute of Scientific and Technical Information of China (English)

    Chi Deng; Yong Wang; Yaping Zhang; Jiacheng Gao

    2005-01-01

    @@ Roles of Y2O3 in mechanical properties of the bioceramic coating by the laser cladding were reported in this paper. The bonding strength of interface between the laser coatings with/without Y2O3 and substrate Ti-6Al-4V (TC4), bending strength, compressive strength, tensile strength, and hardness in these coatings were contrastively tested, and the ceramic-metal interface was observed by scanning electronic microscopy (SEM). These results indicated that the rare earth was the important factor which influenced the mechanical properties of the coating. Y2O3 was adequately dispersed in the melting pool of the laser coating, crystal grain got smaller after the melted coating was cooled, the impurity existing in crystal interface was reduced by chemical reactions, and so the strength was evidently improved. On the other hand, the rare earth could also obviously increase the hole numbers in the coating and decrease the compressive strength. So the effects of the rare earth on the laser coating were intricate and all-purpose.

  12. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    Science.gov (United States)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-05-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  13. Crystallization and preliminary X-ray analysis of human S100A13

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Fabiana Lica [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Nagata, Koji [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Yonezawa, Naoto [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yu, Jinyan; Ito, Eriko; Kanai, Saeko [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Tanokura, Masaru [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Nakano, Minoru, E-mail: mnakano@faculty.chiba-u.jp [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2006-11-01

    Human S100A13 protein was cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals obtained belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to a resolution of 1.8 Å. S100A13 is a member of the S100 family of EF-hand-containing calcium-binding proteins and plays an important role in the secretion of fibroblast growth factor-1 and interleukin 1α, two pro-angiogenic factors released by the endoplasmic reticulum/Golgi-independent non-classical secretory pathway. Human S100A13 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.8 Å resolution and the space group was assigned as primitive orthorhombic P2{sub 1}2{sub 1}2{sub 1}.

  14. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environ......We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user......- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering. We find that particularly beneficial...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  15. On dewetting of thin films due to crystallization (crystallization dewetting).

    Science.gov (United States)

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  16. Influence of Pt-aluminide coating on the oxidation and thermo-mechanical fatigue behaviour of the single crystal superalloy CMSX-4

    Energy Technology Data Exchange (ETDEWEB)

    Jargelius-Pettersson, R F.A.; Andersson, H C.M.; Lille, C; Haenstroem, S; Liu, L [Swedish Institute for Metals Research, Stockholm (Sweden)

    2001-10-01

    Oxidation and thermo-mechanical fatigue studies have been performed on a single crystal nickel base superalloy, CMSX-4, with and without an MDC150L Pt-modified diffusional aluminide coating. Oxidation for up to 500 hours at 900, 1050 and 1150 deg C revealed formation of mixed nickel-aluminium oxides, with a pronounced spalling tendency, on the base material, but parabolic growth of aluminium oxide on the coated material. The effect of water vapour and SO{sub 2} on the oxidation rate has also been investigated, and attempts have been made to apply thermodynamic and kinetic modelling to microstructural evolution in the interdiffusion zone between coating and substrate. Thermo-mechanical fatigue testing was performed on both coated and uncoated specimens. The temperature was cycled between 400 and 1050 deg C and mechanical strain ranges between 0.7 and 2.0% were used. Some specimens were cycled from a raised lower temperature estimated to be above the brittle transition temperature of the coat. Both in-phase and out-of-phase test conditions were used. No significant difference in fatigue life was detected between coated specimens cycled in-phase and out-of-phase. An improvement in fatigue life was observed with uncoated specimens tested out-of-phase. Coated specimens cycled above the transition temperature exhibited the longest fatigue life of all tested specimens. In the uncoated specimens the cracks started at the surface of the specimens. Initial cracks in the coated specimens may have started in the bond interface between the coat and the substrate or on the surface of the coat. The damage mechanism in all specimens is characterised by an initial strain hardening followed by crack initiation and crack propagation until final collapse. The load versus number of cycles curve features a maximum followed by a slow load drop and then a fast final load drop. The maxima is associated with crack initiation and the final fast load drop with plastic collapse of the specimen

  17. Liquid Crystals in Decorative and Visual Arts

    Science.gov (United States)

    Makow, David

    The following sections are included: * INTRODUCTION * PIGMENT AND STRUCTURAL COLOURS AND THEIR RELEVANCE TO LIQUID CRYSTALS * LIQUID CRYSTAL MATERIALS AND TECHNIQUES FOR DECORATIVE AND VISUAL ARTS * Free cholesteric liquid crystals (FCLC's) * Encapsulated liquid crystals (ECLC's) * Nonsteroid Chiral nematics * Polymers with liquid crystalline properties (PLCs) * COLOUR PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS (CLC's) * Molecular structure and the mechanism of colour production * Dependence of perceived colours on the angle of illumination and viewing * Dependence of perceived colours on temperature * Additive colour properties * Methods of doubling the peak reflectance of cholesteric liquid crystals * Colour gamut * Colours of superimposed and pigmented coatings * Colours in transmission * ACKNOWLEDGEMENTS * REFERENCES

  18. Synthesis and structure-activity relationship of N-alkyl Gly-boro-Pro inhibitors of DPP4, FAP, and DPP7.

    Science.gov (United States)

    Hu, Yi; Ma, Lifu; Wu, Min; Wong, Melissa S; Li, Bei; Corral, Sergio; Yu, Zhizhou; Nomanbhoy, Tyzoon; Alemayehu, Senaiet; Fuller, Stacy R; Rosenblum, Jonathan S; Rozenkrants, Natasha; Minimo, Lauro C; Ripka, William C; Szardenings, Anna K; Kozarich, John W; Shreder, Kevin R

    2005-10-01

    The structure-activity relationship of various N-alkyl Gly-boro-Pro derivatives against three dipeptidyl peptidases (DPPs) was studied. In a series of N-cycloalkyl analogs, DPP4 and fibroblast activation protein-alpha (FAP) optimally preferred N-cycloheptyl whereas DPP7 tolerated even larger cycloalkyl rings. Gly alpha-carbon derivatization of N-cyclohexyl or N-(2-adamantyl) Gly-boro-Pro resulted in a significant decrease in potency against all the three DPPs.

  19. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    Science.gov (United States)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings

  20. Magnetoresistance in molybdenite (MoS2) crystals

    International Nuclear Information System (INIS)

    Chakraborty, B.R.; Dutta, A.K.

    1975-01-01

    The principal magnetoresistance ratios of molybdenite (MoS 2 ), the naturally occurring semiconducting crystal, have been investigated at magnetic fields ranging from 4.5 KOe and within the temperature range 300 0 K to 700 0 K. Unlike some previous observations, magnetoresistance has been found to be negative. (author)

  1. Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings

    Science.gov (United States)

    Domínguez-Meister, Santiago; Rojas, Teresa Cristina; Brizuela, Marta; Sánchez-López, Juan Carlos

    2017-12-01

    Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30-40% relative humidity, RH) and dry nitrogen (RHgoverns the tribological behavior for each type of environment. This allowed conclusions to be made about the influence of the coating microstructure and composition on the tribological response. The best performance obtained with a WSex film (specific wear rate of 2 × 10-8 mm3 N-1m-1 and a friction coefficient of 0.03-0.05) was compared with that of the well-established MoS2 lubricant material.

  2. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji

    2016-06-28

    Quartz crystal microbalance (QCM) coated with poly-4-vinylpyridine (PVP) and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  3. Humidity Detection Using Metal Organic Framework Coated on QCM

    Directory of Open Access Journals (Sweden)

    Lakshmoji Kosuru

    2016-01-01

    Full Text Available Quartz crystal microbalance (QCM coated with poly-4-vinylpyridine (PVP and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  4. Mutation analysis of the adenomatous polyposis coli (APC) gene in Danish patients with familial adenomatous polyposis (FAP)

    DEFF Research Database (Denmark)

    Bisgaard, Marie Luise; Ripa, Rasmus S; Bülow, Steffen

    2004-01-01

    Development of one hundred or more adenomas in the colon and rectum is diagnostic for the dominantly inherited, autosomal disease Familial Adenomatous Polyposis (FAP). It is possible to identify a mutation in the Adenomatous Polyposis Coli (APC) gene in approximately 80% of the patients, and almost...... 1,000 different pathogenic mutations have been identified in the APC gene up till now. We report 12 novel and 24' previously described germline APC mutations from 48 unrelated Danish families. Four families with the mutation localized in the 3' region of the gene showed great variance in phenotypic...

  5. 10 Gb/s operation of photonic crystal silicon optical modulators.

    Science.gov (United States)

    Nguyen, Hong C; Sakai, Yuya; Shinkawa, Mizuki; Ishikura, Norihiro; Baba, Toshihiko

    2011-07-04

    We report the first experimental demonstration of 10 Gb/s modulation in a photonic crystal silicon optical modulator. The device consists of a 200 μm-long SiO2-clad photonic crystal waveguide, with an embedded p-n junction, incorporated into an asymmetric Mach-Zehnder interferometer. The device is integrated on a SOI chip and fabricated by CMOS-compatible processes. With the bias voltage set at 0 V, we measure a V(π)L pseudo-random bit sequence signal. An open eye pattern is observed at bitrates of 10 Gb/s and 2 Gb/s, with and without pre-emphasis of the drive signal, respectively.

  6. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  7. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  8. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor.

    Science.gov (United States)

    Jha, Sunil K; Hayashi, Kenshi

    2015-03-01

    In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Acoustic anisotropy of acoustooptic TI(3)AsS(4) crystals.

    Science.gov (United States)

    Martynyuk-Lototska, Iryna; Kushnirevych, Marian; Zapeka, Bohdan; Krupych, Oleh; Kokhan, Oleksandr; Pogodin, Artem; Peresh, Eugen; Mys, Oksana; Vlokh, Rostyslav

    2015-02-20

    We present comprehensive experimental measurements and analysis of anisotropy of the acoustic wave velocities for TI(3)AsS(4) crystals, including the obliquity and nonorthogonality of the acoustic waves, and the deviations from purely longitudinal and transverse polarization types. We have found that the crystals under analysis are characterized by rather low transverse wave velocities v(23) and v(32), which are both equal to 630 m/s. It is shown that the efficiency of acoustooptic (AO) interactions in TI(3)AsS(4) can be notably increased when providing anisotropic interaction with the slowest transverse acoustic wave. Under the previously mentioned conditions, the AO figure-of-merit can be estimated to be extremely high, i.e., approximately 3×10(-12) s(3)/kg.

  10. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings

    International Nuclear Information System (INIS)

    Scharf, T.W.; Kotula, P.G.; Prasad, S.V.

    2010-01-01

    Fundamental phenomena governing the tribological mechanisms in sputter deposited amorphous MoS 2 /Sb 2 O 3 /Au nanocomposite coatings are reported. In dry environments the nanocomposite has the same low friction coefficient as pure MoS 2 (∼0.007). However, unlike pure MoS 2 coatings, which wear through in air (50% relative humidity), the composite coatings showed minimal wear, with wear factors of ∼1.2-1.4 x 10 -7 mm 3 Nm -1 in both dry nitrogen and air. The coatings exhibited non-Amontonian friction behavior, with the friction coefficient decreasing with increasing Hertzian contact stress. Cross-sectional transmission electron microscopy of wear surfaces revealed that frictional contact resulted in an amorphous to crystalline transformation in MoS 2 with 2H-basal (0 0 0 2) planes aligned parallel to the direction of sliding. In air the wear surface and subsurface regions exhibited islands of Au. The mating transfer films were also comprised of (0 0 0 2)-oriented basal planes of MoS 2 , resulting in predominantly self-mated 'basal on basal' interfacial sliding and, thus, low friction and wear.

  11. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  12. Light controlled friction at a liquid crystal polymer coating with switchable patterning

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.

    2014-01-01

    We describe a new methodology that enables dynamically control of motion through modulating friction at coating surfaces by exposing with UV light. The principle is based on reversibly switching the surface topographies of the coating by light. The coating surface transfers from flat in the dark to

  13. Studies and implementation of glass-crystal materials as the ecological shells and coatings for storage and disposal of radioactive and toxic wastes

    International Nuclear Information System (INIS)

    Iskakov, T.; Ibraev, Yu.; Garifulin, V.

    1996-01-01

    The ground space and missile systems designed to launch the modern rockets have the launching constructions. These construction are equipped with protection systems for construction units, which are undergoing by high temperature gas dynamic impact. Protective materials are featuring with a high strength, and stability regarding to high temperatures and heat impact. Such materials were obtained in glass-crystal class. Institute for Special Material Science Research has synthesized the glass-crystal materials with high thermal stability, strength, which are also stable regarding to chemical, biological, radioactive, gas dynamic, etc. impacts. The developed materials in form of plates were successfully tested in launching constructions at Baikonur space system. This material is valid for heat protective coatings, constructions of rocket-space system, plates used in airstrips and grounds for aircraft with vertical take-off and landing. These materials were studied to obtain the super strength, wearing-proof, chemically stable and radiation stable materials to be designed for ecological shells on their base. It was established that some types of glass-crystal materials have the properties, which are valid for application as ecological shells

  14. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  15. MoS{sub 2}-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Sun, Huaming; Xie, Zunyuan; Gao, Ziwei [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Xue, Can, E-mail: cxue@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2017-02-28

    Highlights: • Successful coating of MoS{sub 2} onto self-sensitized carbon nitride microspheres. • The carbon nitride@MoS{sub 2} core-shell structure show enhanced H{sub 2} generation in visible light. • Synergistic effect of surface dyes and MoS{sub 2} coating enhances photocatalytic activities. - Abstract: We have successfully coated the self-sensitized carbon nitride (SSCN) microspheres with a layer of MoS{sub 2} through a facile one-pot hydrothermal method by using (NH{sub 4}){sub 2}MoS{sub 4} as the precursor. The resulted MoS{sub 2}-coated SSCN photocatalyst appears as a core-shell structure and exhibits enhanced visible-light activities for photocatalytic H{sub 2} generation as compared to the un-coated SSCN and the standard g-C{sub 3}N{sub 4} reference with MoS{sub 2} coating. The photocatalytic test results suggest that the oligomeric s-triazine dyes on the SSCN surface can provide additional light-harvesting capability and photogenerated charge carriers, and the coated MoS{sub 2} layer can serve as active sites for proton reduction towards H{sub 2} evolution. This synergistic effect of surface triazine dyes and MoS{sub 2} coating greatly promotes the activity of carbon nitride microspheres for vishible-light-driven H{sub 2} generation. This work provides a new way of future development of low-cost noble-metal-free photocatalysts for efficient solar-driven hydrogen production.

  16. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, A., E-mail: alejandro.lqi@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Hernández-Uresti, D.B., E-mail: ing.dianahdz@gmail.com [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Obregón, S. [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico)

    2016-11-15

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O{sub 2}{sup −} and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  17. Crystal growth of electroluminescent ZnS:Cu,Cl phosphor and its TiO2 coating by sol-gel method for thick-film EL device

    International Nuclear Information System (INIS)

    Han, Sang-Do; Singh, Ishwar; Singh, Devender; Lee, You-He; Sharma, Gaytri; Han, Chi-Hwan

    2005-01-01

    Bigger-sized spherical particle of ZnS:Cu,Cl to be employed for electroluminescent (EL) device has been synthesized using a new eutectic mixture as flux. The best composition of the flux was the mixture of BaCl 2 .2H 2 O, MgCl 2 .6H 2 O and NaCl in the mole percentage ratio of 13.8:39.9:46.2 and when the total amount of the mixture was 6% of the total weight of ZnS. The phosphor was synthesized firing at higher temperatures in two steps. First step firing at 1150 deg. C gave the hexagonal phase of the ZnS phosphor particles. Low intensity ball-milling of the phosphor pastes in solvents converted hexagonal phase partially to the cubic phase of the phosphor, which is an essential step. Mixing with copper sulfate or copper(I) halides and magnesium chloride and then firing (second step) at 750 deg. C gave a phosphor with better luminescent characteristics and converting to almost 100% cubic phase. The phosphor particles having size >0.020 mm size were sieved and coated with TiO 2 made by sol-gel process using titanium(IV)-isopropoxide as a precursor. The phosphor particles were coated twice with the TiO 2 sol and finally calcined at 400 deg C in nitrogen atmosphere. The EL devices were fabricated with the synthesized phosphor using a screen-printing method

  18. Clever coating : small technology companies hope to mine some Athabasca riches of their own

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2006-09-15

    In oil sands production, abrasive sands and gases such as hydrogen sulfide (H{sub 2}S) can cause corrosion and equipment failure. This article presented details of Hardide, an ultra-hard coating technology that is well-suited to the harsh operating environments of Alberta's heavy oil and oilsands projects. The Hardide manufacturing process involves the application of a thin surface coating of tungsten carbide by chemical vapour deposition to customer-supplied components that are then heated to between 500 degrees C and 600 degrees C, depending on the substrate and the application. Once at the desired temperature, a mixture of gases is pumped into the furnace, where a chemical reaction takes place which then crystallizes on the components to produce a layer of binder-free tungsten carbine coating with abrasion, erosion and chemical resistant characteristics. The coating can be applied to steel, alloys and other materials and has a coating capacity that ranges from 5 to 100 microns. Research on the coating started at the University of Moscow and the Russian Academy of Science Institute but was halted due to the financial problems which followed Perestroika. The coating is now used in the aerospace, power, chemical and food manufacturing industries. It was concluded that the technology is being considered by a number of Canadian oil and gas companies. 2 figs.

  19. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    Science.gov (United States)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-05-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values ( θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate ( θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM

  20. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    Science.gov (United States)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-04-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values (θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate (θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM

  1. Re-directed T cells for the treatment of fibroblast activation protein (FAP-positive malignant pleural mesothelioma (FAPME-1

    Directory of Open Access Journals (Sweden)

    Petrausch Ulf

    2012-12-01

    Full Text Available Abstract Background Asbestos is the main cause of MPM in industrialized countries. Even since asbestos is banned in most developed countries, the peak wave of MPM incidence is anticipated for the next years due to the long latency of asbestos induced MPM. MPM patients not eligible for surgical procedures like decortication or pleuro-pneumectomie have a median survival of 12 months with palliative chemotherapy. Therefore, new therapeutic approaches are of crucial need in this clinical situation. Methods/design This is a phase I trial for patients with malignant pleural mesothelioma with pleural effusion testing the safety of a fixed single dose of 1x106 adoptively transferred FAP-specific re-directed T cells given directly in the pleural effusion. Lymphocytes will be taken 21 days before transfer from peripheral blood. CD8 positive T cells will be isolated and re-programmed by retroviral transfer of a chimeric antigen receptor recognizing FAP which serves as target structure in MPM. At day 0 of the protocol, re-directed T cells will be injected in the pleural effusion and patients will be monitored for 48h under intermediate care conditions. AE, SAE, SADR and SUSAR will be monitored for 35 days and evaluated by an independent safety board to define any dose limiting toxicity (DLT. No further patient can be treated before the previous patient passed day 14 after T cell transfer. The protocol will be judged as save when no DLT occurred in the first 3 patients, or 1 DLT in 6 patients. Secondary objectives are feasibility and immune monitoring. Discussion Adoptive T cell transfer is a new and rapidly expanding branch of immunotherapies focusing on cancer treatment. Recently, objective responses could be observed in patients with chronic lymphatic leukemia treated with adoptively transferred CD19-specific re-directed T cells. The choice of the target antigen determines the possible on-target off-tissue toxicity of such approaches. There are reports of

  2. Crystal growth and magneto-transport behavior of PdS1-δ

    Science.gov (United States)

    Cao, Lin; Lv, Yang-Yang; Chen, Si-Si; Li, Xiao; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Lu, Minghui; Chen, Yan-Feng

    2018-04-01

    PdS is theoretically proposed to novel topological material with eight-band fermions. Here, PdS1-δ crystals were successfully grown from KI as solvent by modified flux method. The single crystalline quality and compositional homogeneity of grown PdS1-δ are characterized by X-ray diffraction and energy dispersion spectroscopy. Temperature dependent electrical transport property of PdS1-δ demonstrates a semiconductor-like behavior. Analysis of temperature-dependent resistance indicates that there is variable-range-hopping behavior at low temperature. The clear negative MR of PdS1-δ single crystals is measured at the low temperature (interaction between conducting carriers and localized moments. however, the magneto-transport results have not shown the clues of topological feature of PdS.

  3. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  4. Multilayer x-ray mirrors for the objective crystal spectrometer on the Spectrum Roentgen Gamma satellite

    DEFF Research Database (Denmark)

    Louis, E.; Spiller, E.; Abdali, S.

    1995-01-01

    with Kr+- and Ar+- ions of 300, 500, and 1000 eV. We examined the effect of different polishing parameters on the smoothening of the Co- and Ni-layers. The in-situ reflectivity of lambda equals 3.16 nm during deposition and the ex-situ grazing incidence reflectivity of Cu-K(alpha ) radiation (lambda...... multiplied by 6 cm2 Si (111) crystals for the Objective Crystal Spectrometer on the Russian Spectrum Rontgen Gamma satellite. The coatings on the flight crystals have a period Lambda of 3.95 plus or minus 0.02 nm and a reflectivity of more than 8% averaged over s- and p-polarization over the entire...

  5. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  6. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    International Nuclear Information System (INIS)

    Hiromoto, Sachiko; Yamamoto, Akiko

    2009-01-01

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m -2 NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10 3 -10 4 times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  7. Purification, crystallization and preliminary X-ray diffraction of human S100A15

    Energy Technology Data Exchange (ETDEWEB)

    Boeshans, Karen M. [X-ray Crystallography Facility, NIAMS, National Institutes of Health, Bethesda, MD 20892 (United States); Wolf, Ronald; Voscopoulos, Christopher [Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gillette, William; Esposito, Dominic [Protein Expression Laboratory, Research Technology Program, National Cancer Institute, SAIC-Frederick Inc., Frederick, MD 21702 (United States); Mueser, Timothy C. [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Yuspa, Stuart H. [Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Ahvazi, Bijan, E-mail: ahvazib@mail.nih.gov [X-ray Crystallography Facility, NIAMS, National Institutes of Health, Bethesda, MD 20892 (United States)

    2006-05-01

    S100 proteins are differentially expressed during epithelial cell maturation, tumorigenesis and inflammation. The novel human S100A15 protein has been cloned, expressed, purified and crystallized in two crystal forms, a triclinic and a monoclinic form, which diffract to 1.7 and 2.0 Å, respectively. Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.2 kDa S100A15 with psoriasis suggests that it contributes to the pathogenesis of the disease and could provide a molecular target for therapy. To provide insight into the function of S100A15, the protein was crystallized to visualize its structure and to further the understanding of how the many similar calcium-binding mediator proteins in the cell distinguish their cognate target molecules. The S100A15 protein has been cloned, expressed and purified to homogeneity and produced two crystal forms. Crystals of form I are triclinic, with unit-cell parameters a = 33.5, b = 44.3, c = 44.8 Å, α = 71.2, β = 68.1, γ = 67.8° and an estimated two molecules in the asymmetric unit, and diffract to 1.7 Å resolution. Crystals of form II are monoclinic, with unit-cell parameters a = 82.1, b = 33.6, c = 52.2 Å, β = 128.2° and an estimated one molecule in the asymmetric unit, and diffract to 2.0 Å resolution. This structural analysis of the human S100A15 will further aid in the phylogenic comparison between the other members of the S100 protein family, especially the highly homologous paralog S100A7.

  8. Microdistribution of phases and substructure of the composite electrolytic self-lubricating copper-molybdenite coating

    International Nuclear Information System (INIS)

    Pribysh, I.Z.; Bakakin, G.N.; Borzyak, A.G.; Sajfullin, R.S.

    1978-01-01

    The influence of MoS 2 particles on the substructure of a copper matrix was studied, and their location in the composition was established. It is shown that the presence of molybdenite causes a variation in the conditions of electrical crystallization of copper. The optimum composition has been found, which is used as a self-lubricating coating for friction machine parts

  9. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Crystallization of [Fe4S3]-ferredoxin from the hyperthermophile archaeon pyrococcus furiosus

    DEFF Research Database (Denmark)

    Nielsen, Michael Ericsson Skovbo; Harris, Pernille; Christensen, Hans Erik Mølager

    2003-01-01

    Recombinant Pyrococcus furiosus ferredoxin with a [Fe3S4]-cluster was crystallized through steps of optimization and X-ray diffraction data were collected from several crystal forms. Flat plate-like crystals were grown by hanging-drop vapour diffusion. The precipitant used was 30% PEG 400; the p...

  11. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  12. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  13. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  14. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  15. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    Science.gov (United States)

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  16. Stereospecific ligands and their complexes. VI. The crystal structure of (S,S-ethylenediamine-N,N’-di-2-propanoic acid hydrochloride, (S,S-H2eddp•HCl

    Directory of Open Access Journals (Sweden)

    VERICA V. GLODJOVIĆ

    2011-07-01

    Full Text Available (S,S-Ethylenediamine-N,N’-di-2-propanoic acid hydrochloride, (S,S-H2eddp·HCl, was prepared and its crystal structure determined. The compound was characterized by infrared and 1H- and 13C-NMR spectroscopy. It forms P1 in the space group of a triclinic crystal system with a = 5.3902(2 Å, b = 5.8967(2 Å, c = 10.3319(2 Å, a = 99.625(2°, b = 91.645(2°, g = 109.995(2° and Z = 1.

  17. Effect of Pulse Width on Microstructure and Hardness of FeSiB Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    GONG Yu-bing

    2018-03-01

    Full Text Available High-density coating with FeSiB amorphous ribbons as cladding materials on the surface of mild steel was fabricated by laser cladding. The effect of different pulse widths on formability, microstructure and microhardness of the coatings was analyzed by optical microscope(OM, X-ray diffractometer (XRD, scanning electron microscope (SEM and microhardness tester. The results show that with the increase of the pulse width, the coating dilute rate rises; the tendency of crack increases and the crack originates from surface to the interface; the degree of crystallization increases and crystallization phases are α-Fe, Fe2B and Fe3Si, fusion zone width increases and the trend of columnar crystals along the epitaxial growth becomes bigger and bigger; the microhardness firstly increases and then decreases. When pulse width is 3.2ms, the structure of the coating is compact, no hole defects, the interface exhibits a good metallurgical combination and the dilute rate is low about 23.2%. Average microhardness of the coating reaches 1192HV, which is about 10 times as much as the substrate.

  18. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  19. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding.

    Science.gov (United States)

    Zhang, Peilei; Li, Mingchuan; Yu, Zhishui

    2018-05-23

    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  20. Crystallization and preliminary crystallographic study of the yeast Malassezia sympodialis allergen Mala s 1

    International Nuclear Information System (INIS)

    Vilhelmsson, Monica; Hallberg, B. Martin; Rasool, Omid; Zargari, Arezou; Scheynius, Annika; Achour, Adnane

    2006-01-01

    Crystals of the M. sympodialis allergen Mala s 1 have been obtained using the hanging-drop vapour-diffusion method. A diffraction data set has been collected from native crystals to 1.35 Å resolution. The opportunistic yeast Malassezia sympodialis can act as an allergen and elicit specific IgE- and T-cell reactivity in patients with atopic eczema. The first identified major allergen from M. sympodialis, Mala s 1, is present on the cell surface of the yeast. Recombinant Mala s 1 was expressed in Escherichia coli, purified and refolded in a soluble form. Crystals of Mala s 1 were obtained in 25% PEG 8K, 0.2 M (NH 4 ) 2 SO 4 . Crystals belong to space group P2 1 2 1 2, with unit-cell parameters a = 44.4, b = 163.7, c = 50.6 Å, and diffract to 1.35 Å resolution

  1. Crystallization and preliminary crystallographic study of the yeast Malassezia sympodialis allergen Mala s 1

    Energy Technology Data Exchange (ETDEWEB)

    Vilhelmsson, Monica, E-mail: monica.vilhelmsson@medks.ki.se [Department of Medicine, Clinical Allergy Research Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm (Sweden); Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm (Sweden); Hallberg, B. Martin [Department of Biochemistry and Biophysics, Stockholm University, Stockholm (Sweden); Rasool, Omid; Zargari, Arezou; Scheynius, Annika [Department of Medicine, Clinical Allergy Research Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm (Sweden); Achour, Adnane [Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm (Sweden); Department of Medicine, Clinical Allergy Research Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm (Sweden)

    2006-02-01

    Crystals of the M. sympodialis allergen Mala s 1 have been obtained using the hanging-drop vapour-diffusion method. A diffraction data set has been collected from native crystals to 1.35 Å resolution. The opportunistic yeast Malassezia sympodialis can act as an allergen and elicit specific IgE- and T-cell reactivity in patients with atopic eczema. The first identified major allergen from M. sympodialis, Mala s 1, is present on the cell surface of the yeast. Recombinant Mala s 1 was expressed in Escherichia coli, purified and refolded in a soluble form. Crystals of Mala s 1 were obtained in 25% PEG 8K, 0.2 M (NH{sub 4}){sub 2}SO{sub 4}. Crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 44.4, b = 163.7, c = 50.6 Å, and diffract to 1.35 Å resolution.

  2. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  3. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Long [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xin, Li, E-mail: xli@imr.ac.cn [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xinyue; Wang, Xiaolan; Wei, Hua; Zhu, Shenglong; Wang, Fuhui [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-11-15

    Oxidation and interdiffusion behaviors of Ni-based single crystal superalloy DD98M with nominal compositions Ni–5.0Co–6.0Cr–6.3Al–6.0W–2.0Mo–6.0Ta–1.0Ti (in wt.%) and two types of MCrAlY coatings at 1000 °C and 1050 °C were investigated. Complex oxides formed on the surface of DD98M alloy when oxidized at 1000 °C and 1050 °C, which stratified, cracked and spalled. The faceted-like AlN and the particle-like and strip-like TiN formed in the alloy. The application of the NiCrAlY and NiCoCrAlYHfSi coatings greatly improved the oxidation resistance of DD98M alloy. After 500 h oxidation, α-Al{sub 2}O{sub 3} was still the dominate phase in the oxide scales formed on the coated specimens. The adhesion of the oxide scale on the NiCoCrAlYHfSi coating was much better than that on the NiCrAlY coating. Interdiffusion occurred between the coatings and the substrate, which led to the formation of the IDZ and SRZ. The IDZ of the NiCrAlY coated specimen was composed of γ phase and Al- and Ta-rich γ′ phase. The γ′ phase in the IDZ accommodated most of the inward diffusing aluminum, so the SRZ formation was suppressed when oxidized at 1050 °C. However the formation of SRZ with μ-TCP still occurred when oxidized at 1000 °C probably due to the low solubility and slow diffusion rate of the alloying elements at lower temperature. The IDZ of the NiCoCrAlYHfSi coated specimen was a single γ phase. A large amount of μ-TCP precipitated in the SRZ of the NiCoCrAlYHfSi coated specimen when oxidized at 1000 °C and 1050 °C. It can be concluded coating composition has a significant effect on the development of the IDZ and SRZ. Thermal exposure temperature also has influences on the formation of the SRZ. The mechanism of SRZ formation and TCP precipitation are discussed. - Graphical abstract: The TEM micrograph of the IDZ and SRZ of the NiCoCrAlYHfSi-coated specimen oxidized at 1050 °C for 100 h and the respective diffraction patterns of the needle-like and the

  4. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  5. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Sachiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)], E-mail: hiromoto.sachiko@nims.go.jp; Yamamoto, Akiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2009-11-30

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m{sup -2} NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10{sup 3}-10{sup 4} times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  6. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    Science.gov (United States)

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cementless Hydroxyapatite Coated Hip Prostheses

    Science.gov (United States)

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  8. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  9. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  10. Quality of Coated Particles : Physical - Mechanical Characterization of Polymeric Film Coatings

    NARCIS (Netherlands)

    Perfetti, G.

    2012-01-01

    All coated particle producers, when applying the coating layer(s) would like to know precisely what is the best coating system to use in order to answer customer’s requests. It is, therefore, of very high relevance for many industries, to have a clear understanding of what are the parameters I need

  11. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P.; Sreenivasan, K.

    2011-12-01

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  12. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Victor, Sunita Prem [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Sharma, Chandra P., E-mail: sharmacp@sctmist.ac.in [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Sreenivasan, K. [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India)

    2011-12-15

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  13. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    International Nuclear Information System (INIS)

    Victor, Sunita Prem; Sharma, Chandra P.; Sreenivasan, K.

    2011-01-01

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  14. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  15. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  16. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  17. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Paper presents the results of the optic diagnostics of plasma of laser flames formed from lead surface and PbGa 2 S 4 laminar crystal using a neodymium laser. It is shown that the most intensive lines in the lead laser plasma are as follows: 405.7, 368.3, 364.0 nm PbI and 220.4 nm PbII while for the laminar crystal base plasma - the combination of the most intensive lines of PbI and GaI emission. One determined the narrow point of recombination fluxes for the ion and the atomic components of laser plasma of lead and of PbGa 2 S 4 crystal. One conducted comparison study of emission dynamics of PbI and GaI lines in laser plasma of the respective metals and of PbGa 2 S 4 crystal [ru

  18. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions.

    Science.gov (United States)

    Sun, Y; Dearnley, P A; Mallia, Bertram

    2017-08-01

    Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 μm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1503-1513, 2017. © 2016 Wiley Periodicals, Inc.

  19. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    Science.gov (United States)

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  20. Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol

    International Nuclear Information System (INIS)

    Kuo, Y.-L.; Chen, H.-W.; Ku, Y.

    2007-01-01

    Silver-modified TiO 2 (Ag-TiO 2 ) and pure TiO 2 coatings were prepared on sapphire substrates by dip-coating process for the photodecomposition of o-cresol. In order to investigate the behaviors of silver incorporated on TiO 2 surface coatings, Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectra (DRS), and photoluminescence (PL) emission spectra were performed. Experimental results indicate that the silver on TiO 2 surface coatings were easily oxidized into silver oxide (Ag 2 O), because of the existence of Ag 2 O crystal phase in XRD spectrum and Ag 2+ -O and O 1s -Ag chemical bonding states in Ag 3d and O 1s narrow scans of XPS, respectively. PL spectra showed that as increasing the amount of silver incorporated, the PL intensity of Ag-TiO 2 coatings evidently decrease, which means that the Ag-TiO 2 coatings have higher efficiencies of charge carrier trapping, immigration and transferring, and subsequently promote the photodecomposition rate constants after the UV/TiO 2 process. An optimal composition of 0.50 wt.% Ag-TiO 2 coating for the photodecomposition of o-cresol correspond to a maximum photodecomposition rate constant (k value) of 0.01 min -1 as compared to that of the pure TiO 2 coatings (k = 0.0062 min -1 )

  1. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  2. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Directory of Open Access Journals (Sweden)

    Giulio Benetti

    2017-03-01

    Full Text Available Ultrathin coatings based on bi-elemental nanoparticles (NPs are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  3. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Science.gov (United States)

    Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-03-01

    Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  4. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings.

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-08-07

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr₂N, (CrAl)₂N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr₂N and (CrAl)₂N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  5. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  6. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  7. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Peilei Zhang

    2018-05-01

    Full Text Available Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM, X-ray diffraction (XRD, and scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS. According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr3Si+γ-Ni+Cuss (Coating 1, Ni-26Cr-29Si, Cr6Ni16Si7+Ni2Si+Cuss (Coating 2, Ni-10Cr-30Si and Cr3Ni5Si2+Cr2Ni3+Cuss (Coating 3, Ni-29Cr-16Si. The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT and Lipton-Kurz-Trivedi (LKT models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  8. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Directory of Open Access Journals (Sweden)

    Lea H. Rossander

    2014-08-01

    Full Text Available The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  9. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  10. A new quaternary phase observed in a laser treated Zn–Al–Mg–Si coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z., E-mail: zchen@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 (Australia); Peng, C.-T. [School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 (Australia); Liu, Q.; Smith, R.; Nolan, D. [Bluescope Steel Research, Bluescope Steel Limited, Locked Bag 8825, Wollongong DC, NSW 2500 (Australia)

    2014-03-15

    Highlights: • A new quaternary phase was discovered in laser treated Zn–55Al–2Mg–1Si coating. • The crystal structure of the new phase was determined by TEM. • The new phase was not a metastable phase induced by the rapid cooling of the laser treatment. • Laser treatment led to not only a much finer microstructure but also changes of phases in the interdendritic areas of the coating. -- Abstract: The microstructure of laser resurfaced Zn–55Al–2Mg–1.5Si coating produced on a hot-dip simulator was characterised by transmission electron microscopy. A new quaternary phase was observed and its crystal structure was determined by electron diffraction.

  11. A new quaternary phase observed in a laser treated Zn–Al–Mg–Si coating

    International Nuclear Information System (INIS)

    Chen, Z.; Peng, C.-T.; Liu, Q.; Smith, R.; Nolan, D.

    2014-01-01

    Highlights: • A new quaternary phase was discovered in laser treated Zn–55Al–2Mg–1Si coating. • The crystal structure of the new phase was determined by TEM. • The new phase was not a metastable phase induced by the rapid cooling of the laser treatment. • Laser treatment led to not only a much finer microstructure but also changes of phases in the interdendritic areas of the coating. -- Abstract: The microstructure of laser resurfaced Zn–55Al–2Mg–1.5Si coating produced on a hot-dip simulator was characterised by transmission electron microscopy. A new quaternary phase was observed and its crystal structure was determined by electron diffraction

  12. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  13. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    Science.gov (United States)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  14. Beginner’s guide to flux crystal growth

    CERN Document Server

    Tachibana, Makoto

    2017-01-01

    This book introduces the principles and techniques of crystal growth by the flux method, which is arguably the most useful way to obtain millimeter- to centimeter-sized single crystals for physical research. As it is possible to find an appropriate solvent (“flux”) for nearly all inorganic materials, the flux method can be applied to the growth of many crystals ranging from transition metal oxides to intermetallic compounds. Both important principles and experimental procedures are described in a clear and accessible manner. Practical advice on various aspects of the experiment, which is not readily available in the literature, will assist the beginning graduate students in setting up the lab and conducting successful crystal growth. The mechanisms of crystal growth at an elementary level are also provided to better understand the techniques and to help in assessing the quality of the crystals. The book also contains many photographs of beautiful crystals with important physical properties of current inte...

  15. Soliton cellular automaton associated with Dn(1)-crystal B2,s

    Science.gov (United States)

    Misra, Kailash C.; Wilson, Evan A.

    2013-04-01

    A solvable vertex model in ferromagnetic regime gives rise to a soliton cellular automaton which is a discrete dynamical system in which site variables take on values in a finite set. We study the scattering of a class of soliton cellular automata associated with the U_q(D_n^{(1)})-perfect crystal B2, s. We calculate the combinatorial R matrix for all elements of B2, s ⊗ B2, 1. In particular, we show that the scattering rule for our soliton cellular automaton can be identified with the combinatorial R matrix for U_q(A_1^{(1)}) oplus U_q(D_{n-2}^{(1)})-crystals.

  16. Formation of hydrotalcite coating on the aluminum alloy 6060 in spray system

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2016-01-01

    Coatings with the composition of Li-Al-NO3 hydrotalcite were formed on the Al alloy 6060 using a spray system. The coatings consist of crystals with a typical hydrotalcite structure. Dense, uniform and blade-like flakes cover completely the surface of the Al substrate. The coatings display a multi......-layer structure with average thickness of ∼1000 nm. The hydrotalcite-coated samples performed better than those without coatings in salt-spray and filiform-corrosion tests, and further treatment involving sealing with a Mg acetate solution and dipping in a H2O2 + Ce-based solution improved the corrosion...

  17. MoS2 coated hollow carbon spheres for anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yufei; Wang, Ye; Shi, Wenhui; Yang, Huiying; Yang, Jun; Huang, Wei; Dong, Xiaochen

    2016-01-01

    With the assistance of resorcinol–formaldehyde, MoS 2 coated hollow carbon spheres (C@MoS 2 ) were synthesized through a facile hydrothermal route followed by heat and alkali treatments. The measurements indicate that the hollow carbon spheres with an average diameter of 300 nm and shell thickness of 20 nm. And the hollow core are uniformly covered by ultrathin MoS 2 nanosheets with a length increased to 400 nm. The unique hollow structure and the synergistic effect between carbon layer and MoS 2 nanosheets significantly enhance the rate capability and electrochemical stability of C@MoS 2 spheres as anode material of lithium-ion battery. The synthesized C@MoS 2 delivered a capacity of 750 mAh g −1 at a current density of 100 mA g −1 . More importantly, the C@MoS 2 maintained a reversible capacity of 533 mAh g −1 even at a high current density of 1000 mA g −1 . The study indicated that MoS 2 coated hollow carbon spheres can be promising anode material for next generation high-performance lithium-ion batteries. (paper)

  18. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  19. Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2-xInxS2

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2015-09-01

    Single crystals of the shandite-type half metallic ferromagnet Co3Sn2S2, and its In-substituted compounds, Co3Sn2-xInxS2 (0crystals. Single crystals of the two end members, Co3Sn2S2 and Co3In2S2, and solid solutions with low In concentrations (x≤0.35) were grown out of Sn and In self flux. Solid solution single crystals with higher In concentrations were grown out of Sn, In and Pb mixture flux. Grown crystals were characterized using the powder x-ray diffraction, wavelength-dispersive x-ray spectroscopy and magnetization measurements. The shandite structure with R3¯m symmetry was confirmed and crystal structure parameters of the obtained plate-shaped hexagonal crystals were refined using the Rietveld analysis. Magnetization measurements show suppression of the ferromagnetic ordering, observed in Co3Sn2S2, by In-substitution as reported for polycrystalline samples. The obtained crystals are useful to study anisotropy in magnetic and transport properties and further interesting magnetotransport properties of the layered compounds.

  20. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology

    Science.gov (United States)

    Zhao, Xiaoyu; Lu, Zhibin; Wu, Guizhi; Zhang, Guangan; Wang, Liping; Xue, Qunji

    2016-06-01

    The DLC/MoS2 multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS2 in humid air.

  1. New Polymer Coatings for Chemically Selective Mass Sensors

    Science.gov (United States)

    Sims, S. C.; Wright, Cassandra; Cobb, J.; McCalla, T.; Revelle, R.; Morris, V. R.; Pollack, S. K.

    1997-01-01

    There is a current need to develop sensitive and chemically specific sensors for the detection of nitric acid for in-situ measurements in the atmosphere. Polymer coatings have been synthesized and tested for their sensitivity and selectivity to nitric acid. A primary requirement for these polymers is detectability down to the parts per trillion range. The results of studies using these polymers as coatings for quartz crystal microbalances (QCM) and surface acoustic wave (SAW) devices will be presented.

  2. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  3. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  4. Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+

    Science.gov (United States)

    Wang, Fei; Chen, Xiumin; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2012-08-01

    Quantum chemistry and experimental method were used to study on pure and doped Gd2O2S crystals in this paper. The band structure and DOS diagrams of pure and doped Gd2O2S crystals which calculated by using DFT (Density Functional Theory) method were illustrated to explain the luminescent properties of impurities in crystals. The calculations of the crystal structure were finished by using the program of CASTEP (Cambridge Sequential Total Energy Package). The samples showed the characteristic emissions of Tb3+ ions with 5D4-7FJ transitions and Eu3+ ions with 5D0-7FJ transitions which emit pure green luminescence and red luminescence respectively. The experimental excitation spectra of Tb3+ and Eu3+ doped Gd2O2S are in agreement of the DOS diagrams over the explored energy range, which has allowed a better understanding of different luminescence mechanisms of Tb3+ and Eu3+ in Gd2O2S crystals.

  5. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  6. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films

    Science.gov (United States)

    Hurma, T.

    2018-06-01

    ZnS and ZnS:Al films have been deposited by ultrasonic spray pyrolysis (USP) method. Three different atomic ratios of aluminium were used as the dopant element. The effects of aluminum incorporation on structural and optical properties of the ZnS films have been investigated. The XRD analysis showed that the cubic structure of the ZnS was not much affected by Al doping. The crystal size of the films decreased, as the Al ratio increased. Al incorporation caused an increase in the intensity of ZnS films' peaks observed in Raman spectra and nearly symmetrical peaks were observed. Al doping caused a small decrease in optical band gap of the ZnS film. The coating of ZnS:Al films on the surface was quite good and there were not any deformation in their crystallization levels. Reflectance values of films are about 5% in the visible region but a little decrease is seen with aluminum doping. We can say that Al doping tends to improve the optical properties of the ZnS:Al films when compared with the undoped ZnS.

  7. Ellipsometry study of optical parameters of AgIn5S8 crystals

    Science.gov (United States)

    Isik, Mehmet; Gasanly, Nizami

    2015-12-01

    AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.

  8. Iron crystallization in a fluidized-bed Fenton process.

    Science.gov (United States)

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Laser plasmas produced at the surfaces of lead and a PbGa 2 S 4 layered crystal irradiated by a neodymium laser with λ = 1.06 μm, pulse duration τ = 20 ns, and intensity W = (1-2) x 10 9 W/cm 2 are studied using optical diagnostics. It is shown that, in a lead plasma, the most intense (characteristic) lines are the PbI 405.7-nm, PbI 368.3-nm, PbI 364-nm, and PbII 220.4-nm lines. In a layered crystal plasma, the emission spectrum is an aggregation of the most intense PbI and GaI lines, whereas sulfur lines are absent. The bottlenecks of the recombination of the ionic and atomic components of the lead and PbGa 2 S 4 crystal plasmas are determined. The average propagation velocity of the lead laser plume is 18-20 km/s. A comparative analysis of the emission dynamics of PbI and GaI lines in the laser plasmas of these metals and in the plasma of a PbGa 2 S 4 crystal is carried out. The results obtained are important for the optical diagnostics of the plasmas of lead- and gallium-containing crystals and for the optimization of laser deposition of the thin films of these substances

  10. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    Science.gov (United States)

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  11. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    International Nuclear Information System (INIS)

    Charlena; Sukaryo, S.G.; Fajar, M.

    2016-01-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO 3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed. (paper)

  12. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    Science.gov (United States)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  13. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  14. Optimizing cathodic electrodeposition parameters of ceria coating to enhance the oxidation resistance of a Cr{sub 2}O{sub 3}-forming alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    2016-07-29

    Nano-ceria coating was deposited onto a chromium oxide forming alloy through galvanostatic cathodic electro-deposition method in cerium nitrate electrolyte. The electrochemical behavior and influence of main deposition parameters of current density, deposition time, and temperature were studied. It was seen that the crystal size decreased with increasing of current density while micro-cracks were also observed at higher current density. Slightly increasing of crystal size and smoothing of surface morphology were seen with increasing of deposition time. It was reported that the bath temperature has the most significant effect on crystal size and surface morphology of the deposit. Green rust as corrosion product was also observed with deposition temperatures higher than 35 °C. Optimized deposition parameters were used to produce homogeneous, continuous and green rust-free coatings which enhance the oxidation resistance of alloy 230. The electro-deposition process was found to be an accessible and efficient method to prepare nano-crystalline ceria coating. - Highlights: • Electrodeposition was used to make ceria coating on a chromium oxide forming alloy; • Deposition parameters of current density, time and temperature were investigated; • Crystal size and morphology of coating vary with changing of deposition parameters; • Coating prepared with optimized parameters reduced oxidation rate of alloy 230.

  15. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  16. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  17. Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast

    Science.gov (United States)

    Hiromoto, Sachiko; Yamazaki, Tomohiko

    2017-12-01

    Octacalcium phosphate (OCP) and hydroxyapatite (HAp) coatings were developed to control the degradation speed and to improve the biocompatibility of biodegradable magnesium alloys. Osteoblast MG-63 was cultured directly on OCP- and HAp-coated Mg-3Al-1Zn (wt%, AZ31) alloy (OCP- and HAp-AZ31) to evaluate cell compatibility. Cell proliferation was remarkably improved with OCP and HAp coatings which reduced the corrosion and prevented the H2O2 generation on Mg alloy substrate. OCP-AZ31 showed sparse distribution of living cell colonies and dead cells. HAp-AZ31 showed dense and homogeneous distribution of living cells, with dead cells localized over and around corrosion pits, some of which were formed underneath the coating. These results demonstrated that cells were dead due to changes in the local environment, and it is necessary to evaluate the local biocompatibility of magnesium alloys. Cell density on HAp-AZ31 was higher than that on OCP-AZ31 although there was not a significant difference in the amount of Mg ions released in medium between OCP- and HAp-AZ31. The outer layer of OCP and HAp coatings consisted of plate-like crystal with a thickness of around 0.1 μm and rod-like crystals with a diameter of around 0.1 μm, respectively, which grew from a continuous inner layer. Osteoblasts formed focal contacts on the tips of plate-like OCP and rod-like HAp crystals, with heights of 2-5 μm. The spacing between OCP tips of 0.8-1.1 μm was wider than that between HAp tips of 0.2-0.3 μm. These results demonstrated that cell proliferation depended on the micromorphology of the coatings which governed spacing of focal contacts. Consequently, HAp coating is suitable for improving cell compatibility and bone-forming ability of the Mg alloy.

  18. Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries

    KAUST Repository

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g-1, respectively, at current density of 100 mA g-1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries

    KAUST Repository

    Ahmed, Bilal

    2015-06-01

    It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g-1, respectively, at current density of 100 mA g-1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  1. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  2. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    Science.gov (United States)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  3. [Research on increasing X-ray protection capability based on photonic crystal technology].

    Science.gov (United States)

    Li, Ping; Zhao, Peng; Zhang, Rui

    2014-06-01

    Light cannot be propagated within the range of photonic crystal band gaps. Based on this unique property, we proposed a method to improve anti-radiation capability through one-dimensional photonic crystal coating. Using transmission matrix method, we determined the appropriate dielectric materials, thickness and periodic numbers of photonic crystals through Matlab programming simulation. Then, compound one-dimensional photonic crystal coating was designed which was of high anti-radiation rate within the range of X-ray. As is shown through simulation experiments, the reflection rate against X-ray was higher than 90 percent, and the desired anti-radiation effect was achieved. Thus, this method is able to help solve the technical problems facing the inorganic lead glass such as thickness, weightiness, costliness, high lead equivalent, low transparency and high cost. This method has won China's national invention patent approval, and the patent number is 201220228549.2.

  4. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  5. Growth of ZnS-coated ZnO nanorod arrays on (1 0 0) silicon substrate by two-step chemical synthesis

    International Nuclear Information System (INIS)

    Kumarakuru, Haridas; Urgessa, Zelalem N.; Olivier, Ezra J.; Botha, Johannes R.; Venter, Andre; Neethling, Johannes H.

    2014-01-01

    Highlights: • ZnS coated ZnO nanorods were synthesized using a simple two-step chemical method. • The uniform ZnS coating exhibits a polycrystalline face centered cubic structure. • Initial ZnS deposit exhibits a partial epitaxial relationship with ZnO. • An ion-exchange reaction was deduced for this sulphidation process. • Detailed microscopy results are complemented by room temperature photoluminescence. - Abstract: In this study, ZnS coated ZnO nanorods were synthesized using a simple, cost effective two-step chemical method. A continuous coating of ZnS on a ZnO nanorod, having a uniform thickness, is demonstrated using high resolution transmission electron microscopy, electron energy loss spectroscopy and selected area diffraction (SAD). These core–shell structures can be produced at relatively low temperatures (75 °C) and within relatively short times (3 h). The ZnS coating exhibits a polycrystalline structure with a lattice parameter of 5.35 Å, which is 1.1% smaller than the unstrained cubic zinc-blende structure. The SAD pattern taken at the ZnO–ZnS interface exhibits a partial epitaxial relationship, where (1 0 –1 0) ZnO//(1 1 1) ZnS. Our detailed analysis shows that the ZnS shell comprises two different regions: a ZnS rich inner shell region is produced via the first sulphidation process, followed by a mixture of ZnO and ZnS in the outer shell region during the second treatment. From the detailed microscopy results a growth mechanism is proposed for each step of the sulphidation process. The results are complemented by room temperature photoluminescence spectroscopy. Strong emission from free excitons in ZnO is observed at 3.27 eV before ZnS coating, while a composite band peaking at 2.9 eV is measured after sulphidation. The origin of the latter will be discussed

  6. Growth of ZnS-coated ZnO nanorod arrays on (1 0 0) silicon substrate by two-step chemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kumarakuru, Haridas, E-mail: haridas.kumarakuru@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy (CHRTEM), Department of Physics, P.O.Box 77000, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth 6031 (South Africa); Urgessa, Zelalem N. [Department of Physics, Nelson Mandela Metropolitan University (NMMU), P.O. Box 77000, Port Elizabeth 6031 (South Africa); Olivier, Ezra J. [Centre for High Resolution Transmission Electron Microscopy (CHRTEM), Department of Physics, P.O.Box 77000, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth 6031 (South Africa); Botha, Johannes R.; Venter, Andre [Department of Physics, Nelson Mandela Metropolitan University (NMMU), P.O. Box 77000, Port Elizabeth 6031 (South Africa); Neethling, Johannes H. [Centre for High Resolution Transmission Electron Microscopy (CHRTEM), Department of Physics, P.O.Box 77000, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth 6031 (South Africa); Department of Physics, Nelson Mandela Metropolitan University (NMMU), P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2014-11-05

    Highlights: • ZnS coated ZnO nanorods were synthesized using a simple two-step chemical method. • The uniform ZnS coating exhibits a polycrystalline face centered cubic structure. • Initial ZnS deposit exhibits a partial epitaxial relationship with ZnO. • An ion-exchange reaction was deduced for this sulphidation process. • Detailed microscopy results are complemented by room temperature photoluminescence. - Abstract: In this study, ZnS coated ZnO nanorods were synthesized using a simple, cost effective two-step chemical method. A continuous coating of ZnS on a ZnO nanorod, having a uniform thickness, is demonstrated using high resolution transmission electron microscopy, electron energy loss spectroscopy and selected area diffraction (SAD). These core–shell structures can be produced at relatively low temperatures (75 °C) and within relatively short times (3 h). The ZnS coating exhibits a polycrystalline structure with a lattice parameter of 5.35 Å, which is 1.1% smaller than the unstrained cubic zinc-blende structure. The SAD pattern taken at the ZnO–ZnS interface exhibits a partial epitaxial relationship, where (1 0 –1 0) ZnO//(1 1 1) ZnS. Our detailed analysis shows that the ZnS shell comprises two different regions: a ZnS rich inner shell region is produced via the first sulphidation process, followed by a mixture of ZnO and ZnS in the outer shell region during the second treatment. From the detailed microscopy results a growth mechanism is proposed for each step of the sulphidation process. The results are complemented by room temperature photoluminescence spectroscopy. Strong emission from free excitons in ZnO is observed at 3.27 eV before ZnS coating, while a composite band peaking at 2.9 eV is measured after sulphidation. The origin of the latter will be discussed.

  7. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  8. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  9. Preparation and characterization of Al{sub 2}O{sub 3} coating by MOD method on CLF-1 RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Yang, J.J., E-mail: jjyang@scu.edu.cn [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Feng, Y.J. [Southwestern Institute of Physics, Chengdu 614000 (China); Li, F.Z.; Liao, J.L.; Yang, Y.Y. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Feng, K.M. [Southwestern Institute of Physics, Chengdu 614000 (China); Liu, N. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-04-15

    Metal organic decomposition (MOD) method was proposed to prepare Al{sub 2}O{sub 3} TPB coatings on CLF-1 RAFM steel. A comprehensive characterization of SEM, XPS, and XRD demonstrated the formation of Al{sub 2}O{sub 3} coatings. The effect of the preparation parameters, including annealing temperature T{sub a}, withdrawal speed V{sub w} and immersion time t{sub i} on the microstructure and properties of the coatings was investigated. It showed that amorphous aluminum oxide coating began to transform to γ-Al{sub 2}O{sub 3} at temperature of T{sub a} = 600 °C. The Al{sub 2}O{sub 3} coating with T{sub a} = 700 °C and T{sub b} = 500 °C performed the best crystallization feature. The hardness of the coatings gradually increased with increasing V{sub w}, while the corrosion resistance exhibited a reverse trend. Meanwhile, the nanohardness and corrosion resistance of the coating with t{sub i} = 300 s was improved as compared to the coating with t{sub i} = 0 s. Moreover, the effect of particle size and substrate oxidation on the mechanical property and corrosion resistance of the coatings was discussed. - Highlights: •MOD method was proposed to prepare Al{sub 2}O{sub 3} TPB on CLF-1 RAFM steel. •Effect of preparation parameters on the coating microstructure and properties was studied preliminary. •High quality MOD coating can be developed by multi-baking process.

  10. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  11. Peculiarities of linear thermal expansion of CuInS2 single crystal

    International Nuclear Information System (INIS)

    Akira, Nagaoka; Kenji, Yoshino; Hideto, Miyake

    2010-01-01

    Full text : I-III-VI 2 chalcopyrire semiconductors have made rapid progress in recent years. In addition chalcopyrite semiconductors show unique thermal properties. Usually, liner thermal expansion in semiconductors increases with increasing temperature. However, liner thermal expansion of most chalcopyrite semiconductors decreases at low temperature. For example, AgGaSe 2 shows decreasing the liner thermal expansion below 100 K 1 , 2). It is well known that high-quality single crystals of the I-III-VI 2 compounds are difficult to grow because most of the compounds grow through a peritectic reaction or a solid state transition during the cooling process. CuInS 2 single crystal can be grown by traveling heater method (THM), which is one of the solution growth techniques. Advantages of the THM growth are following that growth temperature is low compared with that of the other melt growth and larger crystals can be grown compared with a conventional solution growth. In a previous study, CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuInSe 2 ternary compounds have been obtained by the THM technique. In this work, it is investigated a liner thermal expansion of single crystal CuInS 2 by using X-ray diffraction. Measurement temperature was changed from 10 K to 300 K. From results of XRD measurement, it is calculated lattice constants of a and c axes and the liner thermal expansion. As a result, lattice constants of a axis increase with increasing temperature, that of c axis decreases with increasing temperature. The liner thermal expansion decreases for T 2 single crystal at low temperature

  12. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  13. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Li Qing; Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang; Yang Xiaokui

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  14. Laser cladding Co-based alloy/SiCp composite coatings on IF steel

    International Nuclear Information System (INIS)

    Li Mingxi; He Yizhu; Sun Guoxiong

    2004-01-01

    Hardfacing coatings, made of Co-Cr-W-Ni-Si alloy + 20% SiCp, deposited by laser cladding on IF steel is introduced. Cross-section of such coatings has been examined to reveal their microstructure using optical microscope, scanning electron microscope (SEM) and X-ray diffractometer (XRD). MM-200 type wear tester is used to examine wear resistance of the coatings. The results showed that SiCp is dissolved completely during laser cladding process under this conditions, the primary phase γ-Co dendrite and Si 2 W, CoWSi, Cr 3 Si, CoSi 2 formed by C, Si reacting with other elements existed in the coatings. There existed some crystallization morphologies in different regions, such as planar (at the interface), followed cellular and dendrite crystallization from interface to the surface. The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad. The results also showed that the wear resistance of the clad improved by adding SiCp

  15. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  16. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  17. Gastrointestinal (GI) permeability correlates with trait anxiety and urinary norepinephrine/creatinine (CR)ratio in children with functional abdominal pain (FAP)and irritable bowel syndrome (IBS) but not in controls

    Science.gov (United States)

    FAP and IBS affect 10–15% of school age children and bear many similarities to irritable bowel syndrome (IBS) in adults (e.g., functional pain, visceral hyperalgesia). Animal models of IBS have suggested a relationship between neonatal stress/anxiety and increased GI permeability later in life. We h...

  18. Solvothermal synthesis of 3D photonic crystals based on ZnS/opal system

    Energy Technology Data Exchange (ETDEWEB)

    Chang Xin [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Cao Jieming [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: jmcao@nuaa.edu.cn; Ji Hongmei [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fang Baoqing [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Feng Jie [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Pan Lijia [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang Fang [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Haiyan [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2005-01-15

    We made photonic crystals composed of artificial opals infiltrated with ZnS semiconductor nanocrystals by using self-assembly and solvothermal methods. SEM images show that the silica spheres exhibit a well-ordered arrangement and the ZnS nanocrystals infiltrate within the opal templates by heterogeneous nucleation and growth processing, and the as-synthesized ZnS nanocrystals reveal a cubic phase from X-ray diffraction pattern. Furthermore, the optical properties of the infiltrated opals with different ZnS filling ratio are also studied by transmission spectroscopy, respectively. It is proposed that the position of the stop band can be easily designed by controlling the infiltration ratio of ZnS. These results demonstrate an easy-to-handle and efficient route to obtain high performance photonic crystal structures.

  19. Solvothermal synthesis of 3D photonic crystals based on ZnS/opal system

    International Nuclear Information System (INIS)

    Chang Xin; Cao Jieming; Ji Hongmei; Fang Baoqing; Feng Jie; Pan Lijia; Zhang Fang; Wang, Haiyan

    2005-01-01

    We made photonic crystals composed of artificial opals infiltrated with ZnS semiconductor nanocrystals by using self-assembly and solvothermal methods. SEM images show that the silica spheres exhibit a well-ordered arrangement and the ZnS nanocrystals infiltrate within the opal templates by heterogeneous nucleation and growth processing, and the as-synthesized ZnS nanocrystals reveal a cubic phase from X-ray diffraction pattern. Furthermore, the optical properties of the infiltrated opals with different ZnS filling ratio are also studied by transmission spectroscopy, respectively. It is proposed that the position of the stop band can be easily designed by controlling the infiltration ratio of ZnS. These results demonstrate an easy-to-handle and efficient route to obtain high performance photonic crystal structures

  20. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy.

    Science.gov (United States)

    Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua

    2015-09-25

    The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface.

  1. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  2. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  3. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    Science.gov (United States)

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  4. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  5. Bio-Based Coatings for Paper Applications

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2015-11-01

    Full Text Available The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers.

  6. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hajar [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Moradshahi, Ali, E-mail: moradshahi@susc.ac.ir [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein [Nanotechnology Research Institute, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb{sup 2+} in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb{sup 2+} to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about

  7. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    International Nuclear Information System (INIS)

    Zamani, Hajar; Moradshahi, Ali; Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein

    2014-01-01

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb 2+ in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb 2+ to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm

  8. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  9. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Garcia, Wanius; Travensolo, Regiane F.; Rodrigues, Nathalia C.; Muniz, João R. C.; Caruso, Célia S.; Lemos, Eliana G. M.; Araujo, Ana Paula U.; Carrilho, Emanuel

    2008-01-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source

  10. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Wanius, E-mail: wanius@if.sc.usp.br [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Travensolo, Regiane F. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Rodrigues, Nathalia C.; Muniz, João R. C. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Caruso, Célia S. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Lemos, Eliana G. M. [Laboratório de Bioquímica de Microrganismos e de Plantas, Departamento de Tecnologia, UNESP, Jaboticabal (Brazil); Araujo, Ana Paula U. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Carrilho, Emanuel, E-mail: wanius@if.sc.usp.br [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil)

    2008-02-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source.

  11. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO₃.

    Science.gov (United States)

    Jia, Nan; Xing, Qian; Liu, Xu; Sun, Jing; Xia, Guangmei; Huang, Wei; Song, Rui

    2015-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and the polar β-phase of PVDF shows superb electroactive properties. In order to enhance the β-phase of PVDF, extreme low content of BaTiO3 nanoparticles (BT-NPs) coated with polydopamine (Pdop) were incorporated into PVDF matrix by solution casting. The β-phase of the resulting PVDF nanocomposites film was dramatically increased and the d33 value reached 34.3±0.4 pCN(-1). It is found that the Pdop layer could improve the dispersibility and stability of the BT NPs in solution and endow the BT NPs good dispersity in the PVDF matrix. Moreover, the interfacial interaction between PVDF chains and the surface of BT-Pdop nanoparticles (BT-Pdop NPs) were revealed, in which the CF2 groups on PVDF could interact with the electron-rich plane of aromatic ring of Pdop moiety. This interaction, led to the increase of the crystallization activation energy as derived from the DSC nonisothermal crystallization measurement. The α-β crystal transformation, organization of interfacial interactions as well as the prevention of agglomeration of BT-NPs confer the improvement of mechanical and thermal properties of PVDF, such as toughness, tensile strength, elongation at break, and thermal conductivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  13. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  14. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of gamma radiation and impurity atoms on the photoconductivity of GeS single crystals

    International Nuclear Information System (INIS)

    Madatov, R.S.; Alekperov, A.S.

    2013-01-01

    Wide opportunities for using of layered semiconductors, particularly in optoelectronics have generated considerable interest to them. Recently it was created the unique device from GeS for the storage of solar energy. The investigated GeS 1 -xNd x S single crystals were grown by the Bridgman method. The samples were irradiated by gamma-quanta and was conducted to install 60Co at room temperature. Irradiation of p-GeS 1 -xNd x S single crystals by small doses of gamma rays increases the photoconductivity on 40%

  16. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications

    Science.gov (United States)

    Saleh, Muad; Lynn, Kelvin G.; McCloy, John S.

    2017-05-01

    ZnS-based materials have a long history of use as x-ray luminescent materials. ZnS was one of the first discovered scintillators and is reported to have one of the highest scintillator efficiencies. The use of ZnS for high energy luminescence has been thus far limited to thin powder screens, such as ZnS:Ag which is used for detecting alpha radiation, due to opacity to its scintillation light, primarily due to scattering. ZnS in bulk form (chemical vapor deposited, powder processed, and single crystal) has high transmission and low scattering compared to powder screens. In this paper, the performance of single crystalline ZnS is evaluated for low energy x-ray (PLE) of several undoped ZnS single crystals is compared to their Radioluminescence (RL) spectra. It was found that the ZnS emission wavelength varies on the excitation source energy.

  17. Crystal structure and optical absorption spectra of Ga0.5Fe0.5InS3 and Ga0.5Fe0.25In1.25S3 crystals

    International Nuclear Information System (INIS)

    Gusejnov, G.G.; Musaeva, N.N.; Kyazumov, M.G.; Asadova, I.B.; Aliev, O.M.

    2003-01-01

    Single crystals of Ga 0.5 Fe 0.5 InS 3 are grown by the method of chemical gas-transport reactions and those of Ga 0.5 Fe 0.25 In 1.25 S 3 - by Bridgman method. X-ray diffraction studies reveal that they crystallize in trigonal and rhombohedral systems with lattice parameters of a = 3.796 x 2 A, c = 12.210 A, P3m1; a = 3.786 x 2 A, c = 36.606 A, R3m, respectively. An optical absorption edge in a wide range of photon energy and an energy gap width are determined: E g = 1.885 eV for Ga 0.5 Fe 0.5 InS 3 and E g 1.843 eV for Ga 0.5 Fe 0.25 In 1.25 S 3 [ru

  18. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  19. Self-adapting metal-ceramic coating for biomass and waste incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, Martin [Technische Univ. Muenchen (Germany); Fehr, Karl Thomas; Ye, Ya-Ping [Ludwig-Maximilians-Univ., Muenchen (Germany); Loeh, Ingrid; Mocker, Mario; Wolf, Gerhard [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2010-07-01

    Thermally sprayed coatings might become a reasonable alternative to cost-intensive cladding of heat exchangers in biomass and waste incineration. Shortcomings of these coatings might be overcome by a double-layer system, consisting of Alloy 625 covered with yttria-stabilized zirconia. Under appropriate conditions, re-crystallized zirconium oxide and chromium oxide form a dense, self-adapting and self-healing barrier against further infiltration of gaseous species. (orig.)

  20. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    International Nuclear Information System (INIS)

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  1. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Liana, E-mail: liana.annunziatta@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); Monasse, Bernard, E-mail: bernard.monasse@mines-paristech.fr [Mines-ParisTech, CEMEF, Centre de Mise en Forme des Matériaux, UMR CNRS 7635, Sophia Antipolis (France); Rizzo, Paola; Guerra, Gaetano [Dipartimento di Chimica e Biologia, Università degli studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Duc, Michel [Total Petrochemicals Research Feluy, Zone Industrielle Feluy C, B-7181 Seneffe (Belgium); Carpentier, Jean-François, E-mail: jean-francois.carpentier@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2013-09-16

    Crystallization and morphological features of syndiotactic-b-atactic polystyrene stereodiblock copolymers (sPS-b-aPS), atactic/syndiotactic polystyrene blends (aPS/sPS), and aPS/sPS blends modified with sPS-b-aPS, with different compositions in aPS and sPS, have been investigated using differential scanning calorimetry (DSC), polarized light optical microscopy (POM) and wide angle X-ray diffraction (WAXRD) techniques. For comparative purposes, the properties of parent pristine sPS samples were also studied. WAXRD analyses revealed for all the samples, independently from their composition (aPS/sPS ratio) and structure (blends, block copolymers, blends modified with block copolymers), the same polymorphic β form of sPS. The molecular weight of aPS and sPS showed opposite effects on the crystallization of 50:50 aPS/sPS blends: the lower the molecular weight of aPS, the slower the crystallization while the lower the molecular weight of sPS, the faster the crystallization. DSC studies performed under both isothermal and non-isothermal conditions, independently confirmed by POM studies, led to a clear trend for the crystallization rate at a given sPS/aPS ratio (ca. 50:50 and 20:80): sPS homopolymers > sPS-b-aPS block copolymers ∼sPS/aPS blends modified with sPS-b-aPS copolymers > sPS/aPS blends. Interestingly, sPS-b-aPS block copolymers not only crystallized faster than blends, but also affected positively the crystallization behavior of blends. At 50:50 sPS/aPS ratio, blends (Blend-2), block copolymers (Cop-1) and blends modified with block copolymers (Blend-2-mod) crystallized via spherulitic crystalline growth controlled by an interfacial process. In all cases, an instantaneous nucleation was observed. The density of nuclei in block copolymers (160,000−190,000 nuclei mm{sup −3}) was always higher than that in blends and modified blends (30,000−60,000 nuclei mm{sup −3}), even for quite different sPS/aPS ratio. At 20:80 sPS/aPS ratio, the block copolymers

  2. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  3. Barium fluoride surface preparation, analysis and UV reflective coatings at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) has begun a program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of barium fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. These lapped surfaces have been shown to be crystalline using Rutherford Back-scattering (RBS). Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long barium fluoride crystals to be polished and lapped at a time with the necessary tolerances for the 16,000 crystal Barium Fluoride Calorimeter. In addition, results will be presented on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  4. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  5. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-06-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  6. Formulation of Zero-Trans Crystalized Fats Produced from Palm Stearin and High Oleic Safflower Oil Blends

    Directory of Open Access Journals (Sweden)

    Nydia E. Buitimea-Cantúa

    2017-01-01

    Full Text Available High intake of trans fat is associated with several chronic diseases such as cardiovascular disease and cancer. Fat blends, produced by direct blending process of palm stearin (PS with high oleic safflower oil (HOSO in different concentrations, were investigated. The effects of the PS addition (50, 70, or 90% and the rate of agitation (RA (1000, 2000, or 3000 rpm on physical properties, fatty acid profile (FAP, trans fatty acids (TFA, crystal structure, and consistency were researched. The blend containing 50% of each sort of oil (50% PS/50% HOSO showed that melting point and features were similar to the control shortening. The saturated fatty acids (SFA were higher followed by monounsaturated (MUFA and polyunsaturated fatty acids (PUFA. Significant differences in the content of palmitic and oleic acids among blends were observed. The 50% PS/50% HOSO blend contained higher oleic acid (42.9% whereas the 90% PS/10% HOSO was higher in palmitic acid (56.9%. The blending of PS/HOSO promoted the β crystal polymorphic forms. The direct blending process of equal amounts of PS and HOSO was an adequate strategy to formulate a new zero-trans crystallized vegetable fats with characteristics similar to commercial counterparts with well-balanced fats rich in both omega 3 and omega 6 fatty acids.

  7. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  8. Productivity of pigs fed with solid-state fermented apple pomace and an enzymatic complex/Productividad de cerdos alimentados con bagazo de manzana fermentado en estado sólido y un complejo enzimático

    Directory of Open Access Journals (Sweden)

    Francisco Héctor Chamorro-Ramírez

    2017-09-01

    Full Text Available The productive performance of pigs fed with solid-state fermented apple pomace (FAP and an enzymatic complex (ENZ was evaluated. Twenty-four Landrace x York (38.9 ± 3.6 kg pigs were fed ad libitum with dierent diet treatments including FAP and ENZ: T0-0 (0 g kg−1 FAP - 0 g kg−1 ENZ, T0-1 (0 g kg−1 FAP + 1 g kg−1 ENZ, T50-0 (50 g kg−1 FAP + 0 g kg−1 ENZ, T50-1 (50 g kg−1 FAP + 1 g kg−1 ENZ, T100-0 (100 g kg−1 FAP + 0 g kg−1 ENZ and T100-1 (100 g kg−1 FAP + 1 g kg−1 ENZ. Productivity; Feed intake, F:G ratio, Weight gain, return on investment by monetary unit (protability index, PI and carcass traits; Carcass dressing percent and primary cuts, were evaluated. Data were analyzed according to the randomized complete block design. Productivity and feeding characteristics were not aected by FAP or ENZ (p > 0.05. Hot dressing percent was aected by ENZ (p = 0.0497. T100-0 and T100-0 showed similar (p > 0.05 value to T0-0. Primary cut yield was not negatively aected (p > 0.05. The best PI was obtained with T50-0 in growing phase. FAP improved PI only in growing phase and ENZ combined with FAP showed variant PI. Results showed that FAP may be considered as a suitable option for feeding pigs because it maintains animal productivity

  9. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  10. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  11. High-power optical coatings for a mega-joule class ICF laser

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Thomas, I.M.; Campbell, J.H.; Rainer, F.

    1992-11-01

    As a consequence of advancements in Inertial Confinement Fusion research, LLNL is developing plans for a new 1.5 to 2 mega-joule solid-state Nd:glass laser designed to achieve fusion ignition. The new design is possible in part due to advances in optical coatings suitable for high power laser systems. High damage threshold mirrors and polarizers are comprised of electron beam deposited dielectric multilayers. Subthreshold illumination, or laser conditioning, of the multilayer coatings results in an increase in the damage thresholds by factors of 2 to 3 at 1.06μm, thus meeting the fluence requirements of the advanced architecture. For anti-reflective coatings, protective organic coatings for non-linear crystals and phase plates for beam smoothing, sol-gel films provide high damage thresholds coatings at low cost

  12. Numerical investigation of the propagation of elastic wave modes in a one-dimensional phononic crystal plate coated on a uniform substrate

    International Nuclear Information System (INIS)

    Hou Zhilin; Assouar, Badreddine M

    2009-01-01

    The propagation of wave modes in a two-layer free standing plate composed of a one-dimensional phononic crystal (PC) thin layer coated on a uniform substrate was investigated numerically by the modified plane wave expansion method. The band structures of the system with different thicknesses of the substrate were calculated. The numerical result showed that Bragg scattering by the periodic structure in a PC and wave scattering by the free surface could be coupled to each other with an added substrate layer. The properties of the confined modes in such a system, for example, the Love-wave-like mode, the confined PC mode (which is localized mainly in the PC layer) and the surface mode on the free surface of the substrate layer, were investigated.

  13. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Schneider, Sabine; Paoli, Massimo

    2005-01-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding

  14. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sabine; Paoli, Massimo, E-mail: max.paoli@nottingham.ac.uk [School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding.

  15. Biomarkers in white-coat hypertension

    OpenAIRE

    Martin, Catherine Ann

    2017-01-01

    The introduction of ambulatory blood pressure monitoring in the 1960s provided new insights into the nature of high blood pressure disorders. Blood pressure is now categorised into four quadrants:normotension, masked hypertension, hypertension and white-coat hypertension. In white-coat hypertension blood pressure is elevated when taken at the doctor’s office but normal if taken outside the doctor’s office. Several controversies are associated with white-coat hypertension, which are discuss...

  16. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  17. Composition superconductive plumbous coatings

    International Nuclear Information System (INIS)

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  18. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H₂S and CO₂.

    Science.gov (United States)

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-06-09

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  19. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  20. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding.

    Science.gov (United States)

    Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang

    2017-12-28

    The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS₂ and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr 23 C₆, and CoC x . Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS₂) were 587.3 HV 0.5 , 0.426, and 5.61 × 10 -5 mm³/N·m, respectively.

  1. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Liuyang Fang

    2017-12-01

    Full Text Available The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS2, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive spectrometer (EDS, as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS2 and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr23C6, and CoCx. Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS2 were 587.3 HV0.5, 0.426, and 5.61 × 10−5 mm3/N·m, respectively.

  2. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  3. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  4. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    International Nuclear Information System (INIS)

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4 3 2 1 2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4 3 2 1 2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation

  5. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  6. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  7. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  8. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings

    International Nuclear Information System (INIS)

    Vasilić, R.; Stojadinović, S.; Radić, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbić, B.

    2015-01-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO 2 coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO 2 coatings are partly crystallized and mainly composed of anatase phase TiO 2 , with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO 2 coatings exhibit notable red shift with respect to the pure TiO 2 coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO 2 coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO 2 coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO 2 coatings in 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO 2 coatings is shifted towards red side of the spectrum. • V-doped TiO 2 coatings have better photocatalytic activity than pure TiO 2 . • After 12 h of simulated sunlight irradiation, 67% of methyl orange was decomposed

  9. Radiation induced color in topaz crystals

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Rocca, H.C.C.; Rostilato, M.E.C.M.

    1989-08-01

    The presence of defects and impurities in the crystal lattice alters the eletric field distribution within the crystal, allowing the electrons to occupy energy levels in the forbbiden band. Ionizing radiation supply the required energy to permit the electrons originaly bound to lattice atoms, to occupy effectively those intermediate levels, forming color centers. Dependig upon the nature and energy of the radiation, it is possible to produce defects in regions of the crystal, generating color centers. Based on these premises, a technique to induce color in originally colorless topaz, by using the IEA-R1 nuclear reactor, was developed at Engineering and Industrial Application Department (TE). Samples were irradiated inside iron capsules coated with cadmium foils. The iron, and principaly the cadmium, absorb the thermal neutrons that could activate crystal impurities generating long-lived radioisotopes. The epithermal neutrons that overpass the iron and cadmium barriers interact with the crystal atoms, causing lattice defects which give rise to color center, by subsequent ionization processes. The procedure used at TE induces permanent blue color, in natural colorless topaz. (author) [pt

  10. The crystal structure of kudriavite, (Cd,Pb)Bi2S4

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Makovicky, Emil

    2007-01-01

    The crystal structure of kudriavite, (Cd,Pb)Bi2S4, a new mineral species, was solved from single-crystal X-ray-diffraction data and refi ned to R = 4.9% (4.3% for a model with split mixed-cation sites). Lattice parameters are a 13.095(1), b 4.0032(3), c 14.711(1) Å, 115.59(1)°, V 695.6(1) Å3....... The structure is equivalent to that of synthetic CdBi2S4, space group C2/m, Z = 4, and represents a pavonite homologue, N = 3. It is built of three-octahedron-thick columns of (311)PbS-like slabs combined by "unitcell twinning" in a quasi-mirror-glide succession. The slabs, which are intrinsically of the same...... topology, differ in the coordination state of bordering cations because of the relative positions of the adjacent layers. In the slabs of type I (the "non-accreting" slab common to all pavonite homologues), the central columns of octahedra are fl anked by half-octahedral (square-pyramidal) coordinations...

  11. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    Science.gov (United States)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  12. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  13. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    International Nuclear Information System (INIS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-01-01

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  14. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  15. Levitated crystals and quasicrystals of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Goree, John A [Dept Phys and Astron., University of Iowa

    2012-07-25

    New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.

  16. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    Science.gov (United States)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  17. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  18. Low-cost scalable quartz crystal microbalance array for environmental sensing

    Energy Technology Data Exchange (ETDEWEB)

    Anazagasty, Cristain [University of Puerto Rico; Hianik, Tibor [Comenius University, Bratislava, Slovakia; Ivanov, Ilia N [ORNL

    2016-01-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution (~1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  19. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    Science.gov (United States)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  20. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Angelov, Ts; Aleksandrova, M; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Stefanov, P; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Dilova, T; Grechnikov, A

    2014-01-01

    A study of NO 2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO 2 concentrations. The QCM-ITO system becomes sensitive at NO 2 concentration ≥ 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO 2 concentration. When the NO 2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO 2 in the air at room temperature

  1. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  2. Nonvolatile memory thin film transistors using CdSe/ZnS quantum dot-poly(methyl methacrylate) composite layer formed by a two-step spin coating technique

    Science.gov (United States)

    Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin

    2012-08-01

    The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.

  3. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages oforganic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  4. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H2S and CO2

    Directory of Open Access Journals (Sweden)

    Yiyong Sui

    2017-06-01

    Full Text Available The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  5. The Tribological Performance of CrMoN/MoS2 Solid Lubrication Coating on a Piston Ring

    Directory of Open Access Journals (Sweden)

    Yuelan Di

    2017-05-01

    Full Text Available In order to improve the tribological properties of an engine piston ring and enhance its service life, magnetron sputtering technology and low temperature ion sulphurizing treatment technology were used to prepare CrMoN/MoS2 solid lubricant coating on the surface of an engine piston ring. The morphologies and compositions of the surface and cross-section of the sulfuration layer were analyzed by field emission scanning electron microscopy (FESEM, and wear property under high load, high speed and high temperature conditions were tested by a SRV®4 friction and wear testing machine. The results show that the CrMoN/MoS2 composite coatings appear as a dense grain structure, and the coating is an ideal solid lubrication layer that possesses an excellent high temperature wear resistance, reducing the engine operating temperature abrasion effectively and prolonging the service life of the engine.

  6. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    Wuest, C.R.; Fuchs, B.A.

    1993-05-01

    New machining and polishing techniques have been developed for large barium fluoride scintillating crystals that provide crystalline surfaces without sub-surface damage or deformation as verified by Atomic Force Microscopy (AFM) and Rutherford Back-scattering (RBS) analyses. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large crystal samples. Mass production techniques have also been developed for machining and polishing up to five 50 cm long crystals at one time. We present this technology along with surface studies of barium fluoride crystals polished with this technique. This technology is applicable for a number of new crystal detectors proposed at Colliders including the Barium Fluoride Electromagnetic Calorimeter at SSC, the Crystal Clear Collaboration's cerium fluoride calorimeter at LHC, and the KTeV and PHENIX scintillating hodoscopes at Fermilab, and RHIC, respectively. Lawrence Livermore National Laboratory (LLNL) has an active program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration and cerium fluoride and lead fluoride for the Crystal Clear Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long crystals to be polished and lapped at the same time with tolerances satisfying the stringent requirements of crystal calorimeters. We also discuss results on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  7. In situ X-ray data collection from highly sensitive crystals of Pseudomonas putida PtxS in complex with DNA

    International Nuclear Information System (INIS)

    Pineda-Molina, E.; Daddaoua, A.; Krell, T.; Ramos, J. L.; García-Ruiz, J. M.; Gavira, J. A.

    2012-01-01

    The crystallization of both native P. putida transcriptional regulator PtxS and its complex with its DNA recognition sequence using the counter-diffusion method are reported. Pseudomonas putida PtxS is a member of the LacI protein family of transcriptional regulators involved in glucose metabolism. All genes involved in this pathway are clustered into two operons, kgu and gad. PtxS controls the expression of the kgu and gad operons as well as its own transcription. The PtxS operator is a perfect palindrome, 5′-TGAAACCGGTTTCA-3′, which is present in all three promoters. Crystallization of native PtxS failed, and PtxS–DNA crystals were finally produced by the counter-diffusion technique. A portion of the capillary used for crystal growth was attached to the end of a SPINE standard cap and directly flash-cooled in liquid nitrogen for diffraction tests. A full data set was collected with a beam size of 10 × 10 µm. The crystal belonged to the trigonal space group P3, with unit-cell parameters a = b = 213.71, c = 71.57 Å. Only unhandled crystals grown in capillaries of 0.1 mm inner diameter diffracted X-rays to 1.92 Å resolution

  8. Ag-Ti(C, N)-based coatings for biomedical applications: influence of silver content on the structural properties

    International Nuclear Information System (INIS)

    Manninen, N K; Carvalho, S; Galindo, R Escobar; Benito, N; Palacio, C; Figueiredo, N M; Cavaleiro, A

    2011-01-01

    Ag-TiCN coatings were deposited by dc reactive magnetron sputtering and their structural and morphological properties were evaluated. Compositional analysis showed the existence of Ag-TiCN coatings with different Ag/Ti atomic ratios (ranging from 0 to 1.49). The structural and morphological properties are well correlated with the evolution of Ag/Ti atomic ratio. For the samples with low Ag/Ti atomic ratio (below 0.20) the coatings crystallize in a B1-NaCl crystal structure typical of TiC 0.3 N 0.7 . The increase in Ag/Ti atomic ratio promoted the formation of Ag crystalline phases as well as amorphous CN x phases detected in both x-ray photoelectron spectroscopy and Raman spectroscopy analysis. Simultaneously to the formation of Ag crystalline phases and amorphous carbon-based phases, a decrease in TiC 0.3 N 0.7 grain size was observed as well as the densification of coatings.

  9. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  10. Liquid crystals for organic transistors (Conference Presentation)

    Science.gov (United States)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  11. All-Optical 9.35 Gb/s Wavelength Conversion in an InP Photonic Crystal Nanocavity

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Yu, Yi; Heuck, Mikkel

    2013-01-01

    Wavelength conversion of a 9.35 Gb/s RZ signal is demonstrated using an InP photonic crystal H0 nanocavity. A clear eye is observed for the converted signal showing a pre-FEC bit error ratio down to 10-3.......Wavelength conversion of a 9.35 Gb/s RZ signal is demonstrated using an InP photonic crystal H0 nanocavity. A clear eye is observed for the converted signal showing a pre-FEC bit error ratio down to 10-3....

  12. Three's company: co-crystallization of a self-assembled S(4) metallacyclophane with two diastereomeric metallacycle intermediates.

    Science.gov (United States)

    Lindquist, Nathan R; Carter, Timothy G; Cangelosi, Virginia M; Zakharov, Lev N; Johnson, Darren W

    2010-05-28

    Three discrete supramolecular self-assembled arsenic(iii) complexes including an unusual S(4)-symmetric tetranuclear [As(4)L(2)Cl(4)] metallacyclophane and two diastereomeric cis/trans-[As(2)LCl(2)] metallacycle intermediates co-crystallize within a single crystal lattice.

  13. Intercalation of organic molecules into SnS2 single crystals

    International Nuclear Information System (INIS)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-01-01

    SnS 2 is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS 2e n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS 2 after intercalation revealed defects and stacking mismatches among the SnS 2 layers caused by the intercalation. UV–Vis absorption studies showed a red shift in the band edge of the SnS 2 material after intercalation. The band edge was 2.2 eV for pristine SnS 2 ; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS 2 single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS 2 after intercalation. Highlights: ► Organic molecules intercalated inhomogenously between covalently bonded SnS 2 layers. ► Ethylenediamine (en) intercalate directly into SnS 2 . ► Phenylenediamine (PPD) and naphthalenediamine (NDA) can be intercalated into SnS 2 secondary. ► In a secondary intercalation the bonds between layers are weakened by direct

  14. Ellipsometry study of optical parameters of AgIn{sub 5}S{sub 8} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148 Baku (Azerbaijan)

    2015-12-01

    AgIn{sub 5}S{sub 8} crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2–6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn{sub 5}S{sub 8} crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.

  15. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  16. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  17. Effect of nano-CeO2 on microstructure properties of TiC/TiN+nTi(CN) reinforced composite coating

    International Nuclear Information System (INIS)

    Jianing, Li; Chuanzhong, Chen; Cuifang, Zhang

    2012-01-01

    TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti-6Al-4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO 2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO 2 , this coating exhibited fine microstructure. In this study, the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coating consisted of Ti 3 Al, TiC, TiN, Ti 2 Al 20 Ce, TiC 0.3 N 0.7 , Ce(CN) 3 and CeO 2 , this phase constituent was beneficial to increase the microhardness and wear resistance of Ti-6Al-6V alloy. (author)

  18. Mathematical model of the crystallizing blank`s thermal state at the horizontal continuous casting machine

    Directory of Open Access Journals (Sweden)

    Kryukov Igor Yu.

    2017-01-01

    Full Text Available Present article is devoted to the development of the mathematical model, which describes thermal state and crystallization process of the rectangular cross-section blank while continious process of extraction from a horysontal continious casting machine (HCCM.The developed model took cue for the heat-transfer properties of non-iron metal teeming; its temperature on entry to the casting mold; cooling conditions of blank in the carbon molds in the presence of a copper water cooler. Besides, has been considered the asymmetry of heat interchange from blank`s head and drag at mold, coming out from fluid contraction and features of the horizontal casting mold. The developed mathematical model allows to determine alterations in crystallizing blank of the following factors with respect to time: temperature pattern of crystallizing blank under different technical working regimes of HCCM; boundaries of solid two-phase field and liquid two-phase filed; blank`s thickness variation under shrinkage of the ingot`s material

  19. Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications

    DEFF Research Database (Denmark)

    Jalili-Firoozinezhad, Sasan; Hasan Mohamadzadeh Moghadam, Mohamad; Ghanian, Mohammad Hossein

    2017-01-01

    Here, we report a facile method to generate electrically conductive nanofibers by coating and subsequently chemically reducing graphene oxide (GO) liquid crystals on a polycaprolactone (PCL) mat. Ultra large GO sheets obtained are in favor of charge carrier mobility and oriented morphology...... of the GO coating. We showed that coating the reduced GO (rGO) not only retains the three-dimensional topography, fiber orientation and size of the template PCL, but also makes it electroconductive. Our preliminary in vitro assessments using mesenchymal stem cells revealed no induced cytotoxicity yet...... increased cellular metabolism on PCL-templated rGO fibers....

  20. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  1. Recognition of Bread Key Odorants by Using Polymer Coated QCMs

    Science.gov (United States)

    Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro

    Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.

  2. Chemical and structural analyses of subsurface crevices formed during spontaneous deposition of cerium-based conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Daimon K, E-mail: dkheller@mmm.com; Fahrenholtz, William G., E-mail: billf@mst.edu; O' Keefe, Matthew J., E-mail: mjokeefe@mst.edu

    2011-11-15

    Subsurface crevices formed during the deposition of cerium-based conversion coatings were analyzed in cross-section to assess the effect of deposition and post-treatment on the structure and chemistry of phases present. An Al-O containing phase, believed to be amorphous Al(OH){sub 3}, was formed in crevices during coating deposition. Analysis by energy dispersive X-ray spectroscopy revealed the presence of up to 1.6 at.% chlorine within the Al-O phase, which was likely a product of soluble chlorides that were present in the coating solution. Cerium was not detected within crevices. After post-treatment in an 85 deg. C aqueous phosphate solution, the chloride concentration was reduced to {<=} 0.30 at.% and electron diffraction of the Al-O phase produced ring patterns, indicating it had crystallized. Some diffraction patterns could be indexed to gibbsite (Al(OH){sub 3}), but others are believed to be a combination of hydrated aluminum hydroxides and/or oxides. Aluminum phosphate was not identified. Separately from its effect on cerium-based conversion coatings, phosphate post-treatment improved the corrosion resistance of Al 2024-T3 substrates by acting to crystallize Al(OH){sub 3} present on interior surfaces of crevices and by reducing the chloride concentration in this phase. - Highlights: {yields} Analysis of subsurface crevices formed during deposition of Ce-based conversion coatings. {yields} Phosphate post-treatment improved corrosion protection in salt spray testing. {yields} Post-treatment affected the composition and structure of regions within crevices. {yields} Crystallized Al(OH){sub 3} within crevices acted as a more effective barrier to chloride ions.

  3. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  4. CCDC 713129: Experimental Crystal Structure Determination : (eta^6^-Benzylammonium)-dichloro-(dimethylsulfoxide-S)-ruthenium(ii) chloride

    KAUST Repository

    Reiner, T.; Waibel, M.; Marziale, Alexander N.; Jantke, Dominik; Kiefer, F.J.; Fassler, T.F.; Eppinger, Jö rg

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. Electro- and photoluminescence in ZnS crystals

    International Nuclear Information System (INIS)

    Klimenko, V.I.; Muradyan, A.M.; Solov'ev, A.V.; Shmurak, S.Z.

    1991-01-01

    Comperative study of spectral characteristics of electroluminescence (EL), induced by alternative electrical field (frequency-10kHz, average field intencity-10 2 -5x10 3 V/cm), and photoluminescence (PL) of ZnS-Cu microtwin crystals is carried out. It is shown, that PL and EL spectra differ within the hole temperature range of 77-300 K. Difference in the process of EL and PL temperature dependences is revealed. The EL minimum at T min ∼ 170-180K. The EL intensity at T min is by order lower than at 77 and 300 K. The PL dependence at the same time monotonically decreases by T increase. EL mechanism, explaining the experimental data obtained is proposed

  6. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  7. Crystal structure of mature 2S albumin from Moringa oleifera seeds.

    Science.gov (United States)

    Ullah, Anwar; Mariutti, Ricardo Barros; Masood, Rehana; Caruso, Icaro Putinhon; Costa, Gustavo Henrique Gravatim; Millena de Freita, Cristhyane; Santos, Camila Ramos; Zanphorlin, Leticia Maria; Rossini Mutton, Márcia Justino; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2S albumins, the seed storage proteins, are the primary sources of carbon and nitrogen and are involved in plant defense. The mature form of Moringa oleifera (M. oleifera), a chitin binding protein isoform 3-1 (mMo-CBP3-1) a thermostable antifungal, antibacterial, flocculating 2S albumin is widely used for the treatment of water and is potentially interesting for the development of both antifungal drugs and transgenic crops. The crystal structure of mMo-CBP3-1 determined at 1.7 Å resolution demonstrated that it is comprised of two proteolytically processed α-helical chains, stabilized by four disulfide bridges that is stable, resistant to pH changes and has a melting temperature (TM) of approximately 98 °C. The surface arginines and the polyglutamine motif are the key structural factors for the observed flocculating, antibacterial and antifungal activities. This represents the first crystal structure of a 2S albumin and the model of the pro-protein indicates the structural changes that occur upon formation of mMo-CBP3-1 and determines the structural motif and charge distribution patterns for the diverse observed activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    International Nuclear Information System (INIS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-01-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution

  9. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, C., E-mail: canandan@nal.res.in; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution.

  10. Plasmonic photonic crystals realized through DNA-programmable assembly.

    Science.gov (United States)

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  11. Synthesis and characterization of bulk and coatings of hydroxyapatite using methanol precursor

    International Nuclear Information System (INIS)

    Khongwar, Jasper K.; Kannan, K.R.; Buvaneswari, G.

    2008-01-01

    Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert α-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 deg. C for 10 min. The complete crystallization of the apatite was obtained at 800 deg. C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on α-alumina and yttria stabilized zirconia substrates

  12. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    Science.gov (United States)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  13. The Effects of Gd-Free Impurity Phase on the Aging Behavior for the Microwave Surface Resistance of Ag-coated GdBa2Cu3O7-δ at Cryogenic Temperatures

    Science.gov (United States)

    Lee, Sungho; Yang, Woo Il; Jung, Ho Sang; Oh, Won-Jae; Jang, Jiyeong; Lee, Jae-Hun; Kang, Kihyeok; Moon, Seung-Hyun; Yoo, Sang-Im; Lee, Sang Young

    2018-05-01

    High-T C GdBa2Cu3O7-δ (GdBCO) superconductor has been popular for making superconductive tapes that have much potential for various fields of large-scale applications. We investigated aging effects on the microwave surface resistance (R S) of Ag-coated GdBCO layer on Hastelloy substrate, so called GdBCO coated conductors (CCs), and Ag-coated GdBCO films on LaAlO3 (LAO) single-crystal substrates at cryogenic temperatures and compared them with each other. Unlike the R S of Ag-coated GdBCO films showing significant degradation in 4 weeks, no significant aging effects were found in our Ag-coated GdBCO CCs aged 85 weeks. The reactive co-evaporation deposition and reaction (RCE-DR) method was used for preparing the Ag-coated GdBCO CCs. Such durability of the Ag-coated GdBCO CCs in terms of the R S could be explained by existence of a protective impurity phase, i.e., Gd-free Ba-Cu-O phase as confirmed by transmission electron microscopy study combined with the energy-dispersive X-ray spectroscopy measurements. Although the scope of this study is limited to the Ag-coated GdBCO CCs prepared by using the RCE-DR method, our results suggest that a solution for preventing the aging effects on transport properties of other kinds of Ag-coated GdBCO CCs could be realized by means of an artificially-grown protective impurity layer.

  14. Growth and photo-response of NbSe2 and NbS2 crystals

    Science.gov (United States)

    Patel, Kunjal; Solanki, G. K.; Pataniya, Pratik; Patel, K. D.

    2018-05-01

    Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurrent-voltage characteristics in a PEC solar cell structure (Cu/NbSe2/(0.1M K4Fe(CN)6 + 0.1M K3Fe(CN)6) and Cu/NbS2/(0.1M K4Fe(CN)6 +0.1M K3Fe(CN)6)). Blue coloured light gave the maximum efficiency. For further analysis of photodetection properties of the grown crystals, Ag painted broad low contact resistance electrical contacts were drawn from the crystals and its transient photoresponse was studied to evaluate different detector parameters.

  15. Spin-coating deposition of PbS and CdS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh; Mighri, Frej [Laval University, CREPEC, Department of Chemical Engineering, Quebec, QC (Canada); Ajji, Abdellah [Ecole Polytechnique, CREPEC, Chemical Engineering Department, Montreal, QC (Canada); Tiwari, Devendra; Chaudhuri, Tapas K. [Charotar University of Science and Technology (CHARUSAT), Dr. K.C. Patel Research and Development Centre, Anand District, Gujarat (India)

    2014-12-15

    In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 x 10{sup 18} cm{sup -3} and 2.16 x 10{sup -3} cm{sup 2}/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm{sup 2} and 0.32, respectively. (orig.)

  16. Cloning, expression, purification, crystallization and preliminary X-ray analysis of NodS N-methyltransferase from Bradyrhizobium japonicum WM9

    International Nuclear Information System (INIS)

    Cakici, Ozgur; Sikorski, Michal; Stepkowski, Tomasz; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    The NodS N-methyltransferase, an enzyme participating in the biosynthesis of the bacterial nodulation (Nod) factor necessary to establish symbiotic nitrogen fixation with a legume plant host, has been crystallized in the apo form as well as in complex with SAH. SAH is a byproduct of SAM degradation during the SAM-dependent methylation reaction. The Nod factor (NF) is a rhizobial signal molecule that is involved in recognition of a legume host and the formation of root and stem nodules. Some unique enzymes are involved in the biosynthesis of NF, which is a variously but specifically substituted lipochitooligosaccharide. One of these enzymes is NodS, an N-methyltransferase that methylates end-deacetylated chitooligosaccharide substrates. In the methylation reaction, NodS uses S-adenosyl-l-methionine (SAM) as a methyl donor. To date, no structural information is available about NodS from any rhizobium. X-ray crystallographic studies of the NodS protein from Bradyrhizobium japonicum WM9, which infects the legumes lupin and serradella, have been undertaken. The nodS gene was cloned and the recombinant protein was expressed in Escherichia coli cells using natural amino acids and as an SeMet derivative. NodS without ligands was crystallized in the presence of PEG 3350 and MgCl 2 . The protein was also crystallized in complex with S-adenosyl-l-homocysteine (SAH) in the presence of PEG 8000 and MgCl 2 . SAH is produced from SAM as a byproduct of the methylation reaction. The crystals of apo NodS are tetragonal and diffracted X-rays to 2.42 Å resolution. The NodS–SAH complex crystallizes in an orthorhombic space group and the crystals diffracted X-rays to 1.85 Å resolution

  17. ETV Program Report: Coatings for Wastewater Collection ...

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  18. Unified calculations of the optical band positions and EPR g factors for NaCrS2 crystal

    International Nuclear Information System (INIS)

    Mei, Yang; Zheng, Wen-Chen; Zhang, Lin

    2014-01-01

    Six optical band positions and EPR g factors g || , g ⊥ for the trigonal Cr 3+ octahedral clusters in NaCrS 2 crystal are calculated together through the complete diagonalization (of energy matrix) method based on the two-spin–orbit-parameter model, where besides the contribution due to the spin–orbit parameter of central d n ion in the conventional crystal-field theory, the contribution due to the spin–orbit parameter of ligand ion via the covalence effect is also considered. In the calculations, the crystal-field parameters B kl are obtained from the superposition model with the structural data of Cr 3+ octahedral clusters in NaCrS 2 crystal measured exactly by the X-ray diffraction method. The calculated optical and EPR spectral data are in a reasonable agreement with the observed values. So, the reliability of the superposition model in the studies of crystal-field parameters for d n ions in crystals is confirmed, and the complete diagonalization (of energy matrix) method based on the two-spin–orbit-model is effective in the unified calculations of optical and EPR spectral data for d n ions in crystals. - Highlights: • Six optical band positions and g factors g || , g ⊥ of NaCrS 2 are calculated together. • Calculation is using the complete diagonalization (of energy matrix) method. • The diagonalization method is based on the two-spin–orbit-parameter model. • Reliability of superposition model in the studies of CF parameters is confirmed

  19. Photoelectrochemical performance of NiO-coated ZnO-CdS core-shell photoanode

    Science.gov (United States)

    Iyengar, Pranit; Das, Chandan; Balasubramaniam, K. R.

    2017-03-01

    A nano-structured core-shell ZnO-CdS photoanode device with a mesoporous NiO co-catalyst layer was fabricated using solution-processing methods. The growth of the sparse ZnO nano-rod film with a thickness of ca. 930 nm was achieved by optimizing parameters such as the thickness of the ZnO seed layer, choice of Zn precursor salt and the salt concentration. CdS was then coated by a combination of spin coating and spin SILAR (Successive Ionic Layer Adsorption and Reaction) methods to completely fill the interspace of ZnO nano-rods. The uniform CdS surface facilitated the growth of a continuous mesoporous NiO layer. Upon illumination of 100 mW·cm-2 AM 1.5 G radiation the device exhibits stable photocurrents of 2.15 mA·cm-2 at 1.23 V and 0.92 mA·cm-2 at 0.00 V versus RHE, which are significantly higher as compared to the bare ZnO-CdS device. The excellent performance of the device can be ascribed to the higher visible region absorption by CdS, and effective separation of the photogenerated charge carriers due to the suitable band alignment and nanostructuring. Additionally, the mesoporous NiO overlayer offered a larger contact area with the electrolyte and promoted the kinetics enabling higher and stable photocurrent even till the 35th min. of testing.

  20. Dielectric properties of layered FeGaInS{sub 4} single crystals in an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mammadov, F. M. [Azerbaijan National Academy of Sciences, Nagiyev Institute of Catalysis and Inorganic Chemistry (Azerbaijan); Niftiyev, N. N., E-mail: namiq7@bk.ru [Azerbaijan State Pedagogical University (Azerbaijan)

    2016-09-15

    The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS{sub 4} single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS{sub 4} single crystals in a field with frequencies of 10{sup 4}–10{sup 6} Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS{sub 4}, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.

  1. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  2. Surface morphology of spin-coated As-S-Se chalcogenide thin films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Wágner, T.; Orava, J.; Krbal, M.; Fejfar, Antonín; Mates, Tomáš; Kasap, S. O.; Frumar, M.

    2007-01-01

    Roč. 353, - (2007), s. 1437-1440 ISSN 0022-3093 R&D Projects: GA AV ČR IAA1010316; GA AV ČR IAA1010413 Grant - others:GA ČR(CZ) GA203/05/0524; GAMŠk(CZ) LC523 Program:LC Institutional research plan: CEZ:AV0Z10100521 Keywords : chemical properties * spin coating * infrared glasses * chalcogenides * atomic force and scanning tunneling microscopy * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.319, year: 2007

  3. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.

    Science.gov (United States)

    Ravi, Seenu; Gopi, Chandu V V M; Kim, Hee Je

    2016-08-02

    Great attention has been paid to the design and synthesis of distinct core/shell heterostructures for high-performance supercapacitors. We have prepared unique heterostructures consisting of polyimidazole-coated copper sulphide over a carbon nanotube network (CuS@CNT) on nickel foam, which was accomplished through a facile and cost-effective solvothermal method combined with a dip coating process. Hexagonal covellite CuS nanoparticles were dispersed on CNTs using a solvothermal method where dimethylformamide and distilled water were used as solvents. The synthesized CuS and CuS@CNT supercapacitor electrode materials were thoroughly characterized. The polymer supported electrode (PIM/CuS@CNT) shows a high areal capacitance of 1.51 F cm(-2) at a current density of 1.2 A g(-1), which is higher than the CuS@CNT electrode and many other previously reported CuS electrode materials. After 1000 cycles at a high current density of 1.2 A g(-1), the retention rate is 92%, indicating good long-term cycling stability. These results indicate that the PIM/CuS@CNT electrode is promising for high-performance supercapacitor applications.

  4. Computer model of polycrystal structure formation of plasma sprayed Be coatings

    International Nuclear Information System (INIS)

    Tyupkina, O.G.; Meshchankin, N.V.; Sarymsakov, D.A.

    1996-01-01

    One of problems of controlled thermonuclear syntheses reactor creation is obtaining of a material, having significant radiation firmness. Perspective materials from this point of view might be ones obtained by Be plasma spraying on substrate. The analytical method of Be coating durability properties is impossible because of varied inter effective processes, taking place in crystallizing bodies, and experimental one requires significant financial spends. In the present article an attempt is made to estimate the influence of different regimes of cooling on forming polycrystal structure, to analyse dynamics of liquid coating solidifying using method of computer simulation. The research of number and sizes of grain distribution in the layers change was carried out in different regimes of cooling. For this purpose coefficient of heat exchanged was varied in the equation describing process of heat exchange between Be and substrate. Results obtained with proposed model well correspond with pattern observed in practice. Therefore a computer model of crystallization was developed, which allows to obtain characteristics of element acts of crystallization out coming from macroscopic parameters of sample, and to observe the process of melted Be solidifying

  5. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  6. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  7. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  8. Electrical conductivity and dielectric properties of TlInS2 single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.; Hassan, A.

    2011-07-01

    TlInS2 single crystals were grown by using Bridgman-Stockbauer technique. Measurements of DC conductivity were carried out in parallel (σ//) and perpendicular (σ⊥) directions to the c-axis over a temperature range from 303 to 463 K. The anisotropic behaviour of the electrical conductivity was also detected. AC conductivity and dielectric measurements were studied as a function of both frequency (102-106 Hz) and temperature (297-375 K). The frequency dependence of the AC conductivity revealed that σac(ω) obeys the universal law: σac(ω) = Aωs. The mechanism of the ac charge transport across the layers of TlInS2 single crystals was referred to the hopping over localized states near the Fermi level in the frequency range >3.5 × 103 Hz. The temperature dependence of σac(ω) for TlInS2 showed that σac is thermally activated process. Both of ɛ1 and ɛ2 decrease by increasing frequency and increase by increasing temperature. Some parameters were calculated as: the density of localized states near the Fermi level NF = 1.5 × 1020 eV-1 cm-3, the average time of charge carrier hoping between localized states τ = 3.79 μs and the average hopping distance R = 6.07 nm.

  9. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  10. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L.; Quevedo-Lopez, Manuel; Alshareef, Husam N.; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M.

    2015-01-01

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  11. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  12. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser.

    Science.gov (United States)

    Kan, H-W; Chiang, H; Lin, W-M; Yu, I-S; Lin, S-W; Hsieh, S-T

    2018-02-08

    Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP. We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTR wt ) or human TTR with the A97S mutation (hTTR A97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks). In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTR wt and hTTR A97S mice. By contrast, ageing hTTR A97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves. These results demonstrate that the hTTR A97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP. © 2018 British Neuropathological Society.

  13. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  14. Crystallization and preliminary X-ray analysis of RsbS from Moorella thermoacetica at 2.5 Å resolution

    International Nuclear Information System (INIS)

    Quin, Maureen; Newman, Joseph; Firbank, Susan; Lewis, Richard J.; Marles-Wright, Jon

    2008-01-01

    Crystallization and selenium substructure solution of RsbS from Moorella thermoacetica, the first ab initio phased crystal structure from Diamond. The thermophilic bacterium Moorella thermoacetica possesses an rsb operon that is related to the genetic locus common to many Gram-positive bacteria that regulates the activity of the stress-responsive sigma factor σ B . One of the gene products of this operon is RsbS, a single STAS-domain protein that is a component of higher order assemblies in Bacillus subtilis known as ‘stressosomes’. It is expected that similar complexes are found in M. thermoacetica, but in this instance regulating the biosynthesis of cyclic di-GMP, a ubiquitous secondary messenger. Selenomethionine-labelled MtRsbS protein was crystallized at room temperature using the hanging-drop vapour-diffusion method. Crystals belonging to space group P2 1 2 1 2 1 , with unit-cell parameters a = 51.07, b = 60.52, c = 89.28 Å, diffracted to 2.5 Å resolution on beamline I04 of the Diamond Light Source. The selenium substructure was solved using SHELX and it is believed that this represents the first reported ab initio crystal structure to be solved using diffraction data collected at DLS

  15. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  16. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  17. Crystal from and aggregate controls of hydroxyapatites and related phosphates; Suisan apataito oyobi kanren rinsan enrui no kessho oyobi kessho shugotai no keitai seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, N.; Wakana, Y.; Kaji, H. [Taihei Chemical Industrial Co. Ltd., Osaka (Japan)

    1995-09-01

    Potassium phosphates are compounds with the composition of Ca/P=0.5-2.0, and regarding potassium phosphates of apatitic structure, research has been made in the fields of biomaterial, base material for tooth paste, base material for cosmetics, etc. since 1980`s. In particular, hydroxyapatites (HAP) and tricalcium phosphates (TCP) are now sold as artificial bones, artificial tooth roots, etc.. In this article, the synthetic methods and morphological controls of HAP, TCP, tetracalcium phosphates (TTCP) and fluorine apatites (FAP), and the properties of products of 4 kinds of hydroxyapatites (HAP-100, HAP-200, HAP-300, and spherical HAP), 2 kinds of tricalcium phosphates ({beta}-TCP-100 and {alpha}-TCP), TTCP and FAP are introduced. The particle morphology of the above chemical compounds depend on the respective synthetic methods and stable production of calcium phosphates require technology as well as facilities of high degree. 26 refs., 17 figs., 2 tabs.

  18. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  19. Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries

    Science.gov (United States)

    Li, Xiang; Liu, Jiangwen; Ouyang, Liuzhang; Yuan, Bin; Yang, Lichun; Zhu, Min

    2018-04-01

    Carbon coated SnS microplates (SnS@C MPs) were prepared via a facile chemical vapor deposition method using SnS2 nanoflakes as precursor and ethanol vapor as carbon source. The carbon coating restrains the growth of SnS during the heat treatment. Furthermore, it improves the electronic conductivity as well as accommodates volume variations of SnS during the sodiation and desodiation processes. Therefore, the rate capability and cycle performance of the SnS@C MPs as anode materials for sodium-ion batteries are remarkably enhanced compared with the bare SnS and the SnS2 precursor. At current densities of 0.1, 0.2, 0.5, 1 and 2 A g-1, the optimized SnS@C MPs exhibit stable capacities of 602.9, 532.1, 512.2, 465.9 and 427.2 mAh g-1, respectively. At 1 A g-1, they show a reversible capacity of 528.8 mAh g-1 in the first cycle, and maintain 444.7 mAh g-1 after 50 cycles, with capacity retention of 84.1%. The carbon coating through chemical vapor deposition using ethanol vapor as carbon sources is green, simple and cost-effective, which shows great promise to improve the reversible Na+ storage of electrode materials.

  20. Expression of FAP, ADAM12, WISP1, and SOX11 is heterogeneous in aggressive fibromatosis and spatially relates to the histologic features of tumor activity

    International Nuclear Information System (INIS)

    Misemer, Benjamin S; Skubitz, Amy P N; Carlos Manivel, J; Schmechel, Stephen C; Cheng, Edward Y; Henriksen, Jonathan C; Koopmeiners, Joseph S; Corless, Christopher L; Skubitz, Keith M

    2014-01-01

    Aggressive fibromatosis (AF) represents a group of tumors with a variable and unpredictable clinical course, characterized by a monoclonal proliferation of myofibroblastic cells. The optimal treatment for AF remains unclear. Identification and validation of genes whose expression patterns are associated with AF may elucidate biological mechanisms in AF, and aid treatment selection. This study was designed to examine the protein expression by immunohistochemistry (IHC) of four genes, ADAM12, FAP, SOX11, and WISP1, that were found in an earlier study to be uniquely overexpressed in AF compared with normal tissues. Digital image analysis was performed to evaluate inter- and intratumor heterogeneity, and correlate protein expression with histologic features, including a histopathologic assessment of tumor activity, defined by nuclear chromatin density ratio (CDR). AF tumors exhibited marked inter- and intratumor histologic heterogeneity. Pathologic assessment of tumor activity and digital assessment of average nuclear size and CDR were all significantly correlated. IHC revealed protein expression of all four genes. IHC staining for ADAM12, FAP, and WISP1 correlated with CDR and was higher, whereas SOX11 staining was lower in tumors with earlier recurrence following excision. All four proteins were expressed, and the regional variation in tumor activity within and among AF cases was demonstrated. A spatial correlation between protein expression and nuclear morphology was observed. IHC also correlated with the probability of recurrence following excision. These proteins may be involved in AF pathogenesis and the corresponding pathways could serve as potential targets of therapy

  1. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  2. Direct observation of a non-isothermal crystallization process in precursor Li10GeP2S12 glass electrolyte

    Science.gov (United States)

    Tsukasaki, Hirofumi; Mori, Shigeo; Shiotani, Shinya; Yamamura, Hideyuki; Iba, Hideki

    2017-11-01

    Crystallization of a precursor Li10GeP2S12 (LGPS) glass electrolyte by heat treatment significantly improves its ionic conductivity. The LGPS crystalline phase obtained by heat treatment above 450 °C shows an ionic conductivity on the order of 10-2 S/cm. To clarify the correlation between the crystallization behavior of precursor LGPS glasses and ionic conductivity, we developed an observation technique to visualize precipitated nanocrystallites and a new method to evaluate the crystallization degree via transmission electron microscopy (TEM). In-situ TEM observation revealed that LGPS nanocrystallites precipitated above 450 °C and their size remained fundamentally intact during heating. That is, the crystallization behavior could be characterized by only the formation of LGPS nanocrystallites in an amorphous matrix. In addition, the crystallization degree was quantitatively evaluated from electron diffraction patterns. The crystallization degree remarkably increased at around 450 °C and reached more than 60% above 450 °C. Based on these results, a high ionic conductivity of approximately 1.0 × 10-2 S/cm was confirmed to be directly associated with the appearance of the LGPS crystalline phase.

  3. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  4. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  5. Architecture and assembly of the Bacillus subtilis spore coat.

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  6. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  7. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  8. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  9. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    International Nuclear Information System (INIS)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A; Hedhammar, My; Johansson, Jan; Blom, Tobias; Leifer, Klaus

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  10. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  11. On the interpretation of total current spectroscopy (TCS) spectra from MoS2 crystals

    International Nuclear Information System (INIS)

    Mohamed, M.H.; Moeller, P.J.

    1981-01-01

    Total Current Spectroscopy (TCS) spectra from MoS 2 (0001) face for three different angles of incidence of the primary beam with respect to the c-axis as well as TCS spectrum from an edge surface cut perpendicularly to the (001) face of a molybdenite crystal are given. Energy positions of the TCS structure are found to be independent of the variations in the angle of incidence of the primary beam and also of the change of crystal face. From this it is concluded that the fine structure in the TCS spectra from molybdenite crystal for the primary energies studied is due to electron-electron scattering and not to Bragg interference effects. (author)

  12. CCDC 803555: Experimental Crystal Structure Determination : (S,S)-t-Butyl (3,4-dichloro-5-oxo-2,5-dihydrofuran-2-yl)(hydroxy)2-naphthylacetate

    KAUST Repository

    Luo, Jie; Wang, Haifei; Han, Xiao; Xu, Li-Wen; Kwiatkowski, J.; Huang, Kuo-Wei; Lu, Yixin

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA Mediated Orthopaedic Device Related Infections.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur

    Full Text Available Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA, treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA. Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.

  14. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    Science.gov (United States)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  15. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  16. Contribution to crystallographical and mechanical analysis of molybdenum coatings prepared by magnetron cathode sputtering

    International Nuclear Information System (INIS)

    Bosland, P.

    1989-07-01

    Molybdenum coatings with different compression stresses are obtained by magnetron cathode sputtering by varying negative voltage applied to the substrate during deposition. Stress evolution, crystal texture and argon content are studied [fr

  17. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Long [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Tingmei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu Peng [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: pliu@lzu.edu.cn

    2008-12-30

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  18. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    International Nuclear Information System (INIS)

    Zhang Long; Wang Tingmei; Liu Peng

    2008-01-01

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  19. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate

    Science.gov (United States)

    Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke

    2018-04-01

    We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.

  20. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  1. Crystal structures of the all-cysteinyl-coordinated D14C variant of Pyrococcus furiosus ferredoxin: [4Fe–4S] ↔ [3Fe–4S] cluster conversion

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Martic, Maja; Windahl, Michael S.

    2011-01-01

    The structure of the all-cysteinyl-coordinated D14C variant of [4Fe–4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus has been determined to 1.7 Å resolution from a crystal belonging to space group C2221 with two types of molecules, A and B, in the asymmetric unit. A and B...... molecules have different crystal packing and intramolecular disulfide bond conformation. The crystal packing reveals a β-sheet interaction between A molecules in adjacent asymmetric units, whereas B molecules are packed as monomers in a less rigid position next to the A–A extended β-sheet dimers...... and purification are carried out at pH 5.8, only the monomer is obtained. The crystal structure of D14C [3Fe–4S] P. furiosus ferredoxin monomer was determined to 2.8 Å resolution from a crystal belonging to space group P212121 with two molecules in the asymmetric unit. The molecules resemble molecule A of D14C [4...

  2. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding

    International Nuclear Information System (INIS)

    Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. da

    2009-01-01

    In the present work single and multiple layer NiCrAlY coatings were produced by laser cladding on (100) single-crystalline substrates of SRR99 Ni-based superalloy. Detailed structural characterisation and texture analysis by optical microscopy, scanning electron microscopy, X-ray diffraction and Rutherford backscattering showed that the NiCrAlY coatings consisted essentially of γ phase with yttrium oxide (Y 2 O 3 ) and a small proportion of yttrium-aluminum garnet (Al 5 Y 3 O 12 ) precipitated in the interdendritic regions. The coatings presented a columnar dendritic structure grown by epitaxial solidification on the substrate and inherited the single-crystalline nature and the orientation of the substrate. The coating material also showed a mosaicity and a defect density similar to those of the substrate. It can be expected that the protective effect of these coatings against oxidation is greatly enhanced compared with polycrystalline coatings because high diffusivity paths, such as grain boundaries, are eliminated in single-crystalline coatings, thus reducing mass transport through the coating.

  3. Liquid crystal elastomer coatings with programmed response of surface profile

    NARCIS (Netherlands)

    Babakhanova, G.; Turiv, T.; Guo, Y.; Hendrikx, M.; Wei, Q.H.; Schenning, A.P.H.J.; Broer, D.J.; Lavrentovich, O.D.

    2018-01-01

    Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated

  4. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  5. Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Jensen, Thomas; Dolatshahi-Pirouz, Alireza; Foss, Morten

    2010-01-01

    In vitro studies of the initial attachment, spreading and motility of human bone mesenchymal stem cells have been carried out on bovine osteopontin (OPN) coated hydroxyapatite (HA) and gold (Au) model surfaces. The adsorption of OPN extracted from bovine milk was monitored by the quartz crystal...

  6. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells.

    Science.gov (United States)

    Hwa, Yoon; Zhao, Juan; Cairns, Elton J

    2015-05-13

    In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.

  7. One-step preparation and photocatalytic performance of vanadium doped TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vasilić, R., E-mail: rastko.vasilic@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, N. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Dohčević-Mitrović, Z. [University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Grbić, B. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2015-02-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO{sub 2} coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO{sub 2} coatings are partly crystallized and mainly composed of anatase phase TiO{sub 2}, with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO{sub 2} coatings exhibit notable red shift with respect to the pure TiO{sub 2} coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO{sub 2} coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO{sub 2} coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO{sub 2} coatings in 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO{sub 2} coatings is shifted towards red side of the spectrum. • V-doped TiO{sub 2} coatings have better photocatalytic activity than pure TiO{sub 2}. • After 12 h of simulated sunlight irradiation, 67% of

  8. Photocatalytic sterilization of TiO2 films coated on Al fiber

    International Nuclear Information System (INIS)

    Luo Li; Miao Lei; Tanemura, Sakae; Tanemura, Masaki

    2008-01-01

    Photocatalytic TiO 2 films were coated on Al fiber by sol-gel dip-coating method, and then annealed. The crystal structure and morphology of the films were performed by XRD, TEM and SEM. Photocatalytic sterilization of the films was investigated in O 2 atmosphere through purifying the aqueous solution with facultative aerobe (Bacillus cereus), aerobe (Pseudomonas aeruginosa) and anaerobe (Staphylococcus aureus, Enterococcus faecalis and Escherichia coli). In the presence of O 2 , it benefits to generate O 2 · - and ·OH at the first stage of the photocatalytic reaction, while the excess O 2 restrains the anaerobe from reproducing and accelerates the reproducing for the aerobe at the second stage of reaction. As a result, it was found that the crystal of TiO 2 films is anatase phase and the films have excellent sterilization effect against facultative aerobe and anaerobe. Nevertheless, it only decreased the bioactivity against aerobe in a short time

  9. Anti-corrosive and anti-microbial properties of nanocrystalline Ni-Ag coatings

    Energy Technology Data Exchange (ETDEWEB)

    Raghupathy, Y.; Natarajan, K.A.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

    2016-04-15

    Graphical abstract: - Highlights: • Electrodeposition yielded phase-segregated, nanocrystalline Ni-Ag coatings. • Ni-Ag alloys exhibited smaller Ni crystals compared to pure Ni. • Ultra fine Ni grains of size 12–14 nm favoured Ni-Ag solid solution. • Nanocrystalline Ag resisted bio-fouling by Sulphate Reducing bacteria. • Ni-Ag outperformed pure Ni in corrosion and bio-corrosion tests. - Abstract: Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%).

  10. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  11. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  12. Er2O3 coating development and improvisation by metal oxide decomposition method

    International Nuclear Information System (INIS)

    Rayjada, Pratipalsinh A.; Sircar, Amit; Raole, Prakash M.; Rahman, Raseel; Manocha, Lalit M.

    2015-01-01

    Compact, highly resistive and chemically as well as physically stable ceramic coatings are going to play vital role in successful and safe exploitation of tritium breeding and recovery system in the future fusion reactors. Due to its stability and high resistivity, Er 2 O 3 was initially studied for resistive coating application to mitigate Magneto Hydro Dynamic (MHD) forces in liquid Li cooled blanket concept. Subsequently, its excellence as tritium permeation barrier (TPB) was also revealed. Ever since, there is a continual thrust on studying its relevant properties and application methods among the fusion technology and materials community. Metal Oxide Decomposition is a chemical method of coating development. One of the major advantages of this process over most of the others is its simplicity and ability to coat complex structures swiftly. The component is dipped into a liquid solution of the Er 2 O 3 and subsequently withdrawn at an optimized constant speed, so as to leave a uniform wet layer on the surface. This can be repeated multiple times after drying the surface to obtain the required thickness. Subsequently, the component is heat treated to obtain crystalline uniform Er 2 O 3 coating over it. However, the porosity of the coatings and substrate oxidation are the challenges for in MOD method. We successfully develop Er 2 O 3 coating in cubic crystalline phase on P91 steel and fused silica substrates using 3 wt% erbium carboxylic acid solution in a solvent containing 50.5 wt% turpentine, 25.5 wt% n-butyl acetate, 8.4 wt% ethyl acetate, a stabilizer, and a viscosity adjustor. A dip coating system equipped with 800 C quartz tube furnace was used to prepare these coatings. The withdrawal speed was chosen as 72 mm/min from the literature survey. The crystallization and microstructure are studied as functions of heat treatment temperature in the range of 500-700 C. We also try to improvise the uniform coverage and porosity of the coating by altering the

  13. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  14. Production, crystallization and preliminary X-ray diffraction of the Gαs α-helical domain in complex with a nanobody.

    Science.gov (United States)

    Triest, Sarah; Wohlkönig, Alexandre; Pardon, Els; Steyaert, Jan

    2014-11-01

    GPCR-G-protein complexes are one of the most important components of cell-signalling cascades. Extracellular signals are sensed by membrane-associated G-protein-coupled receptors (GPCRs) and transduced via G proteins towards intracellular effector molecules. Structural studies of these transient complexes are crucial to understand the molecular details of these interactions. Although a nucleotide-free GPCR-G-protein complex is stable, it is not an ideal sample for crystallization owing to the intrinsic mobility of the Gαs α-helical domain (AHD). To stabilize GPCR-G-protein complexes in a nucleotide-free form, nanobodies were selected that target the flexible GαsAHD. One of these nanobodies, CA9177, was co-crystallized with the GαsAHD. Initial crystals were obtained using the sitting-drop method in a sparse-matrix screen and further optimized. The crystals diffracted to 1.59 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=44.07, b=52.55, c=52.66 Å, α=90.00, β=107.89, γ=90.00°. The structure of this specific nanobody reveals its binding epitope on GαsAHD and will help to determine whether this nanobody could be used as crystallization chaperone for GPCR-G-protein complexes.

  15. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    Science.gov (United States)

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  16. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  17. Model and experimental investigation of frequency conversion in AgGaGexS2(1+x) (x = 0, 1) crystals

    International Nuclear Information System (INIS)

    Wang Tiejun; Kang Zhihui; Zhang Hongzhi; Feng Zhishu; Jiang Yun; Gao Jinyue; Andreev, Yury M; Lanskii, Gregory V; Shaiduko, Anna V

    2007-01-01

    Analysis of available and developed data on phase matching in AgGaGe x S 2(1+x) (x = 0, 1) crystals is carried out. Nanosecond AgGaS 2 type I optical parametric oscillator with a continuously tunable range 2.65-5.29 μm is demonstrated pumped by a Q-switched Nd : YAG laser. An output pulse energy of up to 0.56 mJ at 4 μm is recorded. Phase matching of second harmonic generation in both crystals is represented. Best sets of Sellmeier equations for two crystals are determined

  18. Thermal Annealing Effect on Optical Properties of Binary TiO2-SiO2 Sol-Gel Coatings

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2012-12-01

    Full Text Available TiO2-SiO2 binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  19. Optical characteristics of BaGa2S4:Ho3+ and BaGa2Se4:Ho3+ single crystals

    International Nuclear Information System (INIS)

    Choe, Sung-Hyu; Jin, Moon-Seog; Kim, Wha-Tek

    2005-01-01

    BaGa 2 S 4 , BaGa 2 S 4 :Ho 3+ , BaGa 2 Se 4 , and BaGa 2 Se 4 :Ho 3+ single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the single crystals were investigated in the temperature region from 11 K to 300 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Two broad emission bands were observed in the photoluminescence spectra of the single crystals. These bands were attributed to donor-acceptor pair recombinations. Sharp emission peaks were observed in the BaGa 2 S 4 :Ho 3+ and the BaGa 2 Se 4 :Ho 3+ single crystals and were assigned to radiation recombination between split Stark levels of Ho 3+ .

  20. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    Science.gov (United States)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  1. Thermodynamic aspects of the coating formation through mechanochemical synthesis in vibration technology systems

    Science.gov (United States)

    Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.

    2017-02-01

    On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.

  2. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  3. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  4. In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers

    Directory of Open Access Journals (Sweden)

    Andreas Breitwieser

    2017-02-01

    Full Text Available The recombinant bacterial surface layer (S-layer protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating with tailor-made biological sensing layers.

  5. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  6. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pogrebnjak, A.D.; Yakushchenko, I.V. [Sumy State University, 2, Rymsky Korsakov Str., 40007 Sumy (Ukraine); Bagdasaryan, A.A., E-mail: artemsumdu@ukr.net [Sumy State University, 2, Rymsky Korsakov Str., 40007 Sumy (Ukraine); Bondar, O.V. [Sumy State University, 2, Rymsky Korsakov Str., 40007 Sumy (Ukraine); Krause-Rehberg, R. [Martin-Luther-University Halle-Wittenberg, Halle (Germany); Abadias, G.; Chartier, P. [Institut P' , University of Poitiers, Chasseneuil-Futuroscope (France); Oyoshi, K.; Takeda, Y. [National Institute for Material Science, Tsukuba (Japan); Beresnev, V.M. [Kharkiv National University, 21, Svobody Sq., 4, 61022 Kharkiv (Ukraine); Sobol, O.V. [National Technical University, Kharkiv Polytechnic Institute, Kharkiv (Ukraine)

    2014-10-15

    High-entropy alloy and nitride coatings (TiHfZrVNb)N were prepared by the cathodic-arc-vapor-deposition method under various deposition conditions. The composition, crystal structure, strain-stress state, profiles of defects and atoms in-depth and at surfaces of the (TiHfZrVNb)N coatings were characterized by EDS and SEM analysis, X-ray diffraction with “α-sin{sup 2}ψ” method of measurements and slow positron beam. The oxidation behavior of nitride films after annealing at 600 °C temperature was studied. The results indicate that nitride coatings show the face-centered cubic crystal structure. The redistributions of elements and defects, their arrangement (segregation) due to the thermally stimulated diffusion and termination of the spinodal segregation near the interfaces, around the grains and subgrains were found. The peak hardness and modulus of the nitride films were 44.3 and 384 GPa, respectively. The tribological properties of the (TiHfZrVNb)N coatings against AISI 1045 were evaluated by a ball-on-disc tribometer with a 3.0 N applied load. - Highlights: • (Ti–Hf–Zr–V–Nb)N coatings produced by CAVD exhibit enhanced strength. • The influence of deposition parameters on the defect structure in the coating was discussed. • Partial relaxation of compressive stress is observed after thermal annealing at 600 °C. • Coatings deposited on the steel substrate improve its tribological performance.

  7. Expression of FAP, ADAM12, WISP1, and SOX11 is heterogeneous in aggressive fibromatosis and spatially relates to the histologic features of tumor activity.

    Science.gov (United States)

    Misemer, Benjamin S; Skubitz, Amy P N; Carlos Manivel, J; Schmechel, Stephen C; Cheng, Edward Y; Henriksen, Jonathan C; Koopmeiners, Joseph S; Corless, Christopher L; Skubitz, Keith M

    2014-02-01

    Aggressive fibromatosis (AF) represents a group of tumors with a variable and unpredictable clinical course, characterized by a monoclonal proliferation of myofibroblastic cells. The optimal treatment for AF remains unclear. Identification and validation of genes whose expression patterns are associated with AF may elucidate biological mechanisms in AF, and aid treatment selection. This study was designed to examine the protein expression by immunohistochemistry (IHC) of four genes, ADAM12, FAP, SOX11, and WISP1, that were found in an earlier study to be uniquely overexpressed in AF compared with normal tissues. Digital image analysis was performed to evaluate inter- and intratumor heterogeneity, and correlate protein expression with histologic features, including a histopathologic assessment of tumor activity, defined by nuclear chromatin density ratio (CDR). AF tumors exhibited marked inter- and intratumor histologic heterogeneity. Pathologic assessment of tumor activity and digital assessment of average nuclear size and CDR were all significantly correlated. IHC revealed protein expression of all four genes. IHC staining for ADAM12, FAP, and WISP1 correlated with CDR and was higher, whereas SOX11 staining was lower in tumors with earlier recurrence following excision. All four proteins were expressed, and the regional variation in tumor activity within and among AF cases was demonstrated. A spatial correlation between protein expression and nuclear morphology was observed. IHC also correlated with the probability of recurrence following excision. These proteins may be involved in AF pathogenesis and the corresponding pathways could serve as potential targets of therapy. © 2013 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  9. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  10. Second-order phase transition at high-pressure in GeS crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hashimzade, F.M.; Huseinova, D.A.; Jahangirli, Z.A.; Mehdiyev, B.H., E-mail: bachschi@yahoo.de

    2014-12-01

    In this paper we give a theoretical proof of the existence of a second-order structural phase transition in the GeS at a pressure of 35.4 GPa. We use the plane-wave pseudopotential approach to the density functional theory in the local density approximation. The evidence of the phase transition is the abrupt change in the bulk modulus as the volume of the unit cell of the crystal changes continuously. We show that the phase transition is caused by the softening of the low-frequency fully symmetric interlayer mode with increasing pressure. As a result, phase transition of a displacement type takes place with the change of translational symmetry of the crystal from the simple orthorhombic to the base-centered orthorhombic (P{sub bnm}(D{sub 2h}{sup 16})→C{sub mcm}(D{sub 2h}{sup 17}))

  11. Crystallization and preliminary X-ray crystallographic analysis of the ArsM arsenic(III) S-adenosylmethionine methyltransferase

    International Nuclear Information System (INIS)

    Marapakala, Kavitha; Ajees, A. Abdul; Qin, Jie; Sankaran, Banumathi; Rosen, Barry P.

    2010-01-01

    A common biotransformation of arsenic is methylation to monomethylated, dimethylated and trimethylated species, which is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase. ArsM from the acidothermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized by the hanging-drop vapor-diffusion method and diffraction data were collected to 1.76 Å resolution. Arsenic is the most ubiquitous environmental toxin and carcinogen and consequently ranks first on the Environmental Protection Agency’s Superfund Priority List of Hazardous Substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. A common biotransformation is methylation to monomethylated, dimethylated and trimethylated species. Methylation is catalyzed by the ArsM (or AS3MT) arsenic(III) S-adenosylmethionine methyltransferase, an enzyme (EC 2.1.1.137) that is found in members of every kingdom from bacteria to humans. ArsM from the thermophilic alga Cyanidioschyzon sp. 5508 was expressed, purified and crystallized. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 84.85, b = 46.89, c = 100.35 Å, β = 114.25° and one molecule in the asymmetric unit. Diffraction data were collected at the Advanced Light Source and were processed to a resolution of 1.76 Å

  12. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    Gavira, J. A.; Lacal, J.; Ramos, J. L.; García-Ruiz, J. M.; Krell, T.; Pineda-Molina, E.

    2012-01-01

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  13. Crystal structure of the Hg4SiS6 and Hg4SiSe6 compounds

    International Nuclear Information System (INIS)

    Gulay, L.D.; Olekseyuk, I.D.; Parasyuk, O.V.

    2002-01-01

    The crystal structures of Hg 4 SiS 6 and Hg 4 SiSe 6 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.23020(5), b=0.71031(4), c=1.22791(4) nm, β=109.721(3) deg. for Hg 4 SiS 6 and a=1.28110(4), b=0.74034(4), c=1.27471(1) nm, β=109.605(3) deg. for Hg 4 SiSe 6 . Atomic parameters were refined in the isotropic approximation (R I =0.0571 and R I =0.0555 for the Hg 4 SiS 6 and Hg 4 SiSe 6 , respectively)

  14. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  15. Magnetic SiO2/Fe3O4 colloidal crystals

    International Nuclear Information System (INIS)

    Huang, C-K; Hou, C-H; Chen, C-C; Tsai, Y-L; Chang, L-M; Wei, H-S; Hsieh, K-H; Chan, C-H

    2008-01-01

    We proposed a novel technique to fabricate colloidal crystals by using monodisperse SiO 2 coated magnetic Fe 3 O 4 (SiO 2 /Fe 3 O 4 ) microspheres. The magnetic SiO 2 /Fe 3 O 4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO 2 /Fe 3 O 4 superparamagnetic microspheres have been successfully used to fabricate colloidal crystals under the existing magnetic field

  16. The system of quantum structures coated with the diamond-like carbon for silicon solar cells

    International Nuclear Information System (INIS)

    Efimov, V.P.; Abyzov, A.S.; Luchaninov, A.A.; Omarov, A.O.; Strel'nitskij, V.E.

    2010-01-01

    The peculiarity of the process of amorphous diamond-like carbon coating deposition on the surface of Si photoelectric cell with quantum filaments, which was irradiated by the electrons and heavy multi-charge ions, have been investigated. The experimental results on the investigations of the optical characteristics of the nitrogen doped hydrogenated diamond-like carbon a-C:(H,N) coatings were presented. The parameters of the process of a-C:(H,N) coating deposition on the surfaces of disordered Si semiconductors structures were optimized for the purpose of minimizing optical reflection coefficient from the front surface of the crystal and supplying its mechanical durability.

  17. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  18. S-layer architectures : extending the morphogenetic potential of S-layer protein self-assembly

    International Nuclear Information System (INIS)

    Schuster, D.

    2013-01-01

    Self-assembly of molecular building blocks is a common principle for bottom up based building principles in nature. One example are crystalline bacterial surface layers, termed S-layers, which are the most commonly observed cell surface structures in prokaryotic organisms. They recrystallize into highly ordered, porous protein meshworks with unit cell sizes of 3 to 30 nm and pore sizes of 2 to 8 nm. In this work, S-layers were self-assembled on various three dimensional scaffolds in order to fabricate novel S-layer architectures. Exploiting the stabilizing effect of silica deposited on the S-layer protein meshwork led to the construction of hollow S-layer nano-containers derived from coated liposomes. Transmission electron microscopy (TEM) techniques and release experiments with fluorescent dyes confirmed the dissolution of the supporting lipids. Silica deposition on different spherical particles in solution, as well as on planar S-layer coated surfaces, could be monitored by measuring the ζ-potential, the decline of monosilicic acid in solution, by using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis or by quartz crystal microbalance with dissipation monitoring (QCM-D). Both, ζ-potential and release experiments showed differences between silicified plain liposomes and silicified S-layer coated liposomes. In addition, nanocapsules with calcium carbonate cores served as another template for the construction of silica supported S-layer architectures. These were investigated by SEM and fluorescence microscopy after fluorescence labeling. Additional coating with polyelectrolytes increased the stability of the nanocapsules. Their mechanical properties were characterized by atomic force microscopy (AFM). The influence of silica deposition was investigated by AFM and SEM. Further on, emulsomes and gas filled lipid supported microbubbles may serve as other templates for the design of spherical protein constructs although extraction of the

  19. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  20. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    Science.gov (United States)

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  1. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  2. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    International Nuclear Information System (INIS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-01-01

    Graphical abstract: - Highlights: • TiO_2/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO_2/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO_2/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO_2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO_2 coatings. In the study, titania-nanosilver (TiO_2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO_2 powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO_2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO_2/Ag coatings and no crystalline changed happened in the TiO_2 structure. The reduction ratios on the TiO_2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO_2/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO_2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO_2/Ag coatings were discussed with

  3. Table sugar as preparation and carbon coating reagent for facile synthesis and coating of rod-shaped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.co [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Nikolowski, Kristian; Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-05-14

    Rod-shaped {alpha}-MnO{sub 2} has been synthesized by a novel and facile wet chemical method using simple sugar and potassium permanganate. Redox reaction between KMnO{sub 4} and sucrose is carried out in an acidic medium. Acidic medium provides a reducing character to sucrose through its decomposition to elemental carbon. Carbon coating process was done using simple sugar also as a source for carbon in an absolute ethanol with heating the mixture of {alpha}-MnO{sub 2} and sugar at 350 {sup o}C for an hour in an ambient atmosphere. A single phase of cryptomelane-like phase MnO{sub 2} was observed from XRD patterns for bare and carbon coated samples. TGA analysis shows the presence of carbon layer through more weight loss percent of carbon coated sample in comparison with that of carbon free MnO{sub 2}. Both virgin and carbon coated MnO{sub 2} have high thermal stability due to high percent of K inside the tunnel determined from ICP analysis. Transmission Electron Microscope (TEM) showed a rod-shaped crystal for both the parent and carbon coated {alpha}-MnO{sub 2} and confirmed the presence of a thin film of carbon around MnO{sub 2} particles. Both XRD and TEM investigations show that the prepared powders are in nano-scale. Initial capacity of about 140 mAh/g was obtained for the parent and carbon coated samples. The results show also that carbon coating process improves the capacity retention and the efficiency of {alpha}-MnO{sub 2} in comparison with that carbon free sample.

  4. Preparation, characterization and millimetre wave attenuation performance of carbon fibers coated with nickel-wolfram-phosphorus and nickel-cobalt-wolfram- phosphorus

    International Nuclear Information System (INIS)

    Ye, Mingquan; Li, Zhitao; Wang, Chen; Han, Aijun

    2016-01-01

    Highlights: • SEM, XRD, EDS and MMW attenuation performances of alloys coated CFs were studied. • Resistivity and P content in alloys were main factors on MMW attenuation property. • The weight gain of coated CFs has effects on the MMW attenuation performance. - Abstract: Carbon fibers (CFs) coated with Ni–X–P (X = W, Co–W or none) alloys were prepared by electroless plating. The morphology, crystal structure, and element composition of alloy-coated CFs were characterized by scanning electron microscopy, X-ray diffractometry, energy-dispersive spectrometry and microwave attenuation. The results showed that CFs were coated with a layer of alloy particles. P content in Ni–Co–W–P or Ni–W–P alloys was lower than that in Ni–P alloy, and coating alloy Ni–P was amorphous. After W or Co introduction, coating alloys exhibited crystal characteristics. MMW-attenuation performance analysis showed that the 3 mm wave attenuation performance of CFs/Ni–Co–W–P, CFs/Ni–W–P and CFs/Ni–P increased by 7.27 dBm, 4.88 dBm and 3.55 dBm, and the 8 mm wave attenuation effects increased by 11.61 dBm, 6.11 dBm, and 4.06 dBm respectively, compared with those of CFs. MMW-attenuation performance is attributable to the sample bulk resistivity and P content in the alloy. Moreover, an optimal weight gain value existed for the MMW-attenuation performance of alloy-coated CFs.

  5. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  6. Preparation of CdS nanoparticels with spin-coating assisted successive ionic layer reaction and their photoelectrochemical properties

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2017-10-01

    Full Text Available In order to settle the problems in the traditional SILAR method for CdS deposition, such as smaller particles and being difficult to enhance the sensitive layers, an improved spin-coating assisted successive ionic layer reaction method (S-SILR substituted for the traditional SILAR method is used to deposit the CdS nanocrystals. The comparison between the improved and traditional methods is studied after depositing the CdS nanocrystals onto the ZnO nanorod arrays with the two approaches. Different analysis methods, SEM, XRD, UV-vis and the transit photocurrent measurement are conducted to characterize the morphologies and structures of the samples, as well as investigating the light absorption properties, and the photoelectric conversion performance of the electrodes. The results indicate that the CdS nanocrystals photosensitive layers could be totally coated onto the ZnO nanorod arrays more easily by the improved S-SILR method; the light absorption properties and the photoelectric conversion performance of the electrodes prepared by the improved S-SILR method are more excellent compared with those electrodes prepared by the traditional SILAR method. The improvement of the CdS deposition method has certain guiding significance in enhancing the operability of the preparation technology and the photovoltaic performance of the solar cells.

  7. Effect of the addition of Sm2O3 on the microstructure of laser cladding alloy coating layers

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Fang, Wei; Joo, Yun Kon; Kang, Jin Ho; Lee, Chan Gyu

    2008-06-01

    The effects on the microstructures and phases of coating layers by the addition of micron-sized (m) and nano-sized (n) (m&n) Sm2O3 powders were investigated. The coating materials, which were prepared by means of 2.0 kW CO2 laser cladding, consist of a powder mixture of m Ni-based alloy (NBA) powders comprising 1.5 wt.% m Sm2O3 and 3.0% n Sm2O3 powders. The results indicate that γ-Ni, Cr23C6 and Ni3B are the primary phases of the NBA coatings. The Fe7Sm and Ni3Si phases are highlighted by the addition of m&n Sm2O3 powders. From the substrate, planar crystal layers are first grown in all NBA and m&n Sm2O3/NBA coatings. The dendrite growth then occurs as a result of the addition of the m Sm2O3 powder, and the equiaxed dendrite growth occurs as a result of the addition of the n Sm2O3. With the addition of a rare earth oxide such as Sm2O3 powder, the width of the planar crystal becomes smaller than that of the NBA coating.

  8. Nanocomposite tribological coatings with "chameleon" surface adaptation

    Science.gov (United States)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept

  9. Nanocomposite tribological coatings with 'chameleon' surface adaptation

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Fitz, T.A.; Hu, J.J.; Zabinski, J.S.

    2002-01-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed 'chameleon' because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its 'skin' chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS 2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS 2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS 2 /DLC coatings against steel and Si 3 N 4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 deg. C in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS 2 for sliding in dry N 2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 deg. C (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS 2 /DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design

  10. The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun

    2017-04-19

    Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.

  11. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Zawacka, Natalia Klaudia; Dam, Henrik Friis

    2014-01-01

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording...

  12. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities

    NARCIS (Netherlands)

    Liu, Y.; Zhang, X.; Jin, X.; Fan, C.; Ye, H.; Ou, M.; Lv, L.; Wu, G.; Zhou, Y.

    2014-01-01

    Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P) crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however,

  13. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  14. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  15. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan

    2011-01-01

    A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  16. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  17. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  18. The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries

    International Nuclear Information System (INIS)

    Long, Wei; Yang, Zhanhong; Fan, Xinming; Yang, Bin; Zhao, Zhiyuan; Jing, Jing

    2013-01-01

    The ZnO samples coated with carbon are successfully synthesized by using a high energy ball milling method. The scanning electron microscopy (SEM) images and energy dispersive spectrometer (EDS) spectra of the carbon-coated ZnO and pure ZnO show that the carbon-coated ZnO (carbon source: glucose, citric acid) samples and the untreated ZnO sample have similar particle size and crystal form. The particles have prismatic microstructure whose sizes are about 100–200 nm. However, the carbon-coated ZnO (carbon source: sucrose) sample has become agglomeration after calcination whose size has been increased to 2–6 μm. The uncoated ZnO powders have more complete crystal shape and they are glazed quadrangular materials, while the carbon coated ZnO particles has a rough surface, which resulted from the growth of carbon coating on ZnO particles. X-ray diffraction (XRD) patterns of the carbon-coated ZnO and the pure ZnO show carbon formed on the surface of ZnO is amorphous. Tafel plot, cyclic voltammetry (CV), AC impedance spectroscopy and galvanostatic charge–discharge measurement are utilized to examine the electrochemical performances of the carbon-coated ZnO. The carbon-coated ZnO (carbon source: glucose) have the most positive steady-state potential and lowest corrosion current density in the zinc electrodes which indicates that it has a good anticorrosion ability. A lower charge platform and a higher discharge platform of carbon-coated ZnO indicate that it have a better charge/discharge performance as anodic material for Ni/Zn cells. A smaller ohmic resistance and charge-transfer resistance imply that the carbon film upon ZnO could greatly decrease the impedance of the reaction process. Meanwhile, the carbon-coated ZnO also showed more excellent cycling performance than pure ZnO. The reason of improvement about electrochemical performance can be ascribed as the unique structure of amorphous carbon layer

  19. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    International Nuclear Information System (INIS)

    Huang, Yongle; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2015-01-01

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm 2 min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm 2 min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating

  20. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.