WorldWideScience

Sample records for coated particle based

  1. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  2. Fuel particle coating data

    International Nuclear Information System (INIS)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies

  3. Charged-particle coating

    International Nuclear Information System (INIS)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  4. A study on coated particle fuel properties and performances and phase-I data base establishment

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Hyo Cheol; Im, Byeong Ju; Yun, Sang Pil; Son, Seung Beom; Lee, Gyeong Hui; Jang, Jeong Nam

    2006-03-01

    For the successful development of the high temperature gas cooled reactor acquisition and generation of the high temperature properties of reactor materials, especially temperature and burn-up dependent properties of coated particle fuel and fuel element, are crucially essential. Recently national project for HTGR for hydrogen production has been kicked off. However, we have had little experience on this new challenges. Therefore, it became necessary to build up the materials properties and fuel performance data base. In this study, a primitive properties and performance DB for coated particle fuel was developed. This database report consists two sections: materials properties and fuel performance. The materials properties has three parts: kernel materials, carbide coating materials, and fuel elements and graphite matrix. UO 2 and UCO belong to kernel materials while PyC, SiC, and ZrC comprises the coating materials section. Thermal, mechanical and physical properties of these materials were collected, reviewed, and summarized. Additionally, the property change induced by manufacture process and irradiation were collected and summarized. Performance data were also collected, reviewed, and analyzed based on the key phenomena and failure mechanism. All of these data will be accessible in the on-line system. These results will be directly used for HTGR fuel design and fabrication and preliminary fuel performance analysis under irradiation

  5. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  6. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  7. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, B. G.; Kim, Y. K.

    2009-04-01

    UO 2 kernel fabrication technology was developed at the lab sacle(20∼30g-UO 2 /batch). The GSP technique, modified method of sol-gel process, was used in the preparation of spherical ADU gel particle and these particles were converted to UO 3 and UO 2 phases in calcination furnace and sintering furnace respectively. Based on the process variables optimized using simulant kernels in 1-2 inch beds, SiC TRISO-coated particles were fabricated using UO 2 kernel. Power densities of TRISO coated particle fuels and gamma heat of the tubes are calculated as functions of vertical location of the fuel specimen in the irradiation holes by using core physics codes, MCNP and Helios. A finite model was developed for the calculations of temperatures and stresses of the specimen and the irradiation tubes. Dimensions of the test tubes are determined based on the temperatures and stresses as well as the gamma heat generated at the given condition. 9 modules of the COPA code (MECH, FAIL, TEMTR, TEMBL, TEMPEB, FPREL, MPRO, BURN, ABAQ), the MECH, FAIL, TEMTR, TEMBL, TEMPEB, and FPREL were developed. The COPA-FPREL was verified through IAEA CRP-6 accident benchmarking problems. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. The inspection and test plan describing specifications and inspection method of coated particles was developed to confirm the quality standard of coated particles. The quality inspection instructions were developed for the inspection of coated particles by particle size analyzer, density inspection of coating layers by density gradient column, coating thickness inspection by X-ray, and inspection of optical anistropy factor of PyC layer. The quality control system for the TRISO-coated particle fuel was derived based on the status of quality control systems of other countries

  8. Anticorrosion Coatings Based on Assemblies of Superhydrophobic Particles Impregnated with Conductive Oil

    Science.gov (United States)

    2016-05-13

    DATE (DD-MM-YYYY) 13/5/2016 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) April 2015 – April 2016 4. TITLE AND SUBTITLE 5a. CONTRACT...coatings for electrical system components. The coatings inhibited the build-up of resistive corrosion on electrical connector backshells as well as on...and silica particles. To enhance the corrosion resistance and achieve low electrical resistance, exfoliated graphene sheets were dispersed in

  9. TOPICAL REVIEW Warm spraying—a novel coating process based on high-velocity impact of solid particles

    Directory of Open Access Journals (Sweden)

    Seiji Kuroda et al

    2008-01-01

    Full Text Available In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1 the critical velocity needed to form a coating can be significantly lowered by heating, (2 the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3 various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications.

  10. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    DEFF Research Database (Denmark)

    Koivisto, Antti J.; Jensen, Alexander C. Ø.; Kling, Kirsten I.

    2017-01-01

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm ...

  11. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    Science.gov (United States)

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. New developments in image-based characterization of coated particle nuclear fuel

    Science.gov (United States)

    Price, Jeffery R.; Aykac, Deniz; Hunn, John D.; Kercher, Andrew K.; Morris, Robert N.

    2006-02-01

    We describe in this paper new developments in the characterization of coated particle nuclear fuel using optical microscopy and digital imaging. As in our previous work, we acquire optical imagery of the fuel pellets in two distinct manners that we refer to as shadow imaging and cross-sectional imaging. In shadow imaging, particles are collected in a single layer on an optically transparent dish and imaged using collimated back-lighting to measure outer surface characteristics only. In cross-sectional imaging, particles are mounted in acrylic epoxy and polished to near-center to reveal the inner coating layers for measurement. For shadow imaging, we describe a curvaturebased metric that is computed from the particle boundary points in the FFT domain using a low-frequency parametric representation. We also describe how missing boundary points are approximated using band-limited interpolation so that the FFT can be applied. For cross-section imaging, we describe a new Bayesian-motivated segmentation scheme as well as a new technique to correct layer measurements for the fact that we cannot observe the true mid-plane of the approximately spherical particles.

  13. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Science.gov (United States)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  14. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  15. Stress analysis of aspherical coated particle with inner pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bing, E-mail: bingliu@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Yang Lin; Liang Tongxiang; Tang Chunhe [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2012-10-15

    Coated particles used in HTR fuel element sustain the inner pressure during irradiation as a pressure vessel. In actually the coated particle is not real spherical but with some asphericity, the stress distribution in the vessel is not uniform, coated layer in aspherical particle sustain more additional stress due to the asphericity. In this paper, the geometric shape distribution is summarized based on actual coated particle statistic. A mechanical analysis model is proposed for SiC layer by geometric combinations, and stress distribution of coated particle with a flat is calculated. The results show that the local maximum stress of aspherical particle increased two times than that of ideal spherical coated particle, which increase the failure probability under irradiation and high temperature.

  16. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  17. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  18. Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The steam-based conversion coatings containing TiO2 particleswere prepared using a two-step process comprising of spin coating of particles onto an aluminiumsubstrate followed by a high-pressure steam treatment. Process has resulted in the formation of aluminium oxide layer (~1.3 μm thick) embedded...... to the coatings without TiO2 particles, while the shift in thepitting potential was a function of the steam treatment time and degree of particle incorporation into the oxide....... with TiO2 particles. The electrochemical measurements showthe beneficial effect of TiO2 particles in the oxide layer by exhibiting lowestanodic and cathodic activities, and reduced pit depth. The presence of TiO2 particles shifts the corrosion potentialvalues to positive side (noble side) when compared...

  19. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    Science.gov (United States)

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  20. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, B. G.; Kim, S. H.

    2007-06-01

    Uranium kernel fabrication technology using a wet chemical so-gel method, a key technology in the coated particle fuel area, is established up to the calcination step and the first sintering of UO2 kernel was attempted. Experiments on the parametric study of the coating process using the surrogate ZrO2 kernel give the optimum conditions for the PyC and SiC coating layer and ZrC coating conditions were obtained for the vaporization of the ZrCl4 precursor and coating condition from ZrC coating experiments using plate-type graphite substrate. In addition, by development of fuel performance analysis code a part of the code system is completed which enables the participation to the benchmark calculation and comparison in the IAEA collaborated research program. The technologies for irradiation and post irradiation examination, which are important in developing the HTGR fuel technology of its first kind in Korea was started to develop and, through a feasibility study and preliminary analysis, the technologies required to be developed are identified for further development as well as the QC-related basic technologies are reviewed, analyzed and identified for the own technology development. Development of kernel fabrication technology can be enhanced for the remaining sintering technology and completed based on the technologies developed in this phase. In the coating technology, the optimum conditions obtained using a surrogate ZrO2 kernel material can be applied for the uranium kernel coating process development. Also, after completion of the code development in the next phase, more extended participation to the international collaboration for benchmark calculation can be anticipated which will enable an improvement of the whole code system. Technology development started in this phase will be more extended and further focused on the detailed technology development to be required for the related technology establishment

  1. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  2. Tuning roughness and gloss of powder coating paint by encapsulating the coating particles with thin Al

    NARCIS (Netherlands)

    Valdesueiro, David; Hettinga, Hans; Drijfhout, Jan Pieter; Lips, Priscilla; Meesters, G.M.H.; Kreutzer, M.T.; van Ommen, J.R.

    2017-01-01

    In this work, we report a method to change the surface finish of a standard polyester-based powder coating paint, from gloss to matt, by depositing ultrathin films of Al2O3 on the powder coating particles. The coating experiments were performed in a fluidized bed reactor at

  3. Irradiation behaviors of coated fuel particles, (4)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Ogawa, Toru; Ikawa, Katsuichi; Iwamoto, Kazumi; Ishimoto, Kiyoshi

    1981-09-01

    Loose coated fuel particles prepared in confirmity to a preliminary design for the multi-purpose VHTR in fiscal 1972 - 1974 were irradiated by 73F - 12A capsule in JMTR. Main purpose for this irradiation experiment was to examine irradiation stability of the candidate TRISO coated fuel particles for the VHTR. Also the coated particles possessing low-density kernel (90%TD), highly anisotropic OLTI-PyC and ZrC coating layer were loaded with the candidate particles in this capsule. The coated particles were irradiated up to 1.5 x 10 21 n/cm 2 of fast neutron fluence (E > 0.18 MeV) and 3.2% FIMA of burnup. In the post irradiation examination it was observed that among three kinds of TRISO particles exposed to irradiation corresponding to the normal operating condition of the VHTR ones possessing poor characteristics of the coating layers did not show a good stability. The particles irradiated under abnormally high temperature condition (> 1800 0 C) revealed 6.7% of max. EOL failure fraction (95% confidence limit). Most of these particles were failed by the ameoba effect. Furthermore, among four kinds of the TRISO particles exposed to irradiation corresponding to the transient condition of the VHTR (--1500 0 C) the two showed a good stability, while the particles possessing highly anisotropic OLTI-PyC or poorly characteristic coating layers were not so good. (author)

  4. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    International Nuclear Information System (INIS)

    Li, Qingtang; Lei, Yongping; Fu, Hanguang

    2014-01-01

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously

  5. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingtang, E-mail: liqingtang123@126.com; Lei, Yongping, E-mail: yplei@bjut.edu.cn; Fu, Hanguang

    2014-10-15

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  6. In vitro bioactivity, tribological property, and antibacterial ability of Ca-Si-based coatings doped with cu particles in-situ fabricated by laser cladding

    Science.gov (United States)

    Hou, Baoping; Yang, Zhao; Yang, Yuling; Zhang, Erlin; Qin, Gaowu

    2018-03-01

    The present study aimed to in-situ fabricate Ca-Si-based coatings doped with copper particles (Cu-CS coatings) to enhance in vitro bioactivity, tribological property, and antibacterial ability of Ti-6Al-4V alloy. The effects of copper addition on the multiple properties were evaluated. Our results showed that Ca2SiO4, CaTiO3, and Cu2O were in-situ fabricated after laser processing. The Cu-CS coatings exhibited an excellent wear resistance and enhanced wettability. Regarding the in vitro bioactivity, after soaking in simulated body fluid, Cu-CS coatings developed an apatite surface layer that was reduced in the coatings with higher weight percent Cu addition. The Cu-CS coatings enhanced the inhibitory action against E. coli strains, especially for the coating with a higher concentration of Cu in it. Hence, the synthesized Cu-CS coatings present excellent tribological properties, enhanced bioactivity, and antibacterial property, and, therefore, would be used to modify the surface properties of Ti-6Al-4V implants for bone tissue engineering applications.

  7. Article coated with flash bonded superhydrophobic particles

    Science.gov (United States)

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  8. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  9. Automatic size analysis of coated fuel particles

    International Nuclear Information System (INIS)

    Wallisch, K.; Koss, P.

    1977-01-01

    The determination of the diameter, coating thickness, and sphericity of coated fuel particles by conventional methods is very time consuming. Therefore, statistical data can only be obtained with limited accuracy. An alternative method is described that avoids these disadvantages by utilizing a fast optical data-collecting system of high accuracy. This system allows the determination of the diameter of particles in the range between 100 and 1500 μm, with an accuracy of better than +-2 μm and with a rate of 100 particles per second. The density and thickness of coating layers can be determined by comparing the data obtained before and after coating, taking into account the relative increase of weight. A special device allows the automatic determination of the sphericity of single particles as well as the distribution in a batch. This device measures 50 to 100 different diameters of each particle per second. An on-line computer stores the measured data and calculates all parameters required, e.g., number of particles measured, particle diameter, standard deviation, diameter limiting values, average particle volume, average particle surface area, and the distribution of sphericity in absolute and percent form

  10. Irradiation behaviors of coated fuel particles, (3)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Iwamoto, Kazumi; Ikawa, Katsuichi

    1980-07-01

    This report is concerning to the irradiation experiments of the coated fuel particles, which were performed by 72F-6A and 72F-7A capsules in JMTR. The coated particles referred to the preliminary design of VHTR were prepared for the experiments in 1972 and 1973. 72F-6A capsule was irradiated at G-10 hole of JMTR fuel zone for 2 reactor cycles, and 72F-7A capsule had been planned to be irradiated at the same irradiation hole before 72F-6A. However, due to slight leak of the gaseous fission products into the vacuum system controlling irradiation temperature, irradiation of 72F-7A capsule was ceased after 85 hrs since the beginning. In the post irradiation examination, inspection to surface appearance, ceramography, X-ray microradiography and acid leaching for the irradiated particle samples were made, and crushing strength of the two particle samples was measured. (author)

  11. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  12. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  13. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    Science.gov (United States)

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to

  14. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  15. Mechanical Coating of Zinc Particles with Bi2O3-Li2O-ZnO Glasses as Anode Material for Rechargeable Zinc-Based Batteries

    Directory of Open Access Journals (Sweden)

    Tobias Michlik

    2018-02-01

    Full Text Available The electrochemical performance of zinc particles with 250 μm and 30 μm diameters, coated with Bi2O3-Li2O-ZnO glass is investigated and compared with noncoated zinc particles. Galvanostatic investigations were conducted in the form of complete discharge and charging cycles in electrolyte excess. Coated 30 μm zinc particles provide the best rechargeability after complete discharge. The coatings reached an average charge capacity over 20 cycles of 113 mAh/g compared to the known zero rechargeability of uncoated zinc particles. Proposed reasons for the prolonged cycle life are effective immobilization of discharge products in the glass layer and the formation of percolating metallic bismuth and zinc phases, forming a conductive network through the glass matrix. The coating itself is carried out by mechanical ball milling. Different coating parameters and the resulting coating quality as well as their influence on the passivation and on the rechargeability of zinc–glass composites is investigated. Optimized coating qualities with respect to adhesion, homogeneity and compactness of the glass layer are achieved at defined preparation conditions, providing a glass coating content of almost 5 wt % for 250 μm zinc particles and almost 11 wt % for 30 μm zinc particles.

  16. Silver release from coated particle fuel

    International Nuclear Information System (INIS)

    Brown, P.E.; Nabielek, H.

    1977-03-01

    The fission product Ag-110 m released from coated particles can be the dominant source of radioactivity from the core of a high temperature reactor in the early stages of the reactor life and possibly limits the accessability of primary circuit components. It can be shown that silver is retained in oxide fuel by a diffusion process (but not in carbide or carbon-diluted fuel) and that silver is released through all types of pyrocarbon layers. The retention in TRISO particles is variable and seems to be mainly connected with operating temperature and silicon carbide quality. (orig.) [de

  17. Modeling of coated fuel particles irradiation behavior

    International Nuclear Information System (INIS)

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  18. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  19. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  20. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2012-01-01

    Highlights: ► The pressure signals during the real TRISO UO2-coated fuel particle fabrication process. ► A new relationship about the pressure drop change and the coated fuel particles properties. ► The proposed relationship is validated by experimental results during successive coating. ► A convenient method for monitoring the fluidized state during coating process. - Abstract: The pressure signals in the coating furnace are obtained experimentally from the TRISO UO 2 -coated fuel particle fabrication process. The pressure signals during the coating process are analyzed and a simplified relationship about the pressure drop change due to the coated layer is proposed based on the spouted bed hydrodynamics. The change of pressure drop is found to be consistent with the change of the combination factor about particle density, bed density, particle diameter and static bed height, during the successive coating process of the buffer PyC, IPyC, SiC and OPyC layer. The newly proposed relationship is validated by the experimental values. Based on this relationship, a convenient method is proposed for real-time monitoring the fluidized state of the particles in a high-temperature coating process in the spouted bed. It can be found that the pressure signals analysis is an effective method to monitor the fluidized state on-line in the coating process at high temperature up to 1600 °C.

  1. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of

  2. Oleate-based hydrothermal preparation of CoFe{sub 2}O{sub 4} nanoparticles, and their magnetic properties with respect to particle size and surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Repko, Anton, E-mail: anton@a-repko.sk [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Vejpravová, Jana, E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Vacková, Taťana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Zákutná, Dominika [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Nižňanský, Daniel, E-mail: daniel.niznansky@natur.cuni.cz [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic)

    2015-09-15

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co–Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6–10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe{sub 2}O{sub 4}@TiO{sub 2} nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel–Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were prepared by facile hydrothermal method from Co–Fe oleate. • Blocking temperature (T{sub B}) is 180–330 K for 6–10.5 nm oleate-coated particles. • The apparent T{sub B} changes with oleic acid, citrate or TiO{sub 2} coating.

  3. Transfer of fissile material through shielding coatings in emergency heating of HTGR coated particles

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Zhuravkov, S.G.; Koptev, M.A.; Kurepin, A.D.

    1990-01-01

    The measurement results of leakage dynamics of fissile material from the coated particles within a temperature range of 1200 + 2000 deg. C are given. The methods of carrying out the experiments are briefly described. The relation of the leakage rate of uranium-235 from CP (coated particles) with the pyrocarbonic coatings has been obtained. (author)

  4. Design colloidal particle morphology and self-assembly for coating applications.

    Science.gov (United States)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; Bohling, James; Fasano, David; Brownell, Stan

    2017-06-19

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with less cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. These technologies also represent the most important considerations in architectural coating design.

  5. Science and technology of kernels and TRISO coated particle sorting

    International Nuclear Information System (INIS)

    Nothnagel, G.

    2006-09-01

    The ~1mm diameter TRISO coated particles, which form the elemental units of PBMR nuclear fuel, has to be close to spherical in order to best survive damage during sphere pressing. Spherical silicon carbide layers further provide the strongest miniature pressure vessels for fission product retention. To make sure that the final product contains particles of acceptable shape, 100% of kernels and coated particles have to be sorted on a surface-ground sorting table. Broken particles, twins, irregular (odd) shapes and extreme ellipsoids have to be separated from the final kernel and coated particle batches. Proper sorting of particles is an extremely important step in quality fuel production as the final failure fraction depends sensitively on the quality of sorting. After sorting a statistically significant sample of the sorted product is analysed for sphericity, which is defined as the ratio of maximum to minimum diameter, as part of a standard QC test to ensure conformance to German specifications. In addition a burn-leach test is done on coated particles (before pressing) and fuel spheres (after pressing) to ensure adherence to failure specifications. Because of the extreme importance of particle sorting for assurance of fuel quality it is essential to have an in-depth understanding of the capabilities and limitations of particle sorting. In this report a systematic scientific rationale is developed, from fundamental principles, to provide a basis for understanding the relationship between product quality and sorting parameters. The principles and concepts, developed in this report, will be of importance when future sorting tables (or equivalents) are to be designed. A number of new concepts and methodologies are developed to assist with equivalence validation of any two sorting tables. This is aimed in particular towards quantitative assessment of equivalence between current QC tables (closely based on the original NUKEM parameters, except for the driving mechanism

  6. Dielectric relaxation of glass particles with conductive nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)

    2009-03-21

    This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.

  7. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  8. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    International Nuclear Information System (INIS)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I.; Lee, S. H.; Eum, G. W.

    2015-01-01

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating

  9. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I. [Andong National University, Andong (Korea, Republic of); Lee, S. H.; Eum, G. W. [Corporate R and D Institute Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2015-04-15

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

  10. Quality of Coated Particles : Physical - Mechanical Characterization of Polymeric Film Coatings

    NARCIS (Netherlands)

    Perfetti, G.

    2012-01-01

    All coated particle producers, when applying the coating layer(s) would like to know precisely what is the best coating system to use in order to answer customer’s requests. It is, therefore, of very high relevance for many industries, to have a clear understanding of what are the parameters I need

  11. Fuel particle coating data. [Detailed information on coating runs at Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies.

  12. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  13. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  14. Some calculations of the failure statistics of coated fuel particles

    International Nuclear Information System (INIS)

    Martin, D.G.; Hobbs, J.E.

    1977-03-01

    Statistical variations of coated fuel particle parameters were considered in stress model calculations and the resulting particle failure fraction versus burn-up evaluated. Variations in the following parameters were considered simultaneously: kernel diameter and porosity, thickness of the buffer, seal, silicon carbide and inner and outer pyrocarbon layers, which were all assumed to be normally distributed, and the silicon carbide fracture stress which was assumed to follow a Weibull distribution. Two methods, based respectively on random sampling and convolution of the variations were employed and applied to particles manufactured by Dragon Project and RFL Springfields. Convolution calculations proved the more satisfactory. In the present calculations variations in the silicon carbide fracture stress caused the greatest spread in burn-up for a given change in failure fraction; kernel porosity is the next most important parameter. (author)

  15. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  16. Infrared light extinction by charged dielectric core-coat particles

    OpenAIRE

    Thiessen, Elena; Heinisch, Rafael L.; Bronold, Franz X.; Fehske, Holger

    2014-01-01

    We study the effect of surplus electrons on the infrared extinction of dielectric particles with a core-coat structure and propose to use it for an optical measurement of the particle charge in a dusty plasma. The particles consist of an inner core with negative and an outer coat with positive electron affinity. Both the core and the coat give rise to strong transverse optical phonon resonances, leading to anomalous light scattering in the infrared. Due to the radial profile of the electron a...

  17. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  18. Irradiation Testing of TRISO-Coated Particle Fuel in Korea

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sunghwan; Jeong, Kyung-Chai; Eom, Sung-Ho; Kim, Yeon-Ku; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung; Kim, Yong Wan

    2014-01-01

    In Korea, coated particle fuel is being developed to support development of a VHTR. At the end of March 2014, the first irradiation test in HANARO at KAERI to demonstrate and qualify TRISO-coated particle fuel for use in a VHTR was terminated. This experiment was conducted in an inert gas atmosphere without on-line temperature monitoring and control, or on-line fission product monitoring of the sweep gas. The irradiation device contained two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The duration of irradiation testing at HANARO was about 135 full power days from last August 2013. The maximum average power per particle was about 165 mW/particle. The calculated peak burnup of the TRISO-coated fuel was a little less than 4 atom percent. Post-irradiation examination is being carried out at KAERI’s Irradiated Material Examination Facility beginning in September of 2014. This paper describes characteristics of coated particle fuel, the design of the test rod and irradiation device for this coated particle fuel, and discusses the technical results of irradiation testing at HANARO. (author)

  19. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  20. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  1. Stress Calculation of a TRISO Coated Particle Fuel by Using a Poisson's Ratio in Creep Condition

    International Nuclear Information System (INIS)

    Cho, Moon-Sung; Kim, Y. M.; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Kim, W. K.

    2007-01-01

    KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) project since 2004, has been developing a performance analysis code for the TRISO coated particle fuel named COPA (COated Particle fuel Analysis). COPA predicts temperatures, stresses, a fission gas release and failure probabilities of a coated particle fuel in normal operating conditions. KAERI, on the other hand, is developing an ABAQUS based finite element(FE) model to cover the non-linear behaviors of a coated particle fuel such as cracking or debonding of the TRISO coating layers. Using the ABAQUS based FE model, verification calculations were carried out for the IAEA CRP-6 benchmark problems involving creep, swelling, and pressure. However, in this model the Poisson's ratio for elastic solution was used for creep strain calculation. In this study, an improvement is made for the ABAQUS based finite element model by using the Poisson's ratio in creep condition for the calculation of the creep strain rate. As a direct input of the coefficient in a creep condition is impossible, a user subroutine for the ABAQUS solution is prepared in FORTRAN for use in the calculations of the creep strain of the coating layers in the radial and hoop directions of the spherical fuel. This paper shows the calculation results of a TRISO coated particle fuel subject to an irradiation condition assumed as in the Miller's publication in comparison with the results obtained from the old FE model used in the CRP-6 benchmark calculations

  2. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  3. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  4. Laser-based coatings removal

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings

  5. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  6. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Rajesh V., E-mail: pairajesh007@gmail.com [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Mollick, P.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ashok [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Banerjee, J. [Radiometullurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Radhakrishna, J. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Chakravartty, J.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-05-15

    UO{sub 2} microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO{sub 2} based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO{sub 2} microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800–1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO{sub 2} microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method. - Highlights: • The oxidation behaviour of coated particles was studied in air, O{sub 2} and moist O{sub 2}. • It was observed that coated layers cannot be completely removed by mere oxidation. • Complete recovery of uranium from the rejected coated particles has been carried out using a combination of dry and wet recovery scheme. • A crushing step prior to oxidation is needed for full recovery of uranium from the coated particles.

  7. Temperature of loose coated particles in irradiation tests

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1975-04-01

    An analysis is presented of the temperature of a monolayer bed of loose High-Temperature Gas-Cooled Reactor (HTGR) type fissioning fuel particles in an annular cavity. Both conduction and radiant heat transfer are taken into account, and the effect of particle contact with the annular cavity surfaces is evaluated. Charts are included for the determination of the maximum surface temperature of the particle coating for any size particle or power generation rate in a fuel bed of this type. The charts are intended for the design and evaluation of irradiation experiments on loose beds of coated fuel particles of the type used in HTGRs. Included in an Appendix is a method for estimating the temperature of a particle in circular hole. (U.S.)

  8. Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid.

    Science.gov (United States)

    Sun, Ning; Deng, Congliang; Zhao, Xiaoli; Zhou, Qi; Ge, Guanglu; Liu, Yi; Yan, Wenlong; Xia, Qiang

    2014-02-01

    In this study, a nucleic acid extraction method based on silica-coated magnetic particles (SMPs) and RT-qPCR assay was developed to detect Arabis mosaic virus (ArMV), Lily symptomless virus (LSV), Hop stunt viroid (HSVd) and grape yellow speckle viroid 1 (GYSVd-1). The amplification sequences of RT-qPCR were reversely transcribed in vitro as RNA standard templates. The standard curves covered six or seven orders of magnitude with a detection limit of 100 copies per each assay. Extraction efficiency of the SMPs method was evaluated by recovering spiked ssRNAs from plant samples and compared to two commercial kits (TRIzol and RNeasy Plant mini kit). Results showed that the recovery rate of SMPs method was comparable to the commercial kits when spiked ssRNAs were extracted from lily leaves, whereas it was two or three times higher than commercial kits when spiked ssRNAs were extracted from grapevine leaves. SMPs method was also used to extract viral nucleic acid from15 ArMV-positive lily leaf samples and 15 LSV-positive lily leaf samples. SMPs method did not show statistically significant difference from other methods on detecting ArMV, but LSV. The SMPs method has the same level of virus load as the TRIzol, and its mean virus load of was 0.5log10 lower than the RNeasy Plant mini kit. Nucleic acid was extracted from 19 grapevine-leaf samples with SMPs and the two commercial kits and subsequently screened for HSVd and GYSVd-1 by RT-qPCR. Regardless of HSVd or GYSVd-1, SMPs method outperforms other methods on both positive rate and the viroid load. In conclusion, SMPs method was able to efficiently extract the nucleic acid of RNA viruses or viroids, especially grapevine viroids, from lily-leaf or grapevine-leaf samples for RT-qPCR detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Fluidized bed reactor for working up carbon coated particles

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1981-01-01

    A fluidized bed reactor is described for working up carbon coated particles, particularly nuclear fuel particles or fertile material particles consisting essentially of a cylindrical portion connected to a conical portion. Gas supply pipes, gas distribution space and gas distribution heads are provided within the conical reactor lower portion, the gas distribution members being arranged in at least two superimposed planes and distributed symmetrically over the cross-section of the reactor

  10. Irradiation testing of coated particle fuel at Hanaro

    International Nuclear Information System (INIS)

    Goo Kim, Bong; Sung Cho, Moo; Kim, Yong Wan

    2014-01-01

    TRISO-coated particle fuel is developing to support development of VHTR in Korea. From August 2013, the first irradiation testing of coated particle fuel was begun to demonstrate and qualify TRISO fuel for use in VHTR in the HANARO at KAERI. This experiment is currently undergoing under the atmosphere of a mixed inert gas without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one contains nine fuel compacts and the other five compacts and eight graphite specimens. Each compact has 263 coated particles. After a peak burn-up of about 4 at% and a peak fast neutron fluence of about 1.7 x 10 21 n/cm 2 , PIE will be carried out at KAERI's Irradiated Material Examination Facility. This paper is described characteristics of coated particle fuel, the design of test rod and irradiation device for coated particle fuel, discusses the technical results for irradiation testing at HANARO. (authors)

  11. Study on coated layer material performance of coated particle fuel FBR (2). High temperature property and capability of coating to thick layer of TiN

    International Nuclear Information System (INIS)

    Naganuma, Masayuki; Mizuno, Tomoyasu

    2002-08-01

    'Helium Gas Cooled Coated Particle Fuel FBR' is one of attractive core concepts in the Feasibility Study on Commercialized Fast Reactor Cycle System in Japan, and the design study is presently proceeded. As one of key technologies of this concept, the coated layer material is important, and ceramics is considered to be a candidate material because of the superior refractory. Based on existing knowledge, TiN is regarded to be a possible candidate material, to which some property tests and evaluations have been conducted. In this study, preliminary tests about the high temperature property and the capability of thick layer coating of TiN have been conducted. Results of these tests come to the following conclusions. Heating tests of two kinds of TiN layer specimens coated by PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) were conducted. As a result, as for CVD coating specimens, remarkable charge was not observed on the layer up to 2,000degC, therefore we concluded that the layer by CVD had applicability up to high temperature of actual operation level. On the other hand, as for PVD coating specimens, an unstable behavior that the layer changed to a mesh like texture was observed on a 2,000degC heated specimen, therefore the applied PVD method is not considered to be promising as the coating technique. The surface conditions of some parts inside CVD device were investigated in order to evaluate possibility of TiN thick coating (∼100 μm). As a result, around 500 μm of TiN coating layer was observed on the condition of multilayer. Therefore, we conclude that CVD has capability of coating up to thick layer in actual coated particle fuel fabrication. (author)

  12. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  13. Coated fuel particles: requirements and status of fabrication technology

    International Nuclear Information System (INIS)

    Huschka, H.; Vygen, P.

    1977-01-01

    Fuel cycle, design, and irradiation performance requirements impose restraints on the fabrication processes. Both kernel and coating fabrication processes are flexible enough to adapt to the needs of the various existing and proposed high-temperature gas-cooled reactors. Extensive experience has demonstrated that fuel kernels with excellent sphericity and uniformity can be produced by wet chemical processes. Similarly experience has shown that the various multilayer coatings can be produced to fully meet design and specification requirements. Quality reliability of coated fuel particles is ensured by quality control and quality assurance programs operated by an aduiting system that includes licensing officials and the customer

  14. Physical and chemical analysis of interaction between oxide fuel and pyrocarbon coating of coated particles

    International Nuclear Information System (INIS)

    Lyutikov, R.A.; Kromov, Yu.F.; Chernikov, A.S.

    1991-01-01

    In terms of the model proposed the equilibrium pressure of gases (CO, Kr, Xe) in pyrocarbon-coated uranium dioxide fuel particles has been calculated, as function of the initial composition of the fuel (O/U), the design features of the coated particles, the fuel temperature, and the burnup. The possibility of reducing gas pressure in the particles by alloying the kernels with uranium carbide, and increasing the kernel capacity for retention of solid fission products by alloying the uranium oxide with aluminum-silicates, has been investigated. (author)

  15. Optical Coating Degradation Due to Particle Impacts

    Data.gov (United States)

    National Aeronautics and Space Administration — Charged particles are an important source of contamination for laser transmitter optics. However, these effects are not currently included in the GSFC contamination...

  16. Mathematical model and computer code for coated particles performance at normal operating conditions

    International Nuclear Information System (INIS)

    Golubev, I.; Kadarmetov, I.; Makarov, V.

    2002-01-01

    Computer modeling of thermo-mechanical behavior of coated particles during operating both at normal and off-normal conditions has a very significant role particularly on a stage of new reactors development. In Russia a big experience has been accumulated on fabrication and reactor tests of CP and fuel elements with UO 2 kernels. However, this experience cannot be using in full volume for development of a new reactor installation GT-MHR. This is due to very deep burn-up of the fuel based on plutonium oxide (up to 70% fima). Therefore the mathematical modeling of CP thermal-mechanical behavior and failure prediction becomes particularly important. The authors have a clean understanding that serviceability of fuel with high burn-ups are defined not only by thermo-mechanics, but also by structured changes in coating materials, thermodynamics of chemical processes, 'amoeba-effect', formation CO etc. In the report the first steps of development of integrate code for numerical modeling of coated particles behavior and some calculating results concerning the influence of various design parameters on fuel coated particles endurance for GT-MHR normal operating conditions are submitted. A failure model is developed to predict the fraction of TRISO-coated particles. In this model it is assumed that the failure of CP depends not only on probability of SiC-layer fracture but also on the PyC-layers damage. The coated particle is considered as a uniform design. (author)

  17. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  18. SP-100 coated-particle fuel development. Phase I. Final report

    International Nuclear Information System (INIS)

    1983-03-01

    This document is the final report of Phase I of the SP-100 Coated-Particle Fuel Development Program conducted by GA Technologies Inc. for the US Department of Energy under contract DE-AT03-82SF11690. The general objective of the study conducted between September and December 1982 was to evaluate coated-particle type fuel as an alternate or backup fuel to the UO 2 tile-and-fin arrangement currently incorporated into the reference design of the SP-100 reactor core. This report presents and discusses the following topics in the order listed: the need for an alternative fuel for the SP-100 nuclear reactor; an abbreviated description of the reference and coated-particle fuel module concepts; the bases and results of the study and analysis leading to the preliminary design of a coated particle suitable for the SP-100 space power reactor; incorporation of the fuel particles into compacts and heat-pipe-cooled modules; initial efforts and plans to fabricate coated-particle fuel and fuel compacts; the design and performance of the proposed alternative core relative that of the reference fuel; and a summary of critical issues and conclusions consistent with the level of effort and duration of the study

  19. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  20. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  1. Laser-based coatings removal

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building

  2. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  3. Reliability of magnetic particle inspection performed through coatings: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    The magnetic particle examination (MT) technique can reliably examine containment welds without removing their protective coatings. This study has investigated a variety of MT methods used in the oil and gas industry for their suitability for nuclear plant applications. 102 figs

  4. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  5. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  6. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott A., E-mail: scott.ploger@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Hunn, John D.; Kehn, Jay S. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2014-05-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 × 10{sup 5} total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  7. Improved gas distributor for coating HTGR fuel particles

    International Nuclear Information System (INIS)

    Lackey, W.J.; Stinton, D.P.; Sease, J.D.

    1977-01-01

    The important criteria to be considered in design of the gas distributor are: (1) The distributor should ideally spread or disperse the gas over the full area of the coating chamber to maximize the particle gas contact area and thereby increase both particle circulation and the percentage of the input gas that ends up as coating. (2) The gas should not heat up during its passage through the distributor. Otherwise the gas would partially decompose prematurely, causing excessive coating deposition within or on the distributor. (3) The distributor should be designed to minimize accidental drainage of particles from the furnace and blowover of particles into the effluent system. (4) The distributor should be capable of depositing both carbon and SiC coatings of high quality as regards to density, preferred orientation, permeability, defective fraction, and other product attributes. (5) The distributor should be amenable to use with large particle charges and short turnaround times and be simple, inexpensive, and reliable. We have devised a simple distributor that incorporates the five criteria listed above. The new design is termed a blind-hole frit. All the gas passes through the thinned blind-hole regions, and thus the gas velocity is considerably higher than for a flat frit of uniform thickness. Because of its high velocity, the gas does not have time to reach a high enough temperature to cause deposition within the frit. Also most of the resistance to gas flow is provided by the porous distributor and not by the particle bed; therefore, localized variations of the quantity of particles above any particular gas inlet do not significantly alter the flow rate through that inlet

  8. Composite of ceramic-coated magnetic alloy particles

    Science.gov (United States)

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  9. Effect of Coating Parameters of the Buffer Layer on the Shape Ratio of TRISO-Coated Particles

    International Nuclear Information System (INIS)

    KIm, Weon Ju; Park, Jong Hoon; Park, Ji Yeon; Lee, Young Woo; Chang, Jong Hwa

    2005-01-01

    Fuel for high temperature gas-cooled reactors (HTGR's) consists of TRISO-coated particles. Fluidized bed chemical vapor deposition (FBCVD) has been applied to fabricate the TRISO-coated fuel particles. The TRISO particles consist of UO 2 microspheres coated with layers of porous pyrolytic carbon (PyC), inner dense PyC (IPyC), SiC, and outer dense PyC (OPyC). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The buffer layer, which has the highest coating rate among the coating layers, shows the largest variation of the coating thickness within a particle and a batch. This could be the most plausible source of an asphericity in the TRISO particles. The aspherical particles are expected to have an inferior fuel performance. Miller et al. have predicted that a larger stress is developed within the coating layers and thus the failure probability increases in the particles with high aspect ratios. Therefore, the shape of the TRISO-coated particles should be controlled properly and has been one of the important inspection items for the quality control of the fabrication process. In this paper, we investigated the effect of coating parameters of the buffer layer on the shape of the TRISO particles. The flow rate of coating gas and the coating temperature were varied to control the buffer layer. The asphericity of the TRISO-coated particles was evaluated for the various coating conditions of the buffer layer, but at constant coating parameters for the IPyC/SiC/OPyC layers

  10. Improved graphite matrix for coated-particle fuel

    International Nuclear Information System (INIS)

    Schell, D.H.; Davidson, K.V.

    1978-10-01

    An experimental process was developed to incorporate coated fuel particles in an extruded graphite matrix. This structure, containing 41 vol% particles, had a high matrix density, >1.6 g/cm 3 , and a matrix conductivity three to four times that of a pitch-injected fuel rod at 1775 K. Experiments were conducted to determine the uniformity of particle loadings in extrusions. Irradiation specimens were supplied for five tests in the High-Fluence Isotope Reactor at the Oak Ridge National Laboratory

  11. Geometrical-optics approximation of forward scattering by coated particles.

    Science.gov (United States)

    Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang

    2004-03-20

    By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.

  12. Mechanical Properties and Structures of Pyrolytic Carbon Coating Layer in HTR Coated Particle Fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Young Min; Kim, Woong Ki; Cho, Moon Sung

    2009-01-01

    The TRISO(tri-isotropic)-coated fuel particle for a HTR(High Temperature gas-cooled Reactor) has a diameter of about 1 mm, composed of a nuclear fuel kernel and four different outer coating layers, consisting of a buffer PyC (pyrolytic carbon) layer, inner PyC layer, SiC layer, and outer PyC layer with different coating thicknesses following a specific fuel design. While the fuel kernel is a source for a heat generation by a nuclear fission of fissile uranium, each of the four coating layers acts as a different role in view of retaining the generated fission products and the other interactions during an in-reactor service. Among these coating layers, PyC properties are scarcely in agreement among various investigators and the dependency of their changes upon the deposition condition is comparatively large due to their additional anisotropic properties. Although a recent review work has contributed to an establishment of relationship between the material properties and QC measurements, the data on the mechanical properties and structural parameters of PyC coating layers remain still unclearly evaluated. A review work on dimensional changes of PyC by neutron irradiation was one of re-evaluative works recently attempted by the authors. In this work, an attempt was made to analyze and re-evaluate the existing data of the experimental results of the mechanical properties, i.e., Young's modulus and fracture stress, in relation with the coating conditions, density and the BAF (Bacon Anisotropy Factor), an important structural parameter, of PyC coating layers obtained from various experiments performed in the early periods of the HTR coated particle development

  13. Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators

    CERN Document Server

    Costa Pinto, P; Chiggiato, P; Neupert, H; Shaposhnikova, E N; Taborelli, M; Vollenberg, W; Yin Vallgren, C

    2011-01-01

    Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods...

  14. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  15. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas W.

    2017-07-01

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must have very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the

  16. Microstructure and property of WC particles ceramic-metal composite coatings by laser surface cladding

    International Nuclear Information System (INIS)

    Zeng Xiaoyan; Zhu Beidi; Tao Zengyi; Yang Shuguo; Cui Kun

    1993-01-01

    Ceramic-metal is widely used as a kind of good hardfacing material. The coarse WC particles ceramic-metal composite coatings with WC density of 67% it weight and the thickness of 1.6-2.0 mm have been cladded on 20Ni 4 Mo steel surface by a 2kw CO 2 laser. The sintered WC particles with the size of 600-1,000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the composite coatings. The microstructure and micro-hardness of both WC particles and binder are analyzed. The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating. Finally, the abrasive wear resistance of the coatings are tested, Besides, the coatings with the same ratio and size of WC particles within low carbon steel tube were cladded on 20Ni 4 Mo steel by atomic hydrogen welding technique and analyzed by the same ways their result are compared

  17. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  18. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  19. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  1. Sea water Corrosion of Nickel based Plasma Spray Coating

    Science.gov (United States)

    Parida, M.; Nanda, S. P.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Different types of erosion resistant coatings are applied/deposited on aero components, depending on the operating/working temperatures. Nickel based coating are applied on the air craft (compressor) components, which can sustain up to working temperature of 650°C. In the present investigation, to improve the compatibility between substrate (i.e. the machine component) and the top coat, application of bond coat is there. The application of Nickel based coating by thermal plasma spray technique has proven to be a satisfactory means of producing acceptable sealing surface with excellent abradability. Before the corrosion study, coated sample is subjected to hardness, thickness and porosity testing. Hence the result is being evaluated. The corrosion behavior of coating was studied by sea water immersion with a time period of 16 weeks. It is observed that, up to 9 weeks increase in weight of coating occurs in a sharp trend and then takes a decreasing trend. The weight gain of the samples has varied from 37.23% (with one week immersion in sea water) to a maximum of about 64.36% for six weeks immersion. Coating morphology and composition analysis of the coatings are studied using SEM and EDS. This behavior shows adsorption/deposition of the foreign particles with polygonal shape on the coating surface by sea water interaction. Foreign particles with polygonal shape deposited on the coating and with increase in immersion/treatment time, washing out of the deposited materials starts, which reflects the decreasing trend of weight gain of the specimen.

  2. Coated particle fuel for high temperature gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl; Nabielek, Heinz [Research Center Julich (FZJ), Julich (Germany); Kendall, James M. [Global Virtual L1c, Prescott (United States)

    2007-10-15

    Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be{exclamation_point} It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where 9 x 10{sup -4} initial free heavy metal fraction was typical for early AVR carbide fuel and 3 x 10{sup -4} initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/traditional and new materials, manufacturing technologies/ quality control/ quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with 700-750 .deg. C helium coolant gas exit, for gas turbine

  3. Coated particle fuel for high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Verfondern, Karl; Nabielek, Heinz; Kendall, James M.

    2007-01-01

    Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where 9 x 10 -4 initial free heavy metal fraction was typical for early AVR carbide fuel and 3 x 10 -4 initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/traditional and new materials, manufacturing technologies/ quality control/ quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with 700-750 .deg. C helium coolant gas exit, for gas turbine applications at 850-900 .deg. C

  4. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  5. Mass-spectrometric determination in individual coated HTR fuel particles

    International Nuclear Information System (INIS)

    Strigl, A.

    1976-11-01

    A method is described which allows the simultaneous determination of fission and reaction gases in individual coated particles at temperatures up to 2000 0 C. The particles are heated under high-vacuum in a micro resistance-furnace up to the desired temperature. After preselected times the particles are crushed by action of a pneumatic cylinder. The gases liberated are fed into a quadrupoleanalyzer where they are analyzed in a dynamic mode. A peak selector allows the simultaneous measurement of up to four gases. The method is used routinely for the determination of fission gases (Kr and Xe) and of carbon monoxide which is formed as a reaction gas from oxide fuel. Precision and accuracy are in the order of a few percent. Detection limits for routine measurements are about 10 -7 cm 3 (STP) for KR and Xe and 2 x 10 -5 cm 3 (STP) for CO but can be lowered by special techniques. (author)

  6. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  7. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  8. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  9. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  10. Transient Liquid Phase Behavior of Sn-Coated Cu Particles and Chip Bonding using Paste Containing the Particles

    Directory of Open Access Journals (Sweden)

    Hwang Jun Ho

    2017-06-01

    Full Text Available Sn-coated Cu particles were prepared as a filler material for transient liquid phase (TLP bonding. The thickness of Sn coating was controlled by controlling the number of plating cycles. The Sn-coated Cu particles best suited for TLP bonding were fabricated by Sn plating thrice, and the particles showed a pronounced endothermic peak at 232°C. The heating of the particles for just 10 s at 250°C destroyed the initial core-shell structure and encouraged the formation of Cu-Sn intermetallic compounds. Further, die bonding was also successfully performed at 250°C under a slight bonding pressure of around 0.1 MPa using a paste containing the particles. The bonding time of 30 s facilitated the bonding of Sn-coated Cu particles to the Au surface and also increased the probability of network formation between particles.

  11. Simultaneous acid exposure and erosive particle wear of thermoset coatings

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria

    2018-01-01

    , similar to the erosion/corrosion-type phenomena found in metals. A vinyl ester-based coating was the most resistant to the simultaneous erosive/acidic exposure, with a maximum polishing rate of 3.24±0.61 μm/week, while novolac epoxy and polyurethane coatings showed high polishing rates of 11.7±1.50 and 13.4±0......Handling acidic chemicals is a challenge in the chemical industry, requiring a careful choice of contact material. Certain thermoset organic coatings are applicable in low pH environments, but when particulate erosion is also present the performance demand is increased. This is the case in, e...

  12. Fluidized bed reactor for processing particles coated with carbon

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1978-01-01

    The carbon coating of production returns of these particles first has to be removed before the heavy metal core released can be reprocessed. For reasons of criticality, removal of burnt-up particles downwards must be possible in the fluidized bed reactor even if the reactor diameter is greater than 800 mm, and the material temperatures must not exceed 650 0 C. It consists of an upper cylindrical and a lower conical part, where, according to the invention, the gas distributor heads in the conical part are situated in several planes above one another for the fluidisation and combustion gas and where they are evently distributed over the reactor crossection, so that an even flow profile is achieved over the reactor cross section. (HP) [de

  13. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  14. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  15. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Babaee, Saeed; Ashtiani, Fatemeh Shamsi [Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • Surface of magnesium particles was modified with Viton via solvent/non-solvent method. • FT-IR, SEM, EDX, Map analysis, and TG/DSC techniques were employed to characterize the coated particles. • Coating process factors were optimized by Taguchi robust design. • The importance of coating conditions on resistance of coated magnesium against oxidation was studied. - Abstract: The surface of magnesium particles was modified by coating with Viton as an energetic polymer using solvent/non-solvent technique. Taguchi robust method was utilized as a statistical experiment design to evaluate the role of coating process parameters. The coated magnesium particles were characterized by various techniques, i.e., Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermogravimetry (TG), and differential scanning calorimetry (DSC). The results showed that the coating of magnesium powder with the Viton leads to a higher resistance of metal against oxidation in the presence of air atmosphere. Meanwhile, tuning of the coating process parameters (i.e., percent of Viton, flow rate of non-solvent addition, and type of solvent) influences on the resistance of the metal particles against thermal oxidation. Coating of magnesium particles yields Viton coated particles with higher thermal stability (632 °C); in comparison with the pure magnesium powder, which commences oxidation in the presence of air atmosphere at a lower temperature of 260 °C.

  16. Failure of the capsule for coated particles irradiation

    International Nuclear Information System (INIS)

    Yamaki, Jikei; Nomura, Yasushi; Nagamatsuya, Takaaki; Yamahara, Takeshi; Sakai, Haruyuki

    1975-10-01

    During operation cycle No. 27 of the JMTR (Japan Material Testing Reactor) on May 20, 1974, leakage of the fission product gas occurred from the capsule 72F-7A, which contained coated particles for the irradiation; the coated particles are for the development of a multi-purpose high temperature gas cooled reactor. The capsule was designed for heat 1600 0 C. Three nickel plates as the heat reflector were sandwiched in between the plates of titanium and zirconium, which were adsorbents for the impurity gases in the cladding tube (Nb-1%Zr). Temperatures of the plates were about 1000 0 C under the irradiation, so one metal diffused into the other metal through interfaces, resulting in the formation of an alloy. Its melting point was lower than those of metals in the capsule. The cladding material Nb-1%Zr was melted by the alloy and finally a pin hole developed through the cladding. The process of failure, design of the capsule, post-irradiation test of the capsule and the failure-reproducing experiment with a mock-up capsule are described. (auth.)

  17. Antibacterial property of fabrics coated by magnesium-based brucites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Sha, Lin; Zhao, Jiao; Li, Qian; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn; Wang, Ninghui

    2017-04-01

    Highlights: • Magnesium-based antibacterial agents composited by brucites with different particle sizes were proposed for the first time. • The coating process for making antibacterial fabrics was easy to operate and apply in industrial application. • The materials used in the antibacterial fabrics were environmental-friendly and cost-effective. • Reduction percentage of as-prepared antibacterial fabrics against E. coli and S. aureus reached to 96.6%, 100% respectively. • The antibacterial fabrics attained excellent washing durability. - Abstract: A kind of environmental-friendly magnesium-based antibacterial agent was reported for the first time, which was composited by brucites with different particle sizes. The antibacterial fabrics were produced by coating the magnesium-based antibacterial agents on the 260T polyester pongee fabrics with waterborne polyurethane. The coating process was simple, low-cost, and harmless to human health and environment. Characteristics of the antibacterial agents and fabrics were studied by particulate size distribution analyzer (PSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated that the coating layer was covered tightly on the fabrics and compositing of different particles by a certain proportion made full filling of the coating layer. Meanwhile, compositing did not change the structure of brucites. The antibacterial fabrics presented strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with the reduction percentage of 96.6% and 100%, respectively, and the antibacterial fabrics attained excellent washing durability.

  18. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  19. An Application of X-ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    Science.gov (United States)

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-03-30

    An attempt to apply X-ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  20. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    Science.gov (United States)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  2. Nano-magnetic particles used in biomedicine: core and coating materials.

    Science.gov (United States)

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. TiO2 (NanoParticles Extracted from Sugar-Coated Confectionery

    Directory of Open Access Journals (Sweden)

    Martina Lorenzetti

    2017-01-01

    Full Text Available As the debate about TiO2 food additive safety is still open, the present study focuses on the extraction and characterisation of TiO2 (nanoparticles added as a whitening agent to confectionary products, that is, chewing gum pellets. The aim was to (1 determine the colloidal properties of suspensions mutually containing TiO2 and all other chewing gum ingredients in biologically relevant media (preingestion conditions; (2 characterise the TiO2 (nanoparticles extracted from the chewing gum coating (after ingestion; and (3 verify their potential photocatalysis. The particle size distribution, in agreement with the zeta potential results, indicated that a small but significant portion of the particle population retained mean dimensions close to the nanosize range, even in conditions of moderate stability, and in presence of all other ingredients. The dispersibility was enhanced by proteins (i.e., albumin, which acted as surfactants and reduced particle size. The particle extraction methods involved conventional techniques and no harmful chemicals. The presence of TiO2 particles embedded in the sugar-based coating was confirmed, including 17–30% fraction in the nanorange (<100 nm. The decomposition of organics under UV irradiation proved the photocatalytic activity of the extracted (nanoparticles. Surprisingly, photocatalysis occurred even in presence of an amorphous SiO2 layer surrounding the TiO2 particles.

  4. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  5. Performance Analysis Review of Thorium TRISO Coated Particles during Manufacture, Irradiation and Accident Condition Heating Tests

    International Nuclear Information System (INIS)

    2015-03-01

    Thorium, in combination with high enriched uranium, was used in all early high temperature reactors (HTRs). Initially, the fuel was contained in a kernel of coated particles. However, particle quality was low in the 1960s and early 1970s. Modern, high quality, tristructural isotropic (TRISO) fuel particles with thorium oxide and uranium dioxide (UO 2 ) had been manufactured since 1978 and were successfully demonstrated in irradiation and accident tests. In 1980, HTR fuels changed to low enriched uranium UO 2 TRISO fuels. The wide ranging development and demonstration programme was successful, and it established a worldwide standard that is still valid today. During the process, results of the thorium work with high quality TRISO fuel particles had not been fully evaluated or documented. This publication collects and presents the information and demonstrates the performance of thorium TRISO fuels.This publication is an outcome of the technical contract awarded under the IAEA Coordinated Research Project on Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy, initiated in 2012. It is based on the compilation and analysis of available results on thorium TRISO coated particle performance in manufacturing and during irradiation and accident condition heating tests

  6. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  7. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  8. Index of refraction enhancement of calcite particles coated with zinc carbonate

    Science.gov (United States)

    Lattaud, Kathleen; Vilminot, Serge; Hirlimann, Charles; Parant, Hubert; Schoelkopf, Joachim; Gane, Patrick

    2006-10-01

    ZnCO 3 coating on calcite particles has been developed in order to enhance the index of refraction of this mineral that is used as a charge in paper, paint and polymer industries. Chemical reaction between calcite particles in an aqueous suspension with zinc chloride promotes the formation of a ZnCO 3 coating consisting of two layers with different interactions with the calcite particle. The refraction index of the resulting composite particles increases with the Zn/Ca ratio. A model allows to evaluate the coating thickness. The value of the scattering S and diffusion K coefficients of sheets coated with the ZnCO 3 coated particles reveal a dependence on the preparation conditions with a 15% increase for the best samples.

  9. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    International Nuclear Information System (INIS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-01-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO_2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate. - Highlights: • The double-layer coating has a great influence on both thermal and aesthetic aspects. • The double-layer coating performs better than the uniform one with single particles. • The volume fraction, particle diameter and substrate conditions are optimized.

  10. Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)

  11. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor.

    Science.gov (United States)

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-01-01

    To explore the feasibility of coating irregular-shaped drug particles in a modified tangential spray fluidized bed processor (FS processor) and evaluate the coated particles for their coat uniformity and taste-masking efficiency. Paracetamol particles were coated to 20%, w/w weight gain using a taste-masking polymer insoluble in neutral and basic pH but soluble in acidic pH. In-process samples (5, 10 and 15%, w/w coat) and the resultant coated particles (20%, w/w coat) were collected to monitor the changes in their physicochemical attributes. After coating to 20%, w/w coat weight gain, the usable yield was 81% with minimal agglomeration (coat compared with the uncoated particles. A 15%, w/w coat was optimal for inhibiting drug release in salivary pH with subsequent fast dissolution in simulated gastric pH. The FS processor shows promise for direct coating of irregular-shaped drug particles with wide size distribution. The coated particles with 15% coat were sufficiently taste masked and could be useful for further application in orally disintegrating tablet platforms.

  12. Fluorescence Quenching of Humic Acid by Coated Metallic Silver Particles.

    Science.gov (United States)

    Zhu, Guocheng; Yin, Jun

    2017-07-01

    Natural organic matter is an important component of the aquatic environments, which has attracted wide attention to its influence of interaction with other pollutants. The present work aimed to investigate its fluorescence quenching (FQ) by coated metallic silver particles (AgNPs). In this work, using fluorescence spectroscopy in conjunction with UV-Vis spectroscopy and dynamic light scattering, the effect of coated AgNPs on fluorescence quenching intensity (FQI) of humic acid (HA) was assessed. In addition, the influence of electrolytes (NaCl, NaNO 3 and CaNO 3 ) in the FQI was observed. Results showed that with AgNPs dosage increased (>1.17X10 -3  mM), fluorescence quantum yield of HA gradually decreased, which implies that the FQ occurred. Furher observation showed that the FQ process followed both first-order and second-order Stern-Volmer functions. The FQ process was affected by the electrolytes: NaCl had an effect on reduction of FQI, possibly resulting from dissolution of AgNPs; Both of NaNO 3 and Ca(NO 3 ) 2 had an effect on the FQ of HA but Ca(NO 3 ) 2 presented greater degree. As a result, the FQ degree of HA by alone electrolyte was listed in descent order as Ca(NO 3 ) 2  > NaNO 3  > NaCl, which also implies the subsequent experimental results, indicating the FQ degree of HA by mutual electrolytes as Ca(NO 3 ) 2  + NaNO 3  > Ca(NO 3 ) 2  + NaCl > NaNO 3  + NaCl.

  13. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  14. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  15. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  16. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  17. Separation of silicon carbide-coated fertile and fissile particles by gas classification

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1976-07-01

    The separation of 235 U and 233 U in the reprocessing of HTGR fuels is a key feature of the feed-breed fuel cycle concept. This is attained in the Fort St. Vrain (FSV) reactor by coating the fissile (Th- 235 U) particles and the fertile (Th- 233 U) particles separately with silicon carbide (SiC) layers to contain the fission products and to protect the kernels from burning in the head-end reprocessing steps. Pneumatic (gas) classification based on size and density differences is the reference process for separating the SiC-coated particles into fissile and fertile streams for subsequent handling. Terminal velocities have been calculated for the +- 2 sigma ranges of particle sizes and densities for ''Fissile B''--''Fertile A'' particles used in the FSV reactor. Because of overlapping particle fractions, a continuous pneumatic separator appears infeasible; however, a batch separation process can be envisioned. Changing the gas from air to CO 2 and/or the temperature to 300 0 C results in less than 10 percent change in calculated terminal velocities. Recently reported work in gas classification is discussed in light of the theoretical calculations. The pneumatic separation of fissile and fertile particles needs more study, specifically with regard to (1) measuring the recoveries and separation efficiencies of actual fissile and fertile fractions in the tests of the pneumatic classifiers; and (2) improving the contactor design or flowsheet to avoid apparent flow separation or flooding problems at the feed point when using the feed rates required for the pilot plant

  18. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process

    Science.gov (United States)

    McHenry, M. E.; Majetich, S. A.; Artman, J. O.; Degraef, M.; Staley, S. W.

    1994-04-01

    A process based on the Kratschmer-Huffman carbon arc method of preparing fullerenes has been used to generate carbon-coated cobalt and cobalt carbide nanocrystallites. Magnetic nanocrystallites are extracted from the soot with a gradient field technique. For Co/C composites, structural characterization by x-ray diffraction and high-resolution transmission electron microscopy reveals the presence of a fcc Co phase, graphite, and a minority Co2C phase. The majority of Co nanocrystals exists as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy reveals fine-particle magnetism associated with monodomain Co particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature, TB~=160 K. Below TB, the temperature dependence of the coercivity is given by Hc=Hci[1-(T/TB)1/2], with Hci~=450 Oe.

  19. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  20. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  1. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  2. A methodology to study impactor particle reentrainment and a proposed stage coating for the NGI

    DEFF Research Database (Denmark)

    Rissler, Jenny; Asking, Lars; Dreyer, Jakob Kisbye

    2009-01-01

    , particle reentrainment is critical because it may lead to an overestimation of the respirable fraction. To avoid reentrainment, the collection surfaces need to be coated with a suitable material. METHODS: In this study a method was developed to test flow dependence of particle reentrainment in the Next...... Generation Pharmaceutical Impactor (NGI) at flow rates ranging from 20 to 80 L/min, and was used to test three coating materials: glycerol coating, aqueous coating with, and without soaked filter paper. Uncoated cups were also tested. In the experimental setup a Vilnius Aerosol Generator generated a flow...

  3. Bio-Based Coatings for Paper Applications

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2015-11-01

    Full Text Available The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers.

  4. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  5. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  6. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  7. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  8. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  9. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  10. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  11. Neutral particle balance in GDT with fast titanium coating of the first wall

    International Nuclear Information System (INIS)

    Bagryansky, P.A.; Bender, E.D.; Ivanov, A.A.; Krahl, S.; Noack, K.; Karpushov, A.N.; Murakhtin, S.V.; Shikhovtsev, I.V.

    1995-01-01

    The GDT is an axisymmetric open trap with a high mirror ratio for confinement of a collisional plasma. The experimental program of the GDT was focused on the generation of plasma physics database necessary for a GDT-based neutron source. A distinct feature of both GDT and the GDT-based neutron source is that the Larmor radius of the fast sloshing ions is comparable to plasma radius. In this case, the sloshing ions can not be well shielded by the plasma halo from penetration of the neutral gas from periphery that results in high charge exchange losses. The plasma parameters are then very sensitive to gas pressure near the plasma boundary. To reduce the gas pressure to desured value during the beam heating, the authors have used arc-type evaporators developed at the Budker INP for fast titanium coating of the GDT first wall. If needed, the coating can be done a few seconds before each shot. They investigated the neutral particle balance in presence of NB-heating. The inverted magnetron gauges were used to study the temporal dependence of gas pressure inside the central cell. Pyroelectric bolometers were employed to measure the flux of charge exchange neutrals. Neutral particle balance has also been studied numerically by using a gas-transport code. The results of the investigations are the following: (1) sloshing ion lifetime was increased about 10 times compared to that without the coating of the first wall; and (2) wall recycling coefficient of the Ti-coated wall does not exceed 1 for 8 keV mean energy of the neutral hydrogen atoms striking the wall

  12. Plan of development of ZrC-TRISO coated fuel particle and construction of ZrC coater

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Shohei; Ino, Hiroichi; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tobita, Tsutomu [Nuclear Engineering Company, Ltd., Tokai, Ibaraki (Japan); Takahashi, Masashi [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In order to use coated fuel particle under higher temperature condition, more refractory coating material, which is more refractory than conventional silicon carbide (SiC), should be applied. Zirconium carbide (ZrC) is considered to be one of the promising materials, which is proposed as candidate for VHTR fuel material in GENERATION-IV, because of its intactness under high temperature of around 2000degC and its higher stability against kernel migration (amoeba effect) and fission product corrosion under normal operating condition. In order to develop ZrC coated particle for commercial use, research and development items were extracted based on review of the previous works. Research and development plan was determined. Based on the plan, a new ZrC coater of 100g batch size, which applies bromine process, was constructed. This report describes the review of precious works, extracted research and develop items and plan, and specifications of the ZrC coater. (author)

  13. Nanocontainer-based corrosion sensing coating

    International Nuclear Information System (INIS)

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-01-01

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer. The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings. (paper)

  14. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2016-12-01

    Full Text Available This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB particles in combination with nanofibrillated cellulose (NFC and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°–122° and 129°–144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP were synthesized by an oil-in-water emulsion (o/w solvent evaporation method and mixed in aqueous suspensions with 0–7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°–152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity.

  15. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers.

    Science.gov (United States)

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-12-30

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°-122° and 129°-144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0-7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°-152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity.

  16. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers

    Science.gov (United States)

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-01-01

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°–122° and 129°–144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0–7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°–152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity. PMID:28336839

  17. A study on properties-performances of coated particle fuel and on-line DB establishment

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Hyo Cheol; Jang, Jeong Nam; Kwon, Seok Hwan

    2007-03-01

    Recently national project for HTGR for hydrogen production has been kicked off. However, For the successful development of the high temperature gas cooled reactor high temperature and burn-up dependent properties of the reactor materials are essentially and crucially required. Therefore, it was proposed to build up the materials properties and fuel performance data base. In this study, a phase - 1 properties and performance DB for coated particle fuel was developed. This database report consists two sections: materials properties and fuel performance. The materials properties has three parts: kernel materials, carbide coating materials, and fuel elements and graphite matrix. UO2 and UCO belong to kernel materials while PyC, SiC, and ZrC comprises the coating materials section. Thermal, mechanical and physical properties data of these materials were collected, reviewed, and summarized. Additionally, the property change induced by manufacture process and irradiation were reviewed. Fuel performance data were also collected, reviewed, and analyzed based on the key phenomena and failure mechanism, These performance data are divided into two: normal and accident. All of these data will be accessible in the pc based stand-alone system. These results will be directly used for HTGR fuel design and fabrication and preliminary fuel performance analysis under irradiation

  18. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  19. Performance limits of coated particle fuel. Part II. Mechanical failure of coated particles due to internal gas pressure and kernel swelling

    Energy Technology Data Exchange (ETDEWEB)

    Hick, H.; Nabielek, H.; Harrison, T. A.

    1973-10-15

    This report presents a summary of experimental results and their theoretical explanation with regard to the "Pressure Failure" of coated particle fuel. While the experimental results refer mainly to the Dragon Reference Particle as proposed for typical Low Enriched Homogeneous Prismatic Steam Cycle HTR Power Reactors, the theoretical understanding of the phenomena and the mathematical models for their description are not limited to a specific design line.

  20. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  1. Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    R. M. Garland

    2005-01-01

    Full Text Available While water insoluble organics are prevalent in the atmosphere, it is not clear how the presence of such species alters the chemical and physical properties of atmospheric aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron Microscopy (TEM and Aerosol Mass Spectrometry (AMS to characterize ammonium sulfate particles coated with palmitic acid. Coated aerosols were generated by atomizing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with palmitic acid vapor, and then flowing the mixture through an in-line oven to create internally mixed particles. The mixing state of the particles was probed using the AMS data and images from the TEM. Both of these probes suggest that the particles were internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was found that for ammonium sulfate containing ~20 wt% palmitic acid the deliquescence relative humidity (DRH was the same as for pure ammonium sulfate (80±3% RH. For particles with ~50 wt% palmitic acid however, the mixed particles began to take up water at relative humidities as low at 69% and continued to slowly take up water to 85% RH without fully deliquescing. In addition to studies of water uptake, water loss was also investigated. Here coatings of up to 50 wt% had no impact on the efflorescence relative humidity. These studies suggest that even if insoluble substances coat salt particles in the atmosphere, there may be relatively little effect on the resulting water uptake and loss.

  2. Operation Procedure of Inspection Equipment for TRISO-coated Fuel Particle

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, Y. K.; Cho, M. S.; Kim, Y. M.; Park, J. Y.; Kim, W. J.; Jeong, K. C.; Oh, S. C.; Lee, Y. W.

    2007-03-01

    TRISO-coated fuel particle for HTGR(high temperature gas cooled reactor) is composed of fuel kernel and coating layers. The kernel and coated particle are characterized by inspection processes for inspection items such as diameter of kernel, thickness, density and an-isotropy of coating layer. The coating thickness can be nondestructively measured by X-ray inspection equipment. The coating thickness as well as the sphericity can be also measured by optical inspection system as a ceramography method. The an-isotropy can be characterized by photometer. The density of coating layer can be measured by density column. The size and sphericity of particles can be measured by PSA(particle size analyzer). The thermo-chemical characteristics of kernel can be analyzed by TG/DTA(Thermogravimetric/Differential Thermal Analyzer). The inspection objective, equipment composition, operation principle, operation manual for each equipment was described in this operation procedure, which will be used for the characterization of inspection items described above

  3. Influence of process variables on permeability and anisotropy of Biso-coated HTGR fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.; Thiele, B.A.

    1977-11-01

    The effect of several important process variables on the fraction of defective particles and anisotropy of the low-temperature isotropic (LTI) coating layer was determined for Biso-coated HTGR fuel particles. Process variables considered are deposition temperature, hydrocarbon type, diluent type, and percent diluent. The effect of several other variables such as coating rate and density that depend on the process variables were also considered in this analysis. The fraction of defective particles was controlled by the dependent variables coating rate and LTI density. Coating rate was also the variable controlling the anisotropy of the LTI layer. Diluent type and diluent concentration had only a small influence on the deposition rate of the LTI layer. High-quality particles in terms of anisotropy and permeability can be produced by use of a porous plate gas distributor if the coating rate is between 3 and 5 μm/min and the coating density is between about 1.75 and 1.95 g/cm 3

  4. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  5. Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings.

    Science.gov (United States)

    de Haan, Hendrick W; Paquet, Chantal

    2011-12-01

    The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.

  6. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  7. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles...

  8. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  9. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, V.; Charollais, F. [CEA Cadarache, DEN/DEC/SPUA, BP 1, 13108 St Paul Lez Durance (France); Dugne, O. [CEA Marcoule, DEN/DTEC/SCGS BP 17171 30207 Bagnols sur Ceze (France); Garcia, C. [Laboratoire des Composites Thermostructuraux (LCTS), UMR CNRS 5801, 3 allee de La Boetie, 33600 Pessac (France); Perez, M. [CEA Grenoble DRT/DTH/LTH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2008-07-01

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  10. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  11. Behaviour of HTGR coated fuel particles at high-temperature tests

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Lyutikov, R.A.; Kurbakov, S.D.; Repnikov, V.M.; Khromonozhkin, V.V.; Soloviyov, G.I.

    1990-01-01

    At the temperature range 1200-2600 deg. C prereactor tests of TRISO fuel particles on the base of UO 2 , UC x O y and UO 2 +2Al 2 O 3 . SiO 2 kernels, and also fuel particle models with ZrC kernels were performed. Isothermal annealings carried out at temperatures of 1400-2600 deg. C, thermogradient ones at 1200-2200 deg. C (Δ T = 200-1200 deg. C/cm). It is shown that at heating to 2200 deg. C integrity of fuel particles is limited by different thermal expansion of PyC and SiC coatings, and also by thermal dissociation of SiC. At higher temperatures the failure is caused by development of high pressures within weakened fuel particles. It is found that uranium migration from alloyed fuel (UC x O y , UO 2 +2Al 2 O 3 .SiO 2 ) in the process of annealing is higher than that from UO 2 . (author)

  12. Review of intermediate and final product characterization on coated particles preparation

    International Nuclear Information System (INIS)

    Sukarsono; Kristanti Nurwidyaningrum

    2015-01-01

    Review of the intermediate and final product characterization on preparation of coated particles was done. Product characterization included a tool to measure the character of raw materials, intermediate product and the final product of the process, which affects the success of getting the high temperature reactor fuel are eligible. Equipment's for the characterization of such materials were pH meter, viscometer, microbalance, turbidity meter, tab density measurement, true density measurement and auto pycnometer. Being for the measurement of particles there are two types destructive testing and non destructive. Destructive testing was done by polished the particles then cross sectional imaging of particle observed using an optical microscope. In this way contains errors due to polishing treatment that could not be right on the equator section so it needs correction. Destructive testing also create waste that must be processed from the remnants of the polishing process. By using non-destructive testing, waste was not formed but the imaging results are often unclear due to lack of contrast. Development of non-destructive test equipment has been made using radiographic method and automated microscopy. The overall activity is still much needed additional tools for measurement and for processing, so that the results obtained will not rejected as the specification of nuclear fuel. Similarly, in the case of a sampling test method and limits to a product accepted or rejected, it should be determined based on statistical methods. (author)

  13. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  14. Influence of coated particle structure in thermal neutron spectrum energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Teuchert, E

    1971-02-15

    The heterogenity due to lumping the fuel in coated particles affects the thermal neutron spectrum. A calculation model is discussed which, apart from some simplifying assumptions about the statistical distribution, allows a rigorous computation of effective cross sections for all nuclides of the heterogeneous medium. It is based on an exact computation of the neutron penetration probability through coating and kernel. The model is incorporated in a THERMOS-code providing a double heterogeneous cell calculation, which can be repeated automatically at different time steps in the depletion code system MAFIA-V.S.O.P.. A discussion of the effects of the coated particle structure is given by a comparison of calculations for heterogeneous and homogeneous fuel zones in pebble bed reactor elements. This is performed for enriched UO{sub 2} fuel and for a ThO{sub 2}-PuO{sub 2} mixture in the grains. Depending on the energy dependent total sigmas in the kernels the changes of the cross sections are ranging from 0.1% up to 45%. The influence on the spectrum averaged sigmas of the nuclides in the fresh UO{sub 2} fuel is lower than 1%. For the emerging {sup 240}Pu it increases up to 3.3% during irradiation. For the ThO{sub 2}-PuO{sub 2} fuel the averaged sigmas of the isotopes vary from 0.5% to 5.7% depending on the state of irradiation. Correspondingly there is an influence on the plutonium isotopic composition, on breeding ratios, and on the tilt of k{sub eff} during burnup which will be discussed in detail.

  15. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    International Nuclear Information System (INIS)

    Dong Jie; Xu Zhenghe; Wang Feng

    2008-01-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2 /g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective

  16. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  17. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  18. Research Progress on Fe-based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    LIANG Xiu-bing

    2017-09-01

    Full Text Available The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.

  19. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  20. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  1. The influence of annealing temperature on the strength of TRISO coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabel.vanrooyen@pbmr.co.z [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa)

    2010-07-31

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 {sup o}C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 {sup o}C.

  2. The influence of annealing temperature on the strength of TRISO coated particles

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Neethling, J.H.; Rooyen, P.M. van

    2010-01-01

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 o C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 o C.

  3. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  4. Design and operation of equipment used to develop remote coating capability for HTGR fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Stinton, D.P.; Preston, M.K.; Heck, J.L.; Bolfing, B.J.; Lackey, W.J.

    1978-12-01

    Refabrication of HTGR fuels is a manufacturing process that consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and silicon carbide, preparation of fuel rods, and assembly of fuel rods into fuel elements. All the equipment for refabrication of 233 U-containing fuel must be designed for completely remote operation and maintenance in hot-cell facilities. Equipment to remotely coated HTGR fuel particles has been designed and operated. Although not all of the equipment development needed for a fully remote coating system has been completed, significant progress has been made. The most important component of the coating furnace is the gas distributor, which must be simple, reliable, and easily maintainable. Techniques for loading and unloading the coater and handling microspheres have been developed. An engineering-scale system, currently in operation, is being used to verify the workability of these concepts. Coating crucible handling components are used to remove the crucible from the furnace, remove coated particles, and exchange the crucible, if necessary. After the batch of particles has been unloaded, it is transferred, weighed, and sampled. The components used in these processes have been tested to ensure that no particle breakage or holdup occurs. Tests of the particle handling system have been very encouraging because no major problems have been encountered. Instrumentation that controls the equipment performed very smoothly and reliably and can be operated remotely

  5. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  6. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  7. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  8. Dendrimer-coated magnetic particles for radionuclide separation

    NARCIS (Netherlands)

    Grüttner, Cordula; Böhmer, Volker; Casnati, Alessandro; Dozol, Jean-Francois; Reinhoudt, David; Reinoso garcia, M.M.; Rudershausen, Sandra; Teller, Joachim; Ungaro, Rocco; Verboom, Willem; Wang, Pingshan

    2005-01-01

    Magnetic particles were synthesised for radionuclide removal from nuclear wastes by magnetic separation. Dendrimers with terminal amino groups attached to the particle surface were used to bind chelating groups for lanthanides and actinides. This led to a 50–400-fold increase of the distribution

  9. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.

    Science.gov (United States)

    Matuszewski, Lars; Persigehl, Thorsten; Wall, Alexander; Schwindt, Wolfram; Tombach, Bernd; Fobker, Manfred; Poremba, Christopher; Ebert, Wolfgang; Heindel, Walter; Bremer, Christoph

    2005-04-01

    To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs). Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively. Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach. Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods. (c) RSNA, 2005.

  10. Calculating failure probabilities for TRISO-coated fuel particles using an integral formulation

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Maki, John T.; Knudson, Darrell L.; Petti, David A.

    2010-01-01

    The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a pressure vessel that retains fission products. The quality of the fuel is reflected in the number of particle failures that occur during reactor operation, where failed particles become a source for fission products that can then diffuse through the fuel element. The failure probability for any batch of particles, which has traditionally been calculated using the Monte Carlo method, depends on statistical variations in design parameters and on variations in the strengths of coating layers among particles in the batch. An alternative approach to calculating failure probabilities is developed herein that uses direct numerical integration of a failure probability integral. Because this is a multiple integral where the statistically varying parameters become integration variables, a fast numerical integration approach is also developed. In sample cases analyzed involving multiple failure mechanisms, results from the integration methods agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown to significantly improve efficiency of failure probability calculations. These integration methods have been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where each serves to verify accuracy of the others.

  11. Development of a FE Model for the Stress Analysis of HTGR TRISO-coated particle fuel

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Chang, J. H.

    2005-12-01

    Finite element modelling of the stresses in TRISO-coated fuel particle under normal operating conditions was carried out with use of the structural analysis computer code ABAQUS. The FE model took into account the irradiation induced swelling and the creep of the PyC layers, the internal fission gas pressure that builds up during irradiation and the constant external ambient pressure. All of the inputs such as particle dimensions, swelling rates and creep rates of PyC layers and other mechanical properties used in these calculations were adopted from Miller's publication published in 1993. The FE model was verified against Miller's solution. Results of this model were found to be in good agreement with Miller's results. With use of the FE model, the static behavior of the TRISO-coated fuel particle, such as load shares, stress contours, stress variations as a function of fluence and shape changes of the TRISO -coated layers were investigated

  12. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  13. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al_2O_3 kernels and ZrO_2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al_2O_3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that are

  14. Thermochemical equilibrium in a kernel of a UN TRISO coated fuel particle

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Lim, H. S.; Cho, M. S.; Lee, W. J.

    2012-01-01

    A coated fuel particle (CFP) with a uranium mononitride (UN) kernel has been recently considered as an advanced fuel option, such as in fully ceramic micro encapsulated (FCM) replacement fuel for light water reactors (LWRs). In FCM fuel, a large number of tri isotropic coated fuel particles (TRISOs) are embedded in a silicon carbide (SiC) matrix. Thermochemical equilibrium calculations can predict the chemical behaviors of a kernel in a TRISO of FCM fuel during irradiation. They give information on the kind and quantity of gases generated in a kernel during irradiation. This study treats the quantitative analysis of thermochemical equilibrium in a UN TRISO of FCM LWR fuel using HSC software

  15. Improvement of a method for predicting failure rates of coated particles during irradiation

    International Nuclear Information System (INIS)

    Bongartz, K.

    1977-01-01

    A method for calculating the coating stress distribution resulting from the statistical spread of geometrical parameters in irradiated fuel particle batches has been developed by Gulden et al. The existing method utilizing coated particles is extended in two ways: 1. A more realistic treatment of the buffer layer is adopted, taking into account its physical properties. 2. A statistical distribution according to Weibull has been adopted for the silicon carbide layer strength. Calculations with both the new and the old assumptions were performed on one feed particle and one breed particle type. It is shown that the two modifications influence the results of the original method. It was found that the extension of the first assumption has no influence on the stress distribution and the fraction of breaking feed particles, but it changes the stress distribution of the breed particles significantly. The fraction of broken particles at end burnup is increased by a factor of approximately 10. The extension of the second assumption affects the fraction of broken feed as well as that of the breed particles. Depending on the Weibull parameter, m, the number of failed feed particles increases by a factor of 1.3 to 2; the corresponding factor for breed particles is between 3.5 and 60

  16. Correlating Coating Characteristics with the Performance of Drug-Coated Balloons – A Comparative In Vitro Investigation of Own Established Hydrogel- and Ionic Liquid-Based Coating Matrices

    Science.gov (United States)

    Kaule, Sebastian; Minrath, Ingo; Stein, Florian; Kragl, Udo; Schmidt, Wolfram; Schmitz, Klaus-Peter; Sternberg, Katrin; Petersen, Svea

    2015-01-01

    Drug-coated balloons (DCB), which have emerged as a therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficacy and safety within a number of clinical studies. In vitro studies elucidating the correlation between coating additive and DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this regard, we examined three different DCB-systems, which were developed in former studies based on the ionic liquid cetylpyridinium salicylate, the body-own hydrogel hyaluronic acid and the pharmaceutically well-established hydrogel polyvinylpyrrolidone, considering coating morphology, coating thickness, drug-loss, drug-transfer to the vessel wall, residual drug-concentration on the balloon surface and entire drug-load during simulated use in an in vitro vessel model. Moreover, we investigated particle release of the different DCB during simulated use and determined the influence of the three coatings on the mechanical behavior of the balloon catheter. We could show that coating characteristics can be indeed correlated with the performance of DCB. For instance, paclitaxel incorporation in the matrix can reduce the drug wash-off and benefit a high drug transfer. Additionally, a thin coating with a smooth surface and high but delayed solubility can reduce drug wash-off and decrease particle burden. As a result, we suggest that it is very important to characterize DCB in terms of mentioned properties in vitro in addition to their clinical efficacy in order to better understand their function and provide more data for the clinicians to improve the tool of DCB in coronary angioplasty. PMID:25734818

  17. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    2017-04-15

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.

  18. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  19. Characterization of boride-based powders and detonation gun sprayed cermet coatings

    International Nuclear Information System (INIS)

    Keraenen, J.; Stenberg, T.; Maentylae, T.

    1995-01-01

    Detonation gun sprayed (DGS) cermet coatings containing complex ternary transition metal boride as hard particles dispersed in a stainless steel or nickel based superalloy matrix have been characterized. Microstructure of the coatings, as well as powders, were studied with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and analytical transmission electron microscopy (AEM). X-ray microanalysis of the coatings were carried out using energy dispersive X-ray spectrometer (EDS) attached to the SEM and AEM. Moreover, abrasion wear resistance of the coatings was evaluated with a rubber wheel abrasion test equipment. The general microstructure of studied coatings appeared to be heterogeneous in the terms of the distribution, size and crystallographic nature of the phases. Nonetheless, very low porosities were obtained and in the coatings the oxide phase as well as the unmelted particles and the formation of oxide phase were avoided by optimization of DGS parameters. So far the abrasive wear resistance of boride-based cermet coatings is not so good as that of the WC-12Co coatings

  20. Performance assessment of the (Th,U)O2 HTI-Biso coated particle under PNP/HHT irradiation conditions

    International Nuclear Information System (INIS)

    Kania, M.J.; Nickel, H.

    1980-11-01

    The HTI Biso Particle, Variant-I: consisting of a dense 400 μm-diameter (Th,U)O 2 -kernel with a Biso coating using a methane derived pyrocarbon layer (HTI), is a candidate fuel for the advanced PNP/HHT High Temperature Reactor systems. This report presents the results of a comprehensive performance assessment of Variant-I represented by six relevant particle batches irradiated in 12 accelerated irradiation experiments. Fuel performance was judged based upon PNP/HHT qualification requirements with regard to in-reactor operating conditions and end-of-life (EOL) coated particle failure fraction. Fuel operating conditions in each irradiation experiment were obtained from two sources: 1) a thorough review of all available irradiation data on each experiment; and 2) a two-dimensional (R,theta) thermal modeling computer code, R2KTMP, was developed to calculate fuel operating temperature distributions within spherical elements. End-of-life particle failure fractions were determined from: gaseous fission product release, based on in-reactor R/B measurements and postirradiation annealing and room temperature investigations; solid fission product release, from single particle 137 Cs release into fuel element matrix and hot-gaseous chlorine leaching; and visual and ceramographic examinations. Failure fractions determined by solid fission product release yielded values 2-35 times higher than those determined by gaseous fission product release. (orig.) [de

  1. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  2. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  3. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  4. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  5. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  6. Directive properties of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, W.

    2012-01-01

    and optical gain constant on the directivities. While significant variations in the directivities are realized in the cylindrical cases for different source locations within and slightly outside the nano-particles and values of the optical gain constant, the corresponding spherical cases exhibit negligible...

  7. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  8. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  9. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    Science.gov (United States)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  10. International R and D project on development of coated particle fuel for innovative reactors

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    The paper presents an outline for an international collaborative project of coated particle fuel development for innovative reactors. Specific issues include identification of R and D needs and the Member State facilities for meeting the needs followed by development and demonstration of technology. (author)

  11. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  12. Interaction between UO2 kernel and pyrocarbon coating in irradiated and unirradiated HTR fuel particles

    International Nuclear Information System (INIS)

    Drago, A.; Klersy, R.; Simoni, O.; Schrader, K.H.

    1975-08-01

    Experimental observations on unidirectional UO 2 kernel migration in TRISO type coated particle fuels are reported. An analysis of the experimental results on the basis of data and models from the literature is reported. The stoichiometric composition of the kernel is considered the main parameter that, associated with a temperature gradient, controls the unidirectional kernel migration

  13. Adhesion between coating layers based on epoxy and silicone

    DEFF Research Database (Denmark)

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....... The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion...... to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus...

  14. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  15. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  16. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  17. Microstructure and bonding strength of Ni-based alloy coating

    Directory of Open Access Journals (Sweden)

    LIU Qing

    2006-05-01

    Full Text Available A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.

  18. Microstructural Characteristics and Tribological Behavior of HVOF-Sprayed Novel Fe-Based Alloy Coatings

    Directory of Open Access Journals (Sweden)

    Andrea Milanti

    2014-01-01

    Full Text Available Thermally-sprayed Fe-based coatings have shown their potential for use in wear applications due to their good tribological properties. In addition, these kinds of coatings have other advantages, e.g., cost efficiency and positive environmental aspects. In this study, the microstructural details and tribological performances of Fe-based coatings (Fe-Cr-Ni-B-C and Fe-Cr-Ni-B-Mo-C manufactured by High Velocity Oxygen Fuel (HVOF thermal spray process are evaluated. Traditional Ni-based (Ni-Cr-Fe-Si-B-C and hard-metal (WC-CoCr coatings were chosen as references. Microstructural investigation (field-emission scanning electron microscope FESEM and X-Ray diffractometry XRD reveals a high density and low oxide content for HVOF Fe-based coatings. Particle melting and rapid solidification resulted in a metastable austenitic phase with precipitates of mixed carbides and borides of chromium and iron which lead to remarkably high nanohardness. Tribological performances were evaluated by means of the ball on-disk dry sliding wear test, the rubber-wheel dry particle abrasion test, and the cavitation erosion wear test. A higher wear resistance validates Fe-based coatings as a future alternative to the more expensive and less environmentally friendly Ni-based alloys.

  19. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  20. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Pair interaction of bilayer-coated nanoscopic particles

    Science.gov (United States)

    Zhang, Qi-Yi

    2009-02-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  1. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  2. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  3. Visual Observation of Bubble Departure Characteristics in the Nano-particle Coated Heating Surface

    International Nuclear Information System (INIS)

    Han, Won Soek; Yoo, Shin; Lee, Jae Young

    2010-01-01

    Although the great enhancement of the thermal conductivity of the nanofluids, the fluid mixed with small amount of the nano meter sized particles, has been known, many experimental data of the boiling heat transfer reported degraded heat transfer rate than the fresh fluid. However, the great enhancement of the critical heat flux in nanofluids has been reported by many investigators. Due to the opaque scattering of the nano particles in nano fluids, direct observation of the bubble dynamics in the boiling process has not been made. However, it has been known that the boiling heat transfer characteristics of the heater coated by the nano particles in the fresh water are almost similar to that in the nano fluid. Recently, consensus has been made in the understanding of the CHF enhancement of nanofluids or nano-particle coated heater as the surface phenomena. Therefore, in the present paper, we do experimental study to observe the bubble departure in the pool boiling process with the nano-particle coated heater

  4. Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles

    International Nuclear Information System (INIS)

    Gonome, Hiroki; Baneshi, Mehdi; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    The objective of this study was to design a pigmented coating with dark appearance that maintains a low temperature while exposed to sunlight. The radiative properties of a black-color coating pigmented with copper oxide (CuO) submicron particles are described. In the present work, the spectral behavior of the CuO-pigmented coating was calculated. The radiative properties of CuO particles were evaluated, and the radiative transfer in the pigmented coating was modeled using the radiation element method by ray emission model (REM 2 ). The coating is made using optimized particles. The reflectivity is measured by spectroscopy and an integrating sphere in the visible (VIS) and near infrared (NIR) regions. By using CuO particles controlled in size, we were able to design a black-color coating with high reflectance in the NIR region. The coating substrate also plays an important role in controlling the reflectance. The NIR reflectance of the coating on a standard white substrate with appropriate coating thickness and volume fraction was much higher than that on a standard black substrate. From the comparison between the experimental and calculated results, we know that more accurate particle size control enables us to achieve better performance. The use of appropriate particles with optimum size, coating thickness and volume fraction on a suitable substrate enables cool and black-color coating against solar irradiation. -- Highlights: • A new approach in designing pigmented coatings was used. • The effects of particles size on both visible and near infrared reflectivities were studied. • The results of numerical calculation were compared with experimental ones for CuO powders

  5. Coated Particle and Deep Burn Fuels Monthly Highlights December 2010

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Bell, Gary L.; Besmann, Theodore M.

    2011-01-01

    During FY 2011 the CP and DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for November 2010, ORNL/TM-2010/323, was distributed to program participants on December 9, 2010. The final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Pebble Bed Design (INL), (c) Radiation Damage and Properties; (2) TRISO (tri-structural isotropic) Development - (a) TRU (transuranic elements) Kernel Development, (b) Coating Development; (3) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing (ORNL); (4) Fuel Performance and Analytical Analysis - Fuel Performance Modeling (ORNL).

  6. Fission product Pd-SiC interaction in irradiated coated particle fuels

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1980-04-01

    Silicon carbide is the main barrier to fission product release from coated particle fuels. Consequently, degradation of the SiC must be minimized. Electron microprobe analysis has identified that palladium causes corrosion of the SiC in irradiated coated particles. Further ceramographic and electron microprobe examinations on irradiated particles with kernels ranging in composition from UO 2 to UC 2 , including PuO/sub 2 -x/ and mixed (Th, Pu) oxides, and in enrichment from 0.7 to 93.0% 235 U revealed that temperature is the major factor affecting the penetration rate of SiC by Pd. The effects of kernel composition, Pd concentration, other fission products, and SiC properties are secondary

  7. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  8. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  9. Data Compilation for AGR-1 Baseline Coated Particle Composite LEU01-46T

    International Nuclear Information System (INIS)

    Hunn, John D.; Lowden, Richard Andrew

    2006-01-01

    This document is a compilation of characterization data for the AGR-1 baseline coated particle composite LEU01-46T, a composite of four batches of TRISO-coated 350 (micro)m 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a ∼ 50% dense carbon buffer layer (100 (micro)m nominal thickness) followed by a dense inner pyrocarbonlayer (40 (micro)m nominal thickness) followed by a SiC layer (35 (micro)m nominal thickness) followed by another dense outer pyrocarbon layer (40 (micro)m nominal thickness). The coated particles, were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for insertion in the first irradiation test capsule, AGR-1. The kernels were obtained from BWXT and identified as composite (G73D-20-69302). The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). Additional particle batches were coated with only buffer or buffer plus inner pyrocarbon (IPyC) layers using similar process conditions as used for the full TRISO batches comprising the LEU01-46T composite. These batches were fabricated in order to qualify that the process conditions used for buffer and IPyC would produce acceptable densities, as described in sections 8 and 9. These qualifying batches used 350 (micro)m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and identified as composite G73B-NU-69300. The use of NUCO surrogate kernels is not expected to significantly effect the densities of the buffer and IPyC coatings. Confirmatory batches using LEUCO kernels from G73D-20-69302 were coated and characterized to verify this assumption. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380, Rev. 6) provides the requirements necessary for acceptance

  10. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  11. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  12. Research on in-pile release of fission products from coated particle fuels

    International Nuclear Information System (INIS)

    Fukuda, K.; Iwamoto, K.

    1985-01-01

    Coated particle fuels fabricated in accordance with VHTR (Very High Temperature gas-cooled Reactor) fuel design have been irradiated by both capsules and an in-pile gas loop (OGL-1), and data on the fission products release under irradiation were obtained for loose coated particles, fuel compacts and fuel rods in the temperature range between 800 deg. C and 1600 deg. C. For the fission gases, temperature- and time dependences of the fractional release(R/B) were measured. Relation between release and failure fraction of the coated particles was elucidated on the VHTR reference fuels. Also measured was tritium concentration in the helium coolant of OGL-1. In-pile release behavior of the metallic fission products was studied by measuring the activities of the fission products adsorbed in the graphite sleeves of the OGL-1 fuel rods and the graphite fuel container of the sweep gas capsules in the PIE. Investigation on palladium interaction with SiC coating layer was included. (author)

  13. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    International Nuclear Information System (INIS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  14. Experimental investigation of coating degradation during simultaneous acid and erosive particle exposure

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria

    When used in industrial processes, such as stirred acid leaching in the mineral industry, thermoset coatings are exposed to a combination of aggressive chemicals and erosive particlewear. While each exposure condition has been studied separately, no research has been presented on the effects...... of a simultaneous exposure. To investigate this, a pilot-scale stirred acid leaching tank, containing erosive particles and acidic solutions, has been designed and constructed. Resin types considered are amine-cured novolac epoxy and vinyl ester. Transient coating degradation is mapped through visual inspection...

  15. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  16. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  17. Review of experimental studies of zirconium carbide coated fuel particles for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Minato, Kazuo; Ogawa, Toru; Fukuda, Kousaku

    1995-03-01

    Experimental studies of zirconium carbide(ZrC) coated fuel particles were reviewed from the viewpoints of fuel particle designs, fabrication, characterization, fuel performance, and fission product retentiveness. ZrC is known as a refractory and chemically stable compound, so ZrC is a candidate to replace the silicon carbide(SiC) coating layer of the Triso-coated fuel particles. The irradiation experiments, the postirradiation heating tests, and the out-of-reactor experiments showed that the ZrC layer was less susceptible than the SiC layer to chemical attack by fission products and fuel kernels, and that the ZrC-coated fuel particles performed better than the standard Triso-coated fuel particles at high temperatures, especially above 1600degC. The ZrC-coated fuel particles demonstrated better cesium retention than the standard Triso-coated fuel particles though the ZrC layer showed a less effective barrier to ruthenium than the SiC layer. (author) 51 refs

  18. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  19. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  20. Interfaces in graded coatings on titanium-based implants.

    Science.gov (United States)

    Lopez-Esteban, S; Gutierrez-Gonzalez, C F; Gremillard, L; Saiz, E; Tomsia, A P

    2009-03-15

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na(2)O-K(2)O-P(2)O(5) system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO(2)) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti(5)Si(3) layer. A surface layer containing a mixture of a low-silica glass ( approximately 53 wt % SiO(2)) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions.

  1. Interfaces in graded coatings on titanium-based implants

    OpenAIRE

    Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.

    2009-01-01

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na2O-K2O-P2O5 system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The...

  2. Irradiated-Microsphere Gamma Analyzer (IMGA): an integrated system for HTGR coated particle fuel performance assessment

    International Nuclear Information System (INIS)

    Kania, M.J.; Valentine, K.H.

    1980-02-01

    The Irradiated-Microsphere Gamma Analyzer (IMGA) System, designed and built at ORNL, provides the capability of making statistically accurate failure fraction measurements on irradiated HTGR coated particle fuel. The IMGA records the gamma-ray energy spectra from fuel particles and performs quantitative analyses on these spectra; then, using chemical and physical properties of the gamma emitters it makes a failed-nonfailed decision concerning the ability of the coatings to retain fission products. Actual retention characteristics for the coatings are determined by measuring activity ratios for certain gamma emitters such as 137 Cs/ 95 Zr and 144 Ce/ 95 Zr for metallic fission product retention and 134 Cs/ 137 Cs for an indirect measure of gaseous fission product retention. Data from IMGA (which can be put in the form of n failures observed in N examinations) can be accurately described by the binomial probability distribution model. Using this model, a mathematical relationship between IMGA data (n,N), failure fraction, and confidence level was developed. To determine failure fractions of less than or equal to 1% at confidence levels near 95%, this model dictates that from several hundred to several thousand particles must be examined. The automated particle handler of the IMGA system provides this capability. As a demonstration of failure fraction determination, fuel rod C-3-1 from the OF-2 irradiation capsule was analyzed and failure fraction statistics were applied. Results showed that at the 1% failure fraction level, with a 95% confidence level, the fissile particle batch could not meet requirements; however, the fertile particle exceeded these requirements for the given irradiation temperature and burnup

  3. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  4. Irradiation performance of coated fuel particles with fission product retaining kernel additives

    International Nuclear Information System (INIS)

    Foerthmann, R.

    1979-10-01

    The four irradiation experiments FRJ2-P17, FRJ2-P18, FRJ2-P19, and FRJ2-P20 for testing the efficiency of fission product-retaining kernel additives in coated fuel particles are described. The evaluation of the obtained experimental data led to the following results: - zirconia and alumina kernel additives are not suitable for an effective fission product retention in oxide fuel kernels, - alumina-silica kernel additives reduce the in-pile release of Sr 90 and Ba 140 from BISO-coated particles at temperatures of about 1200 0 C by two orders of magnitude, and the Cs release from kernels by one order of magnitude, - effective transport coefficients including all parameters which contribute to kernel release are given for (Th,U)O 2 mixed oxide kernels and low enriched UO 2 kernels containing 5 wt.% alumina-silica additives: 10g sub(K)/cm 2 s -1 = - 36 028/T + 6,261 (Sr 90), 10g Dsub(K)/cm 2 c -2 = - 29 646/T + 5,826 (Cs 134/137), alumina-silica kernel additives are ineffective for retaining Ag 110 m in coated particles. However, also an intact SiC-interlayer was found not to be effective at temperatures above 1200 0 C, - the penetration of the buffer layer by fission product containing eutectic additive melt during irradiation can be avoided by using additives which consist of alumina and mullite without an excess of silica, - annealing of LASER-failed irradiated particles and the irradiation test FRJ12-P20 indicate that the efficiency of alumina-silica kernel additives is not altered if the coating becomes defect. (orig.) [de

  5. Anisotropy variation of crystallographic orientation in pyrocarbon coatings of fuel particles by annealing and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K.

    1973-04-15

    This document is a translation of those parts of the German report Jul-868-RW concerned with changes in anisotropy as determined using an optical technique on pyrocarbon coatings on fuel particles resulting from annealing and neutron irradiations. Two lists of contents are included, one is for the present document and the other is the full contents of the original report and is included for the generl interest of users.

  6. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  7. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  8. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  9. Silver (Ag) transport mechanisms in TRISO coated particles: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Dunzik-Gougar, M.L. [Department of Nuclear Engineering, Idaho State University, ID (United States); Rooyen, P.M. van [Philip M. van Rooyen Network Consultants, Midlands Estates (South Africa)

    2014-05-01

    Transport of {sup 110m}Ag in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE's fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  10. Particle morphology of hydroxyapatite and its influence on the properties of biocomposite plasma coatings

    Directory of Open Access Journals (Sweden)

    Melnikova I.P.

    2013-09-01

    Full Text Available The purpose of the article is to identify patterns of change in the properties of biocompatible coatings during modernization of its structure by changing the morphology and crystallinity of the starting powder particles of hydroxyapatite (HA for agglomeration and subsequent grinding. Material and methods. We investigated the morphology, degree of crystallinity and internal tension in HA powder with a particle size of 40-90 microns in the initial state and after the agglomeration process and structure piasmasprayed HA coatings application methods ray analysis (XRF and XRD on DRON-3, infrared spectroscopy (FT-IR spectrometer Nicolet 6700, optical (MIM-8 and atomic force microscopy (SMM-2000, the laser microprobe (Spectrum 2000. Results: It was shown that change in particle morphology HA agglomerated and subsequently grinding increases the uniformity of the porous structure, its crystallinity, reduce internal stresses developing surface morphology of the coating and its nanostructuring. Conclusion. It is recommended for the improvement of characteristics of the porous structure (uniformity, strength, adhesion, and the surface morphology of implant to use agglomerating starting powders and their subsequent grinding.

  11. Quality control of coated fuel particles for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kaneko, Mitsunobu

    1987-01-01

    The quality control of the coated fuel particles for high temperature gas-cooled reactors is characterized by the fact that the size of the target product to be controlled is very small, and the quantity is very large. Accordingly, the sampling plan and the method of evaluating the population through satisfically treating the measured data of the samples are the important subjects to see and evaluate the quality of a batch or a lot. This paper shows the fabrication process and the quality control procedure for the coated fuel particles. The development work of a HTGR was started by Japan Atomic Energy Research Institute in 1969, and as for the production technology for coated fuel particles, Nuclear Fuel Industries, Ltd. has continued the development work. The pilot plan with the capacity of about 40 kg/year was established in 1972. The fuel product fabricated in this plant was put to the irradiation experiment and out-of-pile evaluation test. In 1983, the production capacity was expanded to 200 kg/year, and the fuel compacts for the VHTRC in JAERI were produced for two years. The basic fuel design, the fabrication process, the quality control, the process control and the quality assurance are reported. For the commercial product, the studies from the viewpoint of production and quality control costs are required. (Kako, I.)

  12. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  13. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  14. Modelling biocide release based on coating properties

    NARCIS (Netherlands)

    Erich, S.J.F.; Baukh, V.

    2016-01-01

    Growth of micro-organisms on coated substrates is a common problem, since it reduces the performance of materials, in terms of durability as well as aesthetics. In order to prevent microbial growth biocides are frequently added to coatings. Unfortunately, early release of these biocides reduces the

  15. Preparation and pigmented polyester coating of saw dust particle board using ultraviolet irradiation

    International Nuclear Information System (INIS)

    Darsono; Sugiarto Danu; Anik Sunarni

    2010-01-01

    Experiments on the preparation and pigmented polyester coating of saw dust particle board have been conducted using ultra-violet (UV) radiation curing. The adhesive used for preparation of particle board was the mixture of eugenol and isoeugenol residue as by product of clover oil distillation. Dry saw dust (20 – 40 mesh) was mixed with adhesive at concentration of 16 % b.w. The mixture then was hot pressed at 160, 170, and 180 kg/cm 2 , temperature of 160 °C for 30 minutes. Particle boards obtained have the density of 0.85 - 92 g/cm 3 , water content of 5.4 – 6.8 % and thickness swelling 45 – 62 % ( 2 hr immersion) and unmeasurable for 24 hr immersion due to brittle condition. It was found that particle boards have properties of modulus of rupture = 64 – 71 kgf/cm 2 , modulus of elasticity = 402 – 447 kgf/ cm 2 , and internal bond of 0.52 – 0.57 kgf/cm 2 . Cured coating made of the mixture of polyester resin, photoinitiator (2 and 3 % b.w) and pigment (1 and 2 % b.w) on particle board and irradiated at 1 – 4 m/min have pendulum hardness = 25.0 – 63.9 sec, pencil hardness = HB – 2H, % remaining = 92 – 100 %, glossy = 42.3 – 58.8 %, and color value of L = 54.3 – 73.9, a = -1.3 – 1.9, and b = 0.4 – 3.3. The cured coatings resist to chemical, solvent and stain, except against 10 % NaOH solution and red permanent marker stain. (author)

  16. The significance of strength of silicon carbide for the mechanical integrity of coated fuel particles for HTRs

    International Nuclear Information System (INIS)

    Bongartz, K.; Scheer, A.; Schuster, H.; Taeuber, K.

    1975-01-01

    Silicon carbide (SiC) and pyrocarbon are used as coating material for the HTR fuel particles. The PyC shell having a certain strength acts as a pressure vessel for the fission gases whereas the SiC shell has to retain the solid fission products in the fuel kernel. For measuring the strength of coating material the so-called Brittle Ring Test was developed. Strength and Young's modulus can be measured simultaneously with this method on SiC or PyC rings prepared out of the coating material of real fuel particles. The strength measured on the ring under a certain stress distribution which is characteristic for this method is transformed with the aid of the Weibull formalism for brittle fracture into the equivalent strength of the spherical coating shell on the fuel particle under uniform stress caused by the fission gas pressure. The values measured for the strength of the SiC were high (400-700MN/m 2 ), it could therefore be assumed that a SiC layer might contribute significantly also to the mechanical strength of the fuel coating. This assumption was confirmed by an irradiation test on coated particles with PyC-SiC-PyC coatings. There were several particles with all PyC layers broken during the irradiation, whereas the SiC layers remained intact having to withstand the fission gas pressure alone. This fact can only be explained assuming that the strength of the SiC is within the range of the values measured with the brittle ring test. The result indicates that, in optimising the coating of a fuel particle, the PyC layers of a multilayer coating should be considered alone as prospective layers for the SiC. The SiC shell, besides acting as a fission product barrier, is then also responsible for the mechanical integrity of the particle

  17. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  18. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Piao, Zhong-yu; Xu, Bin-shi; Wang, Hai-dou; Wen, Dong-hui

    2013-01-01

    Highlights: • Fe-based coating exhibited few oxides, high density and bond strength. • Amorphous/nanocrystalline phases were found in the coating. • Formation mechanism of excellent coating was investigated. -- Abstract: The objective of the present study is to characterize the Fe-based alloy coating deposited by the supersonic plasma spraying process. The condition of the melting particles was in situ monitored. The microstructure of the coating was examined by scanning electron microscope and high resolution transmission electron microscope. The phase composition was examined by X-ray diffraction. The microhardness and porosity were also measured, respectively. Results show the prepared coatings have excellent properties, such as few oxides, high microhardness and a low porosity amount. At the same time, a mass of amorphous/nanocrystalline phases was found in the coating. The mechanism of the formation of amorphous/nanocrystalline phases was investigated. The appropriate material composition of spraying material and flash set process of plasma spraying are the key factors. Moreover, the mechanism for oxidation resistance is also investigated, where the separation between melting metal and oxygen by the formation of SiO 2 films is the key factor

  19. Improved Plasticity of Ti-Based Bulk Metallic Glass at Room Temperature by Electroless Thin Nickel Coating

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-12-01

    Full Text Available By restricting the dilated deformation, surface modification can stimulate multiple shear banding and improve the plasticity of bulk metallic glasses (BMGs. Aimed at modifying the surface of BMGs by thin layers, a crystalline Ni coating with ultrafine grains was coated on the surface of a Ti-based BMG by electroless plating. With a thickness of about 10 μm, the prepared thin coating could effectively limit the fast propagation of primary shear bands and stimulate the nucleation of multiple shear bands. As a result, the compression plasticity of the coated Ti-based BMG was improved to about 3.7% from near 0% of the non-coated BMG. Except for a small amount of Ni coating was adhered to the BMG substrate after fracture, most of the coatings were peeled off from the surface. It can be attributed to the abnormal growth of some coarse grains/particles in local region of the coating, which induces a large tensile stress at the interface between the coating and the BMG substrate. It is suggested that, for electroless nickel plating, improving the adhesive bonding strength between the coating and the substrate has a better geometric restriction effect than simply increasing the thickness of the coating.

  20. Properties of a epoxy-based powder coating containing modified montmorillonite with cerium

    International Nuclear Information System (INIS)

    Beux, A.R.D.; Piazza, D.; Zattera, A.J.; Ferreira, C.A.; Scienza, L.C.

    2014-01-01

    Organic coatings are widely used to prevent corrosion in metal structures. The incorporation of nanofiller the polymer matrix in order to obtain polymer nanocomposites has been arousing scientific and technological interest, because it provides significant improvements when incorporated into pure polymeric materials or conventional composites. In the present study were been developed epoxy-based powder coating with addition of different concentrations (2, 4 and 8% (w / w)) of the montmorillonite type Cloisite® 15A modified with cerium in the melt state on a double-screw extruder co-rotating. The coatings were characterized by average particle size, time (gel time) gel, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Coatings with intercalated structure was observed in the XRD analysis and confirmed by SEM to the observe an increase in the concentration of tactoids an increased filler content. (author)

  1. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    Science.gov (United States)

    Mandal, Paranjayee

    and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.

  2. Prediction of TRISO coated particle performances for a one-pass deep burn

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov

    2008-02-15

    In the present studies, TRISO coated particle performances have been investigated for incinerating plutonium and minor actinides by the Gas Turbine-Modular Helium Reactor, whose fresh fuel is fabricated after the uranium extraction (UREX) process applied to Light Water Reactors irradiated fuel. The analyses divide into two parts: in the first part, the latest design of the reactor core proposed by General Atomics, which takes advantage of four fuel rings, has been modeled in deep details by the Monte Carlo MCNP code and a burnup process has been simulated by the MCB code. In the second part, the TRISO coated particle performances have been investigated by the PANAMA code with the goal of verifying the design constraints proposed by General Atomics. During burnup, the refueling and shuffling schedule followed the one-pass deep burn concept, where the fuel is utilized, since fabrication for the Gas Turbine-Modular Helium Reactor, without any reprocessing until the final disposal into the geological repository. During the reactor operation, the fast fluence on all TRISO particles layers has been evaluated and the production of the key fission products monitored. During an hypothetical reactor accident scenario, the TRISO particle failure fraction has been estimated.

  3. Prediction of TRISO coated particle performances for a one-pass deep burn

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2008-01-01

    In the present studies, TRISO coated particle performances have been investigated for incinerating plutonium and minor actinides by the Gas Turbine-Modular Helium Reactor, whose fresh fuel is fabricated after the uranium extraction (UREX) process applied to Light Water Reactors irradiated fuel. The analyses divide into two parts: in the first part, the latest design of the reactor core proposed by General Atomics, which takes advantage of four fuel rings, has been modeled in deep details by the Monte Carlo MCNP code and a burnup process has been simulated by the MCB code. In the second part, the TRISO coated particle performances have been investigated by the PANAMA code with the goal of verifying the design constraints proposed by General Atomics. During burnup, the refueling and shuffling schedule followed the one-pass deep burn concept, where the fuel is utilized, since fabrication for the Gas Turbine-Modular Helium Reactor, without any reprocessing until the final disposal into the geological repository. During the reactor operation, the fast fluence on all TRISO particles layers has been evaluated and the production of the key fission products monitored. During an hypothetical reactor accident scenario, the TRISO particle failure fraction has been estimated

  4. Electron probe micro-analysis of irradiated Triso-coated UO2 particles, (1)

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo; Fukuda, Kosaku; Ikawa, Katsuichi

    1983-11-01

    The Triso-coated low-enriched UO 2 particles were subjected to the post-irradiation electron probe micro-analysis. Observations and analyses on the amoeba effect, inclusions and solutes in the UO 2 matrix were made. In the cooler side of the particle which suffered extensive kernel migration, two significant features were observed: (1) the wake of minute particles, presumably UO 2 , left by the moving kernel in the carbon phase and (2) carbon precipitation in the pores and along the grain boundaries of the UO 2 kernel. Both features could be hardly explained by the gas-phase mechanism of carbon transport and rather suggest the solid state mechanism. Two-types of 4d-transition metal inclusions were observed: the one which was predominantly Mo with a fraction of Tc and another which was enriched with Ru and containing significant amount of Si. The Mo and Si were also found in the UO 2 matrix; the observation led to the discussion of the oxygen potential in the irradiated Triso-coated UO 2 particle. (author)

  5. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  6. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  7. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  8. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    Science.gov (United States)

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  9. Assessment on the Effects of ZnO and Coated ZnO Particles on iPP and PLA Properties for Application in Food Packaging

    Directory of Open Access Journals (Sweden)

    Antonella Marra

    2017-02-01

    Full Text Available This paper compares the properties of iPP based composites and PLA based biocomposites using 5% of ZnO particles or ZnO particles coated with stearic acid as filler. In particular, the effect of coating on the UV stability, thermostability, mechanical, barrier, and antibacterial properties of the polymer matrix were compared and related to the dispersion and distribution of the loads in the polymer matrix and the strength of the adhesion between the matrix and the particles. This survey demonstrated that, among the reported systems, iPP/5%ZnOc and PLA/5%ZnO films are the most suitable active materials for potential application in the active food packaging field.

  10. Mass spectrometric determination of gases in individual coated HTR fuel particles. I

    International Nuclear Information System (INIS)

    Strigl, A.; Bildstein, H.

    1977-01-01

    A method is described which allows the simultaneous determination of fission and reaction gases in individual coated particles at temperatures up to 2 000 0 C. The particles are heated under high-vacuum in a micro resistance-furnace up to the desired temperature. After preselected times the particles are crushed by action of a pneumatic cylinder. The gases liberated are fed into a quadrupole analyzer where they are analyzed in a dynamic mode. A peak selector allows the simultaneous measurement of up to four gases. The method is used routinely for the determination of fission gases (Kr and Xe) and of carbon monoxide which is formed as a reaction gas from oxide fuel. Precision and accuracy are in the order of a few percent. Detection limits for routine measurements are about 10 -7 cm 3 (STP) for Kr and Xe and 2x10 -5 cm 3 (STP) for CO but can be lowered by special techniques. (Auth.)

  11. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Administrator

    mon method is the deposition of bioactive ceramic mate- rials on the metal ... tion of nanoparticle layer, including carbon nanoparti- ... Coatings made of CNTs provide implants with .... reaches composite of CNT built into titanium oxide formed.

  12. Development of Aloe vera based edible coating for tomato

    Science.gov (United States)

    Athmaselvi, K. A.; Sumitha, P.; Revathy, B.

    2013-12-01

    The effect of formulated Aloe vera based edible coating on mass loss, colour, firmness, pH, acidity, total soluble solid, ascorbic acid and lycopene on the coated tomato was investigated. The tomato in control showed a rapid deterioration with an estimated shelf life period of 19 days, based on the mass loss, colour changes, accelerated softening and ripening. On the contrary, the coating on tomatoes delayed the ripening and extended the shelf life up to 39 days. The physiological loss in weight was 7.6 and 15.1%, firmness was 36 and 46.2 N on 20th day for control and coated tomatoes, respectively. From the results, it was concluded that the use of Aloe vera based edible coating leads to increased tomato shelf-life.

  13. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  14. Antifungal Paper Based on a Polyborneolacrylate Coating

    Directory of Open Access Journals (Sweden)

    Jiangqi Xu

    2018-04-01

    Full Text Available Paper documents and products are very susceptible to microbial contamination and damage. Fungi are mainly responsible for those biodeterioration processes. Traditional microbicidal strategies constitute a serious health risk even when microbes are dead. Ideal methods should not be toxic to humans and should have no adverse effects on paper, but should own a broad spectrum, good chemical stability and low cost. In this work, we utilize an advanced antimicrobial strategy of surface stereochemistry by applying a coating of a shallow layer of polyborneolacrylate (PBA, resulting in the desired antifungal performance. The PBA-coated paper is challenged with the most common air-borne fungi growing on paper, Aspergillus niger and Penicillium sp. Ten percent by weight of the coating concentration or a 19-μm infiltration of PBA is sufficient to keep the paper spotless. The PBA coating also exhibits significant inhibition of spores’ germination. After PBA coating, both physicochemical properties (paper whiteness, pH, mechanical strength and inking performance display only slight changes, which are acceptable for general utilization. This PBA coating method is nontoxic, rapid and cost-effective, thus demonstrating great potential for applications in paper products.

  15. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  16. Environmentally friendly hybrid coatings for corrosion protection: silane based pre-treatments and nanostructured waterborne coatings

    OpenAIRE

    Fedel, Michele

    2009-01-01

    This thesis considers a nanotechnology approach based on the production of metals pre-treatments and organic coatings (a complete protection system at all) designed from the nanoscale. The final aim is to develop protection systems with improved corrosion protection properties and a low environmental impact. In particular, multifunctional silane hybrid molecules were used to design sol-gel pre-treatments for metals and to modify the inner structure of UV curable waterborne organic coatings...

  17. Microstructure of a Ni Matrix Composite Coating Reinforced by In-situ TiC Particles Using Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    WUYu-ping; WANGZe-hua; LINPing-hua

    2004-01-01

    Plasma cladding process was used to prepare the TiC/Ni composite coating on the mild steel substrates. The TiC particles were synthesized in-situ. Microstructure and properties of the coating were investigated by optical microscopy, X-Ray diffraction, SEM, TEM and microhardness tester. The results show that the interface between the coating and the substrate is metallurgically bonded. The coating was uniform and almost defect-free when [Ti+C] varied from 10% to 20% after ball milling. The microstructure of the coating is mainly composed of γ-Ni dendrite, interdendritic eutectic (γ-Ni austenite, M23C6 and CrB) and TiC particles. Most of the TiC particles are spherical and a small fraction is blocky in size of 1-2μm. The TiC particles are smaller at the bottom than near the top of the coating. The coating has a gradient microstructure and a highest hardness of 1000Hv0.1.

  18. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Directory of Open Access Journals (Sweden)

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  19. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  20. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  1. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    Science.gov (United States)

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be

  2. Characterization of the Micro-Arc Coatings Containing β-Tricalcium Phosphate Particles on Mg-0.8Ca Alloy

    Directory of Open Access Journals (Sweden)

    Mariya B. Sedelnikova

    2018-04-01

    Full Text Available The characterization of the microstructure, morphology, topography, composition, and physical and chemical properties of the coatings containing β-tricalcium phosphate (β-TCP particles deposited by the micro-arc oxidation (MAO method on biodegradable Mg-0.8Ca alloy has been performed. The electrolyte for the MAO process included the following components: Na2HPO4·12H2O, NaOH, NaF, and β-Ca3(PO42 (β-TCP. The coating morphology, microstructure, and compositions have been studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and X-ray diffraction (XRD. With increasing of the MAO voltage from 350 to 500 V, the coating thickness and surface average roughness of the coatings increased linearly from 6 to 150 µm and from 2 to 8 µm, respectively. The coating deposited at 350 V had more homogeneous porous morphology with numerous pores similar by sizes (2–3 µm than the coatings formed at 450–500 V. The β-TCP isometric particles were included in the coating surface. The XRD recognized the amorphous-crystalline structure in the coatings with incorporation of the following phases: β-TCP, α-TCP, MgO (periclase and hydroxyapatite (HA. The corrosion experiments showed that the biodegradation rate of the Mg-0.8Ca alloy coated by calcium phosphates is almost 10 times less than that of uncoated alloy.

  3. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.; Miller, B. D.; Gan, J.; Madden, J. W.; Keiser, D. D.; Palancher, H.; Hofman, G. L.; Breitkreuz, H.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beam milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.

  4. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  5. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    Energy Technology Data Exchange (ETDEWEB)

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  6. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole — resonance and transparency effects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2010-01-01

    The present work investigates the optical properties of active coated spherical nano-particles excited by an arbitrarily located electric Hertzian dipole. The nano-particles are made of specific dielectric and plasmonic materials. The spatial near-field distribution as well as the normalized...

  7. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-02-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ-ɛ martensitic transformation.

  8. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-04-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ- ɛ martensitic transformation.

  9. Brittle-fracture statistics for the determination of the strength of fuel particle coatings

    International Nuclear Information System (INIS)

    Bongartz, K.; Schuster, H.

    1976-04-01

    Two influences on characteristic strength values of brittle materials were investigated: the specimen number which is limited in the laboratory by practical reasons, and the procedure for fitting the Weibull formalism to experimental results. The study was performed with respect to the evaluation of the strength of coatings of HTR-fuel particles. Strength values following Weibull statistics were produced artificially to simulate experimental results. The applicability of four different methods was studied to get best fits of the Weibull parameters to these values. The relation of the scatter of strength values and Weibull parameter to the specimen number is determined. (orig./GSCH) [de

  10. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  11. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  12. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  13. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  14. Evaluation of Fracture Stress for the SiC Layer of TRISO-Coated Fuel Particles by A Modified Crush Testing

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, Jin Weon; Miller, James Henry; Snead, Lance Lewis; Hunn, John D.

    2010-01-01

    Fracture stress data for the chemical vapor deposition (CVD) SiC coatings of tri-isotropic (TRISO) carbon/silicon carbide coated fuel particles were obtained using a newly developed testing and evaluation method, and their relationship with microstructure investigated. A crush testing technique using a blanket foil at load-transferring contact has been developed for hemispherical shell SiC specimens based on finite element (FE) analysis results. Mean fracture stress varied with test material in the range of 330-650 MPa, and was connected to the combined characteristics of inner surface roughness and porosity.

  15. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    Science.gov (United States)

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  16. Crosslinkable coatings from phosphorylcholine-based polymers.

    Science.gov (United States)

    Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W

    2001-01-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.

  17. Emerging Nanotechnology-based Corrosion Control Coatings

    Science.gov (United States)

    2009-02-01

    Carbon black Calcium carbonate Carbon nanotubes Cerium oxide Dendrimers, hyperbranched and supramolecules Indium... Microcapsule with Bisphenol A epoxy Microcapsule with Ketimine O O O O O O O H O n Selected SEM images of various microcapsules SEM and optical...microscopy images of cross-section of self-healing coating Microcapsule rupture and healing agent release is triggered by: T> Tm

  18. Modification V to the computer code, STRETCH, for predicting coated-particle behavior

    International Nuclear Information System (INIS)

    Valentine, K.H.

    1975-04-01

    Several modifications have been made to the stress analysis code, STRETCH, in an attempt to improve agreement between the calculated and observed behavior of pyrocarbon-coated fuel particles during irradiation in a reactor environment. Specific areas of the code that have been modified are the neutron-induced densification model and the neutron-induced creep calculation. Also, the capability for modeling surface temperature variations has been added. HFIR Target experiments HT-12 through HT-15 have been simulated with the modified code, and the neutron-fluence vs particle-failure predictions compare favorably with the experimental results. Listings of the modified FORTRAN IV main source program and additional FORTRAN IV functions are provided along with instructions for supplying the additional input data. (U.S.)

  19. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels

    International Nuclear Information System (INIS)

    Yu Hui; Nam Zin Cho

    2013-01-01

    There is growing interest worldwide in very high temperature gas cooled reactors as candidates for next generation reactor systems. For design and analysis of such reactors with double heterogeneity introduced by the coated particle fuels that are randomly distributed in graphite pebbles, stochastic transport models are becoming essential. Several models were reported in the literature, such as coarse lattice models, fine lattice stochastic (FLS) models, random sequential addition (RSA) models, metropolis models. The principles and performance of these stochastic models are described and compared in this paper. Compared with the usual fixed lattice methods, sub-FLS modeling allows more realistic stochastic distribution of fuel particles and thus results in more accurate criticality calculation. Compared with the basic RSA method, sub-FLS modeling requires simpler and more efficient overlapping checking procedure. (authors)

  20. Mechanical and Microstructural Behavior of Cold-Sprayed Titanium- and Nickel-Based Coatings

    Science.gov (United States)

    Cavaliere, P.; Silvello, A.

    2015-12-01

    Cold spraying is a coating technology that can deposit materials with unique properties. The coating forms through intensive plastic deformation of particles impacting on a substrate at temperature well below the melting point of the sprayed material. Recently, various studies have been published regarding the microstructural and mechanical evolution of metal-matrix composite coatings produced by cold spraying. Herein, we describe the principal results of the available literature in the field of cold-sprayed composites. It is shown that more research is required to solve various questions in this field, for example, the different deformation modes of the material exhibited for various processing conditions, the reinforcing percentage of different material combinations, and the mechanical properties resulting from these complex systems. In the present study, this issue is approached and described for cold-sprayed Ni- and Ti-based composites. Materials were produced with varying ceramic phase (BN and TiAl3) fraction. The variation of the grain size, adhesion strength, porosity, and hardness of the deposits as a function of the ceramic phase fraction and processing parameters (impacting particle speed) is described. The interaction mechanisms between the cold-sprayed particles and the metal matrix during the coating process are presented and described. The results demonstrate a beneficial effect on grain size and porosity with increasing reinforcing phase percentage, as well as narrow processing parameter ranges to achieve the optimal properties with respect to the pure parent materials.

  1. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  2. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  3. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  4. Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang, Min; Liu, Qi; Zhao, Hongsheng; Li, Ziqiang; Liu, Bing; Li, Xingdong; Meng, Fanyong

    2014-01-01

    As a core unit of HTGRs (high-temperature gas-cooled reactors), the quality of spherical fuel elements is directly related to the safety and reliability of HTGRs. In line with the design and performance requirements of the spherical fuel elements, no coated fuel particles are permitted to enter the fuel-free zone of a spherical fuel element. For fast and accurate detection of escaped coated fuel particles, X-ray DR (digital radiography) imaging with a step-by-step circular scanning trajectory was adopted for Chinese 10 MW HTGRs. The scanning parameters dominating the volume of the blind zones were optimized to ensure the missing detection of the escaped coated fuel particles is as low as possible. We proposed a dynamic calibration method for tracking the projection of the fuel-free zone accurately, instead of using a fuel-free zone mask of fixed size and position. After the projection data in the fuel-free zone were extracted, image and graphic processing methods were combined for automatic recognition of escaped coated fuel particles, and some practical inspection results were presented. - Highlights: • An X-ray DR imaging system for quality inspection of spherical fuel elements was introduced. • A method for optimizing the blind-zone-related scanning parameter was proposed. • A dynamic calibration method for tracking the fuel-free zone accurately was proposed. • Some inspection results of the disqualified spherical fuel elements with escaped coated fuel particles were presented

  5. Fabrication and properties of iron-based soft magnetic composites coated with parylene via chemical vapor deposition polymerization

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Lu, Zhenwen; Cheng, Chuan

    2015-01-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing low friction factor parylene C films to coat iron powder via chemical vapor deposition polymerization. The morphology, magnetic properties, density, and chemical stability of parylene insulated iron particles were investigated. The coated parylene insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The thickness of parylene C film is averagely 300 nm according to the results of transmission electron microscopy. Parylene C film uniformly coated the powder surface resulting in reducing the permeability imaginary part, increasing electrical resistivity and increasing the operating frequency of the synthesized magnets. It was shown that the parylene C coated compacts exhibited noticeably higher density compared to the epoxy resin coated compacts at the same pressure, suppress at 800 MPa increased the density by 17.02%. The result of Tafel curves indicated that the resistance of the iron particles to corrosion by NaCl solution is obviously improved after being insulated with parylene C film. - Highlights: • Parylene C uniformly coated the powder, increased the operating frequency of SMCs. • Compared with epoxy coated, the density of SMCs increased by 17.02% at 800 MPa. • The resistance of the iron particles is obviously improved with parylene film insulated

  6. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  7. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  8. Performance limits of coated particle fuel. Part I. The significance of empirical performance diagrams and mathematical models in fuel development and power reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Graham, L. W.; Hick, H.

    1973-06-15

    This report introduces a general survey of our present knowledge and understanding of coated particle fuel performance. It defines first the reference power reactor conditions and the reference coated particle design on which the survey is centred. It describes then the typical strategy which has been followed in coated particle fuel development by the Dragon Project R & D Branch. Finally it shows the priorities which have governed the time scale and scope of fuel development and of the present review.

  9. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  10. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  11. New non-stick expoxy-silicone water-based coatings part 1: Physical and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Garti, N. [Hebrew Univ. of Jerusalem (Israel); Smith, J. [Decora Manufacturing, Fort Edward, NY (United States)

    1995-06-01

    In search for tomorrow`s technology for water-based coating, Decora Manufacturing and The Hebrew University of Jerusalem, have initiated an intensive research program for designing, developing and manufacturing new coatings based on cross-linked, room temperature-cured silicone-expoxy resins. The new water-borne coatings have most exciting characteristics such as: non-stick properties, effective release, high lubricity, corrosion protection and abrasion resistance. The coatings are environmentally-friendly and easy to use. These coatings are ideal for marine, agricultural, industrial and maintenance applications. This paper brings quantitative measurements related to the dispersion technology (particle size, stability, shelf-life), to the non-stick properties (deicing, low surface energy, easy-release and non-stick), lubricity, adhesion to substrates, viscosity, dynamic and static friction coefficients and environmental impact (low VOC, non-toxicity, low-leaching). The coating was tested in various industrial coating systems and was found to exhibit excellent non-stick and release properties. Special attention was given to Zebra Mussels, Quagga Mussels and other bacterial and algeal bioforms. The coating proved to be efficient as foul-release coating with very low biofouling adhesion. The low adhesion applied to many other substances in which foul-release means easy-clean and low-wear.

  12. Quantitative chemical method for the determination of the disordered carbon component in pyrocarbon coatings of fuel particles

    International Nuclear Information System (INIS)

    Wolfrum, E.A.; Nickel, H.

    1977-01-01

    The chemical behavior of the surface of pyrocarbon (PyC) coatings of nuclear fuel particles was investigated in aqueous suspension by reaction with oxygen at room temperature. The concentration of the disordered material component, which has a large internal surface, can be identified by means of a pH change. Using this fact, a chemical method was developed that can be used for the quantitative determination of the concentration of this carbon component in the PyC coating

  13. Characterization of zeolite-based coatings for adsorption heat pumps

    CERN Document Server

    Freni, Angelo; Bonaccorsi, Lucio; Chmielewski, Stefanie; Frazzica, Andrea; Calabrese, Luigi; Restuccia, Giovanni

    2015-01-01

    This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and

  14. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  15. Analysis of irradiation-induced stresses in coating layers of coated fuel particles for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Fukuda, Kousaku; Sato, Sadao; Toyota, Junji; Shiozawa, Shusaku; Sawa, Kazuhiro; Kashimura, Satoru.

    1991-07-01

    Irradiation-induced stresses in coating layers of coated fuel particles were analyzed by the MICROS-2 code for the fuels of the High Temperature Engineering Test Reactor (HTTR) under its operating conditions. The analyses were made on the standard core fuel (A-type) and the test fuels comprising the advanced SiC-coated particle fuel (B-1 type) and the ZrC-coated particle fuel (B-2 type). For the B-1 type fuel, the stresses were relieved due to the thicker buffer and SiC layers than for the A type fuel. The slightly decreased thickness of the fourth layer for the B-1 type than for the A type fuel had no significant effect on the stresses. As for the B-2 type fuel, almost the same results as for the B-1 type were obtained under an assumption that the ZrC layer as well as the SiC layer undergoes negligible dimension change within the analysis conditions. The obtained results indicated that the B-1 and B-2 type fuels are better than the A type fuel in terms of integrity against the irradiation-induced stresses. Finally, research subjects for development of the analysis code on the fuel behavior are discussed. (author)

  16. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  17. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  18. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    Science.gov (United States)

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  19. Effect of nano-TiO{sub 2} particles size on the corrosion resistance of alkyd coating

    Energy Technology Data Exchange (ETDEWEB)

    Deyab, M.A., E-mail: hamadadeiab@yahoo.com; Keera, S.T.

    2014-08-01

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO{sub 2} were prepared and investigated for corrosion protection of carbon steel in 1.0 M H{sub 2}SO{sub 4} using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO{sub 2} particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO{sub 2} and with decreasing the temperature. - Highlights: • Nano-TiO{sub 2} coating were prepared and used for corrosion protection of C-steel. • Nano-TiO{sub 2} particles in coating are effective to improve the corrosion resistance. • Nano-TiO{sub 2} coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO{sub 2}. • O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size.

  20. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  1. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).

  2. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  3. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  4. R\\&D results on a CsI-coated triple thick GEM-based photodetector

    CERN Document Server

    Martinengo, P; Paic, G; Paras, D M; Di Mauro, A; van Hoorne, J; Molnar, L; Peskov, V; Breskin, A

    2011-01-01

    The very high momentum particle identification detector proposed for the ALICE upgrade is a focusing RICH using a C(4)F(10) gaseous radiator. For the detection of Cherenkov photons, one of the options currently under investigation is to use a CsI-coated triple thick GEM with metallic or resistive electrodes. We will present results from the laboratory studies as well as preliminary results of beam tests of a RICH detector prototype consisting of a CaF(2) radiator coupled to a 10 x 10 cm(2) CsI-coated triple thick GEM equipped with a pad readout and GASSIPLEX-based front-end electronics. With such a prototype the detection of Cherenkov photons simultaneously with minimum ionizing particles has been achieved for the first time in a stable operation mode. (C) 2010 Elsevier B.V. All rights reserved.

  5. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    Science.gov (United States)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  6. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  7. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Acuña, Melissa [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States); Maldonado-Camargo, Lorena [University of Florida, Department of Chemical Engineering (United States); Dobson, Jon; Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2016-09-15

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  8. Corrosion performance of some titanium-based hard coatings

    International Nuclear Information System (INIS)

    Matthes, B.; Broszeit, E.; Aromaa, J.; Ronkainen, H.; Hannula, S.P.; Leyland, A.; Matthews, A.

    1991-01-01

    Tools and machine parts which could benefit from wear-resistant titanium-based hard films are often subject to corrosive environments. Physically vapour-deposited coatings frequently exhibit porosity and even small defects, which can cause rapid local corrosion of the substrate material; there is therefore a requirement for dense and chemically inert coatings. This paper presents corrosion data for titanium-based hard coatings such as TiN, (Ti, Al)N, Ti(B, N) and TiB 2 and also for multilayered structures where additional aluminium-based insulating surface layers (AlN and Al 2 O 3 ) were deposited. The corrosion resistance and porosity of the films were analysed by electrochemical techniques. The degree of metallic bonding can play a significant role in influencing the corrosion resistance of refractory transition-metal-based ceramic coatings. Here we demonstrate that, under potentiodynamic corrosion test conditions, resistance to corrosive attack was relatively poor for TiB 2 , better for (Ti, Al)N and Ti(B, N) and best for TiN. It is also shown that applying the additional protective aluminium-based insulating surface layers on the coating can further improve corrosion resistance. (orig.)

  9. Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon.

    Science.gov (United States)

    Senturk Parreidt, Tugce; Schmid, Markus; Müller, Kajetan

    2018-04-01

    Edible coating based on sodium alginate solution was applied to fresh-cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P coating technique and the parameters used significantly affect the physical quality characteristics of coated food products. The work presented produced more technical information concerning dipping and vacuum impregnation coating techniques, along with evaluating the effects of various coating parameters with several levels. The results revealed that vacuum impregnation technique is a successful coating method; however the effects should be carefully assessed for each product. © 2018 Institute of Food Technologists®.

  10. A study on the basic CVD process technology for TRISO coated particle fuel

    International Nuclear Information System (INIS)

    Choi, D. J.; Cheon, J. H.; Keum, I. S.; Lee, H. S.; Kim, J. G.

    2006-03-01

    Hydrogen energy has many advantages and is suitable as alternative energy of fossil fuel. The study of nuclear hydrogen production has performed at present. For nuclear hydrogen production, it is needed the study of VHTR(Very High Temperature Reactor) and TRISO(TRI-iSOtropic) coated fuel. TRISO coated fuel particle deposited by FBCVD(Fludized Bed CVD) method is composed of three isotropic layers: Inner Pyrolytic Carbon (IPyC), Silicon Carbide (SiC), Outer Pyrolytic Carbon (OPyC) layers. Silicon carbide was chemically vapor deposed on graphite substrate using methyltrichlorosilane (CH 3 SiCl 3 ) as a source in hydrogen atmosphere. The effect of deposition temperature and input gas ratios ( α=Q H2 /Q MTS =P H2 /P MTS ) was investigated in order to find out characteristics of silicon carbide layer. From results of those, SiC-TRISO coating deposition was conducted and achieved. Zirconium carbide layer as an advanced material of silicon carbide layer has studied. In order to find out basic properties and characteristics, studies have conducted using various methods. Zirconium carbide is chemically vapor deposed subliming zirconium tetrachloride(ZrCl 4 ) and using methan(CH 4 ) as a source in hydrogen atmosphere. Many experiments were conducted on graphite substrate about many deposition conditions such as ZrCl 4 heating temperatures and variables of H2 and CH 4 flow rate. but carbon graphite was deposited. For deposition of zirconium carbide, several different methods were approached. so zirconium carbide deposed on ZrO 2 substrate. In this experiments. source subliming type and equipment are no problems. But deposition of zirconium carbide will be continuously studied on graphite substrate approaching views of experimental way and equipment structure

  11. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  12. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  13. To see or not to see: Imaging surfactant coated nano-particles using HIM and SEM

    International Nuclear Information System (INIS)

    Hlawacek, Gregor; Ahmad, Imtiaz; Smithers, Mark A.; Kooij, E. Stefan

    2013-01-01

    Nano-particles are of great interest in fundamental and applied research. However, their accurate visualization is often difficult and the interpretation of the obtained images can be complicated. We present a comparative scanning electron microscopy and helium ion microscopy study of cetyltrimethylammonium-bromide (CTAB) coated gold nano-rods. Using both methods we show how the gold core as well as the surrounding thin CTAB shell can selectively be visualized. This allows for a quantitative determination of the dimensions of the gold core or the CTAB shell. The obtained CTAB shell thickness of 1.0 nm–1.5 nm is in excellent agreement with earlier results using more demanding and reciprocal space techniques. - Author-Highlights: • CTAB coated gold nano-rods were imaged using high resolution imaging tools. • Selective imaging of either the gold core or CTAB shell is possible with HIM and SEM. • CTAB shell thickness measured using HIM and SEM agrees well with literature values

  14. Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent

    International Nuclear Information System (INIS)

    Kavale, Mahendra S.; Mahadik, D.B.; Parale, V.G.; Wagh, P.B.; Gupta, Satish C.; Rao, A.Venkateswara; Barshilia, Harish C.

    2011-01-01

    The superhydrophobic surfaces have drawn lot of interest, in both academic and industries because of optically transparent, adherent and self-cleaning behavior. Surface chemical composition and morphology plays an important role in determining the superhydrophobic nature of coating surface. Such concert of non-wettability can be achieved, using surface modifying reagents or co-precursor method in sol-gel process. Attempts have been made to increase the hydrophobicity and optical transparency of methyltrimethoxysilane (MTMS) based silica coatings using polymethylmethacrylate (PMMA) instead of formal routes like surface modification using silylating reagents. The optically transparent, superhydrophobic uniform coatings were obtained by simple dip coating method. The molar ratio of MTMS:MeOH:H 2 O was kept constant at 1:5.63:1.58, respectively with 0.5 M NH 4 F as a catalyst and the weight percent of PMMA varied from 1 to 8. The hydrophobicity of silica coatings was analyzed by FTIR and contact angle measurements. These substrates exhibited 91% optical transmittance as compared to glass and water drop contact angle as high as 171 ± 1 deg. The effect of humidity on hydrophobic nature of coating has been studied by exposing these films at relative humidity of 90% at constant temperature of 30 deg. C for a period of 45 days. The micro-structural studies carried out by transmission electron microscopy (TEM).

  15. Review of Research Work on Ti-BASED Composite Coatings

    Science.gov (United States)

    Gabbitas, Brian; Salman, Asma; Zhang, Deliang; Cao, Peng

    The service life of industrial components is limited predominantly by Chemical corrosion/mechanical wear. The project is concerned with the investigation of the capability of Ti(Al,O)/Al2O3 coatings to improve the service life of tool steel (H13) used for dies in aluminium high pressure die casting. This paper gives a general review on the research work conducted at the University of Waikato on producing and evaluating the titanium/alumina based composite coatings. The powder feedstocks for making the composite coatings were produced by high energy mechanical milling of a mixture of Al and TiO2 powders in two different molar ratios followed by a thermal reaction process. The feedstocks were then thermally sprayed using a high velocity air-fuel (HVAF) technique on H13 steel substrates to produce a Ti(Al,O)/Al2O3 composite coatings. The performance of the coating was assessed in terms of thermal shock resistance and reaction kinetics with molten aluminium. The composite powders and coatings were characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD).

  16. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    Science.gov (United States)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken

  17. Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB

    Science.gov (United States)

    Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.

    2018-01-01

    Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.

  18. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  19. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    Science.gov (United States)

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  1. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition and coating layer thickness

    KAUST Repository

    Mukhopadhyay, Subhas

    2015-10-30

    Prominent research has been going on to develop a low-cost, efficient gas sensing system. The paper presents a continuation of our earlier research work done to develop a new sensing approach for gas detection at ambient conditions. The work exhibits the optimization of the response time of the sensor by inhabiting characteristic changes like variation in the concentration of the dispersion medium, thickness of the coating and the size of the dispersed medium. Different concentrations of the dispersion medium in the coated suspension were tested to determine the optimal composition required to achieve the highest sensitivity of the tin oxide (SnO2) layer towards the tested gas. The control over adsorption and desorption of the gas molecules in the coated layer was achieved by investigating the particle size of the dispersed medium. The response time of the coated sensor was encouraging and owns a promising potential to the development of a more efficient gas sensing system.

  2. Qualitative analysis of barium particles coated in small intestinal mucosa of rabbit by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ha, Hyun Kwon; Lee, Yang Seob; Kim, Jae Kyun; Yoon, Seong Eon; Kim, Jung Hoon; Chung, Dong Jin; Auh, Yong Ho

    1998-01-01

    To qualitatively analysed barium coating status in the intestinal mucosa, we used scanning electron microscopy to observe barium particles coated in the small intestinal mucosa of rabbit, and we attempted to assess the relationship between electron microscopic findings and radiographic densities. Six different combination of barium and methylcellulose suspensions were infused into the resected small intestines of 15 rabbits. Barium powders were mixed with water to make 40% and 70% w/v barium solutions, and also mixed with 0.5% methylcellulose solutions were used as a double contrast agent. After the infusion of barium suspensions, a mammography unit was used to obtain radiographs of the small intestine, and their optical densities were measured by a densitometer. Thereafter, photographs of barium-coated small intestinal mucosa were obtained using a scanning electron microscope (x 8,000), and the number of barium particles in the unit area were measured. To compare the relationship between the electron microscopic findings and optical densities, statistical analysis using Spearman correlation was performed. This study shows that by using scanning electron microscopy, barium particles coated on the small intestinal mucosa can be qualitatively analysed. It also shows that the number of small barium particles measured by scanning electron microscopy is related to optical densities. (author). 14 refs., 2 figs

  3. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  4. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    Science.gov (United States)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  5. Irradiation test OF-2: high-temperature irradiation behavior of LASL-made fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1977-10-01

    Three LASL-made, substoichiometric ZrC-coated particles with inert kernels, and two high-density molded graphite fuel rods that contained LASL-made, ZrC-coated fissile particles were irradiated in the Oak Ridge Research Reactor test OF-2. The severest test conditions were 8.36 x 10 21 nvt (E greater than 0.18 MeV) at 1350 0 C. The graphite matrix showed no effect of the irradiation. There was no interaction between the matrix and any of the particle coats. The loose ZrC coated particles with inert kernels showed no irradiation effects. The graded ZrC-C coats on the fissile particles were cracked. It is postulated that the cracking is associated with the low LTI deposition rate and is not related to the ZrC

  6. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    Science.gov (United States)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  7. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  8. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  9. The Generation of Turnip Crinkle Virus-Like Particles in Plants by the Transient Expression of Wild-Type and Modified Forms of Its Coat Protein.

    Science.gov (United States)

    Saunders, Keith; Lomonossoff, George P

    2015-01-01

    Turnip crinkle virus (TCV), a member of the genus carmovirus of the Tombusviridae family, has a genome consisting of a single positive-sense RNA molecule that is encapsidated in an icosahedral particle composed of 180 copies of a single type of coat protein. We have employed the CPMV-HT transient expression system to investigate the formation of TCV-like particles following the expression of the wild-type coat protein or modified forms of it that contain either deletions and/or additions. Transient expression of the coat protein in plants results in the formation of capsid structures that morphologically resemble TCV virions (T = 3 structure) but encapsidate heterogeneous cellular RNAs, rather than the specific TCV coat protein messenger RNA. Expression of an amino-terminal deleted form of the coat protein resulted in the formation of smaller T = 1 structures that are free of RNA. The possibility of utilizing TCV as a carrier for the presentation of foreign proteins on the particle surface was also explored by fusing the sequence of GFP to the C-terminus of the coat protein. The expression of coat protein-GFP hybrids permitted the formation of VLPs but the yield of particles is diminished compared to the yield obtained with unmodified coat protein. Our results confirm the importance of the N-terminus of the coat protein for the encapsidation of RNA and show that the coat protein's exterior P domain plays a key role in particle formation.

  10. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  11. Optical encoding of microbeads based on silica particle encapsulated quantum dots and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiaoxia; Cao Yuancheng; Jin Xin; Yang Jie; Hua Xiaofeng; Wang Haiqiao; Liu Bo; Wang Zhan; Wang Jianhao; Yang Liang; Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei, 430074 (China)

    2008-01-16

    A novel method concerning the coding technology of polystyrene beads with Si encapsulated quantum dot (QD) particles (Si - QDs particles) is studied in this paper. In the reverse microemulsion system containing tetraethoxysilane (TEOS), water-soluble QDs (emission peak at 600 nm) were enveloped within the silica shell, forming Si - QDs particles. The Si - QDs particles were characterized by TEM, showing good uniform size, with an average diameter of about 167.0 nm. In comparison with the pure water-soluble QDs, the encapsulation of water-soluble QDs in the silica shell led to an enhancement in anti-photobleaching by providing inert barriers for the QDs. Images presented by SEM and confocal laser scanning microscopy demonstrated that the Si - QDs particles were equably coated on the surface of carboxyl functionalized polystyrene (PS) beads. Then, with the assistance of ethyl-3-(dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), human IgG could be successfully crosslinked to Si - QDs particle coated PS-COOH beads. Furthermore, the Si - QDs coated PS-COOH beads with human IgG were examined in immunoassay experiments, and the results indicated that these beads could be applied in the specific recognition of goat-anti-human IgG in solution. This investigation is expected to provide a new route to bead coding in the field of suspension microarrays, based on the use of QDs.

  12. The improvement of corrosion resistance of fluoropolymer coatings by SiO{sub 2}/poly(styrene-co-butyl acrylate) nanocomposite particles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Song, R.G., E-mail: songrg@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Li, X.W.; Guo, Y.Q.; Wang, C.; Jiang, Y. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-10-30

    Highlights: • We first proposed the feasibility of organic-inorganic hybrid particles can be used to reduce free space of the fluoropolymer coatings. • By grafting poly(styrene-co-butyl acrylate), nano-silica particles can be better dispersed in the fluoropolymer coatings system. • The coating-substrates bound strength could be obviously seen in the FESEM cross-section images. • The effects of the corrosion resistance of fluoropolymer-coated steel were investigated by potentiodynamic polarization and EIS. • Using models to analysis the anticorrosion mechanism of nanocomposite coatings. - Abstract: The effects of nano-silica particles on the anticorrosion properties of fluoropolymer coatings on mild steel have been investigated in this paper. In order to enhance the dispersibility of nano-silica in fluoropolymer coatings, we treated the surface of nano-silica with poly(styrene-co-butyl acrylate) (P(St-BA)). The surface grafting of P(St-BA) on the nanoparticles were detected using Fourier transform infrared spectroscopy (FT-IR), thermo gravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The surface of nanocomposite coatings and the coating-substrates bond texture were detected by FE-SEM. We also used energy-dispersive X-ray spectroscopy (EDS) to analyze whether the nanocomposite particles were added into the fluoropolymer coatings. In addition, the influences of various nanoparticles on the corrosion resistance of fluoropolymer-coated steel were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results shown that nanocomposite particles can be dispersed better in fluoropolymer coatings, and the electrochemical results clearly shown the improvement of the protective properties of the nanocomposite coatings when 4 wt.% SiO{sub 2}/P(St-BA) was added to the fluoropolymer coatings.

  13. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-I., E-mail: s1322509@gmail.com [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemistry and Material Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Wang, Gao-Liang, E-mail: wanggl@takming.edu.tw [Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan (China)

    2015-12-01

    Highlights: • The Ni-P-BN(h) coatings were prepared by electroless plating techniques in this research. • Surfactant CTAB resulting in a uniform dispersion of particles in Ni-P coating. • CTAB with a positive effect on the tribological performance of Ni–P/BN(h) coatings. • Frictional tests results show that optimal friction coefficient would be decreased 75%. • Wear resistance of the Ni-P/BN(h) coating is higher about 10 times Ni–P coatings. - Abstract: Ni–P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni–P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni–P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni–P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni–P composites is approximately 10 times higher than Ni–P coating.

  14. Solventless dry powder coating for sustained drug release using mechanochemical treatment based on the tri-component system of acetaminophen, carnauba wax and glidant.

    Science.gov (United States)

    Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi

    2013-02-01

    Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

  15. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  16. Calculations of IAEA-CRP-6 Benchmark Case 1 through 7 for a TRISO-Coated Fuel Particle

    International Nuclear Information System (INIS)

    Kim, Young Min; Lee, Y. W.; Chang, J. H.

    2005-01-01

    IAEA-CRP-6 is a coordinated research program of IAEA on Advances in HTGR fuel technology. The CRP examines aspects of HTGR fuel technology, ranging from design and fabrication to characterization, irradiation testing, performance modeling, as well as licensing and quality control issues. The benchmark section of the program treats simple analytical cases, pyrocarbon layer behavior, single TRISO-coated fuel particle behavior, and benchmark calculations of some irradiation experiments performed and planned. There are totally seventeen benchmark cases in the program. Member countries are participating in the benchmark calculations of the CRP with their own developed fuel performance analysis computer codes. Korea is also taking part in the benchmark calculations using a fuel performance analysis code, COPA (COated PArticle), which is being developed in Korea Atomic Energy Research Institute. The study shows the calculational results of IAEACRP- 6 benchmark cases 1 through 7 which describe the structural behaviors for a single fuel particle

  17. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray

    Science.gov (United States)

    Aubignat, E.; Planche, M. P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G.

    2014-11-01

    This paper focuses on the influence of suspension properties on the manufacturing of coatings by suspension plasma spraying (SPS). For this purpose, alumina suspensions were formulated with two different liquid phases: water and ethanol. Suspensions were atomized with a twin-fluid nozzle and injected in an atmospheric plasma jet. Suspension injection was optimized thanks to shadowgraphy observations and drop size distribution measurements performed by laser diffraction. In-flight particle velocities were evaluated by particle image velocimetry. In addition, splats were collected on glass substrates, with the same conditions as the ones used during the spray process. Scanning electron microscopy (SEM) and profilometry analyses were then performed to observe the splat morphology and thus to get information on plasma / suspension interactions, such as particle agglomeration. Finally, coatings were manufactured, characterized by SEM and compared to each other.

  18. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  19. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of

  20. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  1. Solar Thermal AIR Collector Based on New Type Selective Coating

    Directory of Open Access Journals (Sweden)

    Musiy, R.Y.

    2014-01-01

    Full Text Available Based on the best for optical performance and selective coating solar thermal air collector, which operates by solar power on the principle of simultaneous ventilation and heating facilities, is designed. It can be used for vacation homes, museums, wooden churches, warehouses, garages, houses, greenhouses etc.

  2. Spent UO{sub 2} TRISO coated particles. Instant release fraction and microstructure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hildegard; Kaiser, Gabriele; Lieck, Norman; Guengoer, Murat; Klinkenberg, Martina; Bosbach, Dirk [Research Center Juelich (Germany). Inst. of Energy and Climate Research IEK-6: Nuclear Waste Management and Reactor Safety

    2015-09-01

    The impact of burn-up on the instant release fraction (IRF) from spent fuel was studied using very high burn-up UO{sub 2} fuel (∝ 100 GWd/t) from a prototype high temperature reactor (HTR). TRISO (TRi-structural-ISO-tropic) particles from the spherical fuel elements contain UO{sub 2} fuel kernels (500 μm diameter) which are coated by three tight layers ensuring the encapsulation of fission products during reactor operation. After cracking of the tight coatings {sup 85}Kr and {sup 14}C as {sup 14}CO{sub 2} were detected in the gas fraction. Xe was not detected in the gas fraction, although ESEM (Environmental Scanning Electron Microscope) investigations revealed an accumulation in the buffer. UO{sub 2} fuel kernels were exposed to synthetic groundwater under oxic and anoxic/reducing conditions. U concentration in the leachate was below the detection limit, indicating an extremely low matrix dissolution. Within the leach period of 276 d {sup 90}Sr and {sup 134/137}Cs fractions located at grain boundaries were released and contribution to IRF up to max. 0.2% respectively 8%. Depending on the environmental conditions, different release functions were observed. Second relevant release steps occurred in air after ∝ 120 d, indicating the formation of new accessible leaching sites. ESEM investigations were performed to study the impact of leaching on the microstructure. In oxic environment, numerous intragranular open pores acting as new accessible leaching sites were formed and white spherical spots containing Mo and Zr were identified. Under anoxic/reducing conditions numerous metallic precipitates (Mo, Tc and Ru) filling the intragranular pores and white spherical spots containing Mo and Zr, were detected. In conclusion, leaching in different geochemical environments influenced the speciation of radionuclides and in consequence the stability of neoformed phases, which has an impact on IRF.

  3. Fission Product Release Behavior of Individual Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Kazuo [Japan Atomic Energy Research Institute (Japan); Sawa, Kazuhiro [Japan Atomic Energy Research Institute (Japan); Koya, Toshio [Japan Atomic Energy Research Institute (Japan); Tomita, Takeshi [Japan Atomic Energy Research Institute (Japan); Ishikawa, Akiyoshi [Japan Atomic Energy Research Institute (Japan); Baldwin, Charles A; Gabbard, William Alexander [Oak Ridge National Laboratory (United States); Malone, Charlie M [Oak Ridge National Laboratory (United States)

    2000-07-15

    Postirradiation heating tests of TRISO-coated UO{sub 2} particles at 1700 and 1800degC were performed to understand fission product release behavior at accident temperatures. The inventory measurements of the individual particles were carried out before and after the heating tests with gamma-ray spectrometry to study the behavior of the individual particles. The time-dependent release behavior of {sup 85}Kr, {sup 110m}Ag, {sup 134}Cs, {sup 137}Cs, and {sup 154}Eu were obtained with on-line measurements of fission gas release and intermittent measurements of metallic fission product release during the heating tests. The inventory measurements of the individual particles revealed that fission product release behavior of the individual particles was not uniform, and large particle-to-particle variations in the release behavior of {sup 110m}Ag, {sup 134}Cs, {sup 137}Cs, and {sup 154}Eu were found. X-ray microradiography and ceramography showed that the variations could not be explained by only the presence or absence of cracks in the SiC coating layer. The SiC degradation may have been related to the variations.

  4. Fission Product Release Behavior of Individual Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Minato, Kazuo; Sawa, Kazuhiro; Koya, Toshio; Tomita, Takeshi; Ishikawa, Akiyoshi; Baldwin, Charles A.; Gabbard, William Alexander; Malone, Charlie M.

    2000-01-01

    Postirradiation heating tests of TRISO-coated UO 2 particles at 1700 and 1800degC were performed to understand fission product release behavior at accident temperatures. The inventory measurements of the individual particles were carried out before and after the heating tests with gamma-ray spectrometry to study the behavior of the individual particles. The time-dependent release behavior of 85 Kr, 110m Ag, 134 Cs, 137 Cs, and 154 Eu were obtained with on-line measurements of fission gas release and intermittent measurements of metallic fission product release during the heating tests. The inventory measurements of the individual particles revealed that fission product release behavior of the individual particles was not uniform, and large particle-to-particle variations in the release behavior of 110m Ag, 134 Cs, 137 Cs, and 154 Eu were found. X-ray microradiography and ceramography showed that the variations could not be explained by only the presence or absence of cracks in the SiC coating layer. The SiC degradation may have been related to the variations

  5. Stress Analysis of a TRISO Coated Particle Fuel by Using ABAQUS Finite Element Visco-Elastoplastic Solutions

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, Y. M.; Lee, Y. W.

    2006-01-01

    The fundamental design for a gas-cooled reactor relies on an understanding of the behavior of a coated particle fuel. KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) Project since 2004, is developing a fuel performance analysis code for a VHTR named COPA (COated Particle fuel Analysis). A validation of COPA was attempted by comparing its benchmark results with the visco-elastic solutions obtained from the ABAQUS code calculations for the IAEA-CRP-6 TRISO coated particle benchmark problems involving a creep, swelling, and pressure. However, the ABAQUS finite element model used for the above-mentioned analysis did not consider the material nonlinearity of the SiC coating layer that showed stress levels higher than the assumed yield point of the material. In this study, a consideration of the material nonlinearity is included in the ABAQUS model to obtain the visco-elastoplastic solutions and the results are compared with the visco-elastic solutions obtained from the previous ABAQUS model

  6. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  7. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  8. Measuring mechanical properties of coatings : a methodology applied to nano-particle-filled sol-gel coatings on glass

    NARCIS (Netherlands)

    Malzbender, J.; Toonder, den J.M.J.; Balkenende, A.R.; With, de G.

    2002-01-01

    The main aim of this paper is to demonstrate the practical use of nano-indentation and scratch testing in determining mechanical properties of thin coatings. We place our emphasis on how information obtained using both techniques can be combined to give a more complete representation of the

  9. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  10. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  11. Microstructure characteristics and properties of in-situ formed TiC/Ni based alloy composite coating by laser cladding

    Science.gov (United States)

    Yang, Sen; Liu, Wenjin; Zhong, Minlin

    2003-03-01

    Different weight ratio of nickel based alloy, titanium and graphite powders were mixed and then laser cladded onto carbon steel substrate to produce a surface metal matrix composite layer. The experimental results showed that the coating was uniform, continuous and free of cracks. An excellent bonding between the coating and the carbon steel substrate was ensured by the strong metallurgical interface. The microstructures of the coating were mainly composed of γ-Ni dendrite, M23C6, a small amount of CrB, and dispersed TiC particles, and the in-situ generated TiCp/matrix interfaces were clean and free from deleterious surface reaction. The morphologies of TiC particles changed from the global, cluster to flower-like shape, the volume fraction of TiCp and the microhardness gradually increased from the bottom to the top of the coating layer, and the maximum microhardness of the coating was about HV0.2850, 3 times larger than that of steel substrate. The volume fraction of TiC particles increased with increasing of volume fraction of Ti and C too.

  12. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  13. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  14. Homogeneous Biosensing Based on Magnetic Particle Labels

    Science.gov (United States)

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  15. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschö pe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  16. MULTILAYER COMPOSITE PLASMA COATINGS ON SCREEN PROTECTION ELEMENTS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available The paper contains results of investigations pertaining to an influence of plasma jet parameters (current, spraying distance, consumption of plasma formation gas (nitrogen, fractional composition of initial powder and degree of cooling with compressed air on anti-meteoric coating characteristics. Optimum modes (arc current 600 A; spray distance of 110 mm; consumption of plasma formation gas (nitrogen – 50 l/min; fractional composition of zirconium dioxide powder <50 μm; compressed air consumption for cooling – 1 m3/min; p = 4 bar make it possible to obtain anti-meteoric coatings based on zirconium dioxide with material utilization rate of 62 %, total ceramic layer porosity of 6 %. After exposure of compression plasma flows on a coating in the nitrogen atmosphere a cubic modification of zirconium oxide is considered as the main phase being present in the coating. The lattice parameter of cubic zirconium oxide modification is equal to 0.5174 nm. Taking into consideration usage of nitrogen as plasma formation substance its interaction with zirconium coating atoms occurs and zirconium nitride (ZrN is formed with a cubic crystal lattice (lattice parameter 0.4580 nm. Melting of pre-surface layer takes place and a depth of the melted layer is about 8 μm according to the results of a scanning electron microscopy. Pre-surface layer being crystallized after exposure to compression plasma flows is characterized by a homogeneous distribution of ele-ments and absence of pores formed in the process of coating formation. The coating structure is represented by a set of lar- ge (5–7 μm and small (1–2 μm zirconium oxide particles sintered against each other. Melting of coating surface layer and speed crystallization occur after the impact of compression plasma flows on the formed coating. Cracking of the surface layer arises due to origination of internal mechanical stresses in the crystallized part. While using a scanning electron microscopy a

  17. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement

    Science.gov (United States)

    Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...

  18. Lab Coats or Trench Coats? Detective Sleuthing as an Alternative to Scientifically Based Research in Indigenous Educational Communities

    Science.gov (United States)

    Kaomea, Julie

    2013-01-01

    Amidst late 19th-century efforts to emphasize modern medicine's transition to a more scientific approach, physicians seeking to represent themselves as scientists began wearing white laboratory coats. Today educational researchers are likewise urged to don metaphorical white coats as scientifically based research is held up as the cure-all for our…

  19. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  20. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    Science.gov (United States)

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  1. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  2. Irradiation test HT-31: high-temperature irradiation behavior of LASL-made extruded fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; Davidson, K.V.; Schell, D.H.

    1977-04-01

    Three LASL-made extruded graphite and coated particle fuel rods have been irradiated in the Oak Ridge National Laboratory High Fluence Isotope Reactor test HT-31. Test conditions were about 9 x 10 21 nvt(E > .18 MeV) at 1250 0 C. The graphite matrix showed little or no effect of the irradiation. LASL-made ZrC containing coated particles with ZrC coats and ZrC-doped pyrolytic carbon coats showed no observable effects of the irradiation

  3. Computer Animation Based on Particle Methods

    Directory of Open Access Journals (Sweden)

    Rafal Wcislo

    1999-01-01

    Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.

  4. Evaluation of an interlaboratory comparison of the chemical assay of U, Th, oxide coated particles

    International Nuclear Information System (INIS)

    Tamberg, T.; Thiele, D.; Brodda, B.G.

    1981-09-01

    The prototype reactor THTR in Schmehausen (Germany, F.R.) burns a (Th,U)O 2 nuclear fuel using 93% enriched uranium. This material is particularly Safeguards sensitive. It was therefore desirable for the Safeguards Analytical Laboratory (SAL) and other laboratories of the Agency Network to collect experience and test their performance in the analysis of such materials. Support was requested from the ''Joint Programme between the IAEA and the Federal Republic of Germany for the Development of Safeguards Techniques'' to perform, as a first step, an interlaboratory comparison of the chemical assay of U and Th in pyrocarbon-coated BISO-type fuel particles. Such an intercomparison was organized under the auspices of the Institut fuer Chemische Technologie (ICT) of the Kernforschungsanlage Juelich GmbH (KFA). SAL prepared a statistical evaluation of the results which was discussed in Vienna in June 1980. The objective of the project was to define the state of the art in the chemical assay of U-Th fuels and the analytical requirements for the sampling of materials of major interest to Agency Safeguards at present

  5. Influence of coating quality on the service life of land-based gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Cheruvu, N.S. [Southwest Research Institute, San Antonio (United States)

    2007-06-15

    The land-based gas turbine blades operate at severe operating conditions: higher metal temperatures and stresses, and severe duty cycles. Metallic coatings with or without a top ceramic coating have been used to protect the turbine blades. The durability of the coating system is one of the prime life-limiting factors of modem gas turbine blades. The quality of the coating plays a critical role on the coating life. This paper discusses the failure mechanisms of the coatings and describes how the quality of the coating affects the service life of a gas turbine blade. A few case studies are presented in the paper. (orig.)

  6. Fission product retention in TRISO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1991-01-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbounded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 deg. C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 deg. C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 deg. C and above may exist. (author). 6 refs, 6 figs, 4 tabs

  7. Fission product retention in TRISCO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1990-11-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 degree C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 degree C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 degree C and above may exist. 6 refs., 6 figs., 4 tabs

  8. Behavior of LASL-made graphite, ZrC, and ZrC-containing coated particles in irradiation tests HT-28 and HT-29

    International Nuclear Information System (INIS)

    Reiswig, R.D.; Wagner, P.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1976-01-01

    Three types of materials, extruded graphite, hot-pressed ZrC, and particles with ZrC coatings, were irradiated in ORNL High Fluence Isotope Reactor Irradiation tests HT-28 and HT-29. The ZrC seemed unaffected. The graphite changed in dimensions, x-ray diffraction parameters, and thermal conductivity. The four types of coated particles tested all resisted the irradiation well, except one set of particles with double-graded C-ZrC-C coats. Overall, the results were considered encouraging for use of ZrC and extruded graphite fuel matrices. 16 fig

  9. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    Science.gov (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing 90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  10. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  11. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  12. Susceptibility investigation of the nanoparticle coating-layer effect on the particle interaction in biocompatible magnetic fluids

    International Nuclear Information System (INIS)

    Morais, P.C.; Santos, J.G.; Silveira, L.B.; Gansau, C.; Buske, N.; Nunes, W.C.; Sinnecker, J.P.

    2004-01-01

    AC susceptibility was used to investigate the effect of the surface-coating layer in two biocompatible, magnetite-based, magnetic fluid samples. Dextran and dimercaptosuccinic acid (DMSA) were the surface coating species. The temperature and frequency dependence of the peak susceptibility was discussed using the Vogel-Fulcher relation, from which the typical energy barrier (temperature correction) values of 1340±20 K (70±3 K) and 1230±30 K (86±5 K) were obtained for the dextran- and DMSA-coated nanoparticles, respectively

  13. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta......-glucosidase and co-expressing the BirA biotin ligase. The approach enabled simultaneous purification and immobilization of the enzyme from crude cell lysate on magnetic particles because of the high affinity and strong interaction between biotin and streptavidin. After immobilization of the biotinylated beta...

  14. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    potential differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the heat treatment. Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the microstructure and the alkaline corrosion properties. Due......The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... that the roughness after etching increases with higher amounts of alloying elements (especially iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for a glossy appearance after anodisation. Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium...

  15. Polarized BRDF for coatings based on three-component assumption

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai; Xu, Rong

    2017-02-01

    A pBRDF(polarized bidirectional reflection distribution function) model for coatings is given based on three-component reflection assumption in order to improve the polarized scattering simulation capability for space objects. In this model, the specular reflection is given based on microfacet theory, the multiple reflection and volume scattering are given separately according to experimental results. The polarization of specular reflection is considered from Fresnel's law, and both multiple reflection and volume scattering are assumed depolarized. Simulation and measurement results of two satellite coating samples SR107 and S781 are given to validate that the pBRDF modeling accuracy can be significantly improved by the three-component model given in this paper.

  16. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  17. Niobium based coatings for dental implants

    International Nuclear Information System (INIS)

    Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb 2 O 5 (a-Nb 2 O 5 ), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  18. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)

    International Nuclear Information System (INIS)

    Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

    2002-01-01

    The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were

  19. High performance bio-based thermosets for composites and coatings

    Science.gov (United States)

    Paramarta, Adlina Ambeg

    In the recent decade, there has been increasing interest in using renewable feedstocks as chemical commodities for composites and coatings application. Vegetable oils are promising renewable resources due to their wide availability with affordable cost. In fact, the utilization of vegetable oils to produce composite and coatings products has been around for centuries; linseed oil was widely used for wide variety of paints. However, due to its chemical structure, the application of vegetable oils for high-performance materials is limited; and thus chemical modification is necessary. One of the modification approaches is by substituting the glycerol core in the triglycerides with sucrose to form sucrose esters of vegetable oil fatty acids, in which this resin possesses a higher number of functional group per molecule and a more rigid core. In this research, thermosets of highly functionalized sucrose esters of vegetable oils were developed. Two crosslinking methods of epoxidized surcrose soyate (ESS) resins were explored: direct polymerization with anhydride moieties for composite applications and Michael-addition reaction of acrylated-epoxidized sucrose soyate (AESS) for coatings applications. In the first project, it was shown that the reaction kinetics, thermal and mechanical properties of the materials can be tuned by varying the molar ratio between the epoxide and anhydride, plus the type and amount of catalyst. Furthermore, the toughness properties of the ESS-based thermosets can be improved by changing the type of anhydride crosslinkers and incorporating secondary phase rubbers. Then, in the second system, the epoxy functionality in the ESS was converted into acrylate group, which then crosslinked with amine groups through the Michael-addition reaction to produce coatings systems. The high number of functional groups and the fast reactivity of the crosslinker results in coatings that can be cured at ambient temperature, yet still possess moderately high glass

  20. Characterization of BJT-based particle detectors

    International Nuclear Information System (INIS)

    Piemonte, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We report on the static and dynamic behavior of BJT-based particle detectors realized on high-resistivity silicon. Several prototypes, featuring different doping profiles and geometries, have been fabricated at ITC-irst (Trento, Italy). These devices have been thoroughly characterized from the electrical viewpoint, and, in order to understand the fundamental parameters of the structure, device simulations have been performed, whose results are in very good agreement with experimental data. Preliminary functional measurements have been carried out by using a 109Cd source excitation

  1. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  2. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  3. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  4. Performance of PC-based charged particle multi-channel spectrometer utilising particle identification

    International Nuclear Information System (INIS)

    Palla, G.; Sziklai, J.; Trajber, Cs.

    1993-12-01

    A collaterally expandable charged particle spectrometer based on PC control and particle identification is described. A typical system configuration consisting of two channels are used to test the system performance. (author) 7 refs.; 5 figs

  5. Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties

    Science.gov (United States)

    Lyasnikova, A. V.; Markelova, O. A.

    2016-09-01

    IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.

  6. Corrosion behaviour and galvanic coupling with steel of Al-based coating alternatives to electroplated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fasuba, O.A.; Yerokhin, A., E-mail: A.Yerokhin@sheffield.ac.uk; Matthews, A.; Leyland, A.

    2013-08-15

    The galvanic corrosion behaviour of bare steel coupled to steel with an Al–Zn flake inorganic spin coating, an Al-based slurry sprayed coating, an arc sprayed Al coating and electroplated cadmium has been investigated. The sacrificial and galvanic behaviour of the coatings was studied in 3.5 wt. % NaCl solution using open-circuit potential, potentiodynamic polarisation and electrochemical noise measurements. The coatings were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Experimental results showed that the Al-based slurry sprayed coating exhibited an open-circuit potential closer to the steel substrate than other coatings, as well as a low corrosion current density and a more positive corrosion potential. In terms of the galvanic suitability of the investigated coatings for the steel substrate, both the Al–Zn flake inorganic spin coating and the Al-based slurry sprayed coating show low galvanic current, in comparison with the arc sprayed Al coating and electroplated cadmium. This behaviour confirms their superior cathodic protection capability and galvanic compatibility over other coatings tested. Electrochemical noise measurements provide accurate information on the coatings' galvanic behaviour, which can be complimented by the data obtained from superposition of potentiodynamic corrosion scans of the coating and bare steel, provided that the corrosion potential difference between the two materials does not exceed 300 mV. - Highlights: • Al-based slurry coating has best galvanic compatibility with steel. • Mg, Cr, P in Al-based slurry coating reinforce its corrosion resistance. • Ennoblement of Al–Zn flake coating compromises its cathodic protection. • Poor corrosion behaviour of arc sprayed Al coating caused by rough morphology. • Electrochemical noise provides adequate estimates of galvanic behaviour.

  7. Method of coating an iron-based article

    Science.gov (United States)

    Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.; Yamanis, Jean

    2016-11-29

    A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.

  8. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying.

    Science.gov (United States)

    Kumbar, Sangamesh G; Bhattacharyya, Subhabrata; Sethuraman, Swaminathan; Laurencin, Cato T

    2007-04-01

    The compatibility and biological efficacy of biomedical implants can be enhanced by coating their surface with appropriate agents. For predictable functioning of implants in situ, it is often desirable to obtain an extremely uniform coating thickness without effects on component dimensions or functions. Conventional coating techniques require rigorous processing conditions and often have limited adhesion and composition properties. In the present study, the authors report a novel precision electrospraying technique that allows both degradable and nondegradable coatings to be placed. Thin metallic slabs, springs, and biodegradable sintered microsphere scaffolds were coated with poly(lactide-co-glycolide) (PLAGA) using this technique. The effects of process parameters such as coating material concentration and applied voltage were studied using PLAGA and poly(ethylene glycol) coatings. Morphologies of coated surfaces were qualitatively characterized by scanning electron microscopy. Qualitative observations suggested that the coatings were composed of particles of various size/shape and agglomerates with different porous architectures. PLAGA coatings of uniform thickness were observed on all surfaces. Spherical nanoparticle poly(ethylene glycol) coatings (462-930 nm) were observed at all concentrations studied. This study found that the precision electrospraying technique is elegant, rapid, and reproducible with precise control over coating thickness (mum to mm) and is a useful alternative method for surface modification of biomedical implants. (c) 2006 Wiley Periodicals, Inc.

  9. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    Science.gov (United States)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  10. High performance coated board inspection system based on commercial components

    CERN Document Server

    Barjaktarovic, M; Radunovic, J

    2007-01-01

    This paper presents a vision system for defect (fault) detection on a coated board developed using three industrial firewire cameras and a PC. Application for image processing and system control was realized with the LabView software package. Software for defect detection is based on a variation of the image segmentation algorithm. Standard steps in image segmentation are modified to match the characteristics of defects. Software optimization was accomplished using SIMD (Single Instruction Multiple Data) technology available in the Intel Pentium 4 processors that provided real time inspection capability. System provides benefits such as: improvement in production process, higher quality of delivered coated board and reduction of waste. This was proven during successful exploitation of the system for more than a year.

  11. Effect of deposition conditions on the properties of pyrolytic silicon carbide coatings for high-temperature gas-cooled reactor fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.

    1977-10-01

    Silicon carbide coatings on HTGR microsphere fuel act as the barrier to contain metallic fission products. Silicon carbide coatings were applied by the decomposition of CH 3 SiCl 3 in a 13-cm-diam (5-in.) fluidized-bed coating furnace. The effects of temperature, CH 3 SiCl 3 supply rate and the H 2 :CH 3 SiCl 3 ratio on coating properties were studied. Deposition temperature was found to control coating density, whole particle crushing strength, coating efficiency, and microstructure. Coating density and microstructure were also partially determined by the H 2 :CH 3 SiCl 3 ratio. From this work, it appears that the rate at which high quality SiC can be deposited can be increased from 0.2 to 0.5 μm/min

  12. Novel epoxy-benzoxazine water-based emulsions with reactive benzoxazine surfactants for coatings

    Directory of Open Access Journals (Sweden)

    M. Krajnc

    2014-08-01

    Full Text Available Novel epoxy-benzoxazine emulsions designed for water-based coatings were prepared and investigated. Bisphenol A-based epoxy resins with molar weights of 340, 377 and 1750 g/mol along with epoxidized soybean oil were emulsified using mono- and bi-functional benzoxazine surfactants, which are able to react with epoxy resins at their cure temperature. The structure of synthesized surfactants carrying one or two polyether chains was confirmed using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance and differential scanning calorimetry. Stability of emulsions was verified by particle diameters measurements. Coatings, made directly from emulsions, were dried and cured at elevated temperature using 3,3'-dimetoxybenzidine as curing agent to ensure a highly cross-linked structure of thermosetting films. Curing process, thermal properties and hardness of cured films were investigated. It was found that benzoxazine molecules were well incorporated into the epoxy network upon curing, which ensures no void structure of cured copolymer and enhanced coating properties.

  13. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology

    OpenAIRE

    Walsh, F.C.; Ponce de Leon, Carlos

    2014-01-01

    Following a brief overview of their history, which dates back to the 1920s with marked developments during the 1960s and 1970s, the principles of composite coatings, achieved by including particles dispersed in a bath into a growing electrodeposited metal layer, are considered. The principles and role of electroplating compared to other techniques for realising such coatings, are considered. A good quality particle dispersion (often aided by a suitable type and concentration of surfactants) a...

  14. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Martin, Philippe [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Phelip, Mayeul [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Ballinger, Ronald [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-12-01

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  15. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  16. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  17. Particle-based model for skiing traffic.

    Science.gov (United States)

    Holleczek, Thomas; Tröster, Gerhard

    2012-05-01

    We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.

  18. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  20. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.

    Science.gov (United States)

    Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie

    2013-03-05

    A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well

  1. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Su, Y.; Zhitomirsky, I.

    2015-01-01

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g −1 for active mass loading of 10 mg cm −2 , good capacitance retention at scan rates in the range of 2–100 mV s −1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  2. Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Liu, Ying Dan [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Choi, Hyoung Jin, E-mail: hjchoi@inha.ac.kr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2012-10-15

    The core–shell structured snowman-like (SL) microparticles coated by functionalized multi-walled carbon nanotube (MWNT) were prepared in the presence of different surfactants including cationic surfactant-cetyl trimethylammonium bromide (CTAB) and anionic surfactant-sodium lauryl sulfate (SDS). The effect of surfactants on adsorption onto SL particles was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and conductivity. The cationic surfactant is found to be more effective than anionic surfactant for helping nanotube adsorbed onto microparticle due to the presence of electrostatic interaction between the functionalized MWNT and the surfactant. Furthermore, the MWNT/SL particles dispersed in silicone oil exhibited a typical fibril structure of the electrorheological characteristics under an applied electric field observed by an optical microscope (OM), in which the state of nanotubes wrapped on the particles strongly affects their electro-responsive characteristics.

  3. Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics

    International Nuclear Information System (INIS)

    Zhang, Ke; Liu, Ying Dan; Choi, Hyoung Jin

    2012-01-01

    The core–shell structured snowman-like (SL) microparticles coated by functionalized multi-walled carbon nanotube (MWNT) were prepared in the presence of different surfactants including cationic surfactant-cetyl trimethylammonium bromide (CTAB) and anionic surfactant-sodium lauryl sulfate (SDS). The effect of surfactants on adsorption onto SL particles was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and conductivity. The cationic surfactant is found to be more effective than anionic surfactant for helping nanotube adsorbed onto microparticle due to the presence of electrostatic interaction between the functionalized MWNT and the surfactant. Furthermore, the MWNT/SL particles dispersed in silicone oil exhibited a typical fibril structure of the electrorheological characteristics under an applied electric field observed by an optical microscope (OM), in which the state of nanotubes wrapped on the particles strongly affects their electro-responsive characteristics.

  4. HTCAP: a FORTRAN IV program for calculating coated-particle operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.

    1976-05-01

    A description is presented of HTCAP, a computer code that calculates in-reactor operating temperatures of loose coated ThO 2 particles in the HFIR target series of irradiation tests. Three computational models are employed to determine the following: (1) fission heat generation rates, (2) capsule heat transfer analysis, and (3) maximum particle surface temperature within the design of an HT capsule. Maximum particle operating temperatures are calculated at daily intervals during each irradiation cycle. The application of HTCAP to sleeve CP-62 of HT-15 is discussed, and the results are compared with those obtained in an earlier thermal analysis on the same capsule. Agreement is generally within +-5 percent, while decreasing the computational time by more than an order of magnitude. A complete FORTRAN listing and summary of required input data are presented in appendices. Included is a listing of the input data and a tabular output from the thermal analysis of sleeve CP-62 of HT-15

  5. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan

    Science.gov (United States)

    Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito

    2014-05-01

    Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.

  6. Rutile TiO₂ particles exert size and surface coating dependent retention and lesions on the murine brain.

    Science.gov (United States)

    Zhang, Lili; Bai, Ru; Li, Bai; Ge, Cuicui; Du, Jiangfeng; Liu, Ying; Le Guyader, Laurent; Zhao, Yuliang; Wu, Yanchuan; He, Shida; Ma, Yongmei; Chen, Chunying

    2011-11-10

    The rising commercial use and large-scale production of engineered nanoparticles (NPs) may lead to unintended exposure to humans. The central nervous system (CNS) is a potential susceptible target of the inhaled NPs, but so far the amount of studies on this aspect is limited. Here, we focus on the potential neurological lesion in the brain induced by the intranasally instilled titanium dioxide (TiO₂) particles in rutile phase and of various sizes and surface coatings. Female mice were intranasally instilled with four different types of TiO₂ particles (i.e. two types of hydrophobic particles in micro- and nano-sized without coating and two types of water-soluble hydrophilic nano-sized particles with silica surface coating) every other day for 30 days. Inductively coupled plasma mass spectrometry (ICP-MS) were used to determine the titanium contents in the sub-brain regions. Then, the pathological examination of brain tissues and measurements of the monoamine neurotransmitter levels in the sub-brain regions were performed. We found significant up-regulation of Ti contents in the cerebral cortex and striatum after intranasal instillation of hydrophilic TiO₂ NPs. Moreover, TiO₂ NPs exposure, in particular the hydrophilic NPs, caused obvious morphological changes of neurons in the cerebral cortex and significant disturbance of the monoamine neurotransmitter levels in the sub-brain regions studied. Thus, our results indicate that the surface modification of the NPs plays an important role on their effects on the brain. In addition, the difference in neurotoxicity of the two types of hydrophilic NPs may be induced by the shape differences of the materials. The present results suggest that physicochemical properties like size, shape and surface modification of the nanomaterials should be considered when evaluating their neurological effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook [Inha University, Incheon (Korea, Republic of)

    2011-02-15

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10{approx}40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  8. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    International Nuclear Information System (INIS)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook

    2011-01-01

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  9. Ionizing particle detection based on phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  10. Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

    Directory of Open Access Journals (Sweden)

    Lee HJ

    2014-12-01

    Full Text Available Hyo-Jeong Lee,1 Jakkid Sanetuntikul,2 Eun-Sook Choi,1 Bo Ram Lee,1 Jung-Hee Kim,1 Eunjoo Kim,1 Sangaraju Shanmugam2 1Nano and Bio Research Division, 2Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: We describe here a simple synthetic strategy for the fabrication of carbon-coated Fe3O4 (Fe3O4@C particles using a single-component precursor, iron (III diethylenetriaminepentaacetic acid complex. Physicochemical analyses revealed that the core of the synthesized particles consists of ferromagnetic Fe3O4 material ranging several hundred nanometers, embedded in nitrogen-doped graphitic carbon with a thickness of ~120 nm. Because of their photothermal activity (absorption of near-infrared [NIR] light, the Fe3O4@C particles have been investigated for photothermal therapeutic applications. An example of one such application would be the use of Fe3O4@C particles in human adenocarcinoma A549 cells by means of NIR-triggered cell death. In this system, the Fe3O4@C can rapidly generate heat, causing >98% cell death within 10 minutes under 808 nm NIR laser irradiation (2.3 W cm-2. These Fe3O4@C particles provided a superior photothermal therapeutic effect by intratumoral delivery and NIR irradiation of tumor xenografts. These results demonstrate that one-pot synthesis of carbon-coated magnetic particles could provide promising materials for future clinical applications and encourage further investigation of this simple method. Keywords: graphitic carbon–encapsulated magnetic nanoparticles, iron oxide, one-pot synthesis, photothermal cancer therapy

  11. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    OpenAIRE

    Paula Tibola Bertuoli; Veronica Perozzo Frizzo; Diego Piazza; Lisete Cristine Scienza; Ademir José Zattera

    2014-01-01

    In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS) and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneo...

  12. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  13. Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Palancher, Hervé [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon 305-701 (Korea, Republic of); Park, Jong Man; Nam, Ji Min [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Bonnin, Anne [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Honkimäki, Veijo [ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Charollais, François [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Lemoine, Patrick [CEA, DEN, DISN, 91191 Gif sur Yvette (France)

    2014-03-15

    Highlights: • Silicide or nitride layers were coated on atomized U–Mo or U–Mo–Ti powder. • The constituent phases after annealing were identified through high-energy XRD. • U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2} were identified in the silicide coating layers. • UN was identified for U–Mo particles and UN and U{sub 4}N{sub 7} formed on U–Mo–Ti particles. -- Abstract: The coating of silicide or nitride layers on U–7 wt%Mo or U–7 wt%Mo–1 wt%Ti particles has been proposed for the minimization of the interaction phase growth in U–Mo/Al dispersion fuel during irradiation. Out-of-pile annealing tests show reduced inter-diffusion by forming silicide or nitride protective layers on U–Mo and U–Mo–Ti particles. To characterize the constituent phases of the coated layers on U–Mo and U–Mo–Ti particles and the interaction phases of coated U–Mo and U–Mo–Ti particle dispersed Al matrix fuel, synchrotron X-ray diffraction experiments have been performed. It was identified that silicide coating layers consisted mainly of U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2}, and nitride coating layers were composed of mainly UN and U{sub 4}N{sub 7}. The interaction phases obtained after annealing of coated U–Mo and U–Mo–Ti particle dispersion samples were identical to those found in U–Mo/Al–Si and U–Mo/Al systems. Nitride-coated particles showed less interaction formation than silicide-coated particles after annealing at 580 °C for 1 h owing to the higher susceptibility to breakage of the silicide coating layers during hot extrusion.

  14. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Science.gov (United States)

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fouling Release Coatings Based on Polydimethylsiloxane with the Incorporation of Phenylmethylsilicone Oil

    Directory of Open Access Journals (Sweden)

    Miao Ba

    2018-04-01

    Full Text Available In this study, phenylmethylsilicone oil (PSO with different viscosity was used for research in fouling release coatings based on polydimethylsiloxane (PDMS. The surface properties and mechanical properties of the coatings were investigated, while the leaching behavior of PSO from the coatings was studied. Subsequently, the antifouling performance of the coatings was investigated by the benthic diatom adhesion test. The results showed that the coatings with high-viscosity PSO exhibited high levels of hydrophobicity and PSO leaching, while the high PSO content significantly decreased the elastic modulus of the coatings and prolonged the release time of PSO. The antifouling results indicated that the incorporation of PSO into coatings enhanced the antifouling performance of the coating by improving the coating hydrophobicity and decreasing the coating elastic modulus, while the leaching of PSO from the coatings improved the fouling removal rate of the coating. This suggests a double enhancement effect on the antifouling performance of fouling release coatings based on PDMS with PSO incorporated.

  16. Effect of Protein-Based Edible Coating from Red Snapper (Lutjanus sp.) Surimi on Cooked Shrimp

    Science.gov (United States)

    Rostini, I.; Ibrahim, B.; Trilaksani, W.

    2018-02-01

    Surimi can be used as a raw material for making protein based edible coating to protect cooked shrimp color. The purpose of this study was to determine consumers preference level on cooked shrimp which coated by surimi edible coating from red snapper and to know the microscopic visualization of edible coating layer on cooked shrimp. The treatments for surimi edible coating were without and added by sappan wood (Caesalpinia sappan Linn) extract. Application of surimi edible coating on cooked shrimp was comprised methods (1) boiled then coated and (2) coated then boiled. Edible coating made from surimi with various concentrations which were 2, 6, 10 and 14% of distillated water. The analysis were done using hedonic test and microscopic observation with microscope photographs. Effect of surimi edible coating on cooked shrimp based on the hedonic and colour test results showed that the 14% surimi concentration, added by sappan wood (Caesalpinia sappan Linn) extract on edible coating was the most preferable by panellist and giving the highest shrimp colour. The edible coating surimi application on cooked shrimp which gave the best result was processed by boiling followed by coating.

  17. Self-healing properties of TiO{sub 2} particle-polymer composite coatings for protection of aluminum alloys against corrosion in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Yabuki, A. [Faculty of Engineering, Hiroshima University, Higashi-hiroshima (Japan); Urushihara, W.; Kinugasa, J. [Materials Research Laboratory, KOBE STEEL, LTD., Takatsukadai, Nishi-ku, Kobe, Hyogo (Japan); Sugano, K. [Machinery and Engineering Company, KOBE STEEL, LTD., Shinhama, Arai, Takasago, Hyogo (Japan)

    2011-10-15

    TiO{sub 2} particle-polymer composite coatings were applied to the surface of a 5083 aluminum alloy. After using a knife to create an artificial defect, polarization resistance was monitored in artificial seawater at a temperature of 30 C. The polarization resistance of the specimen coated with the composite polymer containing 3 vol% TiO{sub 2} particles increased significantly over time, suggesting that the composite coating had self-healing properties. A carbon-containing 2-{mu}m thick film was found on the coated aluminum substrate at the site of the artificial defect. The formation of the film was related to the dissolution of bisphenol A (BPA), which is a chemical precursor of the polymer coating that behaved as an inhibiting agent. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  19. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry ...

  20. Coating membranes for a sorbent-based artificial liver: adsorption characteristics

    NARCIS (Netherlands)

    de Koning, H. W.; Chamuleau, R. A.; Bantjes, A.

    1982-01-01

    Techniques are described for the coating of sorbents to be used in an artificial liver support system based on mixed sorbent bed hemoperfusion. Activated charcoal has been coated with cellulose acetate (CA) by solvent evaporation. With Amberlite XAD-4, the Wurster technique was used for coating with

  1. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles.

    Science.gov (United States)

    Forsman, Nina; Lozhechnikova, Alina; Khakalo, Alexey; Johansson, Leena-Sisko; Vartiainen, Jari; Österberg, Monika

    2017-10-01

    Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooyen, Isabella Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riesterer, Jessica Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Brandon Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ploger, Scott Arden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm

  3. Elaboration, characterization of CrN- based coatings

    International Nuclear Information System (INIS)

    Tlili, B.; Nouveau, C.; Guillemot, G.

    2011-01-01

    Cr, CrN and CrAlN monolayers were synthesized by RF dual magnetron sputtering on AISI4140 steel and silicon substrates at 200 deg. C. Multilayers coatings based on the three mono-layers such as CrN/CrAlN and Cr/CrN/CrAlN were also synthesized only on Si. The physico-chemical and mechanical properties of the layers were determined by AFM, SEM+WDS, stress, roughness and nanoindentation measurements. The influence of the thickness on the mechanical properties of the monolayers stresses has been studied and as a consequence we compared the mono and multilayers stress state.

  4. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  5. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    Energy Technology Data Exchange (ETDEWEB)

    Kaddami, H. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France); Cuney, S. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France)]|[BSN Emballage-Centre de Recherche de Saint-Romain-en-Gier, 69700 Givors Cedex (France); Pascault, J.P. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France); Gerard, J.F. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France)

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic{emdash}inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed {ital in} {ital situ} during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings. {copyright} {ital 1996 American Institute of Physics.}

  6. Key differences in the fabrication of US and German TRISO-coated particle fuel, and their implications on fuel performance

    International Nuclear Information System (INIS)

    Petti, D.A.; Buongiorno, J.; Maki, J.T.; Miller, G.K.; Hobbins, R.R.

    2002-01-01

    Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the US. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than US fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the US and German and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the US fuel has not faired as well, and what process/production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer US irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, degree of acceleration, power per particle) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance. (author)

  7. Effects of particle size and coating on nanoscale Ag and TiO₂ exposure in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Osborne, Olivia J; Johnston, Blair D; Moger, Julian; Balousha, Mohammed; Lead, Jamie R; Kudoh, Tetsuhiro; Tyler, Charles R

    2013-12-01

    Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO₂) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles.

  8. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  9. The base metal of the oxide-coated cathode

    International Nuclear Information System (INIS)

    Poret, F.; Roquais, J.M.

    2005-01-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double-Ba, Sr-or a triple-Ba, Sr, Ca-oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson 'bimetal' base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts

  10. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  11. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  12. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    International Nuclear Information System (INIS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-01-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  13. Biosensors based on directed assembly of particles

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Urbana, IL

    2009-02-03

    A sensor system for detecting an effector or cofactor comprises (a) a nucleic acid enzyme; (b) a substrate for the nucleic acid enzyme, comprising a first polynucleotide; (c) a first set of particles comprising a second polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 3' terminus; and (d) a second set of particles comprising a third polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 5' terminus.

  14. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  15. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, Gokul [ORNL; Katoh, Yutai [ORNL; Hunn, John D [ORNL; Snead, Lance Lewis [ORNL

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometric compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size

  16. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  17. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: “What is new?”

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Petti, D.A.; Nabielek, H.; Neethling, J.H; Kania, M.J.

    2014-01-01

    The tristructural isotropic (TRISO) particle for a high temperature reactor (HTR) has been developed to an advanced state where the coating withstands internal gas pressures and retains nearly all fission products during irradiation and under postulated accidents. However, one exception is silver (Ag) that has been found to be released from high quality TRISO coated particles during irradiation and high temperature accident heating tests. Although out-of-pile laboratory tests have yet to elucidate the mechanism of transport of Ag through silicon carbide (SiC), effective diffusion coefficients have been derived to successfully reproduce measured "1"1"0"mAg- releases from irradiated HTR fuel elements, compacts and TRISO particles. It was found that Ag transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as palladium (Pd), are the two hypotheses that have been proposed. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission Kikuchi diffraction (TKD) patterns, and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No Ag was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium (Cd) was also found in some of the very same triple junctions, but this could be related to silver behavior as "1"1"0"mAg decays to "1"1"0Cd or true Cd release as a fission product. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. The potential role of Pd in the transport of Ag will be discussed further. (author)

  18. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  19. Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings

    Science.gov (United States)

    Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.

  20. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J. Th M.

    2009-01-01

    The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection

  1. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  2. Analysis of the U.K. measurements of temperature effects in tubular loose coated particle fuels in HECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, A J

    1972-06-15

    A series of measurements of reaction rates and reactivity changes with temperature were made in teh central region of HECTOR, using loose coated particle fuel provided by the Dragon project under the collaborative agrement between the Project and the UKAEA. A DP report giving the results of these experiments was issued in 1970 and an interim statement given at the 10th DCPM. Since that time, analysis of the reactivity changes with temperature in uranium fuelled cores has indicated significant discrepancies, which were not apparent from the earlier analysis of reaction rate measurements. This report documents the current analysis.

  3. Smooth Particle Hydrodynamics-based Wind Representation

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lin, Linyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ram [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    and computation time. An advanced method of combing results from grid-based methods with SPH through a data-driven model is proposed. This method could allow for more accurate simulation of particle movement near rigid bodies even with larger SPH particle sizes. If successful, the data-driven model would eliminate the need for a SPH turbulence model and increase the simulation domain size. Continued research beyond the scope of this project will be needed in order to determine the viability of a data-driven model.

  4. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  5. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  6. High Temperature coatings based on β-NiAI

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Kevin [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB2 composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.