WorldWideScience

Sample records for coated materials

  1. Coated electroactive materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  2. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  3. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  4. Evaluation of irradiated coating material specimens

    International Nuclear Information System (INIS)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  5. Process for preparing coating materials

    International Nuclear Information System (INIS)

    Ryoke, Hideyasu; Kobayashi, Juichi; Kobayashi, Kei.

    1972-01-01

    A coating material curable with ionizing radiations or ultraviolet radiation can be prepared by reacting a compound (A) having one OH group and at least one α,β-ethylenic or allyl group with a polyisocyanate. (A) is a diester of a dicarboxylic acid. One of the ester groups may have a terminal α,β-ethylenic or allyl group and the other contains one OH and one α,β-ethylenic or allyl group. (A) is reacted with a polyisocyanate to yield an urethane. The latter may be diluted with a vinyl monomer. When exposed to a radiation, the coating material cures to give a film excellent in adhesion, impact strength and resistances to pollution, water and solvents. Dose of the ionizing radiation (α-, β-, γ-rays, electron beams) is 0.2-20 Mrad. In one example, 116 parts of 2-hydroxyethyl acrylate was reacted with 148 parts of phthalic anhydride and 142 parts of glycidyl methacrylate to give (A). (A) was reacted with 87 parts of tolylenediisocyanate. A metallic panel was coated with the coating material and cured with electron beams (5 Mrad). Pencil hardness was H, and gel fraction measured in acetone was above 97%. The coating was excellent in resistances to solvent and chemicals, impact strength and adhesion. (Kaichi, S.)

  6. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  7. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  8. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  9. Space Environmental Effects on Coated Tether Materials

    Science.gov (United States)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  10. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  11. Gas-thermal coating of powdered materials. Communication 2

    International Nuclear Information System (INIS)

    Ermakov, S.S.

    1986-01-01

    This paper investigates the microstructure, microhardness, chemical composition of the transition zone, and also the strength characteristics of gas-thermal coatings including their adhesive power to the substrate (iron brand NC 100.24) and the residual stresses in the coatings. The microstructure of the transition zone was investigated; it was established that on the side of the substrate its density is greater than the mean density of both types of coating. It is shown that the porosity of the substrate has a competing effect on the thermal interaction of materials. Discovered regularities lead to the conclusion that the process of gas-thermal coating of powdered materials is more effective than when compact materials are coated; most effective is the combination of gas-thermal coating with processes of heat treatment of powder-metallurgy products

  12. Materials and coating technology for pyrochemical reprocessing applications

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kamachi Mudali, U.

    2013-01-01

    Metallic fuelled fast breeder reactors with co-located pyrochemical reprocessing plants have been proposed as the best option in order to increase the breeding gain, reduce the doubling time of the fuel and reprocess short cooled and high burnup fuel. To establish the pyrochemical reprocessing plants with various unit operations, it is necessary to identify, develop and qualify reliable corrosion resistant materials and coatings for service in molten LiCI-KCI salt and molten uranium environment operating at 773 to 1573 K. Towards materials and coating technology development and testing for molten salt environment a high temperature corrosion testing laboratory was established and studies were initiated. Molten salt test assembly for testing materials and coatings in molten LiCI-KCI salt under controlled ultra high pure (UHP) argon environment at high temperatures has been designed, fabricated, commissioned and tests were carried out on various candidate materials and coatings. Electro-formed (EF) Ni, Ni with Ni-W coating, coatings of ZrN, TiN, HfN and Ti-Si-N on high density (HD) graphite, candidate materials like 2.25Cr-1Mo steel, 9Cr-1Mo steel, 316L stainless steel, Ni base alloys (INCONEL 600, 625 and 690), HD graphite, pyrolytic graphite (PyG), and yttria stabilized zirconia (YSZ) and alumina-40wt% titania thermal barrier coatings were tested for their suitability for molten salt applications. Corrosion studies indicated that YSZ and PyG showed superior corrosion resistance in molten LiCI-KCI salt at 873 K up to 2000 h exposure. Surface modification techniques like annealing, laser remelting and laser shock processing were pursued to consolidate the coatings and improve their high temperature performance. Coating integrity using dielectric electrochemical system and thermal cycling furnace established that, compared to plain 9Cr-1Mo steel YSZ coated 9Cr-1Mo steel performed better from 473 K to 1223 K. The presentation highlights the results of the

  13. Radiation hardening coating material

    International Nuclear Information System (INIS)

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  14. A new coating material for reducing indoor radon level

    International Nuclear Information System (INIS)

    Zhuo, W.; Tokonami, S.; Ichitsubo, H.; Yamada, Y.; Yamada, Y.

    2002-01-01

    In order to mitigate indoor radon level, a new fast-setting, solvent-free, polyurethane-based coating material was developed. The permeability of radon gas in the new material was estimated with a simple radon permeation test system set up in this study. It was found that the permeation velocity depended on the thickness of the coating material, and a thickness of 2.0 mm of the coating material seems sufficient for preventing radon permeation. The permeability of radon in the coating material was estimated to be (2.2± 0.8)x10 -10 m 2 ·s -1 for a thickness of about 1.0 mm. The value is much lower than those reported for membrane materials and caulking compounds. For its performance test, the coating material was used in an existing room with high radon level. By spraying a thickness of 1.5 mm of the material, the indoor radon level reduced by about 80%

  15. 21 CFR 872.3310 - Coating material for resin fillings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to the...

  16. Outgassing characteristics of TiC coated materials

    International Nuclear Information System (INIS)

    Sukenobu, S.; Gomay, Y.

    1982-01-01

    The outgassing characteristics of TiC-coated materials (POCO graphite, and molybdenum) were studied. In the case of molybdenum substrate, thin TiN layer was coated before TiC coating to avoid molybdenum carbide formation. The outgassing characteristics of the sample materials were studied by a baking process at 250 degree C for 24 hours. The samples were inserted in a 304 stainless steel vacuum chamber with a thin aperture, and the gas through-put from this chamber was estimated by measuring the pressure before and after the aperture. A residual gas analyzer was installed on the low pressure side of the aperture. It can be concluded that the out-gassing rate of these TiC-coated materials was about 10 -12 Torr.Fl/s.Fcm"2 after baking at 250 degree C for 24 hours. Residual gas analysis showed that the main outgas species were H 2 and CO after baking. The TiC-coated POCO graphite and molybdenum are applicable to fusion devices as far as the outgassing characteristics are concerned. (Kato, T.)

  17. Optical coatings material aspects in theory and practice

    CERN Document Server

    Stenzel, Olaf

    2014-01-01

    Optical coatings, i.e. multilayer stacks composed from a certain number of thin individual layers, are an essential part of any optical system necessary to tailor the properties of the optical surfaces. Hereby, the performance of any optical coating is defined by a well-balanced interplay between the properties of the individual coating materials and the geometrical parameters (such as film thickness) which define their arrangement. In all scientific books dealing with the performance of optical coatings, the main focus is on optimizing the geometrical coating parameters, particularly the number of individual layers and their thickness. At the same time, much less attention is paid to another degree of freedom in coating design, namely the possibility to tailor optical material properties to an optimum relevant for the required specification. This book, on the contrary, concentrates on the material aside of the problem. After a comprehensive review of the basics of thin film theory, traditional optical coatin...

  18. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  19. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Fang, Lin, E-mail: fanglinhit@163.com [College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Luo, Zhongkuan [College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Zheng, Ruisheng [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Song, Shenhua; Weng, Luqian; Lei, JinPing [Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China)

    2014-09-30

    Highlights: • 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate is successfully fabricated by solution casting method. • Strong bonding between the composite coating and the PEEK substrate is achieved. • HA/PEEK coating materials exhibit better bioactivity. - Abstract: 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate were successfully fabricated by solution casting method and characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and tensile testing. The modified HA fillers were obtained to be uniformly distributed in the HA/PEEK coating, which has better properties of tensile strength and fracture toughness than those of the unmodified specimen. A good bonding between the composite coating and the PEEK substrate was achieved by solution casting method, resulting in integral-fracture without falling apart or delaminating during tensile loading. The modified specimens dipped into simulated body fluid (SBF) were characterized by SEM, XRD and FTIR, indicating that the bioactivity of the dipped materials was demonstrated more apparent with extending the dipping time. Therefore, the coating materials may become the substitutes for the hard tissues of the human body in the future, which could realize the balance between the mechanical properties and the bioactivity by modifying the structural design of the coating.

  20. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials

    International Nuclear Information System (INIS)

    Ma, Rui; Fang, Lin; Luo, Zhongkuan; Zheng, Ruisheng; Song, Shenhua; Weng, Luqian; Lei, JinPing

    2014-01-01

    Highlights: • 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate is successfully fabricated by solution casting method. • Strong bonding between the composite coating and the PEEK substrate is achieved. • HA/PEEK coating materials exhibit better bioactivity. - Abstract: 45 wt%-Hydroxyaptite/polyetheretherketone (HA/PEEK) coating materials modified by silane coupling agent (KH560) on PEEK substrate were successfully fabricated by solution casting method and characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and tensile testing. The modified HA fillers were obtained to be uniformly distributed in the HA/PEEK coating, which has better properties of tensile strength and fracture toughness than those of the unmodified specimen. A good bonding between the composite coating and the PEEK substrate was achieved by solution casting method, resulting in integral-fracture without falling apart or delaminating during tensile loading. The modified specimens dipped into simulated body fluid (SBF) were characterized by SEM, XRD and FTIR, indicating that the bioactivity of the dipped materials was demonstrated more apparent with extending the dipping time. Therefore, the coating materials may become the substitutes for the hard tissues of the human body in the future, which could realize the balance between the mechanical properties and the bioactivity by modifying the structural design of the coating

  1. Study on coating layer of ceramic materials for SFR fuel slugs

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Jonghwan; Kim, Kihwan; Ko, Youngmo; Woo, Yoonmyung; Lee, Chanbock

    2013-01-01

    The plasma-sprayed coating can provide the crucible with a denser, more durable, coating layer, compared with the more friable coating layer formed by slurry-coating. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels. Reducing these interactions will result in a fuel loss reduction. According to coating and U-Zr interaction results preformed in previous experience, Y 2 O 3 , TiC, and TaC coating materials were selected as promising coating materials Various combinations of coating conditions such as; coating thickness, double multi-layer coating methods were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. To develop a coating method and material for crucibles to prevent material interactions with U-TRU-Zr fuels, the refractory coating was performed using vacuum plasma-sprayed method onto niobium rod. The various combinations of coating conditions such as; coating thickness, double multi-layer coating methods were investigated to find the bonding effect to withstand the thermal stress. Most of coating method samples did not maintain integrity in the U-Zr-RE melt because of the cracks or the microcracks of the coating layer, presumably formed from the thermal expansion difference. Only the double-layer coated rod with TaC and Y 2 O 3 powders, which is, which consists of vacuum plasma-sprayed TaC bond coating with the coating thickness of 100μm onto niobium rod and vacuum plasma-sprayed Y 2 O 3 coating with the coating thickness of 100μm on the top of the bond coating layer, survived the 2 cycles dipping test of U-Zr-RE melt this is likely caused by good adhesion of the TaC coating onto the niobium rod and the chemical inertness

  2. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  3. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  4. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  5. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  6. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  7. Novel surface coating strategies for better battery materials

    CSIR Research Space (South Africa)

    Wen, L

    2018-03-01

    Full Text Available . Surface-coated cathodes have been demonstrated to be effective in blocking these surface processes and enhancing the electrochemical performance of the materials. For example, the electron-insulating but ion-conducting lithium carbonate (Li2CO3) has been... noticed that most LIB electrode materials have very poor electrical conductivity (e.g. lithium iron phosphate and lithium titanate are almost insulators).22,23 In this regard, surface coating of the electrode active materials with a conductive layer...

  8. Evaluation of magnetostrictive composite coated fabric as a fragment barrier material

    International Nuclear Information System (INIS)

    Son, Kwon Joong; Fahrenthold, Eric P

    2012-01-01

    Over the last decade a surge in fragment barrier research has led to investigation of numerous materials and material augmentations in the attempt to improve the ballistic performance of systems designed to protect personnel, vehicles or infrastructure from impact and blast loads. One widely studied material augmentation approach is the use of coatings, often polymers, to enhance the performance of protection systems constructed from metal, concrete, composite and fabric materials. In recent research the authors have conducted the first experimental study of the ballistic performance of fabrics coated with a magnetically responsive polymer. Zero field impact experiments on coated fabric targets showed a 61% increase in impact energy dissipation, although the coated targets were not competitive with neat fabrics on a protection per unit mass basis. Under an applied field of 110 kA m −1 , the ballistic performance of the coated fabric was reduced. The reduction in performance may be attributed to a reduction in material damping and an increase in material modulus for the magnetostrictive component of the coating. Analysis of the coated fabric response to magnetic preloads suggests that coating tensile stresses and coating–fabric interface stresses induced by the applied field may also adversely affect ballistic performance. (paper)

  9. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  10. Levitation, coating, and transport of particulate materials

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  11. Superamphiphobic overhang structured coating on a biobased material

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Mikko, E-mail: mikko.tuominen@sp.se [SP Technical Research Institute of Sweden—Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm (Sweden); Teisala, Hannu [Tampere University of Technology, Paper Converting and Packaging Technology, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Haapanen, Janne; Mäkelä, Jyrki M. [Tampere University of Technology, Aerosol Physics Laboratory, Department of Physics, P.O. Box 692, FI-33101 Tampere (Finland); Honkanen, Mari; Vippola, Minnamari [Tampere University of Technology, Material Characterization, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Bardage, Stig [SP Technical Research Institute of Sweden, Sustainable Built Environment, Biobased Materials and Products, Box 5609, SE-114 86 Stockholm (Sweden); Wålinder, Magnus E.P. [KTH Royal Institute of Technology, Department of Civil and Architectural Engineering, Building Materials, SE-100 44 Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden—Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm (Sweden); KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, SE-100 44 Stockholm (Sweden)

    2016-12-15

    Highlights: • A superamphiphobic coating on a wood shows extreme liquid repellence against water, ethylene glycol, diiodomethane and olive oil. • The coated wood sample can have the required geometrical homogeneity to establish superamphiphobic properties. • To our knowledge, this is the first time superamphiphobicity based on overhang structures has been shown for a renewable bio-based material.A superamphiphobic coating on a wood shows extreme liquid repellence with static contact angles (CA) greater than 150° and roll-off angles less than 10° against water, ethylene glycol, diiodomethane and olive oil. - Abstract: A superamphiphobic coating on a biobased material shows extreme liquid repellency with static contact angles (CA) greater than 150° and roll-off angles less than 10° against water, ethylene glycol, diiodomethane and olive oil, and a CA for hexadecane greater than 130°. The coating consisting of titania nanoparticles deposited by liquid flame spray (LFS) and hydrophobized using plasma-polymerized perfluorohexane was applied to a birch hardwood. Scanning electron microscopy (SEM) imaging after sample preparation by UV laser ablation of coated areas revealed that capped structures were formed and this, together with the geometrically homogeneous wood structure, fulfilled the criteria for overhang structures to occur. The coating showed high hydrophobic durability by still being non-wetted after 500 000 water drop impacts, and this is discussed in relation to geometrical factors and wetting forces. The coating was semi-transparent with no significant coloration. A self-cleaning effect was demonstrated with both water and oil droplets. A self-cleanable, durable and highly transparent superamphiphobic coating based on a capped overhang structure has a great potential for commercial feasibility in a variety of applications, here exemplified for a biobased material.

  12. Transfer of fissile material through shielding coatings in emergency heating of HTGR coated particles

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Zhuravkov, S.G.; Koptev, M.A.; Kurepin, A.D.

    1990-01-01

    The measurement results of leakage dynamics of fissile material from the coated particles within a temperature range of 1200 + 2000 deg. C are given. The methods of carrying out the experiments are briefly described. The relation of the leakage rate of uranium-235 from CP (coated particles) with the pyrocarbonic coatings has been obtained. (author)

  13. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    International Nuclear Information System (INIS)

    Inchaussandague, Marina E.; Lakhtakia, Akhlesh; Depine, Ricardo A.

    2008-01-01

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction

  14. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  15. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  16. Comparative Study of Antireflection Coating Materials for Solar ...

    African Journals Online (AJOL)

    yaog

    2017-01-17

    Jan 17, 2017 ... Locally available absorber and antireflection coating materials for ... However, a black painted steel sheet metal costs less and is readily available in local ..... Testing of a new solar coating for solar water heating applications.

  17. Topology optimization of coated structures and material interface problems

    DEFF Research Database (Denmark)

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2015-01-01

    This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...

  18. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  19. Performance evaluation of seal coat materials and designs.

    Science.gov (United States)

    2011-01-01

    "This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...

  20. Local Delivery of Growth Factors Using Coated Suture Material

    Directory of Open Access Journals (Sweden)

    T. F. Fuchs

    2012-01-01

    Full Text Available The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide suspension (PDLLA and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I. The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.

  1. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  2. Application of pulsed plasma streams for materials alloying and coatings modification

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V.; Sadowski, M.J.; Langner, J.

    2002-01-01

    Results of pulsed plasma streams processing of material surfaces with previously deposited FeB and TiAlN coatings are presented. Under the plasma treatment intensive mixing the materials of coating with the material of substrate was achieved.In the first case this provided boronizing of the modified layer with aim of corrosion properties improvement,in the second case-formation of intermediate mixed layer for subsequent deposition of the hard alloyed coatings. Materials alloying with pulsed metal-gas plasma is discussed also

  3. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  4. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  5. UV-hardening of coating materials on the basis of unsaturated polyesters

    International Nuclear Information System (INIS)

    Patheiger, M.; Fuhr, K.

    1975-01-01

    The UV-hardening of coated materials based on unsaturated polyester resins is successful in practice. Resins, modified by acrylic acid, are gaining importance for thin coating from paper coatings up to printing colours. A report is given on the binding classes which come into question as photo initiators and whose ways of reaction with UV-irradiation are so far known. The photopolymerizeable coating systems can be used from undercoats to coating varnishes and from thick layers (polishing varnishes) to thinnest layers (printing colours). The economical significance of the UV-process today is illustrated by statistics on the use of binding agents and coating materials. (orig./AK) [de

  6. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  7. Gelatin methacrylamide as coating material in cell culture.

    Science.gov (United States)

    Egger, Michael; Tovar, Günter E M; Hoch, Eva; Southan, Alexander

    2016-06-13

    Unmodified gelatin (uG) is widely used as a coating material in cell culture for improving surface properties. In this study, the authors investigated if gelatin methacrylamide (GM) with a medium degree of methacrylamide modification (GM1.5) and a high degree of methacrylamide modification (GM4) are equally suitable for this purpose. Therefore, gold surfaces were coated with uG, GM1.5, and GM4 by adsorption of the polymers on the surfaces. Coating success was confirmed by spectroscopic ellipsometry, contact angle measurements, surface plasmon resonance spectroscopy (SPRS), and atomic force microscopy (AFM). The authors found that upon adsorption of uG, GM1.5, a nd GM4 on gold, thin films with thicknesses of 2.95 nm, 2.50 nm, and 2.26 nm were formed. The coated surfaces showed advancing contact angles of 46° (uG and GM1.5) and 52° (GM4) without alteration of the surface roughness determined by AFM. Protein adsorption taking place on the coated surfaces was measured during contact of the surfaces with fetal calf serum by SPRS. Protein adsorption on the coated surfaces was reduced by the factor of 6.4 (uG), 5.4 (GM1.5), and 4.6 (GM4) compared to gold surfaces. Human fibroblasts cultured on the surfaces showed excellent viability shown by water soluble tetrazolium salt assay as well as live/dead staining with propidium iodide and fluorescein diacetate. No cytotoxic effects of the GM coated surfaces were observed, giving rise to the conclusion that GMs are suitable materials as coatings in cell culture.

  8. Dual stimuli responsive self-reporting material for chemical reservoir coating

    Science.gov (United States)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  9. Advanced materials and protective coatings in aero-engines application

    OpenAIRE

    M. Hetmańczyk; L. Swadźba; B. Mendala

    2007-01-01

    Purpose: The following article demonstrates the characteristics of the materials applied as parts of aircraft engine turbines and the stationary gas turbines. The principal technologies for manufacturing the heat resistant coatings and the erosion and corrosion resistant coatings were characterized. Sample applications for the aforementioned coatings are presented: on turbine blades, compressor blades and on parts of combustion chambers of aircraft engines.Design/methodology/approach: The nic...

  10. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  11. Coating material innovation in conjunction with optimized deposition technologies

    International Nuclear Information System (INIS)

    Stolze, M.; Leitner, K.

    2009-01-01

    Concentrating on physical vapour deposition methods several examples of recently developed coating materials for optical applications were studied for film deposition with optimized coating technologies: mixed evaporation materials for ion assisted deposition with modern plasma ion sources, planar metal and oxide sputter targets for Direct Current (DC) and Mid-Frequency (MF) pulsed sputter deposition and planar and rotatable sputter targets of transparent conductive oxides (TCO) for large-area sputter deposition. Films from specially designed titania based mixed evaporation materials deposited with new plasma ion sources and possible operation with pure oxygen showed extended ranges of the ratio between refractive index and structural film stress, hence there is an increased potential for the reduction of the total coating stress in High-Low alternating stacks and for coating plastics. DC and MF-pulsed sputtering of niobium metal and suboxide targets for optical coatings yielded essential benefits of the suboxide targets in a range of practical coating conditions (for absent in-situ post-oxidation ability): higher refractive index and deposition rate, better reproducibility and easier process control, and the potential for co-deposition of several targets. Technological progress in the manufacture of rotatable indium tin oxide (ITO) targets with regard to higher wall-thickness and density was shown to be reflected in higher material stock and coater up-time, economical deposition rates and stable process behaviour. Both for the rotatable ITO targets and higher-dense aluminum-doped zinc oxide (AZO) planar targets values of film transmittance and resistivity were in the range of the best values industrially achieved for films from the respective planar targets. The results for the rotatable ITO and planar AZO targets point to equally optimized process and film properties for the optimized rotatable AZO targets currently in testing

  12. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  13. Coating materials for fusion application in China

    Science.gov (United States)

    Luo, G.-N.; Li, Q.; Liu, M.; Zheng, X. B.; Chen, J. L.; Guo, Q. G.; Liu, X.

    2011-10-01

    Thick SiC coatings of ˜100 μm on graphite tiles, prepared by chemical vapor infiltration of Si into the tiles and the following reactions between Si and C, are used as plasma facing material (PFM) on HT-7 superconducting tokamak and Experimental Advanced Superconducting Tokamak (EAST). With increase in the heating and driving power in EAST, the present plasma facing component (PFC) of the SiC/C tiles bolted to heat sink will be replaced by W coatings on actively cooled Cu heat sink, prepared by vacuum plasma spraying (VPS) adopting different interlayer. The VPS-W/Cu PFC with built-in cooling channels were prepared and mounted into the HT-7 acting as a movable limiter. Behavior of heat load onto the limiter and the material was studied. The Cu coatings on the Inconel 625 tubes were successfully prepared by high velocity air-fuel (HVAF) thermal spraying, being used as the liquid nitrogen (LN2) shields of the in-vessel cryopump for divertor pumping in EAST.

  14. Coating materials for fusion application in China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, M. [Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510651 (China); Zheng, X.B. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200051 (China); Chen, J.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Guo, Q.G. [Shan' xi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Liu, X. [Southwest Institute of Physics, Chengdu 610041 (China)

    2011-10-01

    Thick SiC coatings of {approx}100 {mu}m on graphite tiles, prepared by chemical vapor infiltration of Si into the tiles and the following reactions between Si and C, are used as plasma facing material (PFM) on HT-7 superconducting tokamak and Experimental Advanced Superconducting Tokamak (EAST). With increase in the heating and driving power in EAST, the present plasma facing component (PFC) of the SiC/C tiles bolted to heat sink will be replaced by W coatings on actively cooled Cu heat sink, prepared by vacuum plasma spraying (VPS) adopting different interlayer. The VPS-W/Cu PFC with built-in cooling channels were prepared and mounted into the HT-7 acting as a movable limiter. Behavior of heat load onto the limiter and the material was studied. The Cu coatings on the Inconel 625 tubes were successfully prepared by high velocity air-fuel (HVAF) thermal spraying, being used as the liquid nitrogen (LN2) shields of the in-vessel cryopump for divertor pumping in EAST.

  15. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 1

    Science.gov (United States)

    1995-01-01

    The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.

  16. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO 4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO 4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10 -9 S cm -1 ). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures ( 4 , however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  17. Nano-magnetic particles used in biomedicine: core and coating materials.

    Science.gov (United States)

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Product Control of Waste Products with New Coating Materials

    International Nuclear Information System (INIS)

    Krumbach, H.; Steinmetz, H.J.; Odoj, R.; Wartenberg, W.; Grunau, H.

    2009-01-01

    In Germany, with the shaft KONRAD a repository for low radioactive waste will be available at the earliest in the year 2013. The previously conditioned radioactive waste has to be suitable for a longer-term interim storage. They have to be treated in a way that they are chemically stable and that their integrity is guaranteed for a long time. That is why the waste product or the container is covered/ coated for special waste such as hygroscopic waste or waste that includes aluminium. The Product Control Group for radioactive waste (PKS) has to proof the suitability of the so-treated waste for the repository KONRAD on behalf of the Federal Office for Radiation Protection (BfS). This has to be done before the delivering. In this context the PKS also assesses the suitability of new coating materials for low radioactive waste products or containers and their correct technical application. The characteristics and the technical application of polyurethane coatings as well as the control of the so-coated waste for the disposal in the shaft KONRAD are described in this poster. The Poster shows the development stages of the coating and the filling. There are also shown the boundary conditions and the investigations of the Product Control Group for the use of the new coating material for radioactive waste. (authors)

  19. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  20. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  1. The adhesion characteristics of protective coating materials for the containment structure in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang-Kook; Shin, Jae-Chul

    2003-01-01

    Protective coating materials used in the containment structures should be durable for the designed 30 to 40 year lifetime of a nuclear power plant. At the present, these materials have not yet been developed. Therefore it is very important to keep the durability of the protective coating materials through persistent maintenance, and in order to achieve this, understanding the adhesion characteristics of the coating materials is of utmost importance. Therefore, this study attempts to find any methods for durability maintenance of these protective coating materials. To accomplish these aims, this study applied an experimental deterioration environment condition relevant to Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB), categorized as of Design Basis Accident (DBA), onto steel liner plate specimens covered with protective coating materials. Adhesion tests were performed on these deteriorated coating materials to characterize the physical properties and through these tests, the quantitative adhesion characteristics according to the history of deterioration environment were found

  2. Study on coated layer material performance of coated particle fuel FBR (2). High temperature property and capability of coating to thick layer of TiN

    International Nuclear Information System (INIS)

    Naganuma, Masayuki; Mizuno, Tomoyasu

    2002-08-01

    'Helium Gas Cooled Coated Particle Fuel FBR' is one of attractive core concepts in the Feasibility Study on Commercialized Fast Reactor Cycle System in Japan, and the design study is presently proceeded. As one of key technologies of this concept, the coated layer material is important, and ceramics is considered to be a candidate material because of the superior refractory. Based on existing knowledge, TiN is regarded to be a possible candidate material, to which some property tests and evaluations have been conducted. In this study, preliminary tests about the high temperature property and the capability of thick layer coating of TiN have been conducted. Results of these tests come to the following conclusions. Heating tests of two kinds of TiN layer specimens coated by PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) were conducted. As a result, as for CVD coating specimens, remarkable charge was not observed on the layer up to 2,000degC, therefore we concluded that the layer by CVD had applicability up to high temperature of actual operation level. On the other hand, as for PVD coating specimens, an unstable behavior that the layer changed to a mesh like texture was observed on a 2,000degC heated specimen, therefore the applied PVD method is not considered to be promising as the coating technique. The surface conditions of some parts inside CVD device were investigated in order to evaluate possibility of TiN thick coating (∼100 μm). As a result, around 500 μm of TiN coating layer was observed on the condition of multilayer. Therefore, we conclude that CVD has capability of coating up to thick layer in actual coated particle fuel fabrication. (author)

  3. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  4. Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.

  5. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  6. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  7. Corrosion behavior of biodegradable material AZ31 coated with beeswax-colophony resin

    Science.gov (United States)

    Gumelar, Muhammad Dikdik; Putri, Nur Ajrina; Anggaravidya, Mahendra; Anawati, Anawati

    2018-05-01

    Magnesium (Mg) and its alloys are potential candidates for biodegradable implant materials owing to their ability to degrade spontaneously in a physiological environment. However, the degradation rate is still considered too fast in human body solution. A coating is typically applied to slowdown corrosion rate of Mg alloys. In this work, an organic coating of mixture beeswax-colophony with ratios of 40-60, 50-50, and 60-40 in wt% was synthesized and applied on commercial magnesium alloyAZ31. The coated specimens were then characterized with SEM and XRF. The corrosion behavior of the coated specimens was evaluated by immersion test in 0.9 wt% NaCl solution at 37°C for 14 days. The results indicated that the coating material improved the corrosion resistance of the AZ31 alloy.

  8. 1976 scientific progress report. [Fuel and coating materials for HTGR]; Wissenschaftlicher Ergebnisberict 1976

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, H.

    1976-07-01

    Activities at the Institute for Reactor Materials in the production and properties of high temperature gas cooled reactor fuel and coating materials are summarized. Major emphasis was placed on investigations of pyrocarbon, BISO and TRISO coatings, uranium and thorium oxides and carbides, and graphite and matrix materials. A list of publications is included. (HDR)

  9. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  10. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  11. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  12. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  13. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    Science.gov (United States)

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-10-01

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  14. Substrates coated with silver nanoparticles as a neuronal regenerative material

    Directory of Open Access Journals (Sweden)

    Alon N

    2014-05-01

    Full Text Available Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs and zinc oxide nanoparticles (ZnONPs demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies.Keywords: nerve regeneration, nanotopography, antibacterial material, neuroblastoma, gold nanoparticles, zinc oxide nanoparticles

  15. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  16. Evaluation of Plasma Spray hydroxy Apatite Coatings on Metallic Materials

    International Nuclear Information System (INIS)

    Take, S.; Mitsul, K.; Kasahara, M.; Sawal, R.; Izawa, S.; Nakayama, M.; Itoi, Y.

    2007-01-01

    Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resistance of SUS316L based HAp/Ti combined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer

  17. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    Science.gov (United States)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  18. Exploring new W–B coating materials for the aqueous corrosion–wear protection of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mallia, B., E-mail: bertram.mallia@um.edu.mt [Department of Metallurgy and Materials Engineering, University of Malta, Msida MSD 2080 (Malta); Dearnley, P.A. [nCATS National Centre for Advanced Tribology Southampton, Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-12-31

    The material loss of metallic surfaces through corrosion–wear is a serious concern in many application sectors, ranging from bio-medical implants to marine, oil and gas field components to transport vehicle and nuclear reactor devices. In principle, self-passivating alloys, like stainless steels, can be protected from surface degradation caused by corrosion–wear through the application of protective thin, hard surface coatings. In this work the suitability of using W matrix coating materials supersaturated with varying levels of boron were applied to austenitic stainless steel substrates (Ortron 90) and assessed for this purpose. These materials were compared to a highly corrosion–wear resistant “datum” surface engineered material (CrN coated Ti–6Al–4V) in sliding contact tests against a chemically inert aluminium oxide ball, whilst immersed in 0.9% NaCl solution at 37 °C. The work demonstrated that all the coated materials to be very much more resistant to material loss through corrosion–wear (by nearly an order of magnitude) compared to uncoated stainless steel, and two coatings, W–13%B and W–23%B coated Ortron 90 were similarly resistant as CrN coated Ti–6Al–4V. Three fundamental types of corrosion–wear were discovered that represented differing levels of passive film durability. The total material loss rate (TMLR) during corrosion–wear testing showed linear proportionality with the change in open circuit potential δ{sub OCP} which obeyed the governing equation: TMLR = m δ{sub OCP} + C. - Highlights: • Magnetron sputtered W–(B) coatings displayed a crystalline to amorphous transition. • W–(B) coatings displayed excellent corrosion–wear resistance under OCP conditions. • Three kinds of corrosion–wear behaviour were determined in this study. • A linear correlation between total material loss and change in OCP was discovered. • Static CV tests were not useful for predicting dynamic corrosion–wear behaviour.

  19. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    Science.gov (United States)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  20. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  1. New raw materials for radiation curable coatings: what are they, where they come from

    International Nuclear Information System (INIS)

    Rybny, C.B.; Trebellas, J.C.; Vona, J.A.

    1975-01-01

    The availability of reasonably priced coating systems which meet the criteria of low-energy cure and minimum effluent pollution is of critical concern to the coatings industry. To appreciate the problems associated with radiation curable coatings, those manufacturing and utilizing these materials should be aware of their raw material compositions and the starting products from which they are derived. The utility and economics of ultraviolet coatings are also of prime interest. These topics are discussed, with emphasis on the photocurable polymers and their cross-linking monomers as well as the economics of this new technology in relation to energy cost savings. 7 references

  2. Multilayer coatings containing diamond and other hard materials on hardmetal substrates

    International Nuclear Information System (INIS)

    Koepf, A.; Haubner, R.; Lux, B.

    2001-01-01

    In order to improve the wear resistance of hardmetal cutting tools, coatings of hard materials were established. Especially the production of multilayer coatings, which combine useful properties of different materials was a topic of industrial and academic research. The present work examined the possibilities of combining diamond as basic layer with protective CVD layers of TiC, TiN, Ti(C,N) and Al 2 O 3 . All these combinations could be realized and some showed quite good adherence under strain, which offers possibilities for technical applications. (author)

  3. Potential of fish scales as a filling material in surface coating of cellulosic paper.

    Science.gov (United States)

    Ural, Elif; Kandirmaz, Emine A

    2018-01-01

    Paper is one of the important inputs for the printing industry, and the most important leading parameter in the printing process is its brightness. Brightness can be brought to paper using coatings and sizing. Desired surface properties and, most importantly, surface roughness can be achieved by changing the contents of the coating and sizing of the materials it contains. The use of biomaterials is becoming more important in the paper industry, as they represent substances with a lower carbon footprint. Fish scales are already used as a filling material, cosmetic material and fish food, as well as for determining the age of fish. Fish scales were brought to different sizes by a milling process. Paper formulations including different amounts of fish scales were prepared with fish scales, and coatings on raw paper were subjected to test printings in IGT-C1, with formulations and physical characteristics of coatings such as brightness, lightfastness, strength, adhesion etc. being determined. Regarding the value of yellowness, mixtures of 2.5%-10% can be used. The maximum value of brightness was obtained from a mixture of 10%. Aging visibly changed the colors. The coatings obtained were brighter than the initial coating compositions. The top quality formulation was the coating with 5% medium-sized fish scale particles.

  4. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    Pacheco, J.; Pena, R.; Cota, G.; Segovia, A.; Cruz, A.

    1996-01-01

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  5. Development of TiC coated wall materials for JT-60

    International Nuclear Information System (INIS)

    Abe, T.; Murakami, Y.; Obara, K.; Hiroki, S.; Nakamura, K.; Inagawa, K.

    1985-01-01

    Development of titanium carbide (TiC, 20 μm thick) coated wall materials has been carried out for JT-60. Application of TiC coatings onto molybdenum and Inconel 625 substrates requires a deposition temperature below 950 0 C and 600 0 C respectively, because recrystallization of molybdenum and age hardening of Inconel 625 occur above these temperatures. Through this process of coating we develop a new type plasma CVD(TP-CVD method) for molybdenum and a new type PVD(HCD-ARE method) for Inconel 625 which could successfully reduce the deposition temperature to 900 0 C and 500 0 C, respectively. The TiC coated wall samples were characterized by AES, ESCA, X-ray diffractometer, EPMA, SEM, metalography, tensile tests, thermal shock tests, and other techniques. As a result of the above measurements, it was demonstrated that the characteristics of those TiC coated walls satisfy the requirements arising from JT-60 operation conditions. (orig.)

  6. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  7. Glass and glass–ceramic coatings, versatile materials for industrial ...

    Indian Academy of Sciences (India)

    Unknown

    such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. ... in some systematic way information on glass and glass– ... the industries by proper maintenance of the machinery/.

  8. Trackless tack coat materials : a laboratory evaluation performance acceptance.

    Science.gov (United States)

    2012-06-01

    The purpose of this study was to develop, demonstrate, and document laboratory procedures that could be used by the : Virginia Department of Transportation (VDOT) to evaluate non-tracking tack coat materials. The procedures would be used to : qualify...

  9. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  10. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    International Nuclear Information System (INIS)

    Lamont-Friedrich, Stephanie J; Michl, Thomas D; Giles, Carla; Griesser, Hans J; Coad, Bryan R

    2016-01-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata . Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. (paper)

  11. Irradiation tests on bitumen and bitumen coated materials

    International Nuclear Information System (INIS)

    Tabardel-Brian, R.; Rodier, J.; Lefillatre, G.

    1969-01-01

    The use of bitumen as a material for coating high-activity products calls for prior study of the resistance of bitumen to irradiation. After giving briefly the methods of preparation of bitumen- coated products, this report lists the equipment which has been used for carrying out the β and γ irradiations of these products, and gives the analytical results obtained as a function of the dose rates chosen and of the total integrated dose. Finally, some conclusions have been drawn concerning the best types of bitumen. It should be stressed that some bitumens apparently underwent no degradation whatsoever nor any volume increase, for a total integrated dose of 1.8 x 10 10 rads. (authors) [fr

  12. Electrodeposition of Copper/Carbonous Nanomaterial Composite Coatings for Heat-Dissipation Materials

    Directory of Open Access Journals (Sweden)

    Yasuki Goto

    2017-12-01

    Full Text Available Carbonous nanomaterials are promising additives for composite coatings for heat-dissipation materials because of their excellent thermal conductivity. Here, copper/carbonous nanomaterial composite coatings were prepared using nanodiamond (ND as the carbonous nanomaterial. The copper/ND composite coatings were electrically deposited onto copper substrates from a continuously stirred copper sulfate coating bath containing NDs. NDs were dispersed by ultrasonic treatment, and the initial bath pH was adjusted by adding sodium hydroxide solution or sulfuric acid solution before electrodeposition. The effects of various coating conditions—the initial ND concentration, initial bath pH, stirring speed, electrical current density, and the amount of electricity—on the ND content of the coatings were investigated. Furthermore, the surface of the NDs was modified by hydrothermal treatment to improve ND incorporation. A higher initial ND concentration and a higher stirring speed increased the ND content of the coatings, whereas a higher initial bath pH and a greater amount of electricity decreased it. The electrical current density showed a minimum ND content at approximately 5 A/dm2. Hydrothermal treatment, which introduced carboxyl groups onto the ND surface, improved the ND content of the coatings. A copper/ND composite coating with a maximum of 3.85 wt % ND was obtained.

  13. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  14. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  15. Steam oxidation and the evaluation of coatings and material performance through collaborative research

    Energy Technology Data Exchange (ETDEWEB)

    Fry, A.T. [National Physical Lab., Teddington (United Kingdom); Aguero, A. [INTA, Madrid (Spain)

    2010-07-01

    Over the last five years through the COST 536 Programme researchers across Europe have been collaborating to better understand the phenomena of steam oxidation and to characterise coated and uncoated materials for use in power plants. During this period fundamental study of the oxidation mechanisms and changes in the oxidation kinetics caused by the presence of steam have been undertaken. Materials covering a range of high temperature plant applications have been studied, from low alloy martensitic alloys through to Ni-based superalloy materials, with investigations into the effect of increasing temperatures and pressures on the oxidation kinetics, oxide morphology and spallation characteristics. In addition conventional and novel coatings have been evaluated to assess their potential use in new USC plant. This paper will present an overview of these activities demonstrating the effect that steam has on the oxidation of alloys and coatings. (orig.)

  16. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  17. Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun

    2017-07-28

    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.

  18. Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC

    International Nuclear Information System (INIS)

    Kim, Min Hyuk; Hong, Ming Zi; Kim, Young-Suk; Park, Eunjoo; Lee, Hyunsuk; Ha, Hyung-Wook; Kim, Keon

    2006-01-01

    The dissolution of nickel oxide cathode in the electrolyte is one of the major technical obstacles to the commercialization of molten carbonate fuel cell (MCFC). To improve the MCFC cathode stability, the alternative cathode material for MCFC was prepared, which was made of Co/Ce-coated on the surface of Ni powder using a polymeric precursor based on the Pechini method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) were employed in characterization of the alternative cathode materials. The Co/Ce-coated Ni cathode prepared by the tape-casting technique. The solubility of the Co/Ce-coated Ni cathode was about 80% lower when compare to that of pure Ni cathode under CO 2 :O 2 (66.7:33.3%) atmosphere at 650 deg. C. Consequently, the fine Co/Ce-coated Ni powder could be confirmed as a new alternative cathode material for MCFC

  19. The Behaviour of Some Vegetable-Based Materials Used as Edible Coating on Chicken Nuggets

    Directory of Open Access Journals (Sweden)

    Osman Kılınççeker

    2011-01-01

    Full Text Available In this study, chicken nuggets were predusted with zein or soy protein isolate (SPI as the first coating. Next they were coated with 0.1, 0.2 or 0.3 % carboxymethylcellulose (CMC batters as the second coating, and then breaded with bread crumbs. Finally, they were fried at 190 °C for 2, 4 or 6 min. Predusting materials were found to enhance some physical, chemical and sensorial properties of nuggets after frying. In particular, using SPI was more advantageous than zein. It increased penetrometer values and sensorial scores as it decreased moisture loss. The performance values of batter materials were improved compared to the control. Also, the yield, moisture rate, penetrometer and general appearance values decreased as the frying time increased. During this period, frying loss and fat absorption increased. Results showed that the best coating process was using SPI as predusting material, 0.1 % CMC for batter, and 2 to 4 min of frying time.

  20. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  1. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    International Nuclear Information System (INIS)

    Deng Bingyao; Yan Xiong; Wei Qufu; Gao Weidong

    2007-01-01

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces

  2. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  3. Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials

    International Nuclear Information System (INIS)

    Lee, M.K.; Kim, W.W.; Rhee, C.K.; Lee, W.J.

    1999-01-01

    Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface

  4. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating-Laminate Adhesion on Rain Erosion Performance.

    Science.gov (United States)

    Cortés, Enrique; Sánchez, Fernando; O'Carroll, Anthony; Madramany, Borja; Hardiman, Mark; Young, Trevor M

    2017-09-28

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating-laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling-adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares two

  5. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  6. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  7. Nanocryl Coating of PMMA Complete Denture Base Materials to Prevent Scratching.

    Science.gov (United States)

    Fathi, Hawa M; Benonn, Hajer A; Johnson, Anthony

    2017-09-01

    The surface of polymethylmethacrylate (PMMA) is vulnerable to indentation by hard objects that may contribute to abrade the material surface and subject it to wear. This phenomenon promotes an increase in the surface roughness leading to microbial colonisation which can endanger the general health of wearers and damage the intra-oral prosthesis. The aim of this study is to investigate the effect of three different nanocryl coating agents (Easy Glaze, G-Coat Plus and Formulation XP) on surface roughness and thickness of PMMA material after a simulating cleaning process utilizing an electric toothbrush and three different dentifrices (pastes and immersion). Acrylic uncoated discs were used as a control group. The results showed that the G-Coat Plus coating agent had less changes in the surface roughness and thickness layer whereas the immersion cleaner revealed less abrasion effect compared with the paste cleaners which could be considered the most suitable cleaner to provide lower abrasivenes and good removal of organic debris. However, using nanofilled sealants did not demonstrate significant improvement in reducing surface roughness p ⟩ 0.05. Nevertheless, it could provide some protection against wearing to the acrylic resin surface during tooth brushing and may provide better resistance to microbial colonisation. Copyright© 2017 Dennis Barber Ltd.

  8. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor

    Directory of Open Access Journals (Sweden)

    Su-Jin Kim

    2012-03-01

    Full Text Available As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG, polydimethylsiloxane (PDMS and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously.

  9. Computational Screening for Design of Optimal Coating Materials to Suppress Gas Evolution in Li-Ion Battery Cathodes.

    Science.gov (United States)

    Min, Kyoungmin; Seo, Seung-Woo; Choi, Byungjin; Park, Kwangjin; Cho, Eunseog

    2017-05-31

    Ni-rich layered oxides are attractive materials owing to their potentially high capacity for cathode applications. However, when used as cathodes in Li-ion batteries, they contain a large amount of Li residues, which degrade the electrochemical properties because they are the source of gas generation inside the battery. Here, we propose a computational approach to designing optimal coating materials that prevent gas evolution by removing residual Li from the surface of the battery cathode. To discover promising coating materials, the reactions of 16 metal phosphates (MPs) and 45 metal oxides (MOs) with the Li residues, LiOH, and Li 2 CO 3 are examined within a thermodynamic framework. A materials database is constructed according to density functional theory using a hybrid functional, and the reaction products are obtained according to the phases in thermodynamic equilibrium in the phase diagram. In addition, the gravimetric efficiency is calculated to identify coating materials that can eliminate Li residues with a minimal weight of the coating material. Overall, more MP and MO materials react with LiOH than with Li 2 CO 3 . Specifically, MPs exhibit better reactivity to both Li residues, whereas MOs react more with LiOH. The reaction products, such as Li-containing phosphates or oxides, are also obtained to identify the phases on the surface of a cathode after coating. On the basis of the Pareto-front analysis, P 2 O 5 could be an optimal material for the reaction with both Li residuals. Finally, the reactivity of the coating materials containing 3d/4d transition metal elements is better than that of materials containing other types of elements.

  10. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  11. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  12. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  13. Physical, Chemical and Microbial Characteristic of Gouda Cheese Using Propolis (Apis milifera Liguistica as Coating Material

    Directory of Open Access Journals (Sweden)

    Lilik Eka Radiati

    2012-02-01

    Full Text Available Gouda cheeses were coated with different coating materials consist of pliol, beeswax, and beeswax containing different concentration of propolis  by 0,2, 0,4 and 0,8%  and stored  during  ripening at 10oC period. The result showed that no different of moisture, fat and protein content, hardness, pH value of cheese products. The hydrolysis process at maturity caused decreasing of  pH value. Added propolis in the coating material could inhibited  mould and yeast growth significantly. Key words:  Gouda Cheese, propolis, edible coating

  14. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    Science.gov (United States)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  15. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  16. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    Science.gov (United States)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  17. Towards Washable Wearable Antennas: A Comparison of Coating Materials for Screen-Printed Textile-Based UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available (Radio frequency identification RFID tags integrated into clothing enable monitoring of people without their conscious effort. This requires tags to be an unnoticeable part of clothing and comfortable to wear. In this study, RFID antennas were screen printed on two different fabrics, six different coating materials for the (integrated circuits ICs were applied, and the reliability of these RFID tags was tested with moisture and laundry tests. Generally, glue-type coating materials were easier to handle and could be spread precisely. All the tags were operational immediately after the coatings were applied, and five of the coating materials were seen to protect the IC from detaching in the laundry. It was found that the uneven fabric surface caused discontinuities and breaks in narrow conductors, and thus hard coatings may also be needed to keep the tag from breaking in laundry.

  18. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    National Research Council Canada - National Science Library

    Kang, Young S; Sharma, Shashi K; Sanders, Jeffrey H; Voevodin, Andrey A

    2006-01-01

    ...) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with unique material properties and layer thickness...

  19. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  20. Effect of a self-adhesive coating on the load-bearing capacity of tooth-coloured restorative materials.

    Science.gov (United States)

    Bagheri, R; Palamara, Jea; Mese, A; Manton, D J

    2017-03-01

    The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.

  1. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qingjun [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: sduzhu@yahoo.com.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2007-06-30

    Amorphous composite coatings Fe{sub 38}Ni{sub 30-X}Si{sub 16}B{sub 14}V{sub 2}M {sub X} (X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  2. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  3. A review of materials for spectral design coatings in signature management applications

    Science.gov (United States)

    Andersson, Kent E.; Škerlind, Christina

    2014-10-01

    The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.

  4. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  5. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  6. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Science.gov (United States)

    2010-10-01

    ... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... atmosphere, except pipelines under paragraph (c) of this section. (b) Coating material must be suitable for...

  7. The effect of specifi c relationship between material and coating on tribological and protective features of the product

    Directory of Open Access Journals (Sweden)

    B. Sovilj

    2012-01-01

    Full Text Available Today, parts and tools are increasingly made of composite materials. Realization of specifi c connection between basic material and coating is very important. The quality of coating on products, in terms of wear and resistance to destruction, has a large impact on productivity and reliability of production processes, in particular their life. In this paper, based on experimental investigations, the effect of specific relationship between the base material and coating on tribological and protective features of the product is analyzed.

  8. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  9. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  10. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  11. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Science.gov (United States)

    2010-10-01

    ...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating... 49 Transportation 3 2010-10-01 2010-10-01 false What coating material may I use for external corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...

  12. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  13. Comparison of some coating techniques to fabricate barrier layers on packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Harlin, Ali, E-mail: ali.harlin@vtt.f [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University School of Science and Technology, Kemistintie 1, P.O. Box 16100, FI-00076 AALTO (Finland)

    2010-07-30

    Atomic layer deposition (ALD), electron beam evaporation, magnetron sputtering and a sol-gel method were used to deposit thin aluminum oxide coatings onto two different fiber-based packaging materials of commercial board grades coated with synthetic and biodegradable polymers. Significant decreases in both the water vapor and oxygen permeation rates were observed. With each technique the barrier performance was improved. However, among the techniques tested ALD was found to be most suitable. Our results moreover revealed that biodegradable polylactic acid-coated paperboard with a 25-nm thick layer of aluminum oxide grown by ALD on top of it showed promising barrier characteristics against water vapor and oxygen.

  14. Comparison of some coating techniques to fabricate barrier layers on packaging materials

    International Nuclear Information System (INIS)

    Hirvikorpi, Terhi; Vaehae-Nissi, Mika; Harlin, Ali; Karppinen, Maarit

    2010-01-01

    Atomic layer deposition (ALD), electron beam evaporation, magnetron sputtering and a sol-gel method were used to deposit thin aluminum oxide coatings onto two different fiber-based packaging materials of commercial board grades coated with synthetic and biodegradable polymers. Significant decreases in both the water vapor and oxygen permeation rates were observed. With each technique the barrier performance was improved. However, among the techniques tested ALD was found to be most suitable. Our results moreover revealed that biodegradable polylactic acid-coated paperboard with a 25-nm thick layer of aluminum oxide grown by ALD on top of it showed promising barrier characteristics against water vapor and oxygen.

  15. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  16. Effect of coating material on heat transfer and skin friction due to impinging jet onto a laser producedhole

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.

    2013-07-01

    Jet impingement onto a two-layer structured hole in relation to laser drilling is investigated. The hole consists of a coating layer and a base material. The variations in the Nusselt number and the skin friction are predicted for various coating materials. The Reynolds stress turbulent model is incorporated to account for the turbulence effect of the jet flow and nitrogen is used as the working fluid. The study is extended to include two jet velocities emanating from the conical nozzle. It is found that coating material has significant effect on the Nusselt number variation along the hole wall. In addition, the skin friction varies considerably along the coating thickness in thehole.

  17. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  18. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  19. Ti substrate coated with composite Cr–MoO2 coatings as highly selective cathode materials in hypochlorite production

    International Nuclear Information System (INIS)

    Lačnjevac, U.Č.; Jović, B.M.; Gajić-Krstajić, Lj.M.; Kovač, J.; Jović, V.D.; Krstajić, N.V.

    2013-01-01

    Highlights: ► Composite Cr–MoO 2 coatings were prepared by electrodeposition onto mild steel and Ti substrates. ► Ti/Cr–MoO 2 electrodes were investigated as cathode materials for the hypochlorite production. ► Selectivity of electrodes increased with the increase of the content of MoO 2 in the coating. ► The current efficiency for the HER exceeded 97% at the best cathode. ► The suppression of hypochlorite reduction is caused by the presence of Cr 2 O 3 at the surface. -- Abstract: The aim of this work was to investigate the possibility of preparation of the composite Cr–MoO 2 coatings onto steel and titanium substrates as cathode materials with high selective properties which imply the suppression of hypochlorite reduction as a side reaction during hypochlorite commercial production. The electrodes were prepared by simultaneous deposition of chromium and suspended MoO 2 particles on titanium substrate from acid chromium (VI) bath. The current efficiency for electrodeposition of the composite coatings did not vary significantly with the concentration of suspended MoO 2 particles. The content of molybdenum in the deposits was relatively low (0.2–1.5 at.%) and increased with increasing the concentration of suspended MoO 2 particles in the bath, in the range from 0 to 10 g dm −3 . With further increase in the concentration of MoO 2 , the content of molybdenum in the coating varied insignificantly. X-ray photoelectron spectroscopy-XPS and EDS analysis were applied to analyze elemental composition and chemical bonding of elements on the surface and in the sub-surface region of obtained coatings. When the concentration of MoO 2 particles in the bath was raised above 5 g dm −3 , the appearance of the coating changed from the typical pure chromium deposit to needle-like deposit with the appearance of black inclusions on the surface. XPS analysis and corresponding Cr 2p spectra showed the presence of chromium oxide, probably Cr 2 O 3 with Cr(3

  20. UV-Curable Hybrid Nanocomposite Coating to Protect Tether Polymer Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for coatings to protect and strengthen tether materials for Momentum-exchange Electrodynamic Reboost (MXER) technology, Luminit, LLC,...

  1. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  2. Functioning Mechanism of AlF 3 Coating on the Li- and Mn-Rich Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant J.; Yan, Pengfei; Chen, Xilin; Wang, Chongmin; Zhang, Ji-Guang

    2014-11-25

    We report systematic studies of the microstructural changes of uncoated and AlF3-coated Li-rich Mn-rich (LMR) cathode materials (Li1.2Ni0.15Co0.10Mn0.55O2) before and after cycling using a combination of aberration-corrected scanning/transmission electron microscopy (S/TEM) and electron energy loss spectroscopy (EELS). TEM coupled with EELS provides detailed information about the crystallographic and electronic structure changes that occur after cycling, thus revealing the fundamental improvement mechanism of surface coating. The results demonstrate that the surface coating reduces oxidation of the electrolyte at high voltage, suppressing the accumulation of a thick solid electrolyte interface (SEI) layer on electrode particle surface. Surface coating significantly enhances the stability of the surface structure and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, reducing the formation of etched surfaces and corrosion pits. Moreover, surface coating alleviates the undesirable voltage fade by mitigating layered to spinel-like phase transformation in the bulk region of the material. These fundamental findings may also be widely applied to explain the functioning mechanisms of other surface coatings used in a broad range of electrode materials.

  3. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material

    International Nuclear Information System (INIS)

    Yao Jingwen; Wu Feng; Qiu Xinping; Li Ning; Su Yuefeng

    2011-01-01

    Highlights: → The first study the effect of CeO 2 coating on LiFePO 4 /C at low temperature. → Coated cathode shows improved capacities at high rates and low temperature. → CeO 2 -coating decreases electrode polarization and increases charge-transfer reaction activity. - Abstract: The effect of CeO 2 coating on LiFePO 4 /C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO 2 particles distribute on the surface of LiFePO 4 without destroying the crystal structure of the bulk material. The CeO 2 -coated LiFePO 4 /C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At -20 deg. C, the CeO 2 -coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.

  4. Development of barrier coatings for cellulosic-based materials by cold plasma methods

    Science.gov (United States)

    Denes, Agnes Reka

    Cellulose-based materials are ideal candidates for future industries that need to be based on environmentally safe technologies and renewable resources. Wood represents an important raw material and its application as construction material is well established. Cellophane is one of the most important cellulosic material and it is widely used as packaging material in the food industry. Outdoor exposure of wood causes a combination of physical and chemical degradation processes due to the combined effects of sunlight, moisture, fungi, and bacteria. Cold-plasma-induced surface modifications are an attractive way for tailoring the characteristics of lignocellulosic substrates to prevent weathering degradation. Plasma-polymerized hexamethyldisiloxane (PPHMDSO) was deposited onto wood surfaces to create water repellent characteristics. The presence of a crosslinked macromolecular structure was detected. The plasma coated samples exhibited very high water contact angle values indicating the existence of hydrophobic surfaces. Reflective and electromagnetic radiation-absorbent substances were incorporated with a high-molecular-weight polydimethylsiloxane polymer in liquid phase and deposited as thin layers on wood surfaces. The macromolecular films, containing the dispersed materials, were then converted into a three dimensional solid state network by exposure to a oxygen-plasma. It was demonstrated that both UV-absorbent and reflectant components incorporated into the plasma-generated PDMSO matrix protected the wood from weathering degradation. Reduced oxidation and less degradation was observed after simulated weathering. High water contact angle values indicated a strong hydrophobic character of the oxygen plasma-treated PDMSO-coated samples. Plasma-enhanced surface modifications and coatings were employed to create water-vapor barrier layers on cellophane substrate surfaces. HMDSO was selected as a plasma gas and oxygen was used to ablate amorphous regions. Oxygen plasma

  5. On the influence of internal interfaces and properties of multiphase hard material coatings

    International Nuclear Information System (INIS)

    Hilz, G.

    1992-04-01

    In the system TiC-TiB 2 -B 4 C-SiC coatings with different amounts of phase boundaries were prepared by magnetron sputtering: multilayer coatings with 10, 100 and 1000 individual layers and a total thickness of 5 μm as well as single layer multiphase coatings deposited from multiphase targets on heated and unheated substrates. To know the influence of internal interfaces in those coatings, structure and properties of the corresponding single phase coatings were studied also. TEM examinations of cross-section samples showed that B 4 C and SiC coatings are amorphous whereas TiC and TiB 2 coatings are crystalline with a texture which depends on deposition parameters and is developed with growing thickness of the coating. Therefore the texture of TiC and TiB 2 layers in multilayer coatings depends on the thickness of the individual layer. While the texture of single layers in multilayer SiC-TiC, SiC-TiB 2 , B 4 C-TiB 2 , and B 4 C-SiC coatings corresponds to the structure of single phase coatings of the same thickness, in TiC-TiB 2 coatings the texture of the individual layers is also influenced by the texture of the previous layer. The occurence of mixing zones between the layers depends on the materials, but also on the crystallinity of the previous layer. (orig.(MM) [de

  6. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  7. Investigating the Use of a Protective Coating Material as an ...

    African Journals Online (AJOL)

    Petroleum wax is known to provide ozone protection to natural rubber under static deformation while a combination of chemical antiozonant and wax is normally used for ozone protection under dynamic conditions. The work described in this paper, aims at investigating the effectiveness of a coating material in protecting a ...

  8. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  9. Bacterial Biofilm Characterization and Microscopic Evaluation of the Antibacterial Properties of a Photocatalytic Coating Protecting Building Material

    Directory of Open Access Journals (Sweden)

    Thomas Verdier

    2018-03-01

    Full Text Available Use of photocatalytic paint-like coatings may be a way to protect building materials from microbial colonization. Numerous studies have shown the antimicrobial efficiency of TiO 2 photocatalysis on various microorganisms. However, few have focused on easy-to-apply solutions and on photocatalysis under low irradiance. This paper focuses on (a the antibacterial properties of a semi-transparent coating formulated using TiO 2 particles and (b the microscopic investigations of bacterial biofilm development on TiO 2 -coated building materials under accelerated growth conditions. Results showed significant antibacterial activity after few hours of testing. The efficiency seemed limited by the confinement of the TiO 2 particles inside the coating binder. However, a pre-irradiation with UV light can improve efficiency. In addition, a significant effect against the formation of a bacterial biofilm was also observed. The epifluorescence approach, in which fluorescence is produced by reflect rather than transmitted light, could be applied in further studies of microbial growth on coatings and building materials.

  10. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  11. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    Science.gov (United States)

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  12. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  13. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  14. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  15. Determination of Interrogating Frequencies to Maximize Electromagnetic Backscatter from Objects with Material Coatings

    National Research Council Canada - National Science Library

    Banks, H. T; Ito, K; Toivanen, J

    2005-01-01

    .... Based on the radar cross section and a reflection coefficient, optimization problems are formulated for evaders and interrogators leading to optimal material parameters for the coating and optimal...

  16. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  17. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  18. Carbon coating of simulated nuclear-waste material

    International Nuclear Information System (INIS)

    Blocher, J.M. Jr.; Browning, M.F.; Kidd, R.W.

    1982-03-01

    The development of low-temperature pyrolytic carbon (LT-PyC) coatings as described in this report was initiated to reduce the release of volatile waste form components and to permit the coating of larger glass marbles that have low temperature softening points (550 to 600 0 C). Fluidized bed coaters for smaller particles ( 2mm) were used. Coating temperatures were reduced from >1000 0 C for conventional CVD high temperature PyC to approx. 500 0 C by using a catalyst. The coating gas combination that produced the highest quality coatings was found to be Ni(CO) 4 as the catalyst, C 2 H 2 as the carbon source gas, and H 2 as a diluent. Carbon deposition was found to be temperature dependent with a maximum rate observed at 530 0 C. Coating rates were typically 6 to 7 μm/hour. The screw-agitated coater approach to coating large-diameter particles was demonstrated to be feasible. Clearances are important between the auger walls and coater to eliminate binding and attrition. Coatings prepared in fluidized bed coaters using similar parameters are better in quality and are deposited at two to three times the rate as in screw-agitated coaters

  19. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  20. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1986-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. (author)

  1. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials

    International Nuclear Information System (INIS)

    Coker, Eric Nicholas

    2010-01-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  2. Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings.

    Science.gov (United States)

    Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing

    2018-01-23

    Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.

  3. Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.

    Science.gov (United States)

    Wang, Haibin; Liu, Shuxin; Huang, Yongmao

    2014-04-01

    The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.

  4. Improvements in or relating to methods of and apparatus for coating wire, rod or strip material by sputtering

    International Nuclear Information System (INIS)

    Wareing, J.B.

    1976-01-01

    A method and apparatus are described for coating wire, rod or strip material comprising first subjecting the material to electron bombardment in a glow discharge to heat and activate the surface and then subjecting it to sputtering by use of a soft cathode discharge. The apparatus comprises a low pressure gas chamber through which the material is passed, and containing a glow discharge electron gun having a tubular cathode shaped so that the material can be passed axially through it, and an anode surrounding the cathode. The cathode is formed in two parts, the first part at one end, being made of material of low sputtering yield, and the second part being formed at least partially of the required coating material. The first part of the cathode may be of stainless steel or Al. The two parts of the cathode are electrically isolated with means provided for applying a lower negative potential, with respect to the anode, to the second part compared with the first part. The voltage applied to the second part may be controlled so as to control the sputtering rate. The gas pressure in the chamber is also controllable. The coating material may be arranged as inserts in the fixed cathode structure or as segments around the surface to be coated, and may be composed of Pb, Zn or Cu. (U.K.)

  5. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Arumugam, D.; Kalaignan, G. Paruthimal

    2010-01-01

    LiMn 2 O 4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO 2 by a polymeric process, followed by calcination at 850 o C for 6 h in air. The surface-coated LiMn 2 O 4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO 2 -coated LiMn 2 O 4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn 2 O 4 . The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO 2 completely coated the surface of the LiMn 2 O 4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO 2 -coated LiMn 2 O 4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 o C and 60 o C. Among them, the 1.0 wt.% of CeO 2 -coated spinel LiMn 2 O 4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.

  6. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    Science.gov (United States)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  7. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  8. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  9. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  10. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  11. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  12. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  13. Development of Coatings for Radar Absorbing Materials at X-band

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  14. Omni-directional selective shielding material based on amorphous glass coated microwires.

    Science.gov (United States)

    Ababei, G; Chiriac, H; David, V; Dafinescu, V; Nica, I

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  15. Defining and comparing vibration attributes of AlSi10 foam and CFRP coated AlSi10 foam materials

    Science.gov (United States)

    Çolak, O.; Yünlü, L.

    2017-06-01

    Now, Aluminum materials have begun being manufactured as porous structures and being used with additive composite materials through emerging manufacturing technologies. These materials those porous structures have also begun being used in many areas such as automotive and aerospace due to light-weighted structures. In addition to examining mechanical behavior of porous metallic structures, examining vibration behavior is important for defining characteristic specifications. In this study, vibration attributes belong to %80 porous AlSi10 foam and CFRP coated %80 porous AlSi10 foam are determined with modal analysis. Modal parameters such as natural frequencies and damping coefficient from frequency response functions at the end of hammer impact tests. It is found that natural frequency of CFRP coated AlSi10 foam’s is 1,14 times bigger than AlSi10 foam and damping coefficient of CFRP coated AlSi10 foam is 5 times bigger than AlSi10 foam’s with tests. Dynamic response of materials in various conditions is simulated by evaluating modal parameters with FEM. According to results of the study, CFRP coating on AlSi10 foam effect vibration damping and resonance avoidance ability positively.

  16. 16 CFR 1145.2 - Paint (and other similar surface-coating materials) containing lead; toys, children's articles...

    Science.gov (United States)

    2010-01-01

    ... materials) containing lead; toys, children's articles, and articles of furniture bearing such paint (or... materials) containing lead; toys, children's articles, and articles of furniture bearing such paint (or...) Paint and other similar surface-coating materials containing lead and toys, children's articles, and...

  17. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  18. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  19. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis.

    Science.gov (United States)

    Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo

    2017-08-08

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.

  20. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  1. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  2. Coatings of titanium substrates with xCaO·(1 − x)SiO{sub 2} sol–gel materials: characterization, bioactivity and biocompatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it; Papale, F.; Bollino, F.

    2016-01-01

    The objective of this study has been to develop low temperature sol–gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO·(1 − x)SiO{sub 2} (0.0 < x < 0.60) have been prepared by means of the sol–gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM–EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3 T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay. - Highlights: • CaO/SiO{sub 2} biomaterials synthesized by sol–gel method at various molar ratio • Coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of materials and coating • Biocompatibility and bioactivity improvement of coated titanium.

  3. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  4. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  5. Effect of Carbon Coating on Li4TiO12 of Anode Material for Hybrid Capacitor.

    Science.gov (United States)

    Lee, Jong-Kyu; Lee, Byung-Gwan; Yoon, Jung-Rag

    2015-11-01

    The carbon-coated Li4Ti5O12 of anode material for hybrid capacitor was prepared by controlling carbonization time at 700 degrees C in nitrogen. With increasing of carbonization time, the discharge capacity and capacitance were decreased, while the equivalent series resistance was not changed remarkably. The rate capability and cycle performance of carbon-coated Li4Ti5O12 were larger than that of Li4Ti5O12. Carbon coating improved conductivity as well as Li-ion diffusion, and thus also resulted in good rate capabilities and cycle stability. The effects of carbon coating on the gas generation of hybrid capacitor were also discussed.

  6. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  7. Study on the first wall TiC coated materials for fusion reactor

    International Nuclear Information System (INIS)

    Li Yungui; Zou Congpei

    1994-08-01

    The chemical vapor deposition (CVD) process of TiC coating, electron beam thermal shock and thermal fatigue testing of TiC coated materials are described. The dense and fine coating is deposited at 1100 degree, CH 4 flux of 0.36 L/min and H 2 flux of 1.16 L/min, and the deposition rate reaches 0.7 μm/min. The correlation between coating thickness and process parameters is given. Pulsed by electron beams with high power density up to 226 MW/m 2 for 0.6 s, the TiC layers of TiC/graphite, TiC/molybdenum and TiC/316L SS spall from substrates, and 316L SS is molten. A lot of TiC layer spall from 316L SS after 2 hear cycles between 900 degree C and -246 degree C, net-cracks are formed on the surface of TiC/graphite during the fatigue testing, but no exfoliation of TiC layer is observed up to the maximum heat cycles 200. Neither cracks nor exfoliation of TiC layer on molybdenum are found after 200 heat cycles

  8. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  9. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  10. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    Science.gov (United States)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  11. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Directory of Open Access Journals (Sweden)

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  12. [Development and evaluation of fertilizers cemented and coated with organic-inorganic materials].

    Science.gov (United States)

    Xiao, Qiang; Wang, Jia-Chen; Zuo, Qiang; Zhang, Lin; Liu, Bao-Cun; Zhao, Tong-Ke; Zou, Guo-Yuan; Xu, Qiu-Ming

    2010-01-01

    Four kinds of organic-inorganic cementing and coating materials were prepared by a coating method using water as the solvent, and the corresponding cemented and coated fertilizers (B2, PS, F2, and F2F) were produced by disc pelletizer. The tests on the properties of these fertilizers showed that the granulation rate, compression strength, and film-forming rate were B2 > PS > F2 > F2F. Soil column leaching experiment showed that the curve of accumulated nitrogen-dissolving rate was the gentlest for B2. In 48 days, the accumulated nitrogen-dissolving rate was in the order of B2, 54.65% fertilizers had better effects on corn yield, among which, B2 was the best, with the corn yield and fertilizer use efficiency increased by 19.72% and 20.30%, respectively. The yield-increasing effect of other test fertilizers was in the order of PS > F2 > F2F.

  13. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  14. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  15. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  16. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  17. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  18. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  19. Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Directory of Open Access Journals (Sweden)

    Ji Xiaoxu

    2010-01-01

    Full Text Available Abstract Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs. The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.

  20. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gadow, R. [Universitaet Stuttgart, Institut fuer Fertigungstechnik keramischer Bauteile, D-70569 Stuttgart, Allmandring 7b (Germany)], E-mail: rainer.gadow@ifkb.uni-stuttgart.de; Kern, F.; Killinger, A. [Universitaet Stuttgart, Institut fuer Fertigungstechnik keramischer Bauteile, D-70569 Stuttgart, Allmandring 7b (Germany)

    2008-02-25

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  1. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property.

    Science.gov (United States)

    Kim, S; Evans, K; Biswas, A

    2013-07-01

    Alkyl cyanoacrylates have long been used for the synthesis of colloidal nanoparticles. In the involved polymerization reaction, hydroxyl ions derived from dissociation of water have been used as an initiator. In the current research, an animal protein, bovine serum albumin (BSA) molecules were utilized as initiator for the polymerization. Following this reaction scheme, hydrophobic poly(ethyl cyanoacrylate)s were covalently bound to BSA, which is hydrophilic. Therefore, the resultant copolymer was amphiphilic in nature, and formed nanoparticles in the reaction medium. The suspension containing these nanoparticles showed an excellent coating capability on the surface of hydrophobic materials. A simple spray coating changed the wetting property of the material instantly and dramatically. Published by Elsevier B.V.

  2. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Babin, S.V.; Khripakov, E.V.

    2007-01-01

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details [ru

  3. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  4. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  6. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  7. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  8. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    Science.gov (United States)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon

  9. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  10. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  11. Laboratory scale development of coating for improving characteristics of candidate materials for fusion reactor

    International Nuclear Information System (INIS)

    Agarwala, R.P.

    1989-01-01

    Application of coatings of refractory low atomic number materials on to different components of Tokamak type controlled thermonuclear reactor are expected to provide a degree of design flexibility. The project envisages to deal with the challenging problem on laboratory scale. Coatings investigated include carbon, beryllium, boron, titanium carbide and alumina and substrates chosen have been 304, 316 stainless steels, monel-400, molybdenum, copper, graphite, etc. For their deposition, different techniques (e.g. evaporation, sputtering and their different variants) have been tried, appropriate ones chosen and their parameters optimized. The coating composition has been analyzed using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering analysis (RBS) and secondary ions mass spectroscopy (SIMS). Surface morphology has been studied using scanning electron microscopy (SEM). Sebastian coating adherence tester has been used for adhesion measurement and Wilson's Tukon microhardness tester for their microhardness measurement. The coatings have been subjected to pulses from YAG laser to evaluate their thermal cycling behaviour. Deuterium ion bombardment (Energy: 20-120 keV; doses: 10 19 -9.3x10 20 ions/cm 2 ) behaviour has also been studied. In general, adherent and hard coatings capable of withstanding thermal cycling could be deposited. Out of the coatings studied, titanium carbide shows best results. The following pages are reprints and not mircrofiched: p. 25-32, 39-41, 57-81. Bibliographic description is on page 13

  12. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  13. Coated armor system and process for making the same

    Science.gov (United States)

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  14. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  15. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    Science.gov (United States)

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Coated foams, preparation, uses and articles

    Science.gov (United States)

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  17. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    Science.gov (United States)

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  18. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  19. Ultra-thin Glass Film Coated with Graphene: A New Material for Spontaneous Emission Enhancement of Quantum Emitter

    Institute of Scientific and Technical Information of China (English)

    Lu Sun; Chun Jiang

    2015-01-01

    We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed parameters,numerical results show that SER-enhanced factors as high as 1.286 9 106 can be achieved. The influences of glass film thickness and chemical potential/doping level of graphene on spontaneous emission enhancement are also studied in this paper. A comparison is made between graphene and other coating materials such as gold and silver to see their performances in SER enhancement.

  20. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  1. Effect of hydrophobic paints coating for tritium reduction in concrete materials

    International Nuclear Information System (INIS)

    Edao, Y.; Fukada, S.; Nishimura, Y.; Katayama, K.; Takeishi, T.; Hatano, Y.; Taguchi, A.

    2012-01-01

    Highlights: ► Effects of hydrophobic paint coating in tritium transport are investigated. ► Two kinds of paints, acrylic-silicon resin and epoxy resin are used. ► The hydrophobic paints are effective to reduce tritium permeation. ► The effect of tritium reduction of epoxy paint is higher than that of silicon. - Abstract: The effects of hydrophobic paint coating on a concrete material of cement paste on the tritium transport are investigated. The cement paste is coated with two kinds of paints, acrylic-silicon resin paint and epoxy resin paint. We investigated the amount of tritium trapped in the samples exposed to tritiated water vapor by means of sorption and release. It was found that both the hydrophobic paints could reduce effectively tritium permeation during 50 days exposure of tritiated water vapor. The effect of tritium reduction of the epoxy paint was higher than that of silicon while the amount of tritium trapped in the epoxy paint was larger than that of silicon due to difference of the structure. Based on an analysis of a diffusion model, the rate-determining step of tritium migration through cement paste coated with the paints is diffusion through the paints respectively. It was found that tritium was easy to penetrate through silicon because there were many pores or voids in the silicon comparatively. In the case of tritium released from the epoxy paint, it is considered that tritium diffusion in epoxy is slow due to retardation by isotope exchange reaction to water included in epoxy paint.

  2. Measuring coating thicknesses on continuously moving material

    International Nuclear Information System (INIS)

    Holler, J.H.; Stanton, W.B.; Spongr, J.J.; Joffe, B.B.; Raffelsberger, P.W.; Tiebor, J.E.

    1982-01-01

    A method and apparatus using radiation techniques for measuring coating thicknesses on continuously moving strip material without altering a predetermined path along which it travels. A shuttle carrying a measuring probe having a radioactive isotope source and a detection device is provided for reciprocation along a preselected segment of the path of the strip. The shuttle and the probe are releasably engaged with the strip and carried thereby for synchronous movement therewith in the forward direction during a measurement cycle, and are disengaged from the strip when no measurement is being made, the movement of the shuttle then being controlled by an independent drive mechanism, shown as a belt drive, which reciprocates the shuttle along the rails. A belt drives it forward more slowly than the strip, which then engages the shuttle to pull it at strip speed, allowed by a pulley clutch. (author)

  3. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  4. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding

    International Nuclear Information System (INIS)

    Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. da

    2009-01-01

    In the present work single and multiple layer NiCrAlY coatings were produced by laser cladding on (100) single-crystalline substrates of SRR99 Ni-based superalloy. Detailed structural characterisation and texture analysis by optical microscopy, scanning electron microscopy, X-ray diffraction and Rutherford backscattering showed that the NiCrAlY coatings consisted essentially of γ phase with yttrium oxide (Y 2 O 3 ) and a small proportion of yttrium-aluminum garnet (Al 5 Y 3 O 12 ) precipitated in the interdendritic regions. The coatings presented a columnar dendritic structure grown by epitaxial solidification on the substrate and inherited the single-crystalline nature and the orientation of the substrate. The coating material also showed a mosaicity and a defect density similar to those of the substrate. It can be expected that the protective effect of these coatings against oxidation is greatly enhanced compared with polycrystalline coatings because high diffusivity paths, such as grain boundaries, are eliminated in single-crystalline coatings, thus reducing mass transport through the coating.

  5. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.

    Science.gov (United States)

    Wu, Qian; Zhang, Qian; Zhao, Li; Li, Shi-Neng; Wu, Lian-Bin; Jiang, Jian-Xiong; Tang, Long-Cheng

    2017-08-15

    In this study, a novel strategy was developed to fabricate highly flame retardant polymer foam composite materials coated by synthesized silicone resin (SiR) polymer via a facile dip-coating processing. Applying the SiR polymer coating, the mechanical property and thermal stability of SiR-coated polymer foam (PSiR) composites are greatly enhanced without significantly altering their structure and morphology. The minimum oxygen concentration to support the combustion of foam materials is greatly increased, i.e. from LOI 14.6% for pure foam to LOI 26-29% for the PSiR composites studied. Especially, adjusting pendant group to SiOSi group ratio (R/Si ratio) of SiRs produces highly flame retardant PSiR composites with low smoke toxicity. Cone calorimetry results demonstrate that 44-68% reduction in the peak heat release rate for the PSiR composites containing different R/Si ratios over pure foam is achieved by the presence of appropriate SiR coating. Digital and SEM images of post-burn chars indicate that the SiR polymer coating can be transformed into silica self-extinguishing porous layer as effective inorganic barrier effect, thus preserving the polymer foam structure from fire. Our results show that the SiR dip-coating technique is a promising strategy for producing flame retardant polymer foam composite materials with improved mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  7. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  8. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    International Nuclear Information System (INIS)

    Song, Jian; Liu, Yuhong; Liao, Zhenhua; Wang, Song; Tyagi, Rajnesh; Liu, Weiqiang

    2016-01-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO 2 composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO 2 composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO 2 coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO 2 nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive wear were the dominant wear

  9. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material

    Directory of Open Access Journals (Sweden)

    H. Fouad

    2018-03-01

    Full Text Available In this study, porous polyethylene scaffolds were examined as bone substitutes in vitro and in vivo in critical-sized calvarial bone defects in transgenic Sprague-Dawley rats. A microscopic examination revealed that the pores appeared to be interconnected across the material, making them suitable for cell growth. The creep recovery behavior of porous polyethylene at different loads indicated that the creep strain had two main portions. In both portions, strain increased with increased applied load and temperature. In terms of the thermographic behavior of the material, remarkable changes in melting temperature and heat fusion were revealed with increased the heating rates. The tensile strength results showed that the material was sensitive to the strain rate and that there was adequate mechanical strength to support cell growth. The in vitro cell culture results showed that human bone marrow mesenchymal stem cells attached to the porous polyethylene scaffold. Calcium sulfate–hydroxyapatite (CS–HA coating of the scaffold not only improved attachment but also increased the proliferation of human bone marrow mesenchymal stem cells. In vivo, histological analysis showed that the study groups had active bone remodeling at the border of the defect. Bone regeneration at the border was also evident, which confirmed that the polyethylene acted as an osteoconductive bone graft. Furthermore, bone formation inside the pores of the coated polyethylene was also noted, which would enhance the process of osteointegration.

  10. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  11. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Characterization and antimicrobial performance of nano silver coatings on leather materials

    Directory of Open Access Journals (Sweden)

    N. Lkhagvajav

    2015-03-01

    Full Text Available In this study, the characterization and the antimicrobial properties of nano silver (nAg coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM. The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli, Staphylococcus aureus, Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method and quantitative (percentage of microbial reduction tests. According to qualitative test results it was found that 20 μg/cm2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating.

  14. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  15. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  16. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    Science.gov (United States)

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD 200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  17. Method of coating the interior surface of hollow objects with a diffusion coating

    Science.gov (United States)

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  18. Magnetite nanoparticles coated with β-cyclodextrin functionalized-ionic liquid: Synthesis and its preliminary investigation as a new sensing material

    International Nuclear Information System (INIS)

    Sinniah, Subathra; Mohamad, Sharifah; Manan, Ninie S.A.

    2015-01-01

    Highlights: • A novel of β-cyclodextrin functionalized-ionic liquid coated with magnetite nanoparticles is prepared via co-precipitation method. • The architecture of the material is successfully characterized and confirmed that β-cyclodextrin-functionalized-ionic liquid, has been effectively coated onto surface of Fe 3 O 4 magnetite nanoparticles. • Vibration Sample Magnetometer analysis confirmed that the Fe 3 O 4 -β-CD-IL able to attain an excellent magnetic properties. • Preliminary electrochemical study shows that Fe 3 O 4 -β-CD-IL able to recognize Biphenol A. - Abstract: In this study, a novel surface of modified magnetite nanoparticles Fe 3 O 4 was coated with β-cyclodextrin-funclionalized ionic liquid (Fe 3 O 4 -β-CD-IL) via the co-precipitation method in alkaline salt medium. β-Cyclodextrin-functionalized-ionic liquid has been effectively coated onto the surface of Fe 3 O 4 magnetite nanoparticles. The instruments used to investigate the architecture are: Fourier Transform Infrared Spectroscopy, X-ray Powder Diffraction, Electron Microscope-Energy Dispersive X-Ray Spectrometry, Transmission Electron Microscope, Field Emission Scanning Electron Microscope, Vibrating Sample Magnetometer and Brunauer–Emmett–Teller isotherm. A Vibration Sample Magnetometer analysis verified that the Fe 3 O 4 -β-CD-IL attained excellent magnetic properties. The analysis of High Resolution Transmission Electron Microscope shows that the Fe 3 O 4 -β-CD-IL produced monodisperse particles with minimal aggregation. Moreover, electrochemical studies have revealed that this new material showed outstanding ability to recognize Bisphenol A with lower electrochemical potential at 0.5 V than other comparative materials, as well as a higher detection current. Thus, this material has promising potential as a new electrode material in sensor applications.

  19. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  20. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Halim, Martin; Kim, Jung Sub; Choi, Jeong-Gil; Lee, Joong Kee

    2015-01-01

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores

  1. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Martin [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of); Kim, Jung Sub [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science & Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Choi, Jeong-Gil [Department of Chemical Engineering, Hannam University, 461-1 Junmin-dong, Yusung-gu, Taejon 305-811 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of)

    2015-04-15

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  2. Simulation of the effects of coated material SEY property on output electron energy distribution and gain of microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xingchao [North Night Vision Technology (NNVT) Co., Ltd., Nanjing 210110 (China); Tian, Jinshou, E-mail: tianjs@opt.ac.cn [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Liu, Chunliang [Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Hulin [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Chen, Ping [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Wei, Yonglin; Sai, Xiaofeng [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Sun, Jianning; Si, Shuguang [North Night Vision Technology (NNVT) Co., Ltd., Nanjing 210110 (China); Wang, Xing; Lu, Yu [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); and others

    2016-12-21

    To obtain a high spatial resolution of a image intensifier based on microchannel plate (MCP), the long tail in the exit energy distribution of the output electrons (EDOE) is undesirable. The existing solution is increasing the penetration depth of the MCP output electrode, which will result in a serious gain reduction. Coating the MCP output electrode with efficient secondary electron yield (SEY) materials is supposed to be an effective approach to suppress the unfavorable tail component in the EDOE without negative effects on the gain. In our work, a three-dimensional MCP single channel model is developed in CST STUDIO SUITE to systematically investigate the dependences of the EDOE and the gain on the SEY property of the coated material, based on the Finite Integral Technique and Monte Carlo method. The results show that besides the high SEY of the coated material, the low incident energy corresponding to the peak SEY is another essential element affecting the electron yield in the final stage of multiplication and suppressing the output energy spread.

  3. The effect of Co-Co3O4 coating on the electrochemical properties of Si as an anode material for Li ion battery

    International Nuclear Information System (INIS)

    Kang, Yong-Mook; Lee, Sang-Min; Sung, Min-Seok; Jeong, Goo-Jin; Kim, Joon-Sup; Kim, Sung-Soo

    2006-01-01

    In order to improve the electrochemical performance of Si as an anode material for Li ion secondary batteries, a biphasic layer composed of Co and Co 3 O 4 was coated on Si particles by sol-gel method. Compared to Si, Co-Co 3 O 4 coated Si showed the drastic improvement in several electrochemical properties, such as initial coulombic efficiency (55% → 88%), cyclic efficiency and cycle life. The comparison between Co-Co 3 O 4 coated Si and heat-treated Si without the coating let us know that the improvement of electrochemical properties only results from Co-Co 3 O 4 coating layer. Little changed cyclic properties (cyclic efficiency and cycle life) of Co-Co 3 O 4 coated Si even at a higher charge-discharge rate insinuated that Co-Co 3 O 4 coating layer plays a crucial role in maintaining the electronic contacts between particles and conducting parts. When trying to measure a thickness variation of the electrodes each containing Si and Co-Co 3 O 4 coated Si as active materials, it was notified that Co-Co 3 O 4 coating layer can accommodate the volume expansion of Si during Li + insertion, which has its original thickness almost recovered after Li + extraction

  4. Wear studies on ZrO{sub 2}-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Yuhong, E-mail: liuyuhong@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua; Wang, Song [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Tyagi, Rajnesh [Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005 (India); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2016-12-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO{sub 2} composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO{sub 2} composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO{sub 2} coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO{sub 2} nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive

  5. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  6. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    International Nuclear Information System (INIS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-01-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  7. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  8. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-01-01

    Graphical abstract: Schematic diagram for Li-rich oxide (Li 1.2 Ni 0.2 Mn 0.60 O 2 ) coated with Li 0.75 La 0.42 TiO 3 (LLTO) solid ionic conductor. - Highlights: • Li 1.2 Ni 0.2 Mn 0.60 O 2 /C composite material was prepared by one-pot solid-state method. • 1D a-MnO 2 nanowires and microsphere hollow b-Ni(OH) 2 were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li 1.2 Ni 0.2 Mn 0.60 O 2 ) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO 2 , β-Ni(OH) 2 raw materials. Two raw materials of α-MnO 2 nanowires and microsphere β-Ni(OH) 2 were synthesized by a hydrothermal process. In addition, Li 0.75 La 0.42 TiO3 (LLTO) fast ionic conductor was coated on SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composite via a sol–gel method. The properties of the LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were 256, 250, 231, 200, 158, and 114 mAh g −1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g −1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g −1 was obtained, which showed the capacity retention of 95.4%.

  9. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  10. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  11. Mechanical loss in tantala/silica dielectric mirror coatings

    International Nuclear Information System (INIS)

    Penn, Steven D; Sneddon, Peter H; Armandula, Helena; Betzwieser, Joseph C; Cagnoli, Gianpietro; Camp, Jordan; Crooks, D R M; Fejer, Martin M; Gretarsson, Andri M; Harry, Gregory M; Hough, Jim; Kittelberger, Scott E; Mortonson, Michael J; Route, Roger; Rowan, Sheila; Vassiliou, Christophoros C

    2003-01-01

    Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO 2 (silica) and Ta 2 O 5 (tantala). However, mechanical loss in the Ta 2 O 5 /SiO 2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta 2 O 5 /SiO 2 coatings, including loss associated with the coating-substrate interface, with the coating-layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta 2 O 5 is substantially larger than that of SiO 2

  12. Polyaniline coated Fe3O4 hollow nanospheres as anode materials for lithium ion batteries

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Polyaniline (PANI) coated Fe3O4 hollow nanospheres (h-Fe3O4@ PANI) have been successfully synthesized and investigated as anode materials for lithium ion batteries (LIBs). The structure and composition analyses have been performed by employing X-ray diffraction (XRD), scanning electron microscopy...

  13. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  14. Magnetite nanoparticles coated with β-cyclodextrin functionalized-ionic liquid: Synthesis and its preliminary investigation as a new sensing material

    Energy Technology Data Exchange (ETDEWEB)

    Sinniah, Subathra; Mohamad, Sharifah; Manan, Ninie S.A., E-mail: niniemanan@um.edu.my

    2015-12-01

    Highlights: • A novel of β-cyclodextrin functionalized-ionic liquid coated with magnetite nanoparticles is prepared via co-precipitation method. • The architecture of the material is successfully characterized and confirmed that β-cyclodextrin-functionalized-ionic liquid, has been effectively coated onto surface of Fe{sub 3}O{sub 4} magnetite nanoparticles. • Vibration Sample Magnetometer analysis confirmed that the Fe{sub 3}O{sub 4}-β-CD-IL able to attain an excellent magnetic properties. • Preliminary electrochemical study shows that Fe{sub 3}O{sub 4}-β-CD-IL able to recognize Biphenol A. - Abstract: In this study, a novel surface of modified magnetite nanoparticles Fe{sub 3}O{sub 4} was coated with β-cyclodextrin-funclionalized ionic liquid (Fe{sub 3}O{sub 4}-β-CD-IL) via the co-precipitation method in alkaline salt medium. β-Cyclodextrin-functionalized-ionic liquid has been effectively coated onto the surface of Fe{sub 3}O{sub 4} magnetite nanoparticles. The instruments used to investigate the architecture are: Fourier Transform Infrared Spectroscopy, X-ray Powder Diffraction, Electron Microscope-Energy Dispersive X-Ray Spectrometry, Transmission Electron Microscope, Field Emission Scanning Electron Microscope, Vibrating Sample Magnetometer and Brunauer–Emmett–Teller isotherm. A Vibration Sample Magnetometer analysis verified that the Fe{sub 3}O{sub 4}-β-CD-IL attained excellent magnetic properties. The analysis of High Resolution Transmission Electron Microscope shows that the Fe{sub 3}O{sub 4}-β-CD-IL produced monodisperse particles with minimal aggregation. Moreover, electrochemical studies have revealed that this new material showed outstanding ability to recognize Bisphenol A with lower electrochemical potential at 0.5 V than other comparative materials, as well as a higher detection current. Thus, this material has promising potential as a new electrode material in sensor applications.

  15. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  16. Experimental patch testing with chromium-coated materials

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten Stendahl

    2017-01-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10...... chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive...

  17. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  18. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  19. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  20. New coating material for producing virgin coconut oil (VCO microcapsules

    Directory of Open Access Journals (Sweden)

    Amin, Z.A.

    2017-01-01

    Full Text Available The aim of this work was to investigate the microencapsulation efficiency (MEE of different grades of broken rice (RB and breadfruit (BB-based maltodextrin as a coating material, using virgin coconut oil (VCO as a model system. The VCO was generally found to be well microencapsulated using BB, RB or commercial (COM maltodextrin at a core/wall material ratio of 1:3. In comparison to a different dextrose equivalent (DE group, both RB and BB maltodextrins with DE values of 10-14 showed higher MEE values (84.81-94.39% than maltodextrins with DE value of 15-19 (78.23-79.65%. Low DE value maltodextrins were shown higher glass transition temperatures than high DE value maltodextrins under the same moisture content. Both RB and BB maltodextrins were found to be compatible with COM maltodextrin as shown in the microstructure appearance when viewed with a scanning electron microscope (SEM.

  1. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings

    National Research Council Canada - National Science Library

    McCarthy, Gregory

    2003-01-01

    ... in combinatorial materials chemistry high-throughput discovery and evaluation methodology. The protective coatings application being addressed is environmentally compliant antifouling and fouling release coating for Navy ships...

  2. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  3. Development of a Repeatable Protocol to Uniformly Coat Internal Complex Geometries of Fine Featured 3D Printed Objects with Ceramic Material, including Determination of Viscosity Limits to Properly Coat Certain Pore Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-18

    HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistant and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.

  4. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  5. Melt Drawing/Coating of Oxide Fibers for Composite Materials Applications

    National Research Council Canada - National Science Library

    Weber, J

    1996-01-01

    .... Fiber coatings were formed by pulsed excimer laser ablation. Push-out tests on coated fibers imbedded in a ceramic matrix gave small values of the debonding shear strength, tau d 25 MPa, for fibers coated with 2 MgO-SiO2 (enstatite...

  6. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  7. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance

    Directory of Open Access Journals (Sweden)

    Enrique Cortés

    2017-09-01

    Full Text Available Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP. The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER. The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC, pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case

  8. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance

    Science.gov (United States)

    Cortés, Enrique; Sánchez, Fernando; Madramany, Borja

    2017-01-01

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares

  9. High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials

    Science.gov (United States)

    Dudziak, T.; Olbrycht, A.; Polkowska, A.; Boron, L.; Skierski, P.; Wypych, A.; Ambroziak, A.; Krezel, A.

    2018-03-01

    Due to shortage of natural resources worldwide, it is a need to develop innovative technologies, to save natural resources and secure Critical Raw Materials (CRM). On the other hand, these new technologies should move forward materials engineering in order to develop better materials for extreme conditions. One way to develop new materials is to use post processing chips of austenitic steels (i.e. 304L stainless steel: 18/10 Cr/Ni) and other materials such as Ni-based alloy with high Cr content. In this work, the results of the preliminary study on the High Velocity Oxy Fuel (HVOF) coatings developed from 304L stainless steel chips and Haynes® 282® Ni- based alloys are shown. The study obeys development of the powder for HVOF technology. The produced coatings were exposed at high temperature at 500 and 700 °C for 100 and 300 hours respectively to assess corrosion behaviour.

  10. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Mozetic, P.; Rainer, A.; Trombetta, M.

    2014-01-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO 2 /PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  11. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  12. Protective coatings for in-vessel fusion devices

    International Nuclear Information System (INIS)

    Brossa, F.

    1984-01-01

    Coatings of Al/Si, SAP (Sintered Aluminium Powder), Al 2 O 3 , TiC (low-Z material) and Ta have been developed for in-vessel component protection. Anodic oxidation, vapor depositions, reactive sputtering, chemical vapor deposition (CVD) and plasma spray have been the coating formation methods studied. AISI 316, 310, 304, Inconel 600 and Mo were adopted as base materials. the coatings were characterized in terms of composition, structure and connection with the supporting material. The behavior of coatings under H + , D + and He + irradiation in the energy range 100 eV-8 keV was tested and compared to the solid massive samples. TiC and Ta coatings were tested with thermal shock under power density pulses of 1 kW/cm 2 generated by an electron beam gun. Temperature-dependence of the erosion of TiC by vacuum arcs in a magnetic field was also studied. TiC coatings have low sputtering values, good resistance to arcing and a high chemical stability. TiC and Ta, CVD and plasma spray coatings are thermal-shock resistant. High thermal loads produce cracks but no spalling. Destruction occurred only after melting of the base material. The plasma spray coating method seems to be most appropriate for developing remote handling applications in fusion devices. (orig.)

  13. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  14. Thin low Z coatings for plasma devices

    International Nuclear Information System (INIS)

    Norem, J.; Bowers, D.A.

    1978-05-01

    Coating the walls of the vacuum chamber with beryllium or some other low Z material has been proposed as a possible means of solving the problems of high Z influx into plasmas. We attempt to demonstrate that very thin, low Z coatings are compatible with the operation of plasma devices and beneficial to plasma performance. We determine that the thickness of coating material required is only about 10 monolayers. In a radiation environment, radiation-induced solute segregation should help to maintain the integrity of such thin coatings against diffusion and other processes. We discuss the properties of these thin coatings and possible means of in situ application and maintenance. Since deposition of plasma impurities on the walls will occur anyway, we discuss injection of solid pellets into the plasma as a direct way of introducing impurities which would ultimately serve as coating material

  15. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  16. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  17. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  18. Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS

    NARCIS (Netherlands)

    Belsey, N.A.; Cant, D.J.H.; Minelli, C.; Araujo, J.R.; Bock, B.; Brüner, P.; Castner, D.G.; Ceccone, C.; Counsell, J.D.P.; Dietrich, P.M.; Engelhard, M.H.; Fearn, S.; Galhardo, C.E.; Kalbe, H.; Kim, J.W.; Lartundo-Rojas, L.; Luftman, H.S.; Nunney, T.S.; Pseiner, J.; Smith, E.F.; Spampinato, V.; Sturm, Jacobus Marinus; Thomas, A.G.; Treacy, J.P.W.; Veith, L.; Wagstaffe, M.; Wang, H.; Wang, M..; Wang, Y.C.; Werner, W.; Yang, L.; Shard, A.G.

    2016-01-01

    We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure

  19. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  20. Tack Coat Performance and Materials Study

    Science.gov (United States)

    2017-06-01

    A good bond provided by a tack coat can improve performance of asphalt overlays. The objectives of this research were: (1) develop a method for testing the bond between pavement layers; (2) evaluate the bond performance and predict long-term performa...

  1. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  2. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  3. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  4. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.

  5. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  6. Paint coating characterization for thermoelastic stress analysis of metallic materials

    International Nuclear Information System (INIS)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S; Burguete, R L

    2010-01-01

    In thermoelastic stress analysis (TSA) it is normal practice to coat metallic specimens with black paint to enhance and standardize the surface emissivity. It is assumed that the paint coating has no effect on the thermal emission from the specimen, but it is well known that the response is sensitive to paint coating thickness, particularly at higher frequencies. In this paper the effects of loading frequency and paint coating thickness on the thermoelastic response are investigated. The thermoelastic response is compared to theory, and optimum test conditions and coating characteristics are suggested. The motivation for the work is to develop a TSA-based means of residual stress assessment, where the measurement of much smaller temperature changes than those that are resolved in standard TSA is required; therefore the analysis is much more sensitive to the effects of the paint coating. However, the work presented in this paper is relevant to a wide range of TSA investigations and presents data that will be of interest to all practitioners of TSA

  7. Tribology and coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  8. The application of epoxy resin coating in grounding grid

    Science.gov (United States)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  9. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  10. REDUCED THROMBOGENICITY OF ARTIFICIAL MATERIALS BY COATING WITH ADPASE

    NARCIS (Netherlands)

    BAKKER, WW; VANDERLEI, B; NIEUWENHUIS, P; ROBINSON, P; Bartels, H.

    A novel coating solution for the improvement of biocompatibility of polyurethane-based vascular prostheses was tested in rabbits and rats in vivo. Segments of coated and uncoated vascular prostheses were implanted into the peritoneal cavity of rats, followed by induction of experimental haemorrhage;

  11. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  12. Ionizing radiation thickness meters for materials in the form of sheets, coatings or laminates

    International Nuclear Information System (INIS)

    1979-04-01

    The draft standard deals with definitions and test methods for all measuring instruments used in connection with ionizing radiation, either for continuous operation or for discontinuous control measurements of plane materials or coating. It applies to systems where the signal relates directly to the measured value as well as to systems where the signal refers to the deviation from a given rated value. (orig./RW) [de

  13. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  14. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  15. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Calculated efficiencies of three-material low stress coatings for diffractive x-ray transmission optics

    International Nuclear Information System (INIS)

    Kubec, Adam; Braun, Stefan; Gawlitza, Peter; Menzel, Maik; Leson, Andreas

    2016-01-01

    Diffractive X-ray optical elements made by thin film coating techniques such as multilayer Laue lenses (MLL) and multilayer zone plates (MZP) are promising approaches to achieve resolutions in hard X-ray microscopy applications of less than 10 nm. The challenge is to make a lens with a large numerical aperture on the one hand and a decent working distance on the other hand. One of the limiting factors with the coated structures is the internal stress in the films, which can lead to significant bending of the substrate and various types of unwanted diffraction effects. Several approaches have been discussed to overcome this challenge. One of these is a three-material combination such as Mo/MoSi_2/Si, where four single layers per period are deposited. Mo and Si represent the absorber and spacer in this case while MoSi_2 forms a diffusion barrier; in addition the thicknesses of absorber and spacer are chosen to minimize residual stress of the overall coating. Here the diffraction efficiency as well as the profile of the beam in the focal plane are discussed in order to find a tradeoff between lowest residual stress and best diffraction properties.

  17. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jingpeng; Du, Chunyu; Yan, Chunqiu; He, Xiaoshu; Song, Bai; Yin, Geping; Zuo, Pengjian; Cheng, Xinqun

    2015-01-01

    Highlights: • Al 2 O 3 -coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al 2 O 3 -coating on concentration-gradient cathode is firstly studied. • Al 2 O 3 -coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al 2 O 3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al 2 O 3 layer onto the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al 2 O 3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material by the freeze drying procedure. The freeze drying Al 2 O 3 -coated (FD-Al 2 O 3 -coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al 2 O 3 -coated (HD-Al 2 O 3 -coated) samples. The capacity decay rate of FD-Al 2 O 3 -coated Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al 2 O 3 -coated samples. The superior electrochemical stability of the FD-Al 2 O 3 -coated sample is attributed to the synergistic protection of CGS and high-quality Al 2 O 3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  18. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    Science.gov (United States)

    2010-08-01

    decrease the effective deposition rate of CeCCs by slowing the nucleation process, improving coating quality and corrosion resistance. Investigations on...Release, October 1, 2004. 3. “ Electrodeposition of Cerium Based Coatings for Corrosion Protection of Aluminum Alloys”, J. O. Stoffer, T.J. O’Keefe, S...Chloride Environments”, Materials Letters, 61 (17), 3378 (2007). B. Technical Reports 1. Philip Jones, May 2007, MS Thesis , Impact of Processing

  19. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications

    Science.gov (United States)

    Coventry, Joe; Burge, Patrick

    2017-06-01

    In this paper we present the results of solar absorptance measurements of four metallic substrate materials, either coated with Pyromark 2500 at various thicknesses, or uncoated and oxidised. Absorptance is measured prior to aging, and during and after aging at three elevated temperatures. In many cases, thin coatings perform as well, or better than thick coatings and do not appear to have a higher rate of failure. However, a thicker coating did show an advantage after aging at the highest temperature tested (850°C), and it is expected that with longer exposure, similar trends may emerge for the 600°C and 750°C aging cases. Another finding is that the two nickel-based alloys tested, Haynes 230 and Inconel 625, both formed an oxide with very good absorptance, although durability requires further testing.

  20. Electrical contact arrangement for a coating process

    Science.gov (United States)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  1. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  2. Charged-particle coating

    International Nuclear Information System (INIS)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  3. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  4. Radiation-induced degradation of polymeric spacecraft materials under protective oxide coatings

    International Nuclear Information System (INIS)

    Lachance, J.; Coiea, C.; Fozza, A.C.; Czeremuszkin, G.; Houdayer, A.; Wertheimer, M.R.

    2001-01-01

    We report the results of experiments, in which two SiO 2 -coated polymers (Kapton(reg] polyimide, and Mylar[reg] polyester), and ITO-coated Kapton[reg] are exposed to high-energy radiation. Possible modification or damage of the coating-polymer interface is assessed by adhesive testing, using a CSEM MicroScratch tester, with which we measure the 'critical load' (L c ) for coating delamination from the polymer surface, and by microscopy, compared with untreated witness samples. We deposit thin (sub-μm) coatings of SiO 2 by plasma-enhanced chemical vapor deposition (PECVD), in order to obtain strong (chemical) bonding at the substrate/coating interface. 100 keV protons and a hydrogen microwave plasma 'lamp' with an MgF 2 window at a power density of 125 μW cm -2 are used to irradiate the sample surfaces

  5. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  6. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources

    International Nuclear Information System (INIS)

    Rui, X.H.; Li, C.; Chen, C.H.

    2009-01-01

    The carbon-coated monoclinic Li 3 V 2 (PO 4 ) 3 (LVP) cathode materials were synthesized by a solid-state reaction process under the same conditions using citric acid, glucose, PVDF and starch, respectively, as both reduction agents and carbon coating sources. The carbon coating can enhance the conductivity of the composite materials and hinder the growth of Li 3 V 2 (PO 4 ) 3 particles. Their structures and physicochemical properties were investigated using X-ray diffraction (XRD), thermogravimetric (TG), scanning electron microscopy (SEM) and electrochemical methods. In the voltage region of 3.0-4.3 V, the electrochemical cycling of these LVP/C electrodes all presents good rate capability and excellent cycle stability. It is found that the citric acid-derived LVP owns the largest reversible capacity of 118 mAh g -1 with no capacity fading during 100 cycles at the rate of 0.2C, and the PVDF-derived LVP possesses a capacity of 95 mAh g -1 even at the rate of 5C. While in the voltage region of 3.0-4.8 V, all samples exhibit a slightly poorer cycle performance with the capacity retention of about 86% after 50 cycles at the rate of 0.2C. The reasons for electrochemical performance of the carbon coated Li 3 V 2 (PO 4 ) 3 composites are also discussed. The solid-state reaction is feasible for the preparation of the carbon coated Li 3 V 2 (PO 4 ) 3 composites which can offer favorable properties for commercial applications

  7. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  8. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  9. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Science.gov (United States)

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  10. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  11. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2015-07-01

    Full Text Available This review presents the latest results of studies directed at photocatalyst coatings of titanium dioxide (TiO2 prepared by mechanical coating technique (MCT and its application. Compared with traditional coating techniques, MCT is a simple, low cost and useful coating formation process, which is proposed and developed based on mechanical frictional wear and impacts between substrate materials and metal powder particles in the bowl of planetary ball mill. The formation process of the metal coatings in MCT includes four stages: The nucleation by adhesion, the formation and coalescence of discrete islands, formation and thickening of continuous coatings, exfoliation of continuous coatings. Further, two-step MCT was developed based on the MCT concept for preparing composite coatings on alumina (Al2O3 balls. This review also discusses the influence on the fabrication of photocatalyst coatings after MCT and improvement of its photocatalytic activity: oxidation conditions, coating materials, melt salt treatment. In this review, the oxidation conditions had been studied on the oxidation temperature of 573 K, 673 K, 773 K, 873 K, 973 K, 1173 K and 1273 K, the oxidation time of 0.5 h, 1 h, 3 h, 10 h, 15 h, 20 h, 30 h, 40 h, and 50 h. The photocatalyst coatings showed the highest photocatalytic activity with the oxidation condition of 1073 K for 15 h. The metal powder of Ti, Ni and Cr had been used as the coating materials. The composite metal powder could affect the surface structure and photocatalytic activity. On the other hand, the melt salt treatment with KNO3 is an effective method to form the nano-size structure and enhance photocatalytic activity, especially under visible light.

  12. Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone)

    Science.gov (United States)

    Lanzón, Marcos; Madrid, Juan Antonio; Martínez-Arredondo, Ana; Mónaco, Soledad

    2017-12-01

    In the conservation of heritage materials, the effectiveness of diluted nanolime suspensions in consolidating surfaces is scarcely explored. This paper aims to examine the surface modification of stucco, adobe and stone by deposition of Ca(OH)2 nanoparticles. The nanoparticles were applied in five consecutive coats and transformed into CaCO3 by atmospheric CO2 creating a compatible coating with the surface. The coatings were studied by erosion tests (pull-off tests) and examined by scanning electron microscopy (SEM) and optical microscopy. The tests confirmed the surface resistance was clearly improved due to formation of nanostructured cementing CaCO3 coatings. In addition, the coatings did not practically alter the surface colour due to the diluted nature of the suspensions. To conclude, Ca(OH)2 nanoparticles-based coatings are appropriate solutions to extend the durability of traditional heritage materials, such as stucco, adobe or stone.

  13. Progress in SP-100 tribological coatings

    International Nuclear Information System (INIS)

    Ring, P.J.; Roy, P.; Schuster, G.B.; Busboom, H.J.

    1992-01-01

    The SP-100 reactor will operate at temperatures up to 1500K in high vacuum. To address the SP-100 needs, a tribology development program has been established at GE to investigate candidate coating materials. Materials were selected based on their high thermodynamic stability, high melting point, compatibility with the substrate, and coefficients of thermal expansion similar to niobium-1% zirconium-the candidate structural material for SP-100. An additional requirement was that the deposition processes should be commercially available to coat large components. This paper presents the details regarding the SP-100 Tribology Development Program including background information, specific bearing requirements, basis for coating material selection, testing methods and the initial results covering the early years of this program

  14. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  17. Synthesis and Application of Jatropha Oil based Polyurethane as Paint Coating Material

    Directory of Open Access Journals (Sweden)

    Zainal Alim Mas’ud

    2012-08-01

    Full Text Available Recently, the use of renewable sources in the preparation of various industrial materials has been revitalized in response to environmental concerns. Natural oils are considered to be the most important genre of renewable sources. Jatropha curcas oil (JPO based polyol is an alternative material that may possibly replace petrochemical-based polyol for polyurethane coating material. Polyurethane was synthesized by reacting JPO-based polyol with isocyanate. To produce JPO-based polyol, JPO was first epoxidized to form epoxidized J. curcas oil (EJP, subsequently it was converted to polyol by the opening ring reaction with acrylic acid (AA using triethylamine (TEA as a catalyst. The JPO-based polyurethane film resulting from this study is compared with polyurethane film from commercial polyol for gloss, hardness, and adhesion quality. The result showed that the source of polyol has an influence on gloss, hardness, and adhesion of polyurethane film, but the differences with using isocyanate has less influence. Using visual observation, polyurethane film produced from L.OHV polyol, H.OHV polyol and commercial polyol have similar quality.

  18. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  19. High-temperature protective coatings for C/SiC composites

    OpenAIRE

    Xiang Yang; Chen Zhao-hui; Cao Feng

    2014-01-01

    Carbon fiber-reinforced silicon carbide (C/SiC) composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C...

  20. Edge coating apparatus with movable roller applicator for solar cell substrates

    Science.gov (United States)

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  1. Stresses and Cracks in Surface Coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    2000-01-01

    This extended abstract of the talk to be given at the Danish Metallurgical Society, Winter Meeting 1999, gives an outline of the areas of interest in current projects in wear and corrosion resistant coatings at Materials Technology, Technical University of Denmark (IPT, Materialeteknologi, DTU......). It also briefly describes our method of approach in analysing new coating / substrate combinations or new materials processing techniques for producing a given coating. We strive to combine, often in collaboration with others, a fundamental understanding of microstructure, mechanical properties...

  2. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2012-01-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 μg/cm 2 SWCNTs exhibited the least sheet resistance (0.8 kΩ/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: ► We fabricated a CNT-coated silicone which has conductivity and biocompatibility. ► The conductivity was maintained after 100 cycles of stretching. ► CNT coatings enabled C2C12 cells adhere to the silicone surface. ► Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  3. Corrosion behaviour of Arc-PVD coatings and hybrid systems

    International Nuclear Information System (INIS)

    Reichel, K.

    1992-01-01

    To achieve a comprehensive protective effect against corrosion and wear stresses, coating systems are increasingly being developed, in which there is a separation of the tasks of the coating materials regarding the protective effect. On the one hand, pure PVD coating systems are used, on the other hand hybrid coatings are examined, where galvanic processes are combined with PVD technique. The results of experiments introduced in this article were determined on Arc-PVD coatings. By this process, titanium nitride and chromium nitride coatings are both deposited directly on the basic material and are also deposited as combination coatings of Ti/TiN and chemical nickel/TiN. (orig.) [de

  4. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  5. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  6. Coating requirements for an ICF dry-wall design

    International Nuclear Information System (INIS)

    Taylor, L.H.; Sucov, E.W.

    1981-01-01

    A new concept for protecting the first wall of an ICF reactor has been developed which relies heavily on a coating to protect the steel tubes which comprise the first wall. This coating must survive the pellet explosion, be ductile, and be compatible with the materials in the ICF pellet. Calculations indicate that tantalum is the best choice for the coating material and that tantalum coated steel tubes can handle fusion thermal powers of 3500 MW in a 10 m radius spherical chamber

  7. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  8. Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method

    International Nuclear Information System (INIS)

    Xu, Guofeng; Li, Jianling; Xue, Qingrui; Dai, Yu; Zhou, Hongwei; Wang, Xindong; Kang, Feiyu

    2014-01-01

    A novel wet method of (NH 4 ) 3 AlF 6 coating was explored to enhance the electrochemical performance of Mn-based solid-solution cathode material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 . The X-ray powder diffraction patterns show that the coating material is pure-phase (NH 4 ) 3 AlF 6 and both pristine and coated samples can be indexed to hexagonal α-NaFeO 2 layered structure with space group of R-3 m. The field-emission scanning electron microscope images and the energy dispersive X-ray spectroscopy show that (NH 4 ) 3 AlF 6 is successfully coated on the surface of active particle. The (NH 4 ) 3 AlF 6 coated electrodes exhibit improved electrochemical performance, for instance, the initial charge-discharge efficiency was promoted by 5% (NH 4 ) 3 AlF 6 coating, the 1 wt.% and 3 wt.% coated electrodes deliver elevated cycling ability which is ascribed to the lower resistance between electrode and electrolyte as indicated by AC impedance measurement at different cycles. In addition, the coated-electrodes also give enhanced rate capability particularly for 1 wt.% NAF-coated electrode performing surprising capacity of 143.4 mAh g −1 at 5 C higher than that of 109.4 mAh g −1 for pristine electrode. Furthermore, the 1 wt.% NAF-coated electrode also shows improved cycle and rate performance at 55°C

  9. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  10. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  11. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    Science.gov (United States)

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  12. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan; Ulsh, Michael; More, Karren; Wood, David

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  13. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  14. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  15. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  16. Electronically Conductive Sb-doped SnO_2 Nanoparticles Coated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries

    International Nuclear Information System (INIS)

    He, Xiaoshu; Du, Chunyu; Shen, Bin; Chen, Cheng; Xu, Xing; Wang, Yajing; Zuo, Pengjian; Ma, Yulin; Cheng, Xinqun; Yin, Geping

    2017-01-01

    Highlights: • Conductive Sb-doped SnO_2 (ATO) is coated on LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 material. • The wet chemical process leads to homogeneous ATO coating layer. • The coated sample exhibits excellent rate capability and cyclic stability. • The capacity retention after 200 cycles at 60 °C increases by 20.81%. • The ATO coating restrains the cation disordering and SEI growth during cycling. - Abstract: The LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) cathode material is modified by electronically conductive antimony-doped tin oxide (ATO) nanoparticles via a facile wet chemical process. As observed by scanning and transmission electron microscopy, the ATO nanoparticles are homogeneously coated on the surface of NCA material. Thus-obtained ATO-coated NCA (ATO-NCA) material delivers a high discharge capacity of 145 mAh g"−"1 at the current rate of 5C, which is significantly higher than that of pristine NCA material (135 mAh g"−"1). Moreover, the capacity retention of ATO-NCA material is 91.70% after 200 cycles at the current rate of 1C and 60 °C. In contrast, the pristine NCA only maintains 70.89% of its initial capacity after the same cycles. The substantially improved cyclability and rate capability are mainly attributed to the ATO coating layer, which can not only enhance the electron transport but also effectively restrain the side reactions between the NCA material and the electrolyte. More specifically, X-ray diffraction and photoelectron spectroscopy reveal that the ATO coating layer can restrain the Li"+/Ni"2"+ disordering and the growth of SEI layer of NCA material, which are responsible for the improved cycling stability, especially at elevated temperatures.

  17. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  18. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    Science.gov (United States)

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  19. Shielding effects of concrete and foam external pipeline coatings

    International Nuclear Information System (INIS)

    Barlo, T.J.; Werner, D.P.

    1992-01-01

    The research project began in July, 1986 and was completed in December, 1990. The objectives of the research were: To determine whether concrete and urethane foam-barrier coatings shield the pipe from cathodic-protection current, To determine whether the barrier coatings also effectively shield the pipe from the environment, thus reducing the need for cathodic protection, To determine what levels of cathodic protection will be required to overcome shielding, and To establish what types of barrier coatings are most compatible with obtaining adequate levels of cathodic protection. To achieve these objectives, laboratory experiments were conducted with five barrier coating materials. These materials were (1) 2-lb/ft 3 , closed-cell urethane foam, (2) 3-lb/ft 3 , closed-cell urethane foam, (3) concrete barrier material, (4) glass fiber-reinforced concrete barrier material, and (5) sand. The barrier materials, whole and intentionally cracked, were applied to the bare, FBE-coated, and tape-coated steel specimens. The specimens were tested in aqueous electrolytes at room temperature and 140 degree F with no protection, protection to -0.95 V, and overprotection to -1.2 V (Cu/CuSO 4 )

  20. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds

    Directory of Open Access Journals (Sweden)

    Nurizzati Mohd Daud

    2014-10-01

    Full Text Available This paper describes degradation and cell–material interaction studies on hydroxyapatite (HA-coated biodegradable porous iron proposed for hard tissue scaffolds. Porous iron scaffolds are expected to serve as an ideal platform for bone regeneration. To couple their inherent mechanical strength, pure HA and HA/poly(ε-caprolactone (HA/PCL were coated onto porous iron using dip coating technique. The HA/PCL mixture was prepared to provide a more stable and flexible coating than HA alone. Degradation of the samples was evaluated by weight loss and potentiodynamic polarisation. Human skin fibroblast (HSF and human mesenchymal stem cells (hMSC were put in contact with the samples and their interaction was observed. Results showed that coated samples degraded ∼10 times slower (0.002 mm/year for HA/PCL-Fe, 0.003 mm/year for HA-Fe than the uncoated ones (0.031 mm/year, indicating an inhibition effect of the coating on degradation. Both HSF and hMSC maintained high viability when in contact with the coated samples (100–110% control for hMSC during 2–5 days of incubation, indicating the effect of HA in enhancing cytocompatibility of the surface. This study provided early evidence of the potential translation of biodegradable porous iron scaffolds for clinical use in orthopedic surgery. However, further studies including in vitro and in vivo tests are necessary.

  1. Federal Highway Administration 100-year coating study.

    Science.gov (United States)

    2012-11-01

    The Federal Highway Administration 100-Year Coating Study was initiated in August 2009 to search for durable : coating systems at a reasonable cost. The objective of the study was to identify and evaluate coating materials that can : provide 100 year...

  2. Application of mechano-chemical synthesis for protective coating

    Indian Academy of Sciences (India)

    This can either be prevented by using grinding medium and container of same material of the milled material or by adding a coating of the milled material on them. The paper describes the observations made during a mechano-chemical reaction, being used for coating the balls and vials in a planetary ball mill.

  3. Improvements in and relating to radiation curable coatings

    International Nuclear Information System (INIS)

    1980-01-01

    A radiation curable coating composition is described comprising a radiation curable liquid prepolymer which includes a waxy or oil material therein, the waxy or oily material being of limited compatibility with the liquid prepolymer so that a thin layer of the waxy or oily material migrates to the surface of the coating. (author)

  4. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  5. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  6. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  7. ETV Program Report: Coatings for Wastewater Collection ...

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  8. Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

    International Nuclear Information System (INIS)

    M. Frederick

    2005-01-01

    Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods for environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments

  9. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  10. Formation, adhesion and mechanical/chemical properties of protective coatings

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    Some general considerations for protective coatings are discussed. It is suggested that ceramic coatings may provide a class of coatings applicable to high temperature turbine blades for use in a corrosive/erosive environment. In particular, the ceraming glass materials would seem to hold promise, but little or nothing has been done on depositing these materials by vacuum processes

  11. Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings

    Science.gov (United States)

    Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas

    2017-11-01

    Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.

  12. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries.

    Science.gov (United States)

    Zhou, Pengfei; Zhang, Zhen; Meng, Huanju; Lu, Yanying; Cao, Jun; Cheng, Fangyi; Tao, Zhanliang; Chen, Jun

    2016-11-24

    We reported a one-step dry coating of amorphous SiO 2 on spherical Ni-rich layered LiNi 0.915 Co 0.075 Al 0.01 O 2 (NCA) cathode materials. Combined characterization of XRD, EDS mapping, and TEM indicates that a SiO 2 layer with an average thickness of ∼50 nm was uniformly coated on the surface of NCA microspheres, without inducing any change of the phase structure and morphology. Electrochemical tests show that the 0.2 wt% SiO 2 -coated NCA material exhibits enhanced cyclability and rate properties, combining with better thermal stability compared with those of pristine NCA. For example, 0.2 wt% SiO 2 -coated NCA delivers a high specific capacity of 181.3 mA h g -1 with a capacity retention of 90.7% after 50 cycles at 1 C rate and 25 °C. Moreover, the capacity retention of this composite at 60 °C is 12.5% higher than that of pristine NCA at 1 C rate after 50 cycles. The effects of SiO 2 coating on the electrochemical performance of NCA are investigated by EIS, CV, and DSC tests, the improved performance is attributed to the surface coating layer of amorphous SiO 2 , which effectively suppresses side reactions between NCA and electrolytes, decreases the SEI layer resistance, and retards the growth of charge-transfer resistance, thus enhancing structural and cycling stability of NCA.

  13. Electrochemical performance of Li-rich oxide composite material coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} ionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen, E-mail: ccyang@mail.mcut.edu.tw [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Liao, Pin-Ci [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Wu, Yi-Shiuan [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Lue, Shingjiang Jessie [Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Kwei-shan, Tao-yuan 333, Taiwan , ROC (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Tao-yuan 333, Taiwan, ROC (China); Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, NewTaipei City 243, Taiwan, ROC (China)

    2017-03-31

    Graphical abstract: Schematic diagram for Li-rich oxide (Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} (LLTO) solid ionic conductor. - Highlights: • Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}/C composite material was prepared by one-pot solid-state method. • 1D a-MnO{sub 2} nanowires and microsphere hollow b-Ni(OH){sub 2} were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO{sub 2}, β-Ni(OH){sub 2} raw materials. Two raw materials of α-MnO{sub 2} nanowires and microsphere β-Ni(OH){sub 2} were synthesized by a hydrothermal process. In addition, Li{sub 0.75}La{sub 0.42}TiO3 (LLTO) fast ionic conductor was coated on SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composite via a sol–gel method. The properties of the LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were 256, 250, 231, 200, 158, and 114 mAh g{sup {sub −}{sub 1}} at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g{sup −1} in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g{sup −1} was obtained, which showed the capacity retention of 95.4%.

  14. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  15. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  16. Residual stress in the first wall coating materials of TiC and TiN for fusion reactor

    International Nuclear Information System (INIS)

    Qiu Shaoyu

    1997-01-01

    Residual stresses measurement in the first wall coating of a fusion reactor of TiC and TiN films by X-ray diffraction 'sin 2 ψ methods' were described. The authors have studied on the effect of conditions of specimen preparation (such as coating method, substrate materials, film thickness and deposition temperature) on the residual stress of TiC and TiN films coated onto Mo, 316LSS and Pocographite by chemical vapor deposition (CVD) and physical vapor deposition (PVD) method. All films prepared in this study were found to have a compressive stresses and the CVD method gave lower residual stress than PVD method. TiC film coated on Mo substrate at 1100 degree C by CVD method showed that residual stress as the film thickness was raised from 14 μm to 60 μm, on the other hand, residual stress by PVD method exhibited a high compressive stresses, this kind of stress was principally the intrinsic stress, and a marked decrease in the residual with raising the deposition temperature (200 degree C∼650 degree C) was demonstrated. Origins of the residual stress were discussed by correlation with differences between thermal expansion coefficients, and also with fabrication methods

  17. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials.

    Science.gov (United States)

    Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R

    2015-07-10

    High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.

  18. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-12-01

    Highlights: • Ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO{sub 2}/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl{sub 3} solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO{sub 2}/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO{sub 2}/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO{sub 2}/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO{sub 4} (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO{sub 2}/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  19. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    International Nuclear Information System (INIS)

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku; Lee, Chang-Seop

    2016-01-01

    Highlights: • Ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO_2/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl_3 solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO_2/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO_2/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO_2/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO_4 (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO_2/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  20. A field evaluation of coated urea with biodegradable materials and ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... Urease inhibitor and biodegradable polymer coatings are two most suitable startegies to increase urea fertilizer efficiency. Coating of urea with selected inhibitors can increase the crop production by slowing down the hydrolysis process of urea in the soil. For this purpose, a field experiment was conducted ...

  1. A field evaluation of coated urea with biodegradable materials and ...

    African Journals Online (AJOL)

    Urease inhibitor and biodegradable polymer coatings are two most suitable startegies to increase urea fertilizer efficiency. Coating of urea with selected inhibitors can increase the crop production by slowing down the hydrolysis process of urea in the soil. For this purpose, a field experiment was conducted to evaluate the ...

  2. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  3. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  4. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  5. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Polyglycerol coatings of glass vials for protein resistance.

    Science.gov (United States)

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.

    Science.gov (United States)

    Ravi, Seenu; Gopi, Chandu V V M; Kim, Hee Je

    2016-08-02

    Great attention has been paid to the design and synthesis of distinct core/shell heterostructures for high-performance supercapacitors. We have prepared unique heterostructures consisting of polyimidazole-coated copper sulphide over a carbon nanotube network (CuS@CNT) on nickel foam, which was accomplished through a facile and cost-effective solvothermal method combined with a dip coating process. Hexagonal covellite CuS nanoparticles were dispersed on CNTs using a solvothermal method where dimethylformamide and distilled water were used as solvents. The synthesized CuS and CuS@CNT supercapacitor electrode materials were thoroughly characterized. The polymer supported electrode (PIM/CuS@CNT) shows a high areal capacitance of 1.51 F cm(-2) at a current density of 1.2 A g(-1), which is higher than the CuS@CNT electrode and many other previously reported CuS electrode materials. After 1000 cycles at a high current density of 1.2 A g(-1), the retention rate is 92%, indicating good long-term cycling stability. These results indicate that the PIM/CuS@CNT electrode is promising for high-performance supercapacitor applications.

  8. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  9. Method and compositions for producting optically clear photocatalytic coatings

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method and compositions for producing a hydrophilic coating on a surface of a solid material. The method comprises a cleaning step and a coating step. The cleaning step may be preceded by an initial cleaning step and it may optionally be succeeded by a preconditioning...... step prior to the coating step. The cleaning step comprises cleaning and preconditioning a surface of a material by use of a first cleaning fluid composition comprising ceria (CeO2) particles. The coating step comprises treatment by use of a coating fluid composition comprising photocatalytically...

  10. Developing High-Temperature Water-Soluble Coatings for Reconfigurable Tooling Materials-PREPRINT

    National Research Council Canada - National Science Library

    Calvert, George; Cao, Kevin J; Jacobson, Ted; Clements, Linda; Luo, Shen-Yi; Kim, Kwang J; O'Toole, Brendan

    2007-01-01

    .... This paper describes the development of such coatings, including the investigation of chemical modification and mechanical reinforcement as well as the suitability of the coatings in elevated-temperature use...

  11. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  12. Newly Developed Biocompatible Material: Dispersible Titanium-Doped Hydroxyapatite Nanoparticles Suitable for Antibacterial Coating on Intravascular Catheters.

    Science.gov (United States)

    Furuzono, Tsutomu; Okazaki, Masatoshi; Azuma, Yoshinao; Iwasaki, Mitsunobu; Kogai, Yasumichi; Sawa, Yoshiki

    2017-01-01

    Thirteen patients with chlorhexidine-silver sulfadiazine-impregnated catheters have experienced serious anaphylactic shock in Japan. These adverse reactions highlight the lack of commercially available catheters impregnated with strong antibacterial chemical agents. A system should be developed that can control both biocompatibility and antibacterial activity. Hydroxyapatite (HAp) is biocompatible with bone and skin tissues. To provide antibacterial activity by using an external physical stimulus, titanium (Ti) ions were doped into the HAp structure. Highly dispersible, Ti-doped HAp (Ti-HAp) nanoparticles suitable as a coating material were developed. In 3 kinds of Ti-HAp [Ti/(Ca + Ti) = 0.05, 0.1, 0.2], the Ti content in the HAp was approximately 70% of that used in the Ti-HAp preparation, as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES and X-ray diffraction showed Ti ions were well substituted into the HAp lattice. The nanoparticles were almost uniformly coated on a polyethylene (PE) sheet in a near-monolayer with a surface coverage ratio >95%. The antibacterial activity of the Ti-HAp nanoparticles containing 7.3% Ti ions and coating the sheet was evaluated by calculating the survival ratio of Pseudomonas aeruginosa on the coated sheet after ultraviolet (UV) irradiation. The Ti-HAp-coated sheet showed a 50% decrease in the number of P. aeruginosa compared with that on an uncoated control PE sheet after UV irradiation for 30 s. Key Messages: A system of biocompatibility and antibacterial activity with an on/off switch controlled by external UV stimulation was developed. The system is expected to be applicable in long-term implanted intravascular catheters. © 2017 S. Karger AG, Basel.

  13. Present status of low-Z coating development in JAERI

    International Nuclear Information System (INIS)

    Nakamura, K.; Abe, T.; Obara, K.; Murakami, Y.

    1986-01-01

    In the JT-60 at JAERI, TiC-coated molybdenum and TiC-coated Inconel tiles are currently used as plasma interactive components. They have already been subjected to initial ohmic heating experiments and exhibited good adhesion characteristics under high heat flux conditions. The present article reviews a JAERI's coating development program for JT-60 experiments currently under way and for the next-step experiments. The program includes development and performance tests of the TiC-coated tiles, development of an in-situ coating technique for the repair of damaged surface of the tiles, and research on carbonization. Stress is laid on thermal shock and thermal fatigue tests of these coatings. In the thermal tests, adhesion between low-Z coatings and bulk materials have been investigated under high heat irradiation. TiC and TiN are used as coating material while Mo and Inconel 625 are employed as bulk material. Results are shown in this report concerning calculated temperature elavation of TiC/TiN/Mo due to hydrogen beam irradiation. As regards the irradiation time required for the melting of the substrate, experimental results mostly agree with calculations. Almost all coatings investigated are not exfoliated from the substrate until the melting of the substrate. (Nogami, K.)

  14. Calculating the strength of a gas pipeline with a reinforced coating

    Energy Technology Data Exchange (ETDEWEB)

    Al' shanov, A P; Abdullaev, G T; Ali-Zade, A N

    1981-10-01

    Reinforcing the coatings of gas pipelines allows an increase in their operating pressure and thus their throughput; combined with strong insulation, such reinforcing materials as metal screens and fiberglass also protect the pipeline. Soviet analysts have mathematically derived the limiting internal pressure in a line with a reinforced coating as a function of the coating's thickness and mechanical properties. The method assumes that the pipe material is isotropic and elastic. The calculations help in determining (1) the dependence of the relative limiting pressure on the relative coating thickness and (2) the effect of the ratio of the Young's modulus of the reinforcing material to that of the pipe material upon the dependence of the relative limiting pressure on coating thickness. The analysis awaits experimental confirmation.

  15. Self-Healing anticorrosive coatings

    DEFF Research Database (Denmark)

    Nesterova, Tatyana

    %. The number is lower than anticipated and needs to be confirmed. Finally, a 3-D model, based on Monte-Carlo simulations, has been developed for prediction of healing efficiency of a microcapsule-based anticorrosive coating. Two kinds of cracks were considered: cracks accommodated within the bulk coating...... associated with development and testing of this type of coating. A laboratory investigation, to identify the most suitable method for production of mechanically stable (filled with industrially relevant core materials) and forming a free-flowing powder upon drying microcapsules, has been performed. Four...... reduces the intensity of crack formation (both in number and length) compared to filler-containing coatings and prevents the coating from flaking upon damage. Based on specular gloss measurements, a preliminary critical pigment (microcapsule) concentration (CPVC) value was estimated to about 30 vol...

  16. Characterization and transformation of an industrial by-product (coated paper sludge into a pozzolanic material

    Directory of Open Access Journals (Sweden)

    San José, J. T.

    2007-03-01

    Full Text Available The effective re-use of industrial by-products calls for an understanding of their chemical, mineralogical and physical characteristics. The by-product used in this study was coated paper industry sludge from a plant whose sole prime material is recycled paper. Due to its high organic and calcium carbonate content and the presence of several clayey materials such as talc and kaolinite, incineration conditions had a significant effect on the mineralogy of such sludge. The present study examined the impact of such conditions on the pozzolanic properties of coated paper sludge. Several temperature intervals ranging from 600 to 750 ºC were studied to determine the conditions yielding the most promising pozzolanic properties.La necesidad de dar un correcto uso a los subproductos industriales requiere del conocimiento de sus características, tanto desde un punto de vista químico como mineralógico y físico. El subproducto utilizado para esta investigación es un lodo de papel estucado procedente de la industria papelera, la cual usa como materias primas un 100% de material reciclado. Debido al alto contenido de materia orgánica y carbonato cálcico y a la presencia de diferentes materiales arcillosos, como el talco y la caolinita, las condiciones de calcinación presentan un papel principal en la mineralogía de este lodo. En el actual trabajo se considera el papel que juegan estas condiciones, tiempo y permanencia en horno, en las propiedades puzolánicas del lodo de papel estucado como material cementante. Por esta razón, se estudiaron diferentes intervalos de temperatura, entre 600 y 750 ºC y 2 horas de permanencia en horno con el objetivo de obtener las mejores propiedades puzolánicas.

  17. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  18. Determination of the impurities in some pure metals, alloys, ores, plants, and coating materials with emission spectrography

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T

    1976-07-01

    There are many methods in the instrumental analysis. Among them, the emission spectrographic methods are developed and compiled in analyzing diverse samples. Semi-quantitative method is used widely in general samples, such as alloys, ores, sands, plants, coating materials--etc. However, in quantitative analysis, determination of the metallic impurities contents in the pure metals depends upon the matrix effect. It is necessary to convert to the form identically for unknown and standard alike. Though the technique may be different, all of these methods are easily prepared and applied on new materials.

  19. Toluene concentrations reduction by using photocatalytic coating methods for cementitious materials

    Directory of Open Access Journals (Sweden)

    Hussein Ayat

    2018-01-01

    Full Text Available Volatile organic compounds (VOC generated from various sources like car combustion is one of the most surrounding pollutants, which can be transferred from one form to another in the presence of sunlight. In the present work the ability of the reduction of VOC have been conducted on cementitious samples surfaces by using toluene as a pollutant gas and TiO2 as an environmentally friendly photocatalyst . Two coating methods have been used (dip and spray with two types of aqueous solution, prepared by spreading 3g/L micro and nano TiO2 powder with deionized water. A laboratory test procedure was adopted to assess the performance of the coated specimens. The specimens were subjected to toluene gas and there efficiency in gas removal was monitored with time. Furthermore, contact angle for the coated samples was also examined to investigate the hydrophilicity of the coated substrate. The results showed that TiO2 give high activity and work as a good photocatalyst for mitigation of air pollutants, and that it could be used in different ways and concentrations to obtain better air quality and aesthetic building appearance. The observed coating efficiency in reducing the toluene was more pronounced in higher than lower gas concentrations for the micro coated samples with removal efficiency equals to 13% and 10% for dipping and spraying method, respectively. While the higher removal was about 20% for both nano dipping and nanospray methods for the inlet gas concentration 3ppm. This behavior reflects the beneficial effects of TiO2 coating procedure in highly pollutant environments, like Iraq.

  20. Tough-coated hard powders for hardmetals of novel properties

    International Nuclear Information System (INIS)

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  1. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  2. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  3. Composition superconductive plumbous coatings

    International Nuclear Information System (INIS)

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  4. Correcting and coating thin walled X-ray Optics via a combination of controlled film deposition and magnetic smart materials

    Science.gov (United States)

    Ulmer, Melville

    The project goal is to demonstrate that thin walled (price. Since the desired surface area for the next generation X-ray telescope is >10x that of Chandra, the >10x requirement is then for >200 m^2 of surface area with a surface finish of better than 0.5 nm. Therefore, replication of some sort is called for. Because no replication technology has been shown to achieve ≤1" angular resolution, post fabrication figure corrections are likely going to be necessary. Some have proposed to do this in orbit and others prelaunch including us. Our prelaunch approach is to apply in-plane stresses to the thin walled mirror shells via a magnetic field. The field will be held in by some magnetically hard material such as NiCo. By use of a so called magnetic smart material (MSM) such as Terfenol-D, we already shown that strong enough stresses can be generated. Preliminary work has also shown that the magnetic field can be held in well enough to apply the figure correcting stresses pre-launch. What we call "set-it and forget-it." However, what is unique about our approach is that at the cost of complexity and some areal coverage, our concept will also accommodate in-orbit adjustments. Furthermore, to the best of our knowledge ours is one of two known stress modification processes that are bi-axial. Our plan is first to validate set-it and forget-it first on cantilevers and then to expand this to working on 5 cm x 5 cm pieces. We will work both with NiCo and glass or Si coated with Terfenol-D. Except for the NiCo, substrates we will also coat the samples with NiCo in order to have a film that will hold in the magnetic field. As part of the coating process, we will control the stress of the film by varying the voltage bias while coating. The bias stress control can be used to apply films with minimal stress such as Terfenol-D and X-ray reflecting coatings such as Ir. Ir is a highly desirable coating for soft X-ray astronomy mirrors that can have significant built in stress unless

  5. Development of coating materials and feeding processes for energy-optimized baking of carbon products. Final report. Entwicklung von Coating-Materialien und Zustellverfahren fuer den energie-optimalen Brennprozess von Kohlestoffprodukten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.J.; Schroeder, P.; Grimm, B.

    1986-01-01

    Carbon products, as for instance anodes for the aluminium industry, are worldwide baked in annular chamber furnaces with a lump fill of granular coke. The large thermal mass of this coke fill requires a high energy consumption and long baking times. This fill shall be replaced by a ceramic coating material in order to obtain shorter baking times and lower energy consumption. Within this development project, various coating materials, application techniques and baking processes were tested. The results show that carbon products of perfect quality can be obtained within much shorter baking times. In practice-like tests at a German factory producing refractory products it was found during a test period of one year, that the energy savings amount to 70%. For the production of carbon anodes in the aluminium industry energy savings up to 50% are possible, according to our test results. The corresponding plant designs have been developed within the framework of the R and D project. With 5 refs., 3 tabs., 10 figs.

  6. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  7. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  8. Fabrication and Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Coated with Nano FePO4 as Cathode Material for Lithium-ion Batteries

    Directory of Open Access Journals (Sweden)

    DONG Peng

    2017-11-01

    Full Text Available Layered LiNi0.5Co0.2Mn0.3O2 coated with homogeneous nano FePO4 suspension was prepared by using co-precipitation method. XRD, TG-DTA and TEM were adopted to characterize the structure, morphology and liquid state of FePO4 prepared. The structure, morphology and electrochemical performance of the coated materials prepared were characterized by the means such as XRD, SEM, EDS, TEM, ICP, galvanostatic charge-discharge cycling, cyclic voltammetry (CV and electrochemical impedance spectroscopy(EIS tests. The effect of heat treatment temperature and coating quantity on the structure and electrochemical performance of coated LiNi0.5Co0.2Mn0.3O2 by co-precipitation method was explored. The results show that 400℃ and 2%(mass fraction,the same below FePO4 coating can significantly improve cycle performance and rate capability of LiNi0.5Co0.2Mn0.3O2, CV and EIS testing results reveal that FePO4 coating can improve the reversibility and dynamic performance for LiNi0.5Co0.2Mn0.3O2. ICP results show that FePO4 coating layer can effectively reduce the electrolyte to dissolute and erode cathode materials, stabilize its layered structure, then improve the electrochemical performance of cathode materials.

  9. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    International Nuclear Information System (INIS)

    Anil V. Virkar

    2006-01-01

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about ∼0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum ∼0.025 (Omega)cm 2 area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO 3 with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating ∼1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life

  10. Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin

    OpenAIRE

    Faraji, Foad; Heshmat, Haleh; Banava, Sepideh

    2017-01-01

    Background and Objectives: EQUIATM is a new gastrointestinal (GI) system with high compressive strength, surface microhardness (MH), and fluoride release potential. This in vitro study aimed to assess the effect of aging and type of protective coating on the MH of EQUIATM GI cement. Materials and Methods: A total of 30 disc-shaped specimens measuring 9 mm in diameter and 2 mm in thickness were fabricated of EQUIATM GI and divided into three groups of G-Coat nanofilled coating (a), no coating ...

  11. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  12. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  13. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  14. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    International Nuclear Information System (INIS)

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Destri, Giovanni Li; Marletta, Giovanni; Rezwan, Kurosch

    2015-01-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  15. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  16. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  17. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  18. Design colloidal particle morphology and self-assembly for coating applications.

    Science.gov (United States)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; Bohling, James; Fasano, David; Brownell, Stan

    2017-06-19

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with less cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. These technologies also represent the most important considerations in architectural coating design.

  19. Possible alternatives to critical elements in coatings for extreme applications

    Science.gov (United States)

    Grilli, Maria Luisa; Valerini, Daniele; Piticescu, Radu Robert; Bellezze, Tiziano; Yilmaz, Mehmet; Rinaldi, Antonio; Cuesta-López, Santiago; Rizzo, Antonella

    2018-03-01

    Surface functionalisation and protection have been used since a long time for improving specific properties of materials such as lubrication, water repellence, brightness, and for increasing durability of objects and tools. Among the different kinds of surface treatments used to achieve the required properties, the use of coatings is fundamental to guarantee substrate durability in harsh environments. Extreme working conditions of temperature, pressure, irradiation, wear and corrosion occur in several applications, thus very often requiring bulk material protection by means of coatings. In this study, three main classes of coatings used in extreme conditions are considered: i) hard and superhard coatings for application in machining tools, ii) coatings for high temperatures (thermal barrier coatings), and iii) coatings against corrosion. The presence of critical elements in such coatings (Cr, Y, W, Co, etc.) is analysed and the possibility to use CRMs-free substitutes is reviewed. The role of multilayers and nanocomposites in tailoring coating performances is also discussed for thermal barrier and superhard coatings.

  20. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    Science.gov (United States)

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  1. Functional foam coatings inside tubing and custom developed diamond ignition targets

    International Nuclear Information System (INIS)

    Dawedeit, Christoph

    2014-01-01

    The development of inertial confinement fusion targets requires new efficient ablator materials and characteristic temperature measurements during confinement. Here, an aerogel coating process is developed to coat inside spheres and cylinders. The characteristic emission spectrum of doped aerogel inside diamond targets is used as temperature gauge during confinement. Coatings inside metal cylinders confirmed the generality of the coating procedure. In addition artificial diamond is characterized which represents an interesting ablator material.

  2. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  3. Anti-corrosion coatings in mine construction

    Energy Technology Data Exchange (ETDEWEB)

    Muchnik, P.I.; Plishevoi, A.N.; Semikina, N.I.

    1984-04-01

    This paper describes developments in methods used to protect mine equipment against corrosion. Paint/varnish materials such as EhF-1219 will protect metallic structures above ground for 8 years with a single coat (100-120 microns), and 2 coats will protect underground equipment (even in wet conditions) for up to 10 years. Various rust modifiers are also in use, based on oak tanning extract, oxalic acid and orthophosphoric acid in combination with zinc or aluminium phosphate. VNIIOMShS has developed an improved rust modifier which is applied with brush or spray and left to dry for 24 hours at 18-23 C. Experience has shown that paint/varnish coatings may be employed to give protection on equipment with a planned service life of up to 25 years, while for longer service lives zinc or combined coatings are preferred. VNIIOMShS has also developed methods for applying paint/varnish materials on tall structures without suspended gear, and for the preparation of surfaces for anti-corrosion coatings. (In Russian)

  4. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su; Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk

    2016-01-01

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats

  5. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  6. Coating for the fixation of superficial contamination of materials

    International Nuclear Information System (INIS)

    Brambilla, G.; Monari, D.; Pellicano, G.

    1984-01-01

    Low cost, commercially available and easy to apply coatings are examined to prevent metal corrosion and to limit cement dust formation during power reactor dismantling. Epoxy compounds are selected because of anticorrosive properties, ease of application on any support, even without preparation and they are efficient for 1 to 5 years. Containment and radiation resistance up to 600 Mrads are studied on samples coated with one or two layers. For application the airless system is the more appropriate. An equipment is concerned and for highly radioactive environment automation and remote operation with a modified commercial robot is studied

  7. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  8. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    Science.gov (United States)

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  9. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  10. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs ... processing of two novel glass–ceramic coating materials, ... stainless steel tray to yield frit (a friable glassy material). .... Frit (– 20 mesh) powder.

  11. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Sudarsanam Suresh [ORNL

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  12. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Rankin, W.N.; Bush, S.P.; Lyon, C.E.; Walker, V.

    1988-01-01

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  13. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  14. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  15. Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials

    International Nuclear Information System (INIS)

    Yan, Litao; Xu, Yun; Zhou, Meng; Chen, Gen; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei; Zou, Guifu

    2015-01-01

    The controllable synthesis of strongly coupled inorganic materials/carbon nanotubes (CNTs) hybrids represents a long-standing challenge for developing advanced catalysts and energy-storage materials. Here we report a simple sol-gel method for facile synthesis of TiO 2 /CNTs hybrid. The porous anatase TiO 2 nanoparticles are uniformly coated on the CNTs conducting network, which leads to remarkably improved electrochemical performances such as exceptional cycling stability, good high rate durability, and reduced resistance. This hybrid exhibits a reversible capacity as high as 200 mA·h g −1 at a current density of 0.1 A g −1 as an anode in lithium-ion battery (LIB). As a supercapacitor (SC), it shows a specific supercapacitance of 145 F g −1 in 0.5 M H 2 SO 4 electrolyte, higher than that of the previously reported TiO 2 based supercapacitors. Moreover, this hybrid also exhibits excellent durability after 1000 cycles for both LIBs and SCs. Such superior performance and cycling durability demonstrate the reinforced synergistic effects between the porous TiO 2 and interweaved CNTs network, indicating a great application potential for such hybrid materials in high power LIBs and SCs

  16. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  17. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  18. Ultraviolet curing of polymer coatings. January 1980-April 1988 (Citations from World Surface Coatings Abstracts). Report for January 1980-April 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This bibliography contains citations concerning methods, evaluations, and equipment for the ultraviolet curing of polymer coatings. Topics include curable coating compositions, protective and decorative coatings, optical-fiber coatings, curing photoinitiators, properties and stabilization of cured coatings, and coating binders. Ultraviolet-curable polymer materials for use in the furniture, food, electronics, and automotive industries are considered. Citations concerning printing inks and polyurethane curing are excluded and are available as two separate bibliographies. (This updated bibliography contains 292 citations, 62 of which are new entries to the previous edition.)

  19. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  20. Aesthetic coatings for concrete bridge components

    Science.gov (United States)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  1. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  2. Corrosion protection by organic coatings in gas and oil industry

    International Nuclear Information System (INIS)

    Hussain, A.

    2008-01-01

    The drive to improve performance of coatings as protection against corrosion for automotive, aerospace and oil and gas industries is a never-ending story. Surface preparation is the most important single factor when a substrate surface e.g. steel is to be protected with a coating. This implies an extremely accurate and reliable characterisation of the substrate-surface prior to coating process and the investigation of polymeric coating materials. In order to have a durable adhesive bonding between the polymeric coating materials and the substrate i.e. to ensure prolonged life time and fewer maintenance intervals of coated products, a pre-treatment of the substrate is required in many cases. Sand blasting, corona /plasma pre.treatment of the substrate and the use of coupling agents like organo silanes are well accepted recent methods. Advanced surface analytical techniques like ESCA and TOFSIMS are proving to be extremely helpful in the chemical characterisation of the substrate surface. Contamination e.g. fat residues, tensides etc. on the substrate is one of the most serious enemies of adhesive bonding and the above mentioned techniques are playing a vital role in combating the enemy. Modern thermal analytical methods have made tremendous contribution to the development and quality control of high-performance polymeric coatings. MDSC, DMA and DETA are proving to be very useful tools for the characterisation of high-performance coating materials. An in-depth understanding of the structure-property relationship of these materials, predominantly epoxy and polyurethane coating systems, is a pre-requisite for their successful application and subsequent Quality Control. (author)

  3. Intumescent Coatings as Fire Retardants

    Science.gov (United States)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  4. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    International Nuclear Information System (INIS)

    Du Yucheng; Yan Jing; Meng Qi; Wang Jinshu; Dai Hongxing

    2012-01-01

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: ► Sb-doped SnO 2 (ATO)-coated diatomite materials with porous structures are prepared. ► Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. ► Porous ATO-coated diatomite materials show excellent conductive performance. ► The lowest resistivity of the porous ATO-coated diatomite sample is 10 Ω cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N 2 adsorption–desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 Ω cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 °C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  5. Investigation of calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Muhammad Jamal Md Isa; Mohamad Abd Razak; Hyzan Mohd Yusof

    1999-01-01

    Calcium phosphate is the main constituent of our bone and tooth minerals. The use of this bioactive material for coating implant such as artificial joint prosthesis, therefore, can promote biological fixation and enhance biocompatibility. Our initial work has been focused on the evaluation of experimental conditions of coating preparation and the effects of post-deposition calcium phosphate coatings on stainless steel substrates. The coating layers were produced by the precipitation technique and coatings were carried out in sol-gel by the dipping method. For comparison purposes a wet method was used to obtain a fine calcium phosphate ceramic powder for fabrication of microcrystal suspension used as a coating material. Scanning electron microscopy (SEM), energy dispersive microanalysis (EDS), energy dispersive x-ray fluorescence (EDXRF) and x-ray diffraction (XRD) were used to characterise the morphology, chemical composition and structure of the coatings. The results showed that the dip coating of stainless steel substrates using viscous solutions lead to the formation of porous calcium phosphate layers. These results suggested that fabrication of bioactive calcium phosphate coatings using this route offers significant advantages over the currently used methods due to considerably lower temperature process involved and may produce better result for substrates with complex shapes

  6. Water-thinnable polymers for durable coatings for different materials

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  7. Lithium battery electrodes with ultra-thin alumina coatings

    Science.gov (United States)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  8. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  9. Development of intermetallic coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880 degrees C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000 degrees C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures

  10. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  11. Organo-Aluminate Polymeric Materials as Advanced Erosion/Corrosion Resistant Thin Film Coatings

    National Research Council Canada - National Science Library

    Cook, Ronald

    1997-01-01

    ...) and hazardous air pollutants (HAPs). The coating system is based on the development of carboxylato- alumoxane precursors for fabrication of corrosion resistant oxide barrier layers and alumoxane-epoxy based primer coats...

  12. Study of protective coatings for aluminum die casting molds

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Ildiko, E-mail: ildiko.peter@polito.it; Rosso, Mario; Gobber, Federico Simone

    2015-12-15

    Highlights: • Development and characterization of some protective coatings on steel substrate, realized by plasma spray techniques, were presented. • The substrate material used is a Cr–Mo–V based hot work tool steel. • The main attention is on the study of wear and on the characterization of the interface, because of their key role in determining the resistance of the coating layer. • Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy. - Abstract: In this paper, the development and characterization of some protective coatings on steel substrate are presented. The coatings are realized by plasma spray techniques. The substrate material used is a Cr–Mo–V based hot work tool steel, initially submitted to vacuum heat treatment to achieve homogeneous hardness. The main attention is focused on the study of wear and on the characterization of the interface between the substrate material and the coating layer, because of their key role in determining the resistance of the coating layer. Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy.

  13. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  14. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  15. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  16. UV-curable polyurethane coatings derived from cellulose

    International Nuclear Information System (INIS)

    Patel, M. M.; Patel, K. I.; Patel, H. B.; Parmar, J. S.

    2009-01-01

    At the present time coating industry is devoting much research in the direction of low volatile organic compounds to make eco-friendly coating material. In this study, such materials are developed from cellulose derived from bagasse, a sugar industry waste. Cellulose is converted to cellulose glyco glycoside by acid hydrolysis of cellulose under heterogeneous condition. Cellulose glyco glycoside is treated with polyethylene glycol having different molecular weights to give glyco glycosides which in turn are reacted with various diisocyanates to obtain polyurethane having free NCO groups. These materials are then reacted with hydroxyethylmethacrylate to give polyurethane acrylates. The acrylates are characterized for specific gravity, viscosity, colour and molecular weight as well as by fourier transform infrared spectroscopy. The UV-curable coating composition was prepared by blending PU-acrylate, reactive diluents and photoinitiator. Coating compositions were cured under UV-light and characterized for adhesion, flexibility, impact resistance, solvent resistance and for dynamic mechanical analysis as well as by thermal gravimetric analysis for thermal stability. The cured films give thickness of 23-24 microns and cure time required is less than 1.5-2.0 min. There is no liberation of any volatiles during curing and films have good adhesion to mild steel substrate. The cured coatings give excellent dynamic, mechanical and chemical properties. The scratch resistance was found to be satisfactory. The application was made in unpigmented form but it is found that various pigments can be used to give coloured UV-curable coatings.

  17. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings

    Science.gov (United States)

    Kylián, Ondřej; Kratochvíl, Jiří; Petr, Martin; Kuzminova, Anna; Slavínská, Danka; Biederman, Hynek; Beranová, Jana

    Silver-based nanomaterials that exhibit antibacterial character are intensively studied as they represent promising weapon against multi-drug resistant bacteria. Equally important class of materials represent coatings that have highly water repellent nature. Such materials may be used for fabrication of anti-fogging or self-cleaning surfaces. The aim of this study is to combine both of these valuable material characteristics. Antibacterial and highly hydrophobic Ag/C:F nanocomposite films were fabricated by means of gas aggregation source of Ag nanoparticles and sputter deposition of C:F matrix. The nanocomposite coatings had three-layer structure C:F base layer/Ag nanoparticles/C:F top layer. It is shown that the increasing number of Ag nanoparticles in produced coatings leads not only in enhancement of their antibacterial activity, but also causes substantial increase of their hydrophobicity. Under optimized conditions, the coatings are super-hydrophobic with water contact angle equal to 165∘ and are capable to induce 6-log reduction of bacteria presented in solution within 4h.

  18. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza

    2018-01-01

    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  19. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  20. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  1. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  2. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  3. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  4. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  5. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  6. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  7. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  8. Performance of HVOF carbide coatings under erosion/corrosion

    International Nuclear Information System (INIS)

    Simard, S.; Arsenault, B.; Legoux, J.G.; Hawthorne, H.M.

    1999-01-01

    Cermet based materials are known to have an excellent performance under several wear conditions. High velocity oxy-fuel (HVOF) technology allows the deposition of such hard materials in the form of protective coatings onto different surfaces. Under slurry erosion, the performance of the coatings is influenced by the occurrence of corrosion reactions on the metallic matrix. Indeed, wet conditions promote the dissolution of metallic binder resulting in a potential synergic effect between the corrosion and wear mechanisms. The composition of the metallic matrix plays a key role on the stability of the coatings and their degradation rate. In this work, four coatings based on tungsten carbide embedded in different metallic binders were evaluated with regard to corrosion and wear. (author)

  9. Radiation effects on polymers for coatings on copper canisters used for the containment of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, Aba [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000 Station Force, Kingston, ON, K7K 7B4 (Canada)], E-mail: aba.mortley@rmc.ca; Bonin, H.W.; Bui, V.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000 Station Force, Kingston, ON, K7K 7B4 (Canada)

    2008-05-31

    The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository.

  10. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  11. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Yucheng, E-mail: ychengdu@bjut.edu.cn [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yan Jing; Meng Qi; Wang Jinshu [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-16

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: Black-Right-Pointing-Pointer Sb-doped SnO{sub 2} (ATO)-coated diatomite materials with porous structures are prepared. Black-Right-Pointing-Pointer Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. Black-Right-Pointing-Pointer Porous ATO-coated diatomite materials show excellent conductive performance. Black-Right-Pointing-Pointer The lowest resistivity of the porous ATO-coated diatomite sample is 10 {Omega} cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N{sub 2} adsorption-desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 {Omega} cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 Degree-Sign C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  12. Coatings for the NuSTAR mission

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Jakobsen, Anders Clemen; Brejnholt, Nicolai

    2011-01-01

    The NuSTAR mission will be the first mission to carry a hard X-ray(5-80 keV) focusing telescope to orbit. The optics are based on the use of multilayer coated thin slumped glass. Two different material combinations were used for the flight optics, namely W/Si and Pt/C. In this paper we describe...... the entire coating effort including the final coating design that was used for the two flight optics. We also present data on the performance verification of the coatings both on Si witness samples as well as on individual flight mirrors....

  13. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  14. The structure and formation of functional hard coatings: a short review

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available Turning tools come in different shapes and sizes, geometry, base material and coating, according to their destination. They are widely used both for obtaining parts and for machinability tests. In this paper a short review about high-speed steel (HSS turning tools and their coatings is presented. Hard coatings formed on the tool material should be functional depending on the tool final application. Requirements for hard coatings and technological problems for layer formation on the real cutting tool are discussed.

  15. Signal sensitivity of alternating current potential drop measurement for crack detection of conductive substrate with tunable coating materials through finite element modeling

    International Nuclear Information System (INIS)

    Rao, Simha Sandeep; Zhao, Huijuan; Liu, Ming; Peng, Fei; Zhang, Bo

    2016-01-01

    We adopt a finite element numerical modeling approach to investigate the electromagnetic coupling effect of two parallel electric conductors with tunable electric conductivity σ and magnetic permeability μ . For two parallel conductors C and S ( μ C   ⋅  σ C   ≤  μ S   ⋅  σ S ), we find that the shape of current density profile of conductor S is dependent on the product of μ C   ⋅  σ C , while the magnitude is determined by the AC current frequency f . On the other hand, the frequency f affects not only the shape but also the magnitude of the current density profile of conductor C. We further adopt a coplanar model to investigate the signal sensitivity of alternating current potential drop (ACPD) measurement for both surface crack and inner crack detection. We find that with modified coating materials (lower electric conductivity and higher magnetic permeability, compared with the substrate material properties), the crack detection signal sensitivity can be greatly enhanced for both the cracks within the coating and at the coating/substrate interface, where cracks are most commonly encountered in real situations. (paper)

  16. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  17. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  18. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  19. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    Science.gov (United States)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  20. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  1. Self Healing Coating/Film Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  2. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization.

    Science.gov (United States)

    Tolun, Aysu; Altintas, Zeynep; Artik, Nevzat

    2016-12-10

    Phenolic compounds obtained from fruits have recently gained a great attention due to their bioactive roles. However, they are sensitive and they can be easily affected by physicochemical factors that create a great challenge to incorporate them into the food products. Hence, this work aimed to investigate microencapsulation of these compounds to provide a solution for this problem by improving their stability and protecting them against oxidation, light, moisture and temperature. A lab scale spray-dryer was chosen to produce microcapsules of polyphenols using different dextrose equivalents of maltodextrin and gum arabic as a coating material. Two different core: coating material ratios (1:1 and 1:2), three different maltodextrin: gum arabic ratios (10:0, 8:2 and 6:4), and four different inlet temperatures (120, 140, 160, 180°C) were investigated. When all parameters (yields, hygroscopicity, total and surface phenolic contents, antioxidant activity, individual phenolic compounds and particle morphology) were evaluated; the most efficient microcapsules were obtained with an 8:2 ratio of maltodextrin: gum arabic at 140°C inlet temperature. Microcapsules were also comprehensively studied and characterized using scanning electron microscopy (SEM) and high performance liquid chromatography (HPLC). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Colloidal spray method for low cost thin coating deposition

    Science.gov (United States)

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  4. Slow release coating remedy for nitrogen loss from conventional urea: a review.

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar

    2016-03-10

    Developing countries are consuming major part of the global urea production with an anticipated nitrogen use efficiency of 20 to 35%. The release of excess nitrogen in the soil is not only detrimental to the environment but also lessens the efficiency of the conventional urea. The urea performance can be enhanced by encapsulating it with slow release coating materials and synchronizing the nutrients' release with the plant up-taking. However, the present cost of most of the coated fertilizers is considerably higher than the conventional fertilizers. The high cost factor prevents their widespread use in mainstream agriculture. This paper documents a review of literature related to the global urea market, issues pertaining to the conventional urea use, natural and synthetic materials for slow release urea and fluidized bed spray coating process. The aim of the current review is to develop technical understanding of the conventional and non-conventional coating materials and associated spray coating mechanism for slow release urea production. The study also investigated the potential of starch as the coating material in relation to the coatings tested previously for controlled release fertilizers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  6. Synthesis and chromatographic characterization of dextran-coated zirconia high-performance liquid chromatographic stationary phases.

    Science.gov (United States)

    Dunlap, C J; Carr, P W

    1996-10-11

    Porous zirconia particles made by the oil emulsion (OE) method and the polymerization-induced colloid aggregation (PICA) method have been coated with a small, carboxymethylated (approximately 5%) dextran polymer and crosslinked in place. The parameters of the coating process (dextran concentration, adsorption time and crosslinker concentration) have all been examined and an optimum value for each determined. The coated and uncoated materials were characterized by nitrogen sorptometry and size-exclusion chromatography (SEC) using solutes (polystyrenes and dextrans) of well-defined molecular masses. Nitrogen sorptometry results show that the PICA material has a much lower pore volume and smaller pore diameter than do the OE materials. Despite this, the elution volumes of the SEC probes change very little upon polymer coating the PICA material while the OE material shows a very large change upon coating.

  7. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    Science.gov (United States)

    2006-11-01

    gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for

  8. Detonation wear-resistant coatings, alloy powders based on Cr-Si

    Directory of Open Access Journals (Sweden)

    А.Г. Довгаль

    2009-03-01

    Full Text Available  Coatings from composition material Cr-Si-B on steel by detonation spraying method are obtained. Composition, structure and tribotechnical characteristics of coatings in comparison with traditional materials on the basis of Ni-Cr and alloy of tungsten and cobalt are investigated.

  9. Figure correction of multilayer coated optics

    Science.gov (United States)

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  10. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  11. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    Science.gov (United States)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  12. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haiou [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States); Quevedo, Ivan R. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K., E-mail: Thilak.Mudalige@fda.hhs.gov [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States)

    2016-10-15

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  13. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    International Nuclear Information System (INIS)

    Qu, Haiou; Quevedo, Ivan R.; Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K.

    2016-01-01

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  14. Frictional characteristics of erythrocytes on coated glass plates subject to inclined centrifugal forces.

    Science.gov (United States)

    Kandori, Takashi; Hayase, Toshiyuki; Inoue, Kousuke; Funamoto, Kenichi; Takeno, Takanori; Ohta, Makoto; Takeda, Motohiro; Shirai, Atsushi

    2008-10-01

    In recent years a diamond-like carbon (DLC) film and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer have attracted attention as coating materials for implantable artificial organs or devices. When these materials are coated on vascular devices, compatibility to blood is an important problem. The present paper focuses on friction characteristics of erythrocytes to these coating materials in a medium. With an inclined centrifuge microscope developed by the authors, observation was made for erythrocytes moving on flat glass plates with and without coating in a medium of plasma or saline under the effect of inclined centrifugal force. Friction characteristics of erythrocytes with respect to these coating materials were then measured and compared to each other to characterize DLC and MPC as coating materials. The friction characteristics of erythrocytes in plasma using the DLC-coated and noncoated glass plates are similar, changing approximately proportional to the 0.5th power of the cell velocity. The cells stick to these plates in saline as well, implying the influence of plasma protein. The results using the MPC-coated plate in plasma are similar to those of the other plates for large cell velocities, but deviate from the other results with decreased cell velocity. The results change nearly proportional to the 0.75th power of the cell velocity in the range of small velocities. The results for the MPC-coated plate in saline are similar to that in plasma but somewhat smaller, implying that the friction characteristics for the MPC-coated plate are essentially independent of plasma protein.

  15. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  16. Improved Metallography Of Thermal-Barrier Coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1991-01-01

    New technique for preparation of metallographic samples makes interpretation of images of pores and microcracks more reliable. Involves use of vacuum epoxy infiltration and interference-film coating to reduce uncertainty. Developed for inspection of plasma-sprayed ceramic thermal-barrier coatings on metals but applicable to other porous, translucent materials, including many important ceramics.

  17. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  18. Low atomic number coating for XEUS silicon pore optics

    Science.gov (United States)

    Lumb, D. H.; Jensen, C. P.; Krumrey, M.; Cibik, L.; Christensen, F.; Collon, M.; Bavdaz, M.

    2008-07-01

    We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare the low energy effective area increase that could be achieved with an optimized coating design.

  19. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  20. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  1. Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating

    Science.gov (United States)

    Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.

    2018-03-01

    Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.

  2. Selection of boron based tribological hard coatings using multi-criteria decision making methods

    International Nuclear Information System (INIS)

    Çalışkan, Halil

    2013-01-01

    Highlights: • Boron based coating selection problem for cutting tools was solved. • EXPROM2, TOPSIS and VIKOR methods were used for ranking the alternative materials. • The best coatings for cutting tool were selected as TiBN and TiSiBN. • The ranking results are in good agreement with cutting test results in literature. - Abstract: Mechanical and tribological properties of hard coatings can be enhanced using boron as alloying element. Therefore, multicomponent nanostructured boron based hard coatings are deposited on cutting tools by different methods at different parameters. Different mechanical and tribological properties are obtained after deposition, and it is a difficult task to select the best coating material. In this paper, therefore, a systematic evaluation model was proposed to tackle the difficulty of the material selection with specific properties among a set of available alternatives. The alternatives consist of multicomponent nanostructured TiBN, TiCrBN, TiSiBN and TiAlSiBN coatings deposited by magnetron sputtering and ion implantation assisted magnetron sputtering at different parameters. The alternative coating materials were ranked by using three multi-criteria decision-making (MCDM) methods, i.e. EXPROM2 (preference ranking organization method for enrichment evaluation), TOPSIS (technique for order performance by similarity to ideal solution) and VIKOR (VIšekriterijumsko KOmpromisno Rangiranje), in order to determine the best coating material for cutting tools. Hardness (H), Young’s modulus (E), elastic recovery, friction coefficient, critical load, H/E and H 3 /E 2 ratios were considered as material selection criteria. In order to determine the importance weights of the evaluation criteria, a compromised weighting method, which composes of the analytic hierarchy process and Entropy methods, were used. The ranking results showed that TiBN and TiSiBN coatings deposited at given parameters are the best coatings for cutting tools

  3. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  4. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-01-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles

  5. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    Science.gov (United States)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  6. Development of high-index optical coating for security holograms

    Science.gov (United States)

    Ahmed, Nadir A. G.

    2000-10-01

    Over the past few years security holograms have grown into a complex business to prevent counterfeiting of security cards, banknotes and the like. Rapid advances in holographic technology have led to a growing requirement for optical materials and coating methods to produce such holograms at reasonable costs. These materials have specific refractive indices and are used to fabricate semi- transparent holograms. The present paper describes a coating process to deposit optical coating on flexible films inside a vacuum web metallizer for the production of high quality semi-transparent holograms.

  7. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  8. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  9. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  10. Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

    International Nuclear Information System (INIS)

    Ramesh, D.; Shakkthivel, P.; Manickam, A. Susai; Kalpana, A.; Vasudevan, T.

    2006-01-01

    Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications

  11. Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE pipe

    Directory of Open Access Journals (Sweden)

    Shahedan Noor Fifinatasha

    2016-01-01

    Full Text Available Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH and sodium silicate (Na2SiO3 as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significantly influence the mechanical property of geopolymer coating. However, different source materials gave different microstructure and property in geopolymer coating.

  12. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  13. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  14. Antibacterial Functionalization of PVD Coatings on Ceramics

    Directory of Open Access Journals (Sweden)

    Javier Osés

    2018-05-01

    Full Text Available The application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN and titanium nitride (TiN coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES and field emission scanning electron microscope (FE-SEM. Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.

  15. Tribology of nitrided-coated steel-a review

    Directory of Open Access Journals (Sweden)

    Bhaskar Santosh V.

    2017-01-01

    Full Text Available Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  16. Tribology of nitrided-coated steel-a review

    Science.gov (United States)

    Bhaskar, Santosh V.; Kudal, Hari N.

    2017-01-01

    Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  17. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  18. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  19. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  20. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during