WorldWideScience

Sample records for coated conductor wires

  1. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Eickemeyer, J.; Gueth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-01-01

    The cube texture as a typical sheet texture can also be formed by cold drawing and recrystallization in profile wires. Cube textured Ni profile wires containing up to 96.2% cube oriented grains in the central region were obtained. Forthcoming investigations are promising to get a textured substrate wire for YBCO-coated conductors. Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2 Cu 3 O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  2. A two-dimensional finite element method to calculate the AC loss in superconducting cables, wires and coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk

    2008-02-15

    In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.

  3. Dynamic resistance of a high-T c coated conductor wire in a perpendicular magnetic field at 77 K

    Science.gov (United States)

    Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki; Zhang, Xingyou; Bumby, Chris W.

    2017-03-01

    Superconducting high-T c coated conductor (CC) wires comprise a ceramic thin film with a large aspect ratio. This geometry can lead to significant dissipative losses when exposed to an alternating magnetic field. Here we report experimental measurements of the ‘dynamic resistance’ of commercially available SuperPower and Fujikura CC wires in an AC perpendicular field. The onset of dynamic resistance occurs at a threshold field amplitude, which is determined by the total DC transport current and the penetration field of the conductor. We show that the field-dependence of the normalised magnetisation loss provides an unambiguous value for this threshold field at zero transport current. From this insight we then obtain an expression for the dynamic resistance in perpendicular field. This approach implies a linear relationship between dynamic resistance and applied field amplitude, and also between threshold field and transport current and this is consistent with our experimental data. The analytical expression obtained yields values that closely agree with measurements obtained across a wide range of frequencies and transport currents, and for multiple CC wires produced by different wire manufacturers and with significantly differing dimensions and critical currents. We further show that at high transport currents, the measured DC resistance includes an additional nonlinear term which is due to flux-flow resistance incurred by the DC transport current. This occurs once the field-dependent critical current of the wire falls below the DC transport current for part of each field cycle. Our results provide an effective and simple approach to calculating the dynamic resistance of a CC wire, at current and field magnitudes consistent with those expected in superconducting machines.

  4. Composite Cu/Fe/MgB{sub 2} superconducting wires and MgB{sub 2}/YSZ/Hastelloy coated conductors for ac and dc applications

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom); Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge (United Kingdom); Vickers, M [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom); Eisterer, M [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Toenies, S [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Weber, H W [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Fukutomi, M [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan); Komori, K [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan); Togano, K [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan)

    2003-02-01

    We discuss the results of a study of MgB{sub 2} multifilamentary conductors and coated conductors from the point of view of their future dc and ac applications. The correlation between the slope of the irreversibility line induced by neutron irradiation defects and in situ structural imperfections and the critical temperature and critical current density is discussed with respect to the conductor performance and applicability. We debate the possible origin of the observed anomalous decrease of ac susceptibility at 50 K in copper clad in situ powder-in-tube MgB{sub 2} wires. Different conductor preparation methods and conductor architectures, and attainable critical current densities are presented. Some numerical results on critical currents, thermal stability and ac losses of future MgB{sub 2} multifilamentary and coated conductors with magnetic cladding of their filaments are also discussed.

  5. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  6. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  7. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  8. Nitrogen implantation into steel wire coated with zinc used as reinforcement in power transmission conductors

    Science.gov (United States)

    Castro-Maldonado, J. J.; Dulcé-Moreno, H. J.; V-Niño, E. D.

    2013-11-01

    In tropical environments, diversity of climatic factors such as temperature, relative humidity, deposition of environmental contaminants (such as sulfates and chlorides) affect a large proportion of materials exposed to the weather, and electrochemical corrosion is one of the phenomena that occur in the case of metals and alloys [1, 2]. It is therefore particularly important to study this behavior in the Zinc-coated steel, since this material is used for its economy in the industry specifically in the area of transport of electricity.

  9. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  10. Coated Conductors under Tensile Stress

    International Nuclear Information System (INIS)

    Antonevici, Anca; Villaume, Alain; Villard, Catherine; Sulpice, Andre; Maron, Pierre Brosse; Bourgault, Daniel; Porcar, Laureline

    2006-01-01

    Critical current dependence versus strain is obtained for in-situ axial stress experiments on ISD YBCO and DyBCO coated conductors. The drop of critical current due to the apparition of first cracks in the superconducting ceramics is related to the passage in the plastic region of the substrate for a strain of about 0.3% and a stress higher then 500MPa. The superconductivity is preserved between the cracks

  11. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  12. buffer Layer Growth, the Thickness Dependence of Jc in Coated Conductors, Local Identification of Current Limiting Mechanisms and Participation in the Wire Development Group

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David; Hellstron, Eric; Abraimov, Dmytro

    2011-12-17

    The primary thrusts of our work were to provide critical understanding of how best to enhance the current-carrying capacity of coated conductors. These include the deconstruction of Jc as a function of fim thickness, the growth of in situ films incorporating strong pinning centers and the use of a suite of position-sensitive tools that enable location and analysis of key areas where current-limiting occurs.

  13. Towards the practical PLD-IBAD coated conductor fabrication - Long wire, high production rate and J c enhancement in a magnetic field

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Ibi, Akira; Fukushima, Hiroyuki; Kuriki, Reiji; Miyata, Seiki; Takahashi, Kazuhiro; Kobayashi, Hirokazu; Ishida, Satoru; Konishi, Masaya; Kato, Takeharu; Hirayama, Tsukasa; Shiohara, Yuh

    2006-01-01

    SRL-Nagoya Coated Conductor Center (NCCC) have succeeded in fabricating stably long coated conductor using ion-beam assisted deposition (IBAD) and pulsed laser deposition (PLD) methods. Reel-to-reel PLD equipment with a multi-plume and multi-turn deposition system (MPMT PLD) resulted in a long coated conductor with a high critical current, I c , of 245 A and length of 212.6 m. I c x L (length) reached the record of 52,087 A m. At the same time, the effort to enhance I c and J c in a magnetic filed are also carried out using artificial pinning center and RE element: YSZ mixed Y123 target brought about a high J c especially in the magnetic field parallel to the c-axis. This was attributed to a columnar structure of the 'bamboo structure' (BaZrO 3 /Y123 layer-stacked structure) in Y123 + YSZ sample. Gd123 was also found to be effective for enhancing pinning properties, which was considered to be due to the native stacking faults in the 123 structure. The combination of Gd element and YSZ introduction were also studied and clearly demonstrated the improvement of the anisotropy of J c for a magnetic field angle

  14. Irreversible properties of YBCO coated conductors

    International Nuclear Information System (INIS)

    Vostner, A.

    2001-02-01

    Over the past few years substantial efforts were made to optimize the fabrication techniques of various high temperature superconductors for commercial applications. In addition to Bi-2223 tapes, Y-123 coated conductors have the potential for large-scale production and are considered as the second generation of superconducting 'wires' for high current applications. This work reports on magnetic and transport current investigations of Y-123 thick films deposited on either single crystalline substrates by liquid phase epitaxy (LPE) or on metallic substrates by pulsed laser deposition (PLD). At the beginning, a short introduction of the general idea of a coated conductor and of the different production techniques is presented, followed by a description of the different experimental set-ups and the evaluation methods. The main part starts with the results obtained from SQUID magnetometry and ac-susceptibility measurements including the transition temperatures T c , the field dependence of the magnetic critical current densities and the irreversibility lines. In addition, some issues concerning the granular structure and the inter- and intragranular current distribution of the superconducting films are discussed. The investigations by transport currents are focused on the behavior of the application relevant irreversible parameters. These are the angular and the field dependence of the critical transport current densities at 77 and 60 K, as well as the temperature dependence of the irreversibility fields up to 6 T. To gain more insight into the defect structure of the films, neutron irradiation studies were performed on some samples. The introduction of these artificial pinning centers causes large enhancements of the magnetic J c in LPE specimens for the field parallel to the c-axis (H//c) at higher temperatures and magnetic fields. The granular structure of the samples does not change up to the highest neutron fluences. However, the enhancements of the transport J c

  15. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  16. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  17. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  18. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  19. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  20. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  1. Transport AC losses in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  2. Low ac loss geometries in YBCO coated conductors and impact on conductor stability

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Rupich, M. W. [American Superconductor Corporation, Westborough, MA; Zhang, W. [American Superconductor Corporation, Westborough, MA; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. While ac loss reduction was achieved with YBCO filaments created through laser scribing and inkjet deposition, the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders. To better determine the practicality of these methods from a stability point of view, a numerical analysis was carried out to determine the influence of bridging and splicing on stability of a YBCO coated conductor for both liquid nitrogen-cooled and conduction cooled geometries.

  3. Low ac loss geometries in YBCO coated conductors

    International Nuclear Information System (INIS)

    Duckworth, R.C.; List, F.A.; Paranthaman, M.P.; Rupich, M.W.; Zhang, W.; Xie, Y.Y.; Selvamanickam, V.

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders

  4. Low ac loss geometries in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, R.C. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States)], E-mail: duckworthrc@ornl.gov; List, F.A.; Paranthaman, M.P. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States); Rupich, M.W.; Zhang, W. [American Superconductor, Two Technology Drive, Westborough, MA 01581 (United States); Xie, Y.Y.; Selvamanickam, V. [SuperPower, 450 Duane Ave, Schenectady, NY 12304 (United States)

    2007-10-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders.

  5. Thermodynamic behaviour of a coated conductor for currents above Ic

    International Nuclear Information System (INIS)

    Schwarz, M; Schacherer, Chr; Weiss, K-P; Jung, A

    2008-01-01

    Coated conductors are becoming more and more applicable. The temperature range below the critical value (T c ) or below the critical current (I c ) is well characterized. But for applications such as fault current limiters, which take advantage of the superconducting-to-normal transition, characterization beyond the superconducting regime is mandatory. Therefore, this work studies the thermodynamic behaviour of a coated conductor immersed in boiling liquid nitrogen which is driven by a sinusoidal over-current of up to more than five times I c . The temperature of the coated conductor exceeds 720 K without any significant degradation. To validate this current-induced high-temperature region, the resistance of the composite tape is measured from T c to 600 K. A thermodynamic and electrical model is conceptualized for calculating the temperature, developing as a function of time during over-currents. The calculated temperature fits well with the measured temperature

  6. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point...

  7. Design study of superconducting sextupole magnet using HTS coated conductor for neutron-focusing device

    International Nuclear Information System (INIS)

    Tosaka, T.; Koyanagi, K.; Ono, M.; Kuriyama, T.; Watanabe, I.; Tsuchiya, K.; Suzuki, J.; Adachi, T.; Shimizu, H.M.

    2006-01-01

    We performed a design study of sextupole magnet using high temperature superconducting (HTS) wires. The sextupole magnet is used as a focusing lens for neutron-focusing devices. A neutron-focusing device is desired to have a large aperture and a high magnetic field gradient of G, where G = 2B/r 2 , B is the magnetic field and r is a distance from the sextupole magnet axis. Superconducting magnets offer promising prospects to meet the demands of a neutron-focusing device. Recently NbTi coils of low temperature superconducting (LTS) have been developed for a sextupole magnet with a 46.8 mm aperture. The maximum magnetic field gradient G of this magnet is 9480 T/m 2 at 4.2 K and 12,800 T/m 2 at 1.8 K. On the other hand, rapid progress on second generation HTS wire has been made in increasing the performance of critical current and in demonstrating a long length. The second generation HTS wire is referred to as coated conductor. It consists of tape-shaped base upon which a thin coating of superconductor, usually YBCO, is deposited or grown. This paper describes a design study of sextupole magnet using coated conductors

  8. Comparative characterization of Cu–Ni substrates for coated conductors

    DEFF Research Database (Denmark)

    Tian, H.; Suo, H.L.; Wulff, Anders Christian

    2014-01-01

    Three Cu100xNix alloys, with x = 23, 33 and 45 at.%Ni, have been evaluated for use as substrates for coated conductors on the basis of measurements of their microstructure, crystallographic texture and hardness. It is found that high-temperature annealing after heavy rolling generates strong cube...

  9. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  10. Benefits of current percolation in superconducting coated conductors

    International Nuclear Information System (INIS)

    Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.

    2005-01-01

    The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca

  11. Numerical Simulation of Wire-Coating

    DEFF Research Database (Denmark)

    Wapperom, Peter; Hassager, Ole

    1999-01-01

    A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...

  12. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  13. Comparison of MgB2 and Coated Conductor Based 5 MW Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    conductors, but the operation temperature in range of T = 15-20 K and the engineering current density Je is smaller. We have found that a 16 pole synchronous generator with active diameter D = 4.2 m and length L = 1.5 m based on a MgB2 wire with Je = 70 A/mm2 in approximately 4 Tesla field would result...... in a wire usage in the order of 330 km. This has the potential to decrease the price of the superconductor wires in the generator by a factor of 10 compared to the coated conductors, but the cryogenics will be a challenge and is discussed. Finally we will use turbine load simulations to discuss the torque...... events that such a 5 MW generator would experience if installed in the NREL turbine....

  14. Modelling the V-I characteristic of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)]. E-mail: ruttern@ornl.gov; Glowacki, B A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)

    2001-09-01

    The critical current densities of coated conductor samples are limited by the presence of low-angle grain boundaries. These boundaries provide an obstacle to current flow, which is determined by their misorientation angle. The superconducting layer of a coated conductor tape may be considered as a network of grains linked together by grain boundaries through which the supercurrent must pass. Such a network has been investigated using a two-dimensional grain model. The three-dimensional orientations of grains in the superconducting network can be assigned randomly based on information obtained from EBSD and x-ray texture measurements. By assigning critical current values to boundaries based on their calculated misorientation, the overall J{sub c} of macroscopic modelled samples can then be calculated. This paper demonstrates how such a technique is applied using a small-scale, idealized sample grain structure in an applied magnetic field. The onset of dissipation at the critical current may be viewed in terms of the flow of the magnetic flux across the sample along high-angle grain boundaries when the critical current is first exceeded. Through such a consideration, the model may be further used to predict the current-voltage characteristic of the coated conductor sample around the superconducting transition. (author)

  15. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  16. AC Loss Reduction in Filamentized YBCO Coated Conductors with Virtual Transverse Cross-cuts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei [ORNL; Duckworth, Robert C [ORNL; Ha, Tam T [ORNL; List III, Frederick Alyious [ORNL; Gouge, Michael J [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; X, Xiong, [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    While the performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO)-based coated conductors under dc currents has improved significantly in recent years, filamentization is being investigated as a technique to reduce ac loss so that the 2nd generation (2G) high temperature superconducting (HTS) wires can also be utilized in various ac power applications such as cables, transformers and fault current limiters. Experimental studies have shown that simply filamentizing the superconducting layer is not effective enough to reduce ac loss because of incomplete flux penetration in between the filaments as the length of the tape increases. To introduce flux penetration in between the filaments more uniformly and further reduce the ac loss, virtual transverse cross-cuts were made in superconducting filaments of the coated conductors fabricated using the metal organic chemical vapor deposition (MOCVD) method. The virtual transverse cross-cuts were formed by making cross-cuts (17 - 120 {micro}m wide) on the IBAD (ion beam assisted deposition)-MgO templates using laser scribing followed by depositing the superconducting layer ({approx} 0.6 {micro}m thick). AC losses were measured and compared for filamentized conductors with and without the cross-cuts under applied peak ac fields up to 100 mT. The results were analyzed to evaluate the efficacy of filament decoupling and the feasibility of using this method to achieve ac loss reduction.

  17. On the Behaviour of Current-Carrying Wire-Conductors and Bucking of a Column

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Fereidoon, A.

    2013-01-01

    This paper applies approximate analytical methods namely Iteration Perturbation Method (IPM), variational approach (VA) and Parameter Expanding Method (PEM) to Single-Degree-Of-Freedom (SDOF) nonlinear oscillation systems. Some numerical cases as dynamic behavior of current-carrying wire-conductors...

  18. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters, ungrounded and exposed... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508 Lightning... conductors and telephone wires shall be equipped with suitable lightning arresters which are adequately...

  19. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  20. YBCO coated conductors by reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Schmatz, U.; Hoffmann, Ch.; Bauer, M.; Metzger, R.; Berberich, P.; Kinder, H. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2001-12-01

    Coated tape conductors of YBCO require a deposition process allowing to obtain a high volume growth rate in order to produce long lengths of tape in a reasonable amount of time. We present our tape coating system where 15 parallel loops of travelling tape of 1 cm width can be coated simultaneously by reactive thermal co-evaporation. For high critical current densities, in-plane alignment of the YBCO film is necessary. Inclined substrate deposition (ISD) is a technique that allows to deposit in-plane oriented buffer layers suitable for YBCO growth at high deposition rates. We present results obtained for YBCO films grown on MgO-ISD buffer layers deposited by e-gun evaporation onto metallic tape substrates. (orig.)

  1. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  2. Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni-W substrate

    Energy Technology Data Exchange (ETDEWEB)

    Verebelyi, D T [American Superconductor Corporation, Westborough, MA 01581 (United States); Schoop, U [American Superconductor Corporation, Westborough, MA 01581 (United States); Thieme, C [American Superconductor Corporation, Westborough, MA 01581 (United States); Li, X [American Superconductor Corporation, Westborough, MA 01581 (United States); Zhang, W [American Superconductor Corporation, Westborough, MA 01581 (United States); Kodenkandath, T [American Superconductor Corporation, Westborough, MA 01581 (United States); Malozemoff, A P [American Superconductor Corporation, Westborough, MA 01581 (United States); Nguyen, N [American Superconductor Corporation, Westborough, MA 01581 (United States); Siegal, E [American Superconductor Corporation, Westborough, MA 01581 (United States); Buczek, D [American Superconductor Corporation, Westborough, MA 01581 (United States); Lynch, J [American Superconductor Corporation, Westborough, MA 01581 (United States); Scudiere, J [American Superconductor Corporation, Westborough, MA 01581 (United States); Rupich, M [American Superconductor Corporation, Westborough, MA 01581 (United States); Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Specht, E D [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Martin, P [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Paranthaman, M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States)

    2003-05-01

    Second-generation coated conductor composite HTS wires have been fabricated using a continuous reel-to-reel process with deformation-textured Ni-W substrates and a metal-organic deposition process for YBa{sub 2}Cu{sub 3}O{sub 7-x}. Earlier results on 1 m long and 1 cm wide wires with 77 K critical current performance greater than 100 A cm{sup -1} width have now been extended to 7.5 m in length and even higher performance, with one wire at 132 and another at 127 A cm{sup -1} width. Performance as a function of wire length is remarkably uniform, with only 2-4% standard deviation when measured on a 50 cm length scale. The length-scale dependence of the deviation is compared with a statistical calculation. (rapid communication)

  3. Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni-W substrate

    International Nuclear Information System (INIS)

    Verebelyi, D T; Schoop, U; Thieme, C; Li, X; Zhang, W; Kodenkandath, T; Malozemoff, A P; Nguyen, N; Siegal, E; Buczek, D; Lynch, J; Scudiere, J; Rupich, M; Goyal, A; Specht, E D; Martin, P; Paranthaman, M

    2003-01-01

    Second-generation coated conductor composite HTS wires have been fabricated using a continuous reel-to-reel process with deformation-textured Ni-W substrates and a metal-organic deposition process for YBa 2 Cu 3 O 7-x . Earlier results on 1 m long and 1 cm wide wires with 77 K critical current performance greater than 100 A cm -1 width have now been extended to 7.5 m in length and even higher performance, with one wire at 132 and another at 127 A cm -1 width. Performance as a function of wire length is remarkably uniform, with only 2-4% standard deviation when measured on a 50 cm length scale. The length-scale dependence of the deviation is compared with a statistical calculation. (rapid communication)

  4. Future prospects of high T{sub c} superconductors-coated conductors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiohara, Yuh [International Superconductivity Technology Center, 10-13 Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Yoshizumi, Masateru, E-mail: myoshizumi@istec.or.jp [International Superconductivity Technology Center, 10-13 Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Takagi, Yuji; Izumi, Teruo [International Superconductivity Technology Center, 10-13 Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan)

    2013-01-15

    Highlights: ► R and D results of M-PACC project and of rotating machinery are reviewed. ► Properties of coated conductors have been improved, meeting the market requirements. ► Future prospects of power applications and rotating machineries are discussed. -- Abstract: The research and development of high-temperature superconducting wires, especially yttrium-based coated conductors (CCs), and their energy applications have been expected to reduce CO{sub 2} emissions. This article reviews recent progress in this area, mainly focusing on the results obtained by national projects in Japan. The I{sub c} (critical current) × L (wire length) value of CCs has been improved to reach 466,752 A m (572 A/cm-W, 816 m), which exceeds that of Bi-system wires. CCs have also been improved in terms of in-field performance and AC loss reduction to meet market requirements. Power applications such as superconducting magnetic energy storage (SMES) systems, power cables and transformers have been developed using CCs in the current project. Because of fundamental research on high-capacity power cables, a low AC loss of 0.8 W/m-ph at 3 kA and 73.7 K was achieved. System design and fundamental research were performed on a 2GJ-class SMES system and a 20 MVA-class transformer. Based on the technologies developed by the end of the current project (FY2012), the innovation process of those applications will reach the implementation stage, where the long-term reliability tests will be performed. The process is expected to reach the penetration and propagation stage around 2020.

  5. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  6. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  7. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  8. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  9. Detection of smaller Jc region and damage in YBCO coated conductors by using permanent magnet method

    International Nuclear Information System (INIS)

    Hattori, K.; Saito, A.; Takano, Y.; Suzuki, T.; Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S.

    2011-01-01

    We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J c distribution. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J c region in the coated conductor by using the system. The J c distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J c distribution. The surface of the coated conductors was cut by using a knife. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J c measurement technique will be useful for detecting smaller J c regions and defects in coated conductors.

  10. Melt quality induced failure of electrical conductor (EC grade aluminum wires

    Directory of Open Access Journals (Sweden)

    Khaliq A.

    2017-01-01

    Full Text Available The failure of electrical conductor grade (EC aluminum during wire drawing process was investigated. The fractured aluminum wires were subjected to Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analyses for an initial examination. Thermodynamic analyses of molten aluminum interaction with refractories was also carried out using FactSage at 710°C to predict the stable phases. The SEM/EDX analyses has revealed the inclusions in aluminum matrix. The typical inclusions observed were Al2O3, Al3C4 (Al-Carbide and oxides of refractories elements (Al, Mg, Si and O that have particle size ranging up to 5 μm. The transition metal boride particles were not identified during SEM/EDX analyses these might be too fine to be detected with this microscope. The overall investigation suggested that the possible cause of this failure is second phase particles presence as inclusions in the aluminum matrix, and this was associated with the poor quality of melt. During wire drawing process, these inclusions were pulled out of the aluminum matrix by the wiredrawing forces to produce micro-voids which led to ductile tearing and final fracture of wires. It was recommended to use ceramic foam filters to segregate inclusions from molten aluminum.

  11. Progress of long coated conductors fabrication with fluorine-free CSD method at SWJTU

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, W.T.; Lei, M.; Pu, M.H.; Zhang, Y.; Cheng, C.H.

    2013-01-01

    Highlights: • Recent progress on the long coated conductors fabrication by F-free CSD method is presented. • Single buffer and partial-melting technology and slot-die coating methods have been developed. • Reel-to-reel facilities for continuous process have been achieved. -- Abstract: Recent progress on the fabrication of long high-T c superconducting coated conductors with a fluorine-free chemical solution deposition (CSD) method is presented. Developments including such novel methods as single buffer technology, partial-melting process on YBa 2 Cu 3 O 7 (YBCO), slot-die coating and drying; reel-to-reel facilities for continuous process have been achieved in the effort on high-T c superconducting coated conductors at SWJTU, which form a comprehensive technology to fabricate long coated tapes with high performances

  12. Progress of long coated conductors fabrication with fluorine-free CSD method at SWJTU

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Lab of Advanced Materials Technologies, Key Lab of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education), Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Wang, W.T.; Lei, M.; Pu, M.H.; Zhang, Y. [Key Lab of Advanced Materials Technologies, Key Lab of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education), Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2013-10-15

    Highlights: • Recent progress on the long coated conductors fabrication by F-free CSD method is presented. • Single buffer and partial-melting technology and slot-die coating methods have been developed. • Reel-to-reel facilities for continuous process have been achieved. -- Abstract: Recent progress on the fabrication of long high-T{sub c} superconducting coated conductors with a fluorine-free chemical solution deposition (CSD) method is presented. Developments including such novel methods as single buffer technology, partial-melting process on YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO), slot-die coating and drying; reel-to-reel facilities for continuous process have been achieved in the effort on high-T{sub c} superconducting coated conductors at SWJTU, which form a comprehensive technology to fabricate long coated tapes with high performances.

  13. Cube-textured metal substrates for reel-to-reel processing of coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian

    This thesis presents the results of a study aimed at investigating important fabrication aspects of reel-to-reel processing of metal substrates for coated conductors and identifying a new substrate candidate material with improved magnetic properties. The eect of mechanical polishing on surface...... texture and the fraction of low angle grain boundaries. Finally, a Ni-5Cu-5W substrate may be a good candidate material as a substrate in future coated conductors....

  14. Long Gd-123 coated conductor by PLD method

    International Nuclear Information System (INIS)

    Fuji, H.; Igarashi, M.; Hanada, Y.; Miura, T.; Hanyu, S.; Kakimoto, K.; Iijima, Y.; Saitoh, T.

    2008-01-01

    We have developed long Gd-123 coated conductors by ion-beam-assisted deposition (IBAD) and pulsed-laser-deposition (PLD) method. Recently, large-scale reel-to-reel apparatus with the 110 cm x 15 cm assisting ion source was introduced to IBAD system. It was enable to produce 500 m-class IBAD-Gd 2 Zr 2 O 7 (GZO) tapes with Δφ of below 15 deg. and high throughputs of 3 m/h. Furthermore, apparatus with multi-lane and laser scanning was introduced to PLD system. As a result, end to end I c of 318 A were obtained for a 201.5 m long tape, and I c x L values were 64,077 Am. Furthermore, 500 m-class deposition was carried out by improving PLD conditions. As a result, I c x L values of 112,166 Am was obtained and it's a world record on August 2007. In the short samples, I c of over 500 A was obtained with Gd-123 thickness of 2.0 μm and over 100 A was obtained in magnetic field of 3 T, perpendicular to c-axis

  15. Development of long GdBCO coated conductor using the IBAD/MPMT-PLD method

    International Nuclear Information System (INIS)

    Ibi, A; Fukushima, H; Yamada, Y; Miyata, S; Kuriki, R; Takahashi, K; Shiohara, Y

    2006-01-01

    We have developed long GdBa 2 Cu 3 O 7-X (GdBCO) coated conductors by a multi-plume and multi-turn pulsed laser deposition (MPMT-PLD) method and have successfully fabricated 32 and 60.7 m long GdBCO coated conductors with a high critical current, I c , and high deposition rate. The I c of the 32 and 60.7 m long GdBCO coated conductors were 205 A (J c = 1.36 MA cm -2 ) and 183 A (J c = 1.45 MA cm -2 ), respectively, at 77 K and 0 T. In addition, they exhibited higher I c values in a magnetic field than a YBa 2 Cu 3 O 7-X (YBCO) coated conductor: typically 20 A at 77 K and 3 T while the value for a YBCO coated conductor is 8 A. These high I c values are due to the smaller number of a-axis oriented grains in GdBCO than in YBCO. Furthermore, the speed of production of the GdBCO layer was increased to 10 m h -1 while that of the former YBCO coated conductor was 3.75 m h -1 . The material yield of long GdBCO layers using the MPMT-PLD method was about 26-28%. The high I c of GdBCO in a magnetic field, the high production rate and the high material yield are promising for applications

  16. Transport losses in single and assembled coated conductors with textured-metal substrate with reduced magnetism

    International Nuclear Information System (INIS)

    Amemiya, N.; Jiang, Z.; Li, Z.; Nakahata, M.; Kato, T.; Ueyama, M.; Kashima, N.; Nagaya, S.; Shiohara, S.

    2008-01-01

    Transport losses in a coated conductor with a textured-metal substrate with reduced magnetism were studied experimentally. The substrate is with a clad structure, and HoBCO superconductor layer is deposited on the substrate with buffer layers. The measured transport loss of a sample whose critical current is 126.0 A falls between Norris's strip value and Norris's ellipse value. The increase in the measured transport loss from Norris's strip value can be attributed to its non-uniform lateral J c distribution. The same buffered clad tape was placed under an IBAD-MOCVD coated conductor with a non-magnetic substrate, and its transport loss was measured. The comparison between the measured transport loss of this sample and that of the identical IBAD-MOCVD coated conductor without the buffered clad tape indicates that the increase in the transport loss due to this buffered clad tape is small. The transport losses of hexagonal assemblies of IBAD-MOCVD coated conductors, whose structure simulates that of superconducting power transmission cables, were also measured where the buffered clad tapes were under-lied or over-lied on the coated conductors. The increase in the transport loss of hexagonal assemblies of coated conductors due to the buffered clad tapes is at an allowable level

  17. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, AX; Khatri, N; Liu, YH; Majkic, G; Galstyan, E; Selvamanickam, V; Chen, YM; Lei, CH; Abraimov, D; Hu, XB; Jaroszynski, J; Larbalestier, D

    2015-06-01

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 K to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.

  18. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  19. Wire winding increases lifetime of oxide coated cathodes

    Science.gov (United States)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  20. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    2018-03-06

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.

  1. Development of high-temperature superconducting coated conductor by MOCVD method

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Jung, Choung Hwan

    2004-07-01

    To fabricate the second generation superconductor wire, coated conductor, we selected MOCVD (Metal organic chemical vapor deposition) method which is commercially available and whose growth rate is very high. The first buffer layer CeO 2 was successfully deposited on the Ni tape. The thick Y-stabilized ZrO 2 layer was thus inserted between two CeO 2 layers by MOCVD method. The c-axis growth of the first CeO 2 , the inserted YSZ and top CeO 2 layer was achieved by optimized the deposition condition for the three buffers. It was found that the YBCO deposition was fairly dependant on the depostion temperature, time, oxygen partial pressure, amount of the source supplied. Especially the thickness of the YBCO films was linearly dedendant on the deposition temperature and time, but current properties was not linearly dependant on the film thickness. The critical current (Ic) of the YBCO film grown on SrTiO 3 and IBAD template were over 100 A/cm-width and 50 A/cm-width at 77 K and 0 field. To establish the MOCVD process, collaboration work with several organizations was made

  2. REPARATIVE OSTEOGENESIS DURING TREATMENT OF FRACTURE UNDER TRANSOSSEOUS OSTEOSYNTHESIS AND INTRAMEDULLARY INSERTION OF WIRES WITH HYDROXYAPATITE COATING

    Directory of Open Access Journals (Sweden)

    Iurii M. Irianov, Arnold V. Popkov, Nikolay A. Kiryanov, Tatiana Iu. Karaseva, Evgenii A. Karasev

    2015-04-01

    Full Text Available Background: The problem of improving medical care for patients with the locomotor system injuries is very important especially last time. Material and Methods: Canine open comminuted tibial fractures modelled experimentally, wires with hydroxyapatite coating inserted intramedullary, osteosynthesis performed with the Ilizarov fixator. Regenerated bones investigated 14-360 days after surgery using the techniques of light microscopy, scanning and transmission electron microscopy, and X-ray electron probe microanalysis for histologic sections . Results: It has been found that a zone of active reparative osteo- and angiogenesis forms around the wires, as well as a bone sheath with the properties of osteogenesis conductor and inductor. Fracture consolidation occurs early according to the primary type without cartilaginous and connective tissue formation in bone adhesion. Presented morphological characteristics endovasal angiogenesis. Conclusion: The results of the study evidence of the positive effect of intramedullary wires with hydroxyapatite coating on the course and intensity of reparative osteogenesis during fracture healing

  3. Thermal stability analysis of YBCO-coated conductors subject to over-currents

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, E; Angurel, L A; Pelegrin, J [Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, C/Maria de Luna 3, E-50018 Zaragoza (Spain); Xie, Y Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)

    2010-02-15

    The thermal stability of superconducting YBCO-coated conductors subject to over-currents are analysed. We have studied the effect of DC and AC over-current pulses in Cu-stabilized and non-stabilized coated conductors by measuring the electric field and temperature profiles of these conductors immersed in liquid nitrogen. Current pulses of short duration of about 90 ms and long duration of a few seconds were applied to the samples. Three different cooling regimes of liquid nitrogen-convection, nucleate boiling and film boiling-were observed and their influence on the recovery time of superconductivity in the coated conductors after the over-current pulses has been analysed. We have studied the recovery behaviour under two different conditions, in which the current was set to zero and to the operating current after the current pulses. These experiments simulated the conditions during an over-current situation in different electric power applications with special attention given to the behaviour of these coated conductors acting as in-fault current limiters.

  4. Thermal stability analysis of YBCO-coated conductors subject to over-currents

    International Nuclear Information System (INIS)

    MartInez, E; Angurel, L A; Pelegrin, J; Xie, Y Y; Selvamanickam, V

    2010-01-01

    The thermal stability of superconducting YBCO-coated conductors subject to over-currents are analysed. We have studied the effect of DC and AC over-current pulses in Cu-stabilized and non-stabilized coated conductors by measuring the electric field and temperature profiles of these conductors immersed in liquid nitrogen. Current pulses of short duration of about 90 ms and long duration of a few seconds were applied to the samples. Three different cooling regimes of liquid nitrogen-convection, nucleate boiling and film boiling-were observed and their influence on the recovery time of superconductivity in the coated conductors after the over-current pulses has been analysed. We have studied the recovery behaviour under two different conditions, in which the current was set to zero and to the operating current after the current pulses. These experiments simulated the conditions during an over-current situation in different electric power applications with special attention given to the behaviour of these coated conductors acting as in-fault current limiters.

  5. Raman Spectroscopic Studies of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Choi, Mi Kyeung; Mnh, Nguyen Van; Bae, J. S.; Jo, William; Yang, In Sang; Ko, Rock Kil; Ha, Hong Soo; Park, Chan

    2005-01-01

    We present results of Raman spectroscopic studies of superconducting YBa 2 Cu 3 O 7 (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  6. Test of 60 kA coated conductor cable prototypes for fusion magnets

    Science.gov (United States)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  7. Inkjet printing of multifilamentary YBCO for low AC loss coated conductors

    International Nuclear Information System (INIS)

    Hopkins, S C; Joseph, D; Mitchell-Williams, T B; Glowacki, B A; Calleja, A; Vlad, V R; Vilardell, M; Ricart, S; Granados, X; Puig, T; Obradors, X; Usoskin, A; Falter, M; Bäcker, M

    2014-01-01

    Considerable progress has been made with the development of REBCO coated conductors in recent years, and high performance conductors are available commercially. For many applications, however, the cost remains prohibitive, and AC losses discourage their selection for higher frequency applications. Chemical solution deposition (CSD) methods are attractive for low-cost, scalable preparation of buffer and superconductor layers, and in many respects inkjet printing is the method of choice, permitting non-contact deposition with minimal materials wastage and excellent control of coating thickness. Highly textured coatings of YBCO and Gd-doped CeO 2 have previously been reported on buffered metal substrates. Inkjet printing also introduces the possibility of patterning - directly depositing two and three dimensional structures without subtractive processing - offering a low-cost route to coated conductors with reduced AC losses. In this contribution, the inkjet deposition of superconducting YBCO tracks is reported on industrially relevant buffered metal substrates both by direct printing and an inverse patterning approach. In the latter approach, ceria tracks were printed reported, which are a candidate both for resistive filament spacers and buffer layers. TFA-based precursor solutions have been printed on SS/ABAD-YSZ/CeO 2 and Ni-W/LZO/CeO 2 RABiTS substrates, and the resulting multifilamentary samples characterised by microscopy and scanning Hall probe measurements. The prospects for future inkjet-printed low AC loss coated conductors are discussed, including control of interfilamentary resistivity and bridging, transposed filamentary structures and stabilisation material.

  8. AC magnetization loss characteristics of HTS coated-conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Liu, M.; Odaka, S.; Miyagi, D.; Ohmatsu, K.

    2007-01-01

    AC magnetization loss characteristics of an HTS coated tape conductor with magnetic substrate subjected to an external AC magnetic field were investigated. The external magnetic field was perpendicular or parallel to the wide face of the tape conductor. Magnetization losses in the conductor and in the magnetic substrate itself without the superconductor layer, were measured by electric and calorimetric methods. The influence of the magnetic property of the substrate was strongly dependent on the direction of the external magnetic field. When the external magnetic field was perpendicular, magnetic property of the substrate did not affect the magnetization loss characteristics. This result suggests that the magnetization losses can be reduced by subdivisions of the superconducting layers even in the case of magnetic substrate conductors. When the external magnetic field was parallel, the magnetization losses were dominated by the losses in the magnetic substrate. Therefore, to reduce the magnetization losses in this case, reduction of magnetization losses in the substrate is necessary

  9. Long length coated conductor fabrication by inclined substrate deposition and evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Prusseit, W [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Hoffmann, C [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Nemetschek, R [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Sigl, G [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Handke, J [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Luemkemann, A [Technical University Munich, James- Franck-Str. 1, 85748 Garching (Germany); Kinder, H [Technical University Munich, James- Franck-Str. 1, 85748 Garching (Germany)

    2006-06-01

    The commercial development of coated conductors is rapidly progressing. As a result we present an economic route to produce second generation HTS tape from the initial substrate preparation to the final metal coating. The most important and technically challenging steps are the deposition of an oriented buffer layer and the superconductor film in a reel-to-reel configuration. New evaporation techniques have been developed to enable reliable, high rate tape coating. Highly oriented MgO - buffer layers are realized by inclined substrate deposition (ISD) and DyBCO is deposited by simple e-gun evaporation yielding critical currents beyond 200 A/cm. Coated conductors have been fabricated up to 40 m length and are currently tested in a variety of applications.

  10. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin, Dr. [American Superconductor Corporation; Duckworth, Robert, Dr. [Oak Ridge National Laboratory

    2009-10-01

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2G template strips.

  11. Characterization and properties of an advanced composite substrate for YBCO-coated conductors

    DEFF Research Database (Denmark)

    Gao, M.; Suo, H.; Zhao, Y.

    2010-01-01

    Thin, biaxially textured Ni5W/Ni12W/Ni5W composite substrates for coated conductor applications have been fabricated. The particularity of this three-layer composite configuration resides in the elemental diffusion between the outer layer and the core layer. Due to the migration of elemental W...

  12. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...

  13. Progress in R and D of coated conductor in M-PACC project

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Koizumi, T.; Kimura, K. [SWCC Showa Cable Systems Co., Ltd., Kanagawa (Japan); Kato, T. [Japan Fine Ceramics Center, Aichi (Japan); Kiss, T. [Kyushu University, Fukuoka (Japan); Izumi, T.; Ibi, A.; Nakaoka, K. [Superconductivity Research Laboratory, International Superconductivity Technology, Kanagawa (Japan); and others

    2014-06-15

    The five-year national project in Japan for R and D of coated conductors and applications, named as the Materials and Power Applications of Coated Conductors (M-PACC) project, was finished at the end of FY2013. The project consists of four sub-themes as cable, transformer, SMES and coated conductors. In the theme of coated conductors, the fabrication process had been developed to satisfy the requirements from the applications such as in-field I{sub c} performance, low AC loss in the long tapes etc. Through the project, the remarkable progress was achieved as follows; a high in-field minimum I-c value over 54A/cm-width under 3T at 77K was realized in a 200m long EuBCO tape with artificial pinning centers of BaHfO{sub 3} by the pulsed laser deposition (PLD) technique on the IBAD template. On the other hand, the AC loss reduction was confirmed in the tapes fabricated by both PLD and the metal organic deposition (MOD) techniques by scribing 100 m tapes into 10-filaments. Additionally, the mechanism of the delamination phenomenon was systematically investigated and the strength was improved by eliminating the origins of the weak points in the films. Through the development, all targeted goals were accomplished and the several results were appreciated as a world champion data.

  14. Fabrication of the Textured Ni-9.3at.%W Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Suo, H. L.; Grivel, Jean-Claude

    2011-01-01

    It is difficult to obtain a sharp cube texture in the Ni-9.3at.% W substrate used for coated conductors due to its low stacking fault energy. In this paper, the traditional cold rolling procedure was optimized by introducing an intermediate recovery annealing. The deformation texture has been imp...

  15. Development of cube textured Ni-W alloy substrates used for coated conductors

    DEFF Research Database (Denmark)

    Suo, Hongli; Ma, Lin; Gao, Mangmang

    2014-01-01

    It is considered as a challenge for RABiTS route to get cube textured Ni-W alloy substrates with high mechanical and magnetic properties for coated conductors. The works of our group in recent years are summarized about different Ni-W substrates with high W content and composite tapes made by RABiTS...

  16. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    concentrations of copper, increasing the Cu-content to 10 at% and 15 at% leads to increased frequencies of annealing twins in the cube-textured matrix. It is suggested that the (Ni 95W5)100-xCux alloy with x=5 at% Cu may be a good candidate material for using as a substrate for coated conductors. © 2012 Elsevier...

  17. Measurement of local critical currents in TFA-MOD processed coated conductors by use of scanning Hall-probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Kawaguchi, T.; Inoue, M.; Kiss, T.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    We have investigated 2-dimensional distribution of critical current density. We have measured TFA-MOD processed YBCO coated conductor. We used scanning Hall-probe microscopy. These provided information is useful for fabrication process of coated conductor. We have carried out 2-dimensional (2D) measurement of local critical current in a Trifluoroacetates-Metal Organic Deposition (TFA-MOD) processed YBCO coated conductor using scanning Hall-probe microscopy. Recently, remarkable R and D accomplishments on the fabrication processes of coated conductors have been conducted extensively and reported. The TFA-MOD process has been expected as an attractive process to produce coated conductors with high performance at a low production cost due to a simple process using non-vacuum equipments. On the other hand, enhancement of critical currents and homogenization of the critical current distribution in the coated conductors are definitely very important for practical applications. According to our measurements, we can detect positions and spatial distribution of defects in the conductor. This kind of information will be very helpful for the improvement of the TFA-MOD process and for the design of the conductor intended for practical electric power device applications.

  18. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)], E-mail: osami-t@ynu.ac.jp; Sekizawa, S.; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Miyagi, D. [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)

    2007-10-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates.

  19. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Sekizawa, S.; Alamgir, A.K.M.; Miyagi, D.

    2007-01-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates

  20. HTS current lead units prepared by the TFA-MOD processed YBCO coated conductors

    International Nuclear Information System (INIS)

    Shiohara, K.; Sakai, S.; Ishii, Y.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hasegawa, T.; Tamura, H.; Mito, T.

    2010-01-01

    Two superconducting current lead units have been prepared using ten coated conductors of the Tri-Fluoro-Acetate - Metal Organic Deposition (TFA-MOD) processed Y 1 Ba 2 Cu 3 O 7-δ (YBCO) coated conductors with critical current (I c ) of about 170 A at 77 K in self-field. The coated conductors are 5 mm in width, 190 mm in length and about 120 μm in overall thickness. The 1.5 μm thick superconducting YBCO layer was synthesized through the TFA-MOD process on Hastelloy TM C-276 substrate tape with two buffer oxide layers of Gd 2 Zr 2 O 7 and CeO 2 . The five YBCO coated conductors are attached on a 1 mm thick Glass Fiber Reinforced Plastics (GFRP) board and soldered to Cu caps at the both ends. We prepared two 500 A-class current lead units. The DC transport current of 800 A was stably applied at 77 K without any voltage generation in all coated conductors. The voltage between both Cu caps linearly increased with increasing the applied current, and was about 350 μV at 500 A in both current lead units. According to the estimated values of the heat leakage from 77 K to 4.2 K, the heat leakage for the current lead unit was 46.5 mW. We successfully attained reduction of the heat leakage because of improvement of the transport current performance (I c ), a thinner Ag layer of YBCO coated conductor and usage of the GFRP board for reinforcement instead of a stainless steel board used in the previous study. The DC transport current of 1400 A was stably applied when the two current lead units were joined in parallel. The sum of the heat leakages from 77 K to 4.2 K for the combined the current lead units was 93 mW. In comparison with the conventional Cu current leads by gas-cooling, it could be noted that the heat leakage of the current lead is about one order of magnitude smaller than that of the Cu current lead.

  1. Status and prospects on development of yttrium-based high-temperature superconducting coated conductor

    International Nuclear Information System (INIS)

    Izumi, Teruo; Yanagi, Nagato

    2017-01-01

    Development of a large-sized large-current conductor using a high-temperature superconducting wire rod based on copper oxide has been started worldwide for the purpose of applying it as an option of a magnet for a nuclear fusion prototype reactor. There is yttrium-based thin film wire rod as a promising candidate. Japan is leading the development of this wire rod for many years, aiming to apply it to power equipment and the like. This paper explained the history of wire rod development, basic superconducting properties and manufacturing method, and latest achievements, and overviewed the feasibility of application to nuclear fusion reactor magnets. At present, the use of niobium-based low-temperature superconducting wire rod that is used in ITER is the basic idea. On the other hand, the development of wire rod using a copper oxide type high-temperature superconductor (HTS) has also been started. HTS wire rod is evaluated as suitable for application to nuclear fusion magnets due to its superior critical current characteristics and high mechanical rigidity up to high magnetic fields at high temperatures of yttrium. As current development progress, there are development of high-quality wire rod in the magnetic field and development of low AC loss wire rod. As future prospects, cost reduction due to mass production and improvement of yield, and investigation of low-resistance connection technology are being studied. The remaining future challenges of yttrium-based HTS are improvement of the anisotropy, influence on neutron irradiation, and problem of activation. (A.O.)

  2. Laser fabrication nanocrystalline coatings using simultaneous powders/wire feed

    Science.gov (United States)

    Li, Jianing; Zhai, Tongguang; Zhang, Yuanbin; Shan, Feihu; Liu, Peng; Ren, Guocheng

    2016-07-01

    Laser melting deposition (LMD) fabrication is used to investigate feasibilty of simultaneously feeding TC17 wire and the Stellite 20-Si3N4-TiC-Sb mixed powders in order to increase the utilization ratio of materials and also quality of LMD composite coatings on the TA1 substrate. SEM images indicated that such LMD coating with metallurgical joint to substrate was formed free of the obvious defects. Lots of the ultrafine nanocrystals (UNs) were produced, which distributed uniformly in some coating matrix location, retarding growth of the ceramics in a certain extent; UNs were intertwined with amorphous, leading the yarn-shape materials to be produced. Compared with substrate, an improvement of wear resistance was achieved for such LMD coating.

  3. Activity in SRL Nagoya Coated Conductor Center for YBCO Coated Conductor by IBAD+ PLD Method -Long, high Ic conductor and a new bamboo-like nanostructure for efficient pinning

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Ibi, Akira; Fukushima, Hiroyuki; Kuriki, Reiji; Takahashi, Kazuhiro; Kobayashi, Hiroyoshi; Ishida, Satoru; Konishi, Masaya; Miyata, Seiki; Watanabe, Tomonori; Kato, Takeharu; Hirayama, Tsukasa; Shiohara, Yuh

    2006-01-01

    In SRL-Nagoya Coated Conductor Center (NCCC), long buffered substrate tapes and YBCO coated conductors have been successfully fabricated by using ion-beam assisted deposition (IBAD) and pulsed laser deposition (PLD) methods. For the buffered tape, the PLD-CeO2 method, what we call the 'Self-Epitaxial' method, realized the high degree of in-plane texturing around 4 degrees along the length of 220 m. For YBCO deposition, we have recently introduced new reel-to-reel PLD equipment with a multi-plume and multi-turn deposition system (MPMT PLD). This system succeeded in fabricating a long coated conductor with a high critical current, Ic, of 245 A and length of 212 m. Ic xL (length) reached the world record of 51940 Am. Furthermore, the introduction of artificial pinning center and RE 123 materials were also studied for improving flux pinning and enhancing Ic. A new columnar structure of the 'bamboo structure' (BaZrO3/Y123 layer-stacked structure) was found in Y123+YSZ sample. This columnar structure and the stacking faults in Gd123 were found to be effective for enhancing pinning properties. Using these techniques, we have succeeded in increasing Ic at 0 T to 480 A/cm and also enhancing Ic in a magnetic field

  4. Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors

    International Nuclear Information System (INIS)

    Takeuchi, Katsutoku; Amemiya, Naoyuki; Nakamura, Taketsune; Maruyama, Osamu; Ohkuma, Takeshi

    2011-01-01

    Since the superconductor layers of YBCO-coated conductors are very thin, the ac loss of coated conductors is dominated by the magnetic flux density normal to the conductor face. In cables, most of the normal magnetic flux component is generated near gaps between coated conductors. Although the effects of gaps are significant, there are few reports on the electromagnetic field analysis of cables with spiral structures carried out while taking the gap effect into consideration. In a finitely long cable with a spiral structure, the electromagnetic field is naturally periodic along the cable axis. In a two-layer cable, the simplest period along the cable axis is the least common multiple of the spiral pitches in the inner and outer layers. However, we verified that there is a shorter period, and the same electromagnetic field distribution appears in all conductors of the same layer. Using these periodicities, we developed a three-dimensional model for the analysis of two-layer cables with a spiral structure. Current distributions of cables were analyzed using this model, and ac losses were calculated. In addition, these results were compared with ac losses calculated by two-dimensional analysis performed on the cross section of a cable. It was verified that the ac loss in a cable is correctly calculated by the 2D model when the spiral pitch is long enough. However, in the case of a tightly twisted cable, the ac losses calculated by the 2D model include some errors caused by an approximation in which the spiral structure is ignored.

  5. Reversible oxidation and critical current of YBa2Cu3Ox coated conductors

    International Nuclear Information System (INIS)

    Claus, H.; Uprety, K.K.; Ma, B.; Paulikas, A.P.; Vlasko-Vlasov, V.K.; Welp, U.; Veal, B.W.; Gray, K.E.

    2004-01-01

    We were able to vary the oxygen concentration of a YBCO coated-conductor sample from the under-doped to the over-doped regime. This was achieved by secondary oxygenation treatments at temperatures between 250 deg. C and 500 deg. C employing a novel oxygenation scheme. The YBCO-coated conductor was fabricated by the inclined substrate deposition method. Superconducting transition temperature and critical current as function of temperature and magnetic field were determined by a contact-free magnetization technique on a ring sample. It is observed that for temperatures at and below 77 K, the maximum critical current is obtained in the most over-doped state where the transition temperature is significantly depressed

  6. Study on CexLa1-xO2 Buffer Layer used in Coated Conductors by Chemical Solution Method

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, Hongli; Grivel, Jean-Claude

    2009-01-01

    Developing multi-functional single buffer layer is one of the most important challenges for simplification of coated conductors configuration. Ladoped CeO2 films were prepared by chemical solution method. And surface morphology and texture quality of the La-doped CeO2 films were investigated...... method. It suggects that Ce0.9La0.1O2 film prepared by chemical solution route have a promising prospect for the simplification of coated conductors configuration....

  7. Reversible axial-strain effect in Y-Ba-Cu-O coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Cheggour, N [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Ekin, J W [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Thieme, C L H [American Superconductor Corporation, Westborough, MA 01581 (United States); Xie, Y-Y [SuperPower Incorporated, Schenectady, NY 12304 (United States); Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States); Feenstra, R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2005-12-15

    The recently discovered reversible strain effect in Y-Ba-Cu-O (YBCO) coated conductors contrasts with the general understanding that the effect of strain on the critical-current density J{sub c} in practical high-temperature superconductors is determined only by crack formation in the ceramic component. Instead of having a constant J{sub c} as a function of strain before an irreversible drop when cracks form in the superconductor, J{sub c} in YBCO coated conductors can decrease or increase reversibly with strain over a significant strain range up to an irreversible strain limit. This reversible effect is present in samples fabricated either with rolling-assisted biaxially textured Ni-W substrates or with ion-beam-assisted deposition on Hastalloy substrates. The reversibility of J{sub c} with strain is observed for thin as well as thick YBCO films, and at two very different temperatures (76 and 4 K). The reversible effect is dependent on temperature and magnetic field, thus indicating its intrinsic nature. We also report an enhancement of the irreversible strain limit {epsilon}{sub irr} where the reversible strain effect ends and YBCO cracking starts. The value of {epsilon}{sub irr} increases from about 0.4% to more than 0.5% when YBCO coated conductors are fabricated with an additional Cu protection layer.

  8. Measurement of transverse Jc profiles of coated conductors using a magnetic knife of permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Haenisch, J [Los Alamos National Laboratory; Mueller, F M [Los Alamos National Laboratory; Ashworth, S P [Los Alamos National Laboratory; Coulter, J Y [Los Alamos National Laboratory; Matias, Vlad [Los Alamos National Laboratory

    2008-01-01

    The transverse J{sub c} distribution in YBCO coated conductors was measured non-destructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of J{sub c} in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 {micro}m, and the J{sub c} resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse J{sub c} distribution in the sample. The J{sub c} profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straight-forward and inexpensive design, this J{sub c} imaging technique can be a powerful tool for quality control in coated-conductor production.

  9. Reversible axial-strain effect in Y-Ba-Cu-O coated conductors

    International Nuclear Information System (INIS)

    Cheggour, N; Ekin, J W; Thieme, C L H; Xie, Y-Y; Selvamanickam, V; Feenstra, R

    2005-01-01

    The recently discovered reversible strain effect in Y-Ba-Cu-O (YBCO) coated conductors contrasts with the general understanding that the effect of strain on the critical-current density J c in practical high-temperature superconductors is determined only by crack formation in the ceramic component. Instead of having a constant J c as a function of strain before an irreversible drop when cracks form in the superconductor, J c in YBCO coated conductors can decrease or increase reversibly with strain over a significant strain range up to an irreversible strain limit. This reversible effect is present in samples fabricated either with rolling-assisted biaxially textured Ni-W substrates or with ion-beam-assisted deposition on Hastalloy substrates. The reversibility of J c with strain is observed for thin as well as thick YBCO films, and at two very different temperatures (76 and 4 K). The reversible effect is dependent on temperature and magnetic field, thus indicating its intrinsic nature. We also report an enhancement of the irreversible strain limit ε irr where the reversible strain effect ends and YBCO cracking starts. The value of ε irr increases from about 0.4% to more than 0.5% when YBCO coated conductors are fabricated with an additional Cu protection layer

  10. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    Science.gov (United States)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  11. Investigation and optimization of YBa2Cu3O7-δ grain boundaries and coated conductors

    International Nuclear Information System (INIS)

    Held, Rainer Robert Martin

    2010-01-01

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  12. Fracture and flaking off behavior of coated layer of DyBCO coated conductor under applied tensile strain

    International Nuclear Information System (INIS)

    Arai, T.; Shin, J.K.; Matsubayashi, H.; Ochiai, S.; Okuda, H.; Osamura, K.; Prusseit, W.

    2009-01-01

    The tensile behavior of the DyBa 2 Cu 3 O 7-δ (DyBCO) coated conductor with MgO buffer layer deposited on the Hastelloy C-276 substrate by inclined substrate deposition (ISD) was studied. The tensile stress-strain curve showed a flat region, characterized by the discontinuous yielding of the substrate due to the Lueders band extension from the gripped portions of the sample. In the area where the Lueders band had passed, the coating layer showed severe multiple transverse cracking due to the localized plastic deformation of the substrate. The flaking off of the coating layers took place at high applied strain, due to the buckling fracture of the coated layers in the sample width direction, accompanied by the interfacial debonding.

  13. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  14. Inducted circulation current in a conductor consisting of strands coated with a high resistive layer

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Kato, Takashi; Tsuji, Hiroshi; Shimamoto, Susumu

    2000-01-01

    Nonuniform current distribution is generated in a conductor consisting of strands coated by a high resistive layer, such as chromium plating, as a result of superimposition of transport and induce circulation currents. The characteristics of the induced circulation current are analytically studied by using a distributed model circuit. The parameters mostly used in this calculation are those of US-DPC coil, which at first exhibited instability and so-called ramp rate limitation (RRL) because of current imbalance in the conductor consisting of chrome-plated strands. Thus the conductance along strands and the inductance of unit length loop and length of the conductor are mostly assumed to be 10 kS/m, 0.5 μH/m and 150 m, respectively. The analysis results indicate that the induced circulation current can be classified into the boundary and interstrand-induce circulation currents hereafter referred to as BICC an IICC. BICC is induced only across the joint at the ends of the conductor, resulting in a constant along the conductor axis, when the total leakage magnetic flux of the loop is not zero. Its decay time constant is quite long, more than a few hours. In contrast, when the leakage magnetic flux distributes along the conductor axis, IICC is induced among strands in the conductor to eliminate this flux. Since the leakage magnetic flux normally becomes largest where the magnetic field is highest, it becomes larger where the time variation of the magnetic field is larger. Its decay time contrast is much less than that of BICC. If the leakage magnetic flux linearly changes along the US-DPC conductor, it is evaluated to be about 10 s. This IICC therefore becomes dominate in a pulse charge, whose ramping tine is less than 10 s. Moreover, it is found that the variation of the leakage a magnetic flux with the relatively long cycle, such as more than a few 10-meter lengths, causes IICC with a decay-time constant of more than several hundred milliseconds. Such and IICC can

  15. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    Izen, Joseph; The ATLAS collaboration; Kurth, Matthew Glenn

    2015-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle-physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent, source of tracking detector failure Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorenz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of PU-coated wire bonds and their resistance to periodic Lorenz forces will be described.

  16. Characterization of long-length, MOCVD-derived REBCO coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. J.; Maroni, V. A.; Hiller, J. M.; Koritala, R. E.; Chen, Y.; Reeves Black, J. L.; Selvamanickam, V.; SuperPower, Inc.; Development Dimensions International, Inc.

    2009-06-01

    A leading approach to the fabrication of long-length, high-performance REBa{sub 2}Cu{sub 3}O{sub 7} (REBCO) coated conductor is by metal-organic chemical vapor deposition (MOCVD) of REBCO on buffered templates. Templates are produced by ion beam assisted deposition of textured MgO onto polished metal substrates. The overall performance of MOCVD coated conductors achieved to date is impressive, but further improvement is desired. We have used a coordinated set of characterization techniques to identify the underlying causes for critical current (Ic) performance variations in long-length MOCVD conductors. Using electron microscopy and Raman spectroscopy, we studied tape specimens from specially designed experiments performed in SuperPower's MOCVD manufacturing equipment with its six-track ldquohelixrdquo tape path. We find that in multi-pass depositions used to produce thicker REBCO films, the REBCO phase uniformity and texture quality in the first pass play key roles in pass-to-pass microstructure evolution, with nucleation of second phase particles in the first layer promoting misoriented grains that propagate through subsequent layers. These misoriented grains, many growing in close proximity with second phase particles, present current-blocking obstacles that limit Ic performance. Our results show that achieving more uniform deposition in the very first deposited layer plays a critical role that in turn leads to reduced misoriented grain content and REBCO lattice disorder in the second and subsequent layers of the REBCO film.

  17. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  18. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    CERN Document Server

    Senatore, Carmine; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer to the others. In the present work we have examined the critical surface for the current density, Jc(T,B,θ ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd. (Japan), SuNAM Co. Ltd. (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic field up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0deg , 45deg and 90deg , in order to probe the angular anisotropy of Jc. In spite of the large variability of CCs performance, ...

  19. Recent progress in methods for non-invasive measurements of local strain in practical superconducting wires and conductors using quantum beam techniques

    International Nuclear Information System (INIS)

    Osamura, Kozo; Machiya, Shutaro; Tsuchiya, Yoshinori; Suzuki, Hiroshi; Awaji, Satoshi; Takahashi, Kohki; Oguro, Hidetoshi; Harjo, Stefanus; Hemmi, Tsutomu; Nakamoto, Tatsushi; Sugano, Michinaka; Jin, Xinzhe; Kajiwara, Kentaro

    2014-01-01

    Practical superconducting wires are designed with a composite structure to meet the desired engineering characteristics by expert selection of materials and design of the architecture. In practice, the local strain exerted on the superconducting component influences the electromagnetic properties. Here, recent progress in methods used to measure the local strain in practical superconducting wires and conductors using quantum beam techniques is introduced. Recent topics on the strain dependence of critical current are reviewed for three major practical wires: ITER-Nb 3 Sn strand, DI-BSCCO wires and REBCO tapes. (author)

  20. AC magnetization loss characteristics of HTS striated coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O; Alamgir, A K M; Sekizawa, S; Miyagi, D

    2008-01-01

    AC magnetization losses in subdivided CC (Coated Conductor) with magnetic substrate were experimentally investigated comparing with those in subdivided CC with non-magnetic substrate for an AC external magnetic field perpendicular to the wide face of the CC. It is well known that the subdivision is effective to reduce magnetization losses in CC with non-magnetic substrate. The experimental results show that the subdivision is also effective for the CC with magnetic substrate and that the level of reduction of the losses by the subdivisions is almost the same as that of non-magnetic substrate CCs. It is concluded from the experimental results that the magnetic property of the substrate does not affect the magnetization losses in the subdivided conductor in the range of the experiment where the amplitude of the AC external magnetic field is 0 ∼ 0.1 T and the frequency is 16 ∼ 86 Hz

  1. AC magnetization loss characteristics of HTS striated coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O; Alamgir, A K M; Sekizawa, S [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501 (Japan); Miyagi, D [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)], E-mail: Osami-t@ynu.ac.jp

    2008-02-01

    AC magnetization losses in subdivided CC (Coated Conductor) with magnetic substrate were experimentally investigated comparing with those in subdivided CC with non-magnetic substrate for an AC external magnetic field perpendicular to the wide face of the CC. It is well known that the subdivision is effective to reduce magnetization losses in CC with non-magnetic substrate. The experimental results show that the subdivision is also effective for the CC with magnetic substrate and that the level of reduction of the losses by the subdivisions is almost the same as that of non-magnetic substrate CCs. It is concluded from the experimental results that the magnetic property of the substrate does not affect the magnetization losses in the subdivided conductor in the range of the experiment where the amplitude of the AC external magnetic field is 0 {approx} 0.1 T and the frequency is 16 {approx} 86 Hz.

  2. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others

    1996-10-01

    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  3. Detection of smaller J{sub c} region and damage in YBCO coated conductors by using permanent magnet method

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, K., E-mail: tey88221@st.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Saito, A. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Takano, Y.; Suzuki, T. [Tohoku Seiki Industries, Ltd., 3-1246, Tachiyagawa, Yamagata 990-2251 (Japan); Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2011-11-15

    We developed a non-destructive method for measuring the critical current density (J{sub c}) in YBCO-coated conductors by using a permanent magnet (Sm{sub 2}Co{sub 17}). J{sub c} could be determined from the repulsive force (F{sub r}) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J{sub c} distribution. The measured F{sub r} when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J{sub c}) in YBCO-coated conductors by using a permanent magnet (Sm{sub 2}Co{sub 17}). J{sub c} could be determined from the repulsive force (F{sub r}) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J{sub c} region in the coated conductor by using the system. The J{sub c} distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J{sub c} distribution. The surface of the coated conductors was cut by using a knife. The measured F{sub r} when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J{sub c} measurement technique will be useful for detecting smaller J{sub c} regions and defects in coated conductors.

  4. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and... exposed to lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet...

  5. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and... leads underground shall be equipped with suitable lightning arresters of approved type within 100 feet...

  6. Mode I type delamination fracture toughness of YBCO coated conductor with additional Cu layer

    International Nuclear Information System (INIS)

    Miyazato, T.; Hojo, M.; Sugano, M.; Adachi, T.; Inoue, Y.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2011-01-01

    A fracture toughness test method was developed for a YBCO coated conductor with an additional Cu layer. Mode I type tests were carried out using double cantilever beam (DCB) specimens. Delamination propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness for YBCO was about 10 J/m 2 . That for Ag/YBCO interface was about 100 J/m 2 . Although interlaminar fracture at a YBa 2 Cu 3 O 7-δ (YBCO)/CeO 2 interface was reported for YBCO coated conductors, this has not yet been investigated by a fracture mechanical approach. In the present study, we developed a mode I type fracture toughness test method for a YBCO coated conductor with an additional Cu layer using double cantilever beam (DCB) specimens. Fracture mechanism was investigated by microscopic observation by a scanning electron microscope (SEM), together with composition analysis by an energy dispersive X-ray spectroscope (EDS). A pre-crack introduced at the YBCO/CeO 2 interface deviated from the interface, and propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness, G R , for YBCO and the Ag/YBCO interface was evaluated to be 7-10 J/m 2 and 80-120 J/m 2 , respectively. The complex stress intensity factor ratio, K 2 /K 1 , at YBCO/CeO 2 interface was evaluated to be -0.19, and this ratio controlled the formation of microcracks in the YBCO layer. The main crack propagated into the YBCO layer accompanied with the formation of microcracks.

  7. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  8. Influence of superconductor film composition on adhesion strength of coated conductors

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2016-01-01

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare-earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples. (paper)

  9. Two level undercut-profile substrate for filamentary YBa2Cu3O7 coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Solovyov, M.; Gömöry, Fedor

    2015-01-01

    A novel substrate design is presented for scalable industrial production of filamentary coated conductors (CCs). The new substrate, called ‘two level undercut-profile substrate (2LUPS)’, has two levels of plateaus connected by walls with an undercut profile. The undercuts are made to produce...... a shading effect during subsequent deposition of layers, thereby creating gaps in the superconducting layer deposited on the curved walls between the two levels. It is demonstrated that such 2LUPS-based CCs can be produced in a large-scale production system using standard deposition processes...

  10. Fabrication of long REBCO coated conductors by PLD process in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yijie, E-mail: yjli@sjtu.edu.cn [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China); Shanghai Superconductor Technology Corporation, Ltd, 28 Jiang Chuan Road, Shanghai 200240 (China); Liu, Linfei; Wu, Xiang [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China)

    2015-11-15

    Highlights: • SJTU fabricated 100 m long class CC tapes with over 300 A/cm on RABiTS tapes in 2011. • 100 m long CC tapes with 500 A/cm have been routinely fabricated on IBAD-MgO tapes. • The process optimization for kilometer long coated conductor tapes is underway. - Abstract: In China, the First National Key Project on CC Program started in 2009, which was focused on developing hundred meter long class CC tapes based on PLD/RABiTS processes. In this project, SJTU mainly worked on all of functional layer deposition process development. Northwest Institute for Non-ferrous Metal Research worked on RABiTS tape fabrication. At the end of the project in 2011, SJTU successfully fabricated hundred meter long CC tapes with over 300 A/cm (at 77 K, self field) on RABiTS tapes. To develop high performance CC tapes by PLD/IBAD-MgO processes, a pilot CC fabrication line was set up at Shanghai Superconductor Technology Corporation, Ltd. in 2013. High quality long REBCO coated conductors have been successfully fabricated on flexible polycrystalline metal tapes by PLD plus magnetron sputter and IBAD processes. Under optimized conditions, the IBAD-MgO layers showed pure (0 0 1) orientation and excellent in-plane texture. The in-plane phi-scan rocking curve is 4–6 degrees. AFM observation showed MgO layer had very smooth surface. The RMS is less 1 nm. On the textured MgO layer, sputter deposited single cerium oxide cap-layer showed pure (0 0 1) orientation and excellent in-plane texture of 4–6 degree. Reel-to-reel PLD process with high deposition rate was already scaled up to 100 m/h tape speed. Hundred meters long coated conductor tapes with over 500 A/cm performance have been routinely fabricated. And now, the process optimization for kilometer long coated conductor tapes is underway.

  11. Strain analysis of I-c(epsilon) characteristic of YBCO coated conductor measured by a Walters spring

    OpenAIRE

    Sugano, M; Choi, S; Miyazoe, A; Miyamatsu, K; Ando, T; Itoh, K; Kiyoshi, T; Wada, H; Selvamanickam, V

    2008-01-01

    lc-strain characteristic of YBCO coated conductor was measured using a Walters spring (WASP). In this technique, additional bending and thermal strains induced to the YBCO layer should be considered. In order to produce different initial bending strain to the YBCO layer, the conductor was wound around the springs with different diameters and in the different bending directions. The clear evidence was obtained that -strain curves using a WASP strongly depend on the initial bending strain state...

  12. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  13. Conductores recubiertos

    Directory of Open Access Journals (Sweden)

    P. Garcés

    2008-07-01

    Full Text Available Since the 1960s, Nb–Ti, exhibiting a superconducting transition temperature Tc of 9K, and Nb3Sn, with a Tc of 18K have been the materials of choice for superconducting applications. The prospects for the future changed dramatically with the discovery of ceramic high temperature superconductors exhibiting Tc values well above the boiling temperature of liquid nitrogen (77K. These materials are now widely considered for large power applications, electronics and magnets as in microelectronics. The first case corresponding power transmission wires, motors, generators, fault current limiters, transformers, etc. and technology related small scale manufacturing SQUID superconductors. Nevertheless, the fabrication of useful conductors out of these layered cuprates encountered some problems such as chemical and structural purity, stability, oxygen stoichiometric and weak links limiting current carrying capacity. However, despite these difficulties a first generation of silver sheathed composites based on (Bi,PbSrCaCuO (solving the problem of inherent fragility of these materials has already been commercialized. It is now a widespread view that superconducting wires with high performance under strong magnetic fields and at elevated temperatures above liquid nitrogen, will need to be realized using the (REBaCuO (RE = rare earth materials. Chemical deposition techniques (CVD of thick films, appear as the most suitable for this purpose, so the study of various chemical deposition techniques that allow to grow superconducting films and buffer layers with the right texture to produce a coated conductor Proper alignment and high current carrying capacity (∼ 1 MA/cm2 are now booming.

  14. Progress towards all-chemical superconducting YBa{sub 2}Cu{sub 3}O{sub 7}-coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Obradors, X [Institut de Ciencia de Materials de Barcelona, CSIC Campus de la UAB, 08193 Bellaterra (Spain); Puig, T [Institut de Ciencia de Materials de Barcelona, CSIC Campus de la UAB, 08193 Bellaterra (Spain); Pomar, A [Institut de Ciencia de Materials de Barcelona, CSIC Campus de la UAB, 08193 Bellaterra (Spain)

    2006-03-15

    Chemical solution deposition (CSD) has recently emerged as a very competitive technique for obtaining epitaxial films of high quality with controlled nanostructure. In particular, the all-CSD approach is considered to be one of the most promising approaches for cost-effective production of second-generation superconducting wires. The trifluoroacetate (TFA) route is a very versatile route for achieving epitaxial YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) layers with high critical currents. In this work, recent advances towards improvement of the performance of several conductor architectures based on the YBCO TFA process will be presented. We show that new improved anhydrous TFA precursors allow a significant shortening of the pyrolysis time ({approx}1.5 h), and we have increased the total film thickness in a single deposition using polymeric additives. On the other hand, further understanding of the YBCO nucleation and growth process has allowed us to obtain a controlled microstructure and high critical currents (J{sub c}{approx}4-5 MA cm{sup -2} and I{sub c}{approx}300 A cm{sup -1} width at 77 K). The growth conditions (CSD) and post-processing conditions (sputtering and CSD) for the underlying oxide cap and buffer layers (CeO{sub 2}, BaZrO{sub 3}, SrTiO{sub 3}, La{sub 2}Zr{sub 2}O{sub 7} (La,Sr)MnO{sub 3}) and of self-organized nanostructures (CeO{sub 2}, BaZrO{sub 3}) deposited by CSD have been investigated to obtain high-quality interfaces in multilayered systems. Different single-crystal or metallic substrates (YSZ-IBAD (yttrium stabilized zirconia-ion beam assisted deposition) and Ni-RABiT (rolling assisted biaxial texturing)) have been investigated and long ({approx}10 m) CSD biaxially textured buffers (CeO{sub 2}, La{sub 2}Zr{sub 2}O{sub 7}) have been grown on Ni-RABiT substrates using a reel-to-reel system. High-performance TFA-YBCO-coated conductors have been obtained on vacuum-based buffer layers (I{sub c}{approx}140 A cm{sup -1} width) and on CSD buffer layers

  15. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial

    OpenAIRE

    Seyed Hamid Raji; Hasan Shojaei; Parinaz Saeidi Ghorani; Elahe Rafiei

    2014-01-01

    Background: The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. Materials and Methods: A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, U...

  16. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    International Nuclear Information System (INIS)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-01-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured

  17. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    Science.gov (United States)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-10-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.

  18. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  19. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    Science.gov (United States)

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  20. Properties of recent IBAD-MOCVD Coated Conductors relevant to their high field, low temperature magnet use

    OpenAIRE

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C; Chen, Y; Carota, G; Dackow, J; Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V

    2010-01-01

    BaZrO3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (Ic) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density Jc(theta) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO ...

  1. Study of structure of HTS coated conductor with ferromagnetic substrate having low AC transport current loss using FEM

    International Nuclear Information System (INIS)

    Miyagi, D.; Amadutsumi, Y.; Takahashi, N.; Tsukamoto, O.

    2007-01-01

    AC transport current losses of coated conductors with ferromagnetic substrates are higher than the loss calculated by the Norris equation. In order to reduce the AC transport current loss we propose in this paper a structure of the coated conductor that has wider substrate than the SC (Superconducting) layer. The current distribution and AC loss of the proposed model are analyzed by means of FEM. The AC transport current loss is reduced due to the change of current density distribution near the edge of SC layer, consequent to the high value of magnetic permeability of the ferromagnetic substrate, that is wider than the SC layer

  2. Raman Spectroscopic Studies of YBa{sub 2}Cu{sub 3}O{sub 7} Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Kyeung; Mnh, Nguyen Van; Bae, J. S.; Jo, William; Yang, In Sang [Ewha Womans University, Seoul (Korea, Republic of); Ko, Rock Kil; Ha, Hong Soo; Park, Chan [Korea Electrotecnology Research Institute, Changwon (Korea, Republic of)

    2005-04-15

    We present results of Raman spectroscopic studies of superconducting YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  3. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study

    Directory of Open Access Journals (Sweden)

    Nina ARGALJI

    2017-08-01

    Full Text Available Abstract The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p < 0.0001. In average, the most recently launched wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346 when the latest launched wire (13.27% was compared to the control (29.63%. In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  4. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study.

    Science.gov (United States)

    Argalji, Nina; Silva, Eduardo Moreira da; Cury-Saramago, Adriana; Mattos, Claudia Trindade

    2017-08-21

    The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure) were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346) when the latest launched wire (13.27%) was compared to the control (29.63%). In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  5. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires

    OpenAIRE

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria Jr, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    Abstract The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Ni...

  6. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    Science.gov (United States)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  7. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    International Nuclear Information System (INIS)

    Wu, Jian; Li, Mo; Li, Yang; Li, Xingwen; Qiu, Aici

    2017-01-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications. (topical review)

  8. Two level undercut-profile substrate-based filamentary coated conductors produced using metal organic chemical vapor deposition

    DEFF Research Database (Denmark)

    Insinga, Andrea R.; Sundaram, Aarthi; Hazelton, Drew W.

    2018-01-01

    The two level undercut-profile substrate (2LUPS) has been introduced as a concept for subdividing rare-earth-Ba$_{2}$Cu$_{3}$O$_{7}$ (REBCO) coated conductors (CC) into narrow filaments which reduces the AC losses and improves field stability for DC magnets. The 2LUPS consists of two levels...

  9. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  10. Scanning Hall-probe microscopy system for two-dimensional imaging of critical current density in RE-123 coated conductors

    International Nuclear Information System (INIS)

    Higashikawa, K.; Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Izumi, T.

    2011-01-01

    Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 μm in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.

  11. Transport ac loss studies of YBCO coated conductors with nickel alloy substrates

    International Nuclear Information System (INIS)

    Duckworth, R C; Thompson, J R; Gouge, M J; Lue, J W; Ijaduola, A O; Yu, D; Verebelyi, D T

    2003-01-01

    Transport alternating current (ac) loss measurements were performed on a series of rolling-assisted biaxially textured substrate (RABiTS) processed YBa 2 Cu 3 O x (YBCO) coated conductors at 77 K. While each sample possessed a 1 μm layer of YBCO and a 3 μm silver cap layer, two different nickel alloy substrates were used and their impact on the ac loss was examined. Both substrates possessed a 75 μm Ni-5 at%W base, but one substrate also had a 2 μm nickel overlayer as part of the buffer layer architecture. The ac losses, which were determined by thermal and electrical measurements, contained two dominant contributions: superconductive hysteresis in the YBCO and ferromagnetic hysteresis in the substrates. The superconductive component followed the Norris elliptic model for the substrate with the nickel overlayer and the Norris thin strip model for the substrate without the nickel overlayer. The substrates' ferromagnetic loss was determined separately through magnetization measurements, which showed that this loss contribution was independent of the presence of the nickel overlayer for effective ac currents less than 50 A. While the overall loss was lower for the thin-strip-like conductor with no nickel overlayer, further research is necessary to strengthen this connection

  12. Angular dependence of Jc for YBCO coated conductors at low temperature and very high magnetic fields

    International Nuclear Information System (INIS)

    Xu, A; Jaroszynski, J J; Kametani, F; Chen, Z; Larbalestier, D C; Viouchkov, Y L; Chen, Y; Xie, Y; Selvamanickam, V

    2010-01-01

    We present very high field angle dependent critical current density (J c ) data for three recently obtained YBa 2 Cu 3 O 7-x (YBCO) coated conductors used in the construction of high field solenoids. We find that strongly correlated pins, such as BaZrO 3 (BZO) nanorods, while yielding strong c-axis peaks at 77 K, produce almost no measurable contribution at 4 K. Raising the field from c (θ) at low fields to a marked cusp-like behavior at high fields. Transmission electron micrographs show that all samples contain a high density of stacking faults which strengthen the plane correlated pinning parallel to the ab planes produced by the intrinsic ab-plane pinning of the Cu-O charge reservoir layers.

  13. Influence of stabilizer thickness on over-current test of YBCO-coated conductors

    International Nuclear Information System (INIS)

    Kwon, N Y; Kim, H S; Kim, K L; Lee, H G; Yim, S W; Kim, H-R; Hyun, O-B; Kim, H M

    2009-01-01

    The increased use of distributed power generation has led to increasingly high fault current levels. A superconducting fault current limiter (SFCL) is a potential solution to prevent the problem of short-circuit currents. YBCO-coated conductors (CCs) are one of the most promising superconducting materials for SFCLs. Most YBCO CCs have stabilizers, which play a significant role in limiting the fault current in the SFCL. Therefore, the selection of the appropriate material and the thickness of the stabilizer of the CC used for the SFCL may affect its quench/recovery characteristics. In this paper, the quench/recovery characteristics of YBCO CC tapes having stabilizers with various thicknesses were investigated. The quench/recovery test results showed that, as the thickness of the stabilizer decreased, both the final approach temperature and the recovery time decreased.

  14. A numerical method to estimate AC loss in superconducting coated conductors by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.

  15. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Mele, Paolo

    2010-01-01

    Crystalline defects on the nano-scale, which are called artificial pinning centers (APCs), were successfully introduced into high-temperature superconductors (HTS) by nanotechnology, in order to strongly pin the quantized vortices. The critical current densities, J c , of the HTS films were dramatically improved by APCs. It is possible to form APCs in high-quality epitaxial films, keeping the desired dimensionality, volume fraction, spatial distribution and so on. The in-field J c of HTS films at 77 K was improved by one order of magnitude compared with previous values using APCs. This technology can be applied to the coated conductor technology in progress, and a high J c has already been reported. A current outline of the research is described in this review.

  16. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    INSPIRE-00092738; Kurth, Matthew; Boyd, Rusty

    2016-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent source of tracking-detector failure. Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorentz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of polyurethane-coated wire bonds and their resistance to periodic Lorentz forces are under study for use in a future High Luminosity Large Hadron Collider detector such as the ATLAS Inner Tracker upgrade.

  17. Graphene coated subwavelength wires: a theoretical investigation of emission and radiation properties

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2017-01-01

    Highlights: • Decay rate in a dielectric graphene coated wire. • Localized surface plasmons. • Excitation of multipolar resonances. - Abstract: This work analyzes the emission and radiation properties of a single optical emitter embedded in a graphene–coated subwavelength wire. We discuss the modifications of the spontaneous emission rate and the radiation efficiency as a function of the position and orientation of the dipole inside the wire. Our results show that these quantities can be enhanced by several orders of magnitude when the emission frequency coincides with one of the resonance frequencies of the graphene–coated wire. In particular, high–order plasmon resonances are excited when the emitter is moved from the wire center. Modifications resulting from varying the orientation of the dipole in the near field distribution and in the far field intensities are shown.

  18. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    Science.gov (United States)

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  19. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  20. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  1. Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires

    OpenAIRE

    Riso, Máximo; Cuevas, Mauro; Depine, Ricardo A.

    2015-01-01

    The electromagnetic response of subwavelength wires coated with a graphene monolayer illuminated by a linearly polarized plane waves is investigated. The results show that the scattering and extintion cross-sections of the coated wire can be dramatically enhanced when the incident radiation resonantly excites localized surface plasmons. The enhancements occur for p--polarized incident waves and for excitation frequencies that correspond to complex poles in the coefficients of the multipole ex...

  2. Life cycle assessment of the application of nanoclays in wire coating

    International Nuclear Information System (INIS)

    Tellaetxe, A; Blázquez, M; Unzueta, I; Arteche, A; Egizabal, A; Ermini, V; Rose, J; Chaurand, P

    2012-01-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life

  3. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  4. Current status and future prospects of Japanese national project on coated conductor development and its applications

    Science.gov (United States)

    Shiohara, Y.; Yoshizumi, M.; Izumi, T.; Yamada, Y.

    2008-09-01

    Four years of the current five-year national project since 2003 for development of coated conductors using Y-system superconductors have passed and lots of remarkable results have been achieved. In this paper, the current status and the future prospect of this project are reviewed. The current national project comprises several groups of national laboratories, universities and private companies. The group of high performance tape development, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting tapes on the PLD-CeO 2/IBAD-GZO buffered substrates. The high product of Ic and L equal to 112,166 A m was achieved in the 368 m-304.8 A GdBCO tape whose Ic value is mostly above 350 A/cm-w. The performance under the magnetic fields was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO 2. About 61 m long GdBCO tape with ZrO 2 doping showed a high Ic value of 220 A at self field and 30 A at 3 T. On the other hand, the other group focusing on the low production cost has worked on processes of TFA-MOD and MOCVD, etc. The extremely high Ic value of 735 A/cm-w was attained in the TFA-MOD films on PLD-CeO 2/IBAD-GZO/Hastelloy C276 substrate by means of using the effect of Ba-poor nominal composition. In the efforts for long tape production, 200 m long tapes with high Ic values of 200 A/cm-w and 205 A/cm-w were obtained by MOD-YBCO/PLD-CeO 2/IBAD-GZO/Hastelloy C276 and PLD-HoBCO on buffered NiW substrate, respectively. The Ic × L value of the MOD-derived tape was 40,000 A m, which is the highest value in the world by the MOD process. Based on the above achievements on the coated conductor process development, two new additional goals were set in the project. One is the development for the extremely low cost tape and another is the development of the basic technologies for making the electric power devices including cables, transformers, motors, current-limiters and cryocoolers. Some of the new themes already revealed the

  5. Current status and future prospects of Japanese national project on coated conductor development and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan)], E-mail: shiohara@istec.or.jp; Yoshizumi, M.; Izumi, T. [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan); Yamada, Y. [Superconductivity Research Laboratory, ISTEC, Nagoya Coated Conductor Center, 2-4-1, Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan)

    2008-09-15

    Four years of the current five-year national project since 2003 for development of coated conductors using Y-system superconductors have passed and lots of remarkable results have been achieved. In this paper, the current status and the future prospect of this project are reviewed. The current national project comprises several groups of national laboratories, universities and private companies. The group of high performance tape development, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting tapes on the PLD-CeO{sub 2}/IBAD-GZO buffered substrates. The high product of I{sub c} and L equal to 112,166 A m was achieved in the 368 m-304.8 A GdBCO tape whose I{sub c} value is mostly above 350 A/cm-w. The performance under the magnetic fields was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO{sub 2}. About 61 m long GdBCO tape with ZrO{sub 2} doping showed a high I{sub c} value of 220 A at self field and 30 A at 3 T. On the other hand, the other group focusing on the low production cost has worked on processes of TFA-MOD and MOCVD, etc. The extremely high I{sub c} value of 735 A/cm-w was attained in the TFA-MOD films on PLD-CeO{sub 2}/IBAD-GZO/Hastelloy C276 substrate by means of using the effect of Ba-poor nominal composition. In the efforts for long tape production, 200 m long tapes with high I{sub c} values of 200 A/cm-w and 205 A/cm-w were obtained by MOD-YBCO/PLD-CeO{sub 2}/IBAD-GZO/Hastelloy C276 and PLD-HoBCO on buffered NiW substrate, respectively. The I{sub c} x L value of the MOD-derived tape was 40,000 A m, which is the highest value in the world by the MOD process. Based on the above achievements on the coated conductor process development, two new additional goals were set in the project. One is the development for the extremely low cost tape and another is the development of the basic technologies for making the electric power devices including cables, transformers, motors, current

  6. Present status and future prospect of coated conductor development and its application in Japan

    Science.gov (United States)

    Shiohara, Y.; Yoshizumi, M.; Izumi, T.; Yamada, Y.

    2008-03-01

    The current national project on coated conductors using Y-system superconductors has been carried out over the project period (FY2003-FY2007). In this paper, the current status and the future prospect of this project are reviewed. The high performance tape development group, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting layers on PLD-CeO2/IBAD-GZO buffered substrates. A high product of Ic and L, higher than 112 166 A m, was achieved in a 368 m-304.8 A GdBCO tape whose Ic value is mostly above 350 A/cm in width. The performance under magnetic field was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO2. 61 m long GdBCO tape with ZrO2 doping showed a high Ic value of 220 A at self field and 30 A at 3 T. On the other hand, another group focusing on low production cost has worked on TFA-MOD and MOCVD processes. The extremely high Ic value of 735 A/cm-w was obtained in TFA-MOD films on PLD-CeO2/IBAD-GZO/Hastelloy substrate due to the effect of Ba-poor nominal composition. In efforts towards long tape production by the SWCC group, a 200 m long tape with a high Ic value of 200 A/cm-w was obtained using a batch-type furnace. The Ic × L value of this tape was 40 000 A m, which is the highest value in the world obtained by the TFA-MOD process. Based on the above achievements in coated conductor process development, two new additional goals were set in the project. One is the development of extremely low cost tape and the other is the development of the basic technologies for making electric power devices of cables, transformers, motors, current-limiters and cryocoolers. Some of the new investigations have already revealed marvellous results, such as a 15 kW motor, low AC loss coils, low AC loss cables, etc.

  7. Current status and future prospects of Japanese national project on coated conductor development and its applications

    International Nuclear Information System (INIS)

    Shiohara, Y.; Yoshizumi, M.; Izumi, T.; Yamada, Y.

    2008-01-01

    Four years of the current five-year national project since 2003 for development of coated conductors using Y-system superconductors have passed and lots of remarkable results have been achieved. In this paper, the current status and the future prospect of this project are reviewed. The current national project comprises several groups of national laboratories, universities and private companies. The group of high performance tape development, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting tapes on the PLD-CeO 2 /IBAD-GZO buffered substrates. The high product of I c and L equal to 112,166 A m was achieved in the 368 m-304.8 A GdBCO tape whose I c value is mostly above 350 A/cm-w. The performance under the magnetic fields was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO 2 . About 61 m long GdBCO tape with ZrO 2 doping showed a high I c value of 220 A at self field and 30 A at 3 T. On the other hand, the other group focusing on the low production cost has worked on processes of TFA-MOD and MOCVD, etc. The extremely high I c value of 735 A/cm-w was attained in the TFA-MOD films on PLD-CeO 2 /IBAD-GZO/Hastelloy C276 substrate by means of using the effect of Ba-poor nominal composition. In the efforts for long tape production, 200 m long tapes with high I c values of 200 A/cm-w and 205 A/cm-w were obtained by MOD-YBCO/PLD-CeO 2 /IBAD-GZO/Hastelloy C276 and PLD-HoBCO on buffered NiW substrate, respectively. The I c x L value of the MOD-derived tape was 40,000 A m, which is the highest value in the world by the MOD process. Based on the above achievements on the coated conductor process development, two new additional goals were set in the project. One is the development for the extremely low cost tape and another is the development of the basic technologies for making the electric power devices including cables, transformers, motors, current-limiters and cryocoolers. Some of the new themes already

  8. Present status and future prospect of coated conductor development and its application in Japan

    International Nuclear Information System (INIS)

    Shiohara, Y; Yoshizumi, M; Izumi, T; Yamada, Y

    2008-01-01

    The current national project on coated conductors using Y-system superconductors has been carried out over the project period (FY2003-FY2007). In this paper, the current status and the future prospect of this project are reviewed. The high performance tape development group, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting layers on PLD-CeO 2 /IBAD-GZO buffered substrates. A high product of I c and L, higher than 112 166 A m, was achieved in a 368 m-304.8 A GdBCO tape whose I c value is mostly above 350 A/cm in width. The performance under magnetic field was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO 2 . 61 m long GdBCO tape with ZrO 2 doping showed a high I c value of 220 A at self field and 30 A at 3 T. On the other hand, another group focusing on low production cost has worked on TFA-MOD and MOCVD processes. The extremely high I c value of 735 A/cm-w was obtained in TFA-MOD films on PLD-CeO 2 /IBAD-GZO/Hastelloy substrate due to the effect of Ba-poor nominal composition. In efforts towards long tape production by the SWCC group, a 200 m long tape with a high I c value of 200 A/cm-w was obtained using a batch-type furnace. The I c x L value of this tape was 40 000 A m, which is the highest value in the world obtained by the TFA-MOD process. Based on the above achievements in coated conductor process development, two new additional goals were set in the project. One is the development of extremely low cost tape and the other is the development of the basic technologies for making electric power devices of cables, transformers, motors, current-limiters and cryocoolers. Some of the new investigations have already revealed marvellous results, such as a 15 kW motor, low AC loss coils, low AC loss cables, etc

  9. Present status and future prospect of coated conductor development and its application in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shiohara, Y; Yoshizumi, M; Izumi, T [Superconductivity Research Laboratory-ISTEC, 10-13 Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Yamada, Y [Nagoya Coated Conductor Center, Superconductivity Research Laboratory-ISTEC, (c-o) Japan Fine Ceramics Center, 4-1 Mutsuno 2-Chome, Atsuta-ku, Nagoya 456-8587 (Japan)], E-mail: shiohara@istec.or.jp

    2008-03-01

    The current national project on coated conductors using Y-system superconductors has been carried out over the project period (FY2003-FY2007). In this paper, the current status and the future prospect of this project are reviewed. The high performance tape development group, consisting of Fujikura and SRL-NCCC, has worked on the tape by PLD-REBCO superconducting layers on PLD-CeO{sub 2}/IBAD-GZO buffered substrates. A high product of I{sub c} and L, higher than 112 166 A m, was achieved in a 368 m-304.8 A GdBCO tape whose I{sub c} value is mostly above 350 A/cm in width. The performance under magnetic field was also improved up to 42 A at 3 T in a GdBCO short film with doping of ZrO{sub 2}. 61 m long GdBCO tape with ZrO{sub 2} doping showed a high I{sub c} value of 220 A at self field and 30 A at 3 T. On the other hand, another group focusing on low production cost has worked on TFA-MOD and MOCVD processes. The extremely high I{sub c} value of 735 A/cm-w was obtained in TFA-MOD films on PLD-CeO{sub 2}/IBAD-GZO/Hastelloy substrate due to the effect of Ba-poor nominal composition. In efforts towards long tape production by the SWCC group, a 200 m long tape with a high I{sub c} value of 200 A/cm-w was obtained using a batch-type furnace. The I{sub c} x L value of this tape was 40 000 A m, which is the highest value in the world obtained by the TFA-MOD process. Based on the above achievements in coated conductor process development, two new additional goals were set in the project. One is the development of extremely low cost tape and the other is the development of the basic technologies for making electric power devices of cables, transformers, motors, current-limiters and cryocoolers. Some of the new investigations have already revealed marvellous results, such as a 15 kW motor, low AC loss coils, low AC loss cables, etc.

  10. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR) aerial...

  11. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheiko, Nataliia [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Kékicheff, Patrick, E-mail: patrick.kekicheff@ics-cnrs.unistra.fr [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Marie, Pascal; Schmutz, Marc; Jacomine, Leandro [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Perrin-Schmitt, Fabienne [Faculté de Médecine, INSERM, UMR-S 1121, “Biomaterials and Bioengineering”, Université de Strasbourg, 11 rue Humann, 67085 Strasbourg Cedex (France)

    2016-12-15

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  12. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    International Nuclear Information System (INIS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-01-01

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  13. All-chemical YBa2Cu3O7 coated conductors on IBAD-YSZ stainless steel substrates

    International Nuclear Information System (INIS)

    Pomar, A; Cavallaro, A; Coll, M; Gazquez, J; Palau, A; Sandiumenge, F; Puig, T; Obradors, X; Freyhardt, H C

    2006-01-01

    We report on the fabrication of all-chemical YBa 2 Cu 3 O 7 coated conductors on IBAD-YSZ (IBAD stands for ion beam assisted deposition; YSZ is yttrium stabilized zirconia) stainless steel substrates. YBCO films were grown by the trifluoroacetates route on top of CeO 2 buffer layers made by metal-organic decomposition. The achievement of atomically flat CeO 2 surfaces is found to be a key factor for obtaining clean interfaces with YBCO and high performance. Coated conductors with percolative critical currents of J c GB (65 K) = 1.8 MA cm -2 were achieved. The determination of the intra-grain critical current J c G from inductive measurements suggests that the limiting factor for J c GB is the YBCO in-plane texture, which is already of higher quality than that of the IBAD-YSZ cap layer. (rapid communication)

  14. Measurement of in-plane magnetic relaxation in RE-123 coated conductors by use of scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Yoshizumi, M.; Izumi, T.

    2013-01-01

    Highlights: ► We have investigated electric field criterion of in-plane critical current density. ► We could measure magnetic relaxation in a remanent state. ► The SHPM results show good agreement with the measurements by the 4-probe method. -- Abstract: We have investigated electric field criterion of in-plane critical current density in a coated conductor characterized by scanning Hall-probe microscopy (SHPM). From remanent field distribution and its relaxation measurements, we could obtain critical current distribution and induced electric field simultaneously by considering the Biot-Savart law and the Faraday’s law, respectively. These results lead us to evaluate a distribution of local critical current density and the corresponding criterion of electric field. As a result, it was found that the electric field criterion for the SHPM analysis was several orders lower than that used in the conventional 4-probe resistive method. However, the data point obtained by the SHPM shows good agreement with E–J curve analytically extended from the measurements by the 4-probe method. This means that we could characterize in-plane distribution of critical current density in a coated conductor at an electric field criterion quantitatively by this method in a nondestructive manner. These findings will be very important information since the uniformity of local critical current density in a coated conductor at extremely low electric fields is a key issue (1) especially for DC applications, (2) for quality control of coated conductors, and (3) for the standardization of the characterization of critical current among different methods

  15. Microstructural investigation of phases and pinning properties in MBa2Cu3O7-x (M = Y and/or Gd) coated conductors produced by scale-up facilitie

    Science.gov (United States)

    Jin, Hye-Jin; Moon, Han-Kyoul; Yoon, Seokhyun; Jo, William; Kim, Kunsu; Kim, Miyoung; Ko, Rock-Kil; Jo, Young-Sik; Ha, Dong-Woo

    2016-03-01

    To expedite the commercialization of coated conductors, a robust stacking architecture of the wires must be developed and the performance of the critical currents improved. More importantly, the manufacturability, or large-scale delivery, and the capability of sustaining production at a high rate must be considered. The products of three companies, American Superconductor, Superpower Inc., and SuNAM Co., Ltd, were selected because these companies have announced commercial-grade production lines and delivered a significant amounts of wires to the open market that meet the standards demanded by power devices. X-ray diffraction patterns were used to verify the structural properties and the phase formation in the wires, and transmission electron microscopy with energy dispersive spectroscopy was used to investigate the microstructure and composition of the conductors. In addition, Raman scattering spectroscopy was used for the analysis of the phase formation and for the elucidation of secondary phases in the superconducting layers. The field dependence of the critical current was also studied to compare the transport characteristics under relatively low and medium magnetic field at 77 K and 60 K. Pinning forces were obtained from the field dependence of transport properties and pinning characteristics were investigated. The theoretical and experimental analyses were combined together using the Dew-Hughes formula to extract the scaling exponents and estimate the irreversibility lines of the fields. The results showed that the three conductors possess pinning mechanisms that originate from core pinning with a surface pinning geometry. It is remarkable that the wires discussed in this paper exhibit very similar pinning characteristics even though they have different characteristics in terms of chemical composition, microstructure, stacking architectures, and distribution of parasitic phases.

  16. Effect of coating on properties of esthetic orthodontic nickel-titanium wires.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru

    2012-03-01

    To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n  =  10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.

  17. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T., E-mail: takashi.yazawa@toshiba.co.j [Toshiba Corporation, Power Systems Company (Japan); Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M. [Toshiba Corporation, Power Systems Company (Japan); Iijima, Y.; Saitoh, T. [Fujikura Ltd. (Japan); Amemiya, N. [Superconductivity Research Laboratory, ISTEC (Japan); Shiohara, Y. [Department of Electrical Engineering, Kyoto University (Japan); Ito, T. [Tokyo Gas Co., Ltd. (Japan)

    2009-10-15

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R and D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  18. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  19. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    Energy Technology Data Exchange (ETDEWEB)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  20. Magnetic losses of commercial REBCO coated conductors in the low frequency range

    Science.gov (United States)

    De Marzi, G.; Iannone, G.; Gambardella, U.

    2018-05-01

    We have investigated the frequency dependence of the magnetic losses of different 2 G commercial REBCO coated-conductor tapes in the low frequency range ∼1–10 mHz of applied magnetic field at 5 and 77 K. We explored high field range, well above the penetration field, with fields applied perpendicularly to the flat surface. We found that the in-field hysteresis losses increase with increasing frequencies in all the investigated high-temperature superconductor (HTS) tapes, following a power-law dependence. An electromagnetic 2D finite element method model, based on H-formulation, has also been implemented, in which the frequency dependence of the hysteretic loss is computed taking into account the measured power-law E(J) characteristic for the electric field, and the experimental J c(B). Experimental and numerical findings are in very good agreement, so an extrapolation to higher ramp rate values is possible, thus providing a useful basis for the assessment of the hysteresis losses in fusion and accelerator HTS magnets.

  1. Remarkable progress in fabricating RE123 coated conductors by IBAD/PLD technique at Fujikura

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, M; Kakimoto, K; Hanyu, S; Tashita, C; Hayashida, T; Hanada, Y; Fujita, S; Morita, K; Nakamura, N; Sutoh, Y; Kutami, H; Iijima, Y; Saitoh, T, E-mail: m_igarashi@fujikura.co.j [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba, 285-8550 (Japan)

    2010-06-01

    Increase of production rate and improvement of quality for RE123 coated conductors have been tried. In-plane texturing of MgO was attempted by the IBAD system with the world largest ion source. As a result of optimizing condition in large deposition area, the dramatically high throughput of 1000 m / h was realized to obtain the IBAD-MgO with {Delta}{phi} < 10{sup 0}. Furthermore, simple buffer structure was demonstrated. Well textured CeO{sub 2} layer with {Delta}{phi} of around 4{sup 0} was obtained by directly deposited on IBAD-MgO layer in spite of large lattice mismatch of 28% between CeO{sub 2} and MgO. Several over 100 m buffer substrates with the architecture of / PLD-CeO{sub 2} (60 m / h) / IBAD-MgO (333{approx}1000 m / h) / Y{sub 2}O{sub 3} (500 m / h) / Al{sub 2}O{sub 3} (150 m / h) / Hastelloy / were already prepared. On these production substrates, GdBCO layer was deposited by the large PLD system at high throughput. The 260 m long GdBCO tape with I{sub c} > 600 A except some locations was obtained at the throughput of 15 m / h. In addition to the speed-up, the very high I{sub c} of 1040 A was also achieved by the hot-wall heating PLD system.

  2. Tuning Vortex Creep in Irradiated YBa2Cu3O7-δ Coated Conductors

    Science.gov (United States)

    Eley, Serena; Kihlstrom, Karen; Holleis, Sigrid; Leroux, Maxime; Rupich, Martin; Miller, Dean; Kayani, Asghar; Welp, Ulrich; Kwok, Wai-Kwong; Civale, Leonardo

    YBa2Cu3O7-δ coated conductors (CCs) show non-monotonic changes in the temperature-dependent creep rate, S (T) , due to mixed pinning landscapes comprised of twin boundaries, planar defects, point defects, and nanoparticle precipitates. Notably, in low fields, there is a conspicuous dip in S as T increases from ~20K to ~65K. The source of this dip is poorly understood. Moreover, pinning landscapes that are favorable for high critical currents, Jc, are not necessarily optimal for low S. We have found that, though oxygen irradiation introduces few-nm-sized defects that result in significant increases in Jc, it is detrimental to creep, increasing S (reducing the dip depth) for T > 20K. Understanding the source of this dip is crucial to engineering pinning landscapes that concurrently promote high Jc and low S. To this end, we study changes in S (T) as we tune the ratio of smaller (point to few-nm-sized) defects to larger nanoparticles in an oxygen-irradiated CC by annealing in O2 at 250°C to 600°C. We observe a steady decrease in S (T > 20K) with increasing annealing temperature. This suggests that pre-existing nanoparticle precipitates are likely responsible for the dip in S (T) , and underlines the fact that the effects of defects are not additive, but rather can be competitive.

  3. Chemical solution deposition of LaMnO3-based films for coated conductors

    International Nuclear Information System (INIS)

    Shi, D Q; Zhu, X B; Kim, J H; Wang, L; Zeng, R; Dou, S X; Lei, H C; Sun, Y P

    2008-01-01

    LaMnO 3 -based films were prepared using the chemical solution deposition method. It was found that the films on perovskite oxide single crystal substrates are highly (h00)-oriented when the annealing atmosphere is oxygen or air; however, when the substrate is yttrium-stabilized ZrO 2 , only the La 1-x Na x MnO 3 films are highly (h00)-oriented, and other LaMnO 3 -based films are (110)-oriented. Under a reducing annealing atmosphere, the atmosphere must be wet in order to create a suitable oxygen partial pressure to crystallize the LaMnO 3 -based films. After annealing under a wet reducing atmosphere the LaMnO 3 -based films are (110)-oriented when the films are directly deposited on Ni tapes; however, when SrTiO 3 -buffered Ni tapes are used, the LaMnO 3 films are (h00)-oriented, which is suitable for subsequent growth of YBCO. The results suggest that it is possible to tune the orientation of buffer layers using suitable templates, which can widen the selection of buffer layers for coated conductors in the all metallorganic deposition approach

  4. Delamination behaviour in differently copper laminated REBCO coated conductor tapes under transverse loading

    Energy Technology Data Exchange (ETDEWEB)

    Gorospe, Alking [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Department of Engineering, Aurora State College of Technology, Baler Aurora 3200 (Philippines); Nisay, Arman [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Shin, Hyung-Seop, E-mail: hsshin@andong.ac.kr [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of)

    2014-09-15

    Highlights: • I{sub c} degradation behavior under transverse tension loading in different CC tape structure. • Weibull distribution analysis applied on delamination mechanism of CC tape. • Delamination mechanism on CC tapes depending on copper lamination type. • SEM and WDS mapping analysis of delamination sites under transverse loading. - Abstract: Laminated HTS coated conductor (CC) tapes having a unique multi-layer structure made them vulnerable when exposed to transverse loading. Electromechanical transport properties of these CC tapes can be affected by excessive transverse stresses. Due to the coefficient of thermal expansion (CTE) mismatch and incompatibility among constituent materials used in coil applications, delamination among layers occurs and causes critical current, I{sub c} degradation in the CC tapes. In this study, the delamination behaviors in copper (Cu) solder-laminated CC tapes by soldering and surround Cu-stabilized ones by electroplating under transverse tension loading were investigated. Similarly to the surround Cu-stabilized CC tapes in our previous reports, the Cu solder-laminated CC tapes also showed an abrupt and gradual I{sub c} degradation behavior. However, the Cu solder-laminated CC tapes showed different delamination morphologies as compared to the surround Cu-stabilized CC tapes; the superconducting side and the substrate side of the Cu solder laminated CC tapes were totally separated by delamination. On the other hand, the brass laminate did not show any significant effect on the delamination strength when it is added upon the surround Cu-stabilized CC tapes.

  5. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    Science.gov (United States)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  6. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    International Nuclear Information System (INIS)

    Frank, A; Heller, R; Goldacker, W; Kling, A; Schmidt, C

    2008-01-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability

  7. Calculating transport AC losses in stacks of high temperature superconductor coated conductors with magnetic substrates using FEM

    International Nuclear Information System (INIS)

    Ainslie, Mark D.; Flack, Tim J.; Campbell, Archie M.

    2012-01-01

    Properties of stacks of HTS coated conductors with and without a magnetic substrate. Non-magnetic substrate model is consistent with existing methods. Presence of a magnetic substrate increases the total AC loss of the stack. Differences and similarities between certain tapes within stacks are explained. Ferromagnetic loss of substrate negligible in most cases except small currents/fields. In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC

  8. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  9. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  10. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Science.gov (United States)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  11. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  12. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    International Nuclear Information System (INIS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-01-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  13. Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire

    Science.gov (United States)

    Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng

    2016-01-01

    Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.

  14. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  15. Delamination behaviour of GdBCO coated conductor tapes under transverse tension

    International Nuclear Information System (INIS)

    Gorospe, A.; Nisay, A.; Dizon, J.R.; Shin, H.S.

    2013-01-01

    Highlights: •Installation of a test frame which gives precisely aligned transverse load. •Investigation of I c degradation behaviour depending on the type of sample delamination. •Inhomogeneity of the CC tapes caused large variation on delamination strength. •SEM and EDS analysis of delamination sites under transverse loading. -- Abstract: The electromechanical property behaviour of 2G coated conductor (CC) tapes fabricated by multi-layer deposition process both in the in-plane and transverse direction should be understood. The CC tapes are used in the fabrication of epoxy resin-impregnated coils. In such case, the Lorentz force due to the high magnetic field applied as well as the thermal stress due to the difference in coefficient of thermal expansion (CTE) among constituent layers during cooling to cryogenic temperature will induce transversely applied load to the surface of CC tapes in coils. Hence, the CC tape should have a good mechanical property in the transverse direction in order to maintain its superior performance under magnetic field. In this study, a test frame which gives precisely aligned transverse load was devised. Using the fixture, the delamination behaviours including the delamination strength of the GdBCO CC tapes under transverse tensile loading were investigated. Large variation on the delamination strength of the CC tapes was recorded and might have resulted from the slit edge effect and the inhomogeneity of the CC tapes. The I c degradation behaviour under transverse load was related to the location where delamination occurred in the sample

  16. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Directory of Open Access Journals (Sweden)

    Masaki MURAYAMA

    2013-12-01

    Full Text Available The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective: The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti wire. Material and Methods: Five esthetic wires (three coated and two plated and two small, plain Ni-Ti wires (0.012 and 0.014 inches were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm, and evaluated the relationship between them. Results: Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions: A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  17. Relationship between friction force and orthodontic force at the leveling stage using a coated wire.

    Science.gov (United States)

    Murayama, Masaki; Namura, Yasuhiro; Tamura, Takahiko; Iwai, Hiroaki; Shimizu, Noriyoshi

    2013-01-01

    The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  18. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  19. The Insulation of Copper Wire by the Electrostatic Coating Process.

    Science.gov (United States)

    1983-06-30

    Caster full production lines produce more uniform coating thicknesses. -18- U AM NC. IO C FWIO~k TX3M ..... ....... Z . A A I~ ~ 15X 7-., r - ’ r 15X... modification to meet specific usage requirements. t * -68- 482 5 APPENDIX CLIQUINITE’ COATING PRODU(:TS LIQUINITEE-COATING POWDERS FEP (Fluorinated Ethylene...Loss from Dissipation Factor (60 Hz-2xl0 9Hz) 0.2-1.2001 Revolving Disc, mg (60 Hz -2 x iO0 Hz) *CS 17 Wheel . 100 cycles 2.2 Surface Resistivity (250

  20. Novel trends in the study of magnetically soft Co-based amorphous glass-coated wires

    International Nuclear Information System (INIS)

    Chiriac, H.; Ovari, T.-A.

    2011-01-01

    An overview of the recent progress and state-of-the-art results in the investigation of the amorphous glass-coated wires with nearly zero magnetostriction is presented. These versatile microwires display enhanced soft magnetic properties, which make them suitable as sensing elements in various sensors for biomedical and automotive applications. Current results on their magnetic characteristics refer to a major refinement of their core-shell magnetic structure by taking into account the interdomain wall and to the thorough analysis of the magnetization within the outer shell. Experimental techniques such as giant magneto-impedance, magneto-resistance, and magneto-optical Kerr effect measurements are employed to prove the outcome of the theoretical calculations. The impact of the magnetic structure of the outer shell on the propagation of domain walls in bistable amorphous wires is analyzed. Very recent results on the magnetization process in nearly zero magnetostrictive amorphous glass-coated wires with submicron dimensions are also reviewed. - Highlights: → The most recent advances in the study of amorphous glass-coated wires with nearly zero magnetostriction are surveyed. → Major progress in the study of their domain structure: the wide interdomain wall, which affects high frequency phenomena. → The magnetization of the outer shell depends on wire diameter and affects the wall propagation in bistable samples. → These novel results are important for future sensor applications of nearly zero magnetostrictive amorphous microwires.

  1. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires.

    Science.gov (United States)

    Zhang, Hao; Guo, Shuyu; Wang, Dongyue; Zhou, Tingting; Wang, Lin; Ma, Junqing

    2016-09-01

    To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.

  2. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    Science.gov (United States)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  3. Critical current degradation of short YBa2Cu3O7-δ coated conductor due to an unprotected quench

    International Nuclear Information System (INIS)

    Wang, X; Trociewitz, U P; Schwartz, J

    2011-01-01

    The critical current of a short YBa 2 Cu 3 O 7-δ (YBCO) coated conductor sample degrades in an unprotected quench performed in a nearly adiabatic environment at 30 K. The conductor has Cu stabilizers on both surfaces. The quench is initiated by a heater attached to the sample surface. The amplitude of the transport current is fixed as 91% of the sample's initial critical current. The duration of the current is increased to simulate an unprotected quench and to reach increasing and controlled voltage and temperature levels. A peak temperature of 490 ± 50 K and a heating rate of 1800 K s -1 are measured when the critical current degrades by ∼ 5%. The applied thermal strain on the YBCO layer from 30 to 490 K is estimated to be 0.31% and is applied at a strain rate of ∼ 1% s -1 . The rate of temperature change and the time to reach a certain peak temperature, determined by the current density in the Cu stabilizer, are estimated assuming adiabatic conditions based on the short sample case. For a Cu stabilizer current density ranging from 1000 to 2000 A mm -2 , achieved in commercial conductors currently available, the quench detection and protection requires a response time -2 may challenge the existing detection and protection techniques for the same 200 K limit. Integrating the substrate as part of the stabilizer may help reduce the stabilizer current density to gain more time for quench detection and protection while maintaining the engineering current density.

  4. AC over-current characteristics of YBCO coated conductor with copper stabilizer layer considering insulation layer

    International Nuclear Information System (INIS)

    Du, H.-I.; Kim, M.-J.; Kim, Y.-J.; Lee, D.-H.; Han, B.-S.; Song, S.-S.

    2010-01-01

    Compared with the first-generation BSCCO wire, the YBCO thin-film wire boasts low material costs and high J c and superior magnetic-field properties, among other strengths. Meanwhile, the previous BSCCO wire material for superconducting cables has been researched on considerably with regard to its post-wire quenching characteristics during the application of an alternating over-current. In this regard, the promising YBCO thin-film wire has yet to be further researched on. Moreover, still lacking is research on the YBCO thin-film wire with insulating layers, which is essential in the manufacture of superconducting cables, along with the testing of the application of an alternating over-current to the wire. In this study, YBCO thin-film wires with copper-stabilizing layers were used in testing alternating over-current application according to the presence or absence of insulating layers and to the thickness of such layers, to examine the post-quenching wire resistance increase and quenching trends. The YBCO thin-film wire with copper-stabilizing layers has a critical temperature of 90 K and a critical current of 85 A rms . Moreover, its current application cycle is 5.5 cycles, and its applied currents are 354, 517, 712, and 915 A peak . These figures enabled the YBCO thin-film wires with copper-stabilizing layers to reach 90, 180, 250, and 300 K, respectively, in this study. These temperatures serve as a relative reference to examine the post-quenching wire properties following the application of an alternating over-current.

  5. Superconducting Generators for Airborne Applications and YBCO-Coated Conductors (Preprint)

    National Research Council Canada - National Science Library

    Barnes, Paul N; Levin, George A; Durkin, Edward B

    2008-01-01

    .... Superconducting generators can address this need. Recently, several successful rotating machinery projects demonstrated the practicality and feasibility of the technology using the high temperature superconducting BSCCO wire...

  6. Properties of recent IBAD-MOCVD coated conductors relevant to their high field, low temperature magnet use

    International Nuclear Information System (INIS)

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C; Chen, Y; Carota, G; Dackow, J; Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V

    2011-01-01

    BaZrO 3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (I c ) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density J c (θ) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane J c (θ) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design-the OADI (off-axis double I c ), which clearly shows that BZO broadens the ab-plane peak and thus raises J c 5 0 -30 0 away from the tape plane, where the most critical approach to I c occurs in many coil designs. We describe some experimental procedures that may make critical current I c tests of these very high current tapes more tractable at 4.2 K, where I c exceeds 1000 A even for 4 mm wide tape with only 1 μm thickness of superconductor. A positive conclusion is that BZO is very beneficial for the J c characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious.

  7. Properties of recent IBAD-MOCVD coated conductors relevant to their high field, low temperature magnet use

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C [Applied Superconductivity Center, National High Magnetic Field Laboratory, 2031 E Paul Dirac Drive, Tallahassee, FL 32310 (United States); Chen, Y; Carota, G; Dackow, J [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V, E-mail: braccini@asc.magnet.fsu.edu [Department of Mechanical Engineering and the Texas Center for Superconductivity at the University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2011-03-15

    BaZrO{sub 3} (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (I{sub c}) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density J{sub c}({theta}) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane J{sub c}({theta}) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design-the OADI (off-axis double I{sub c}), which clearly shows that BZO broadens the ab-plane peak and thus raises J{sub c} 5{sup 0}-30{sup 0} away from the tape plane, where the most critical approach to I{sub c} occurs in many coil designs. We describe some experimental procedures that may make critical current I{sub c} tests of these very high current tapes more tractable at 4.2 K, where I{sub c} exceeds 1000 A even for 4 mm wide tape with only 1 {mu}m thickness of superconductor. A positive conclusion is that BZO is very beneficial for the J{sub c} characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious.

  8. Trapping a magnetic field of 7.9 T using a bulk magnet fabricated from stack of coated conductors

    International Nuclear Information System (INIS)

    Tamegai, T.; Hirai, T.; Sun, Y.; Pyon, S.

    2016-01-01

    Highlight: • A bulk magnet is fabricated using double stack of coated conductors (CC). • Magneto-optical imaging of the CC confirmed its homogeneity. • The fabricated bulk magnet has successfully trapped a magnetic field of 7.9 T. • The trapped magnetic field is consistent with the magnetic induction calculated from J_c(B) characteristics of the CC. - Abstract: We have fabricated a bulk magnet using double stack, each 130 layers, of short segments of coated conductors (CCs). The bulk magnet is magnetized by field-cooling in a magnetic field of 9 T down to 4.2 K. After reducing the magnetic field down to zero, we have successfully trapped a magnetic field of 7.9 T at the centre of the double stack. The magnetic field profile of the bulk magnet is calculated by fully considering the J_c(B) characteristics of the short segment of the CC. The trapped magnetic field values measured by Hall probes at three locations near the centre of the double stacks agree reasonably well with the calculated magnetic induction.

  9. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    International Nuclear Information System (INIS)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  10. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Ahmad

    2016-06-01

    Full Text Available Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO. Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS orthodontic wires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnO nanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electron microscope evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wires and brackets in four groups: group ZZ (coated wire and bracket, group OO (uncoated wire and bracket, group ZO (coated wire and uncoated bracket and group OZ (uncoated wire and coated bracket. Kolmogorov-Smirnov, Mann-Whitney and Kruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N was the highest (P <0.05, and OZ (2.18±0.5 N had the lowest amount of friction (P <0.05 among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively. Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique, and wire coating combined with bracket coating is not recommended due to its effect on friction.

  11. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  12. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  13. Effects on Jc of Pinning Center Morphology for Multiple-in-Line-Damage in Coated Conductor and Bulk, Melt-Textured HTS

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, R. [University of Houston, Houston; Parks, D. [University of Houston, Houston; Sawh, R.-P. [University of Houston, Houston; Mayes, B. [University of Houston, Houston; Gandini, A. [University of Houston, Houston; Goyal, Amit [ORNL; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2009-01-01

    The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase J{sub c} (pinning potential and entanglement), and negative properties which decrease J{sub c} (e.g., decreased T{sub c} and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in J{sub c} resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, J{sub c} increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U{sup 238} ions, successfully describe damage to 2.1 {micro}m thick coated conductor by 1 GeV Ru{sup 44} ions. Coated conductor at 77 K and self-field is generally known to have J{sub c} about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in J{sub c} is reduced to a factor of 1.3-2. Whereas J{sub c} for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, J{sub c} in coated conductor increased by a smaller factor of 2.5-3.0. Nevertheless, 2.1 {micro}m thick coated conductor, with near-optimum MILD PCs, exhibits J{sub c} = 543 kA/cm{sup 2} at 77 K and applied field of 1.0 T, and I{sub c} = 114 A/cm-width of conductor. This is the highest value we find in the literature. The

  14. Effects on Jc of pinning center morphology for multiple-in-line-damage in coated conductor and bulk, melt-textured HTS

    International Nuclear Information System (INIS)

    Weinstein, R.; Parks, D.; Sawh, R.-P.; Mayes, B.; Gandini, A.; Goyal, A.; Chen, Y.; Selvamanickam, V.

    2009-01-01

    The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase J c (pinning potential and entanglement), and negative properties which decrease J c (e.g., decreased T c and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in J c resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, J c increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U 238 ions, successfully describe damage to 2.1 μm thick coated conductor by 1 GeV Ru 44 ions. Coated conductor at 77 K and self-field is generally known to have J c about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in J c is reduced to a factor of 1.3-2. Whereas J c for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, J c in coated conductor increased by a smaller factor of 2.5-3.0. Nevertheless, 2.1 μm thick coated conductor, with near-optimum MILD PCs, exhibits J c = 543 kA/cm 2 at 77 K and applied field of 1.0 T, and I c = 114 A/cm-width of conductor. This is the highest value we find in the literature. The phenomenology developed indicates that for optimum MILD PCs in coated conductor, J c ∼ 700

  15. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  16. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings

    International Nuclear Information System (INIS)

    Jandin, G.; Liao, H.; Feng, Z.Q.; Coddet, C.

    2003-01-01

    An experimental design matrix was set up in which carbon steel coatings were deposited with a twin wire arc spray gun (TAFA 9000 TM ), using either compressed air or nitrogen as spraying gas. The coating's mechanical properties were studied. Some correlations were made between these properties, spraying conditions and the microstructure of the deposits. Young's modulus was estimated by the single beam method using finite element modeling. Results show that direct relationships do exist between spray conditions, oxide content in the coating and microhardness. Young's modulus of the coatings depends on the lamella thickness and the oxide content. When increasing the compressed air flow rate, Young's modulus increases at first because smaller particles and finer lamellae were made and it decreases later because of a higher oxide content. The increase of nitrogen flow rate lowers the oxide content and increases Young's modulus

  17. Magnetization Losses of Roebel Cable Samples with 2G YBCO Coated Conductor Strands

    CERN Document Server

    Yang, Y.; Falorio, I.; Young, E.A.; Kario, A.; Goldacker, W.; Dhallé, M. M. J.; van Nugteren, J.; Kirby, G.; Bottura, L.; Ballarino, A.

    2016-01-01

    Roebel cable with 2G YBCO strands is one of the promising HTS solutions of fully transposed high current conductors for high field accelerator magnets. Following the considerable research effort on the manufacturing of Roebel cables in recent years, sample conductors are now available in useful lengths with reproducible performances to allow detailed characterizations beyond the standard critical current measurements. The ac loss and strands coupling are of significant interest for the field quality of the accelerator magnets. We report a set of systematic ac loss measurements on two different Roebel cable samples prepared for the EuCARD2 collaboration. The measurements were performed over a wide range of temperature between 5 K and 90 K and the results were analyzed in the context of strands architecture and coupling. The results show that the transposed bundles are partially decoupled and the strands in transposition sections behave as an isolated single tape if the strands are insulated.

  18. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  19. Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding

    International Nuclear Information System (INIS)

    Xu Hui; Qin, Ivy; Clauberg, Horst; Chylak, Bob; Acoff, Viola L.

    2013-01-01

    This paper describes the behavior of palladium in palladium-coated Cu (PdCu) wire bonding and its impact on bond reliability by utilizing transmission electron microscopy (TEM). A Pd layer approximately 80 nm thick, which is coated on the surface of Cu wire, dissolves into the Cu matrix during ball formation (under N 2 gas protection) when the wire tip is melted to form a ball. As a result of dissolving the very thin Pd layer into the ball, Pd is almost undetectable along the entire bond interface between the ball and the Al pad. The behavior of Pd during thermal aging in air, however, is different for central and peripheral interfaces. At the central interface, less than 5 at.% Pd is present after 168 h aging at 175 °C. At the periphery, however, Pd diffuses back and congregates, reaching a level of ∼12 at.% after 24 h, and a Pd-rich (Cu,Pd) 9 Al 4 layer (>40 at.% Pd) forms after 168 h. Pd acts substitutionally in Cu 9 Al 4 but cannot penetrate into the CuAl 2 or CuAl. By comparison of intermetallic thickness and interfacial morphology between PdCu and bare Cu wire bonds, it is concluded that the presence of Pd reduces intermetallic growth rate, and is associated with numerous nanovoids in PdCu bonds.

  20. Hydrophilic polymer-coated microcatheter-guide wire system for superselective angiographic procedures

    International Nuclear Information System (INIS)

    Kobayashi, Hisashi; Hiraki, Yoshiyuki; Nishimoto, Hidetou; Miyazono, Nobuaki; Satake, Mitsuo; Shinohara, Shinji

    1988-01-01

    A hydrophilic polymer-coated microcatheter-guide wire device has been newly developed for superselective angiography and interventional procedures. The injection rate of this microcatheter was estimated at 2.0 ml/sec. on the maximum pressure of 300 psi when used a non-ionic low osmolar contrast medium, Iopamidol 300. In two of three cases this catheter could make easy insertion into the peripheral branches of the right hepatic artery which were approximately 1 mm in vascular diameter. (author)

  1. Approaches in controllable generation of artificial pinning center in REBa2Cu3O y -coated conductor for high-flux pinning

    Science.gov (United States)

    Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.

    2017-10-01

    This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.

  2. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    DEFF Research Database (Denmark)

    Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong

    2011-01-01

    and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC...

  3. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  4. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  5. Importance of low-angle grain boundaries in YBa2Cu3O7-δ coated conductors

    International Nuclear Information System (INIS)

    Durrell, J H; Rutter, N A

    2009-01-01

    Over the past ten years the perception of grain boundaries in YBa 2 Cu 3 O 7-δ conductors has changed greatly. They are now not a problem to be eliminated, but an inevitable and potentially favourable part of the material. This change has arisen as a consequence of new manufacturing techniques which result in excellent grain alignment, reducing the spread of grain boundary misorientation angles. At the same time there is considerable recent evidence which indicates that the variation of properties of grain boundaries with mismatch angle is more complex than a simple exponential decrease in critical current. This is due to the fact that low-angle grain boundaries represent a qualitatively different system to high-angle boundaries. The time is therefore right for a targeted review of research into low-angle YBa 2 Cu 3 O 7-δ grain boundaries. This article does not purport to be a comprehensive review of the physics of grain boundaries as found in YBa 2 Cu 3 O 7-δ in general; for a broader overview we would recommend that the reader consult the comprehensive review of Hilgenkamp and Mannhart (2002 Rev. Mod. Phys. 74 485). The purpose of this article is to review the origin and properties of the low-angle grain boundaries found in YBa 2 Cu 3 O 7-δ coated conductors both individually and as a collective system. (topical review)

  6. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  7. Angular dependence of J{sub c} for YBCO coated conductors at low temperature and very high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Xu, A; Jaroszynski, J J; Kametani, F; Chen, Z; Larbalestier, D C [Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Viouchkov, Y L [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V, E-mail: aixiaxu@asc.magnet.fsu.ed [SuperPower Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-01-15

    We present very high field angle dependent critical current density (J{sub c}) data for three recently obtained YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) coated conductors used in the construction of high field solenoids. We find that strongly correlated pins, such as BaZrO{sub 3} (BZO) nanorods, while yielding strong c-axis peaks at 77 K, produce almost no measurable contribution at 4 K. Raising the field from <5 to 30 T at 4 K causes a marked transition from a Ginzburg-Landau-like J{sub c}({theta}) at low fields to a marked cusp-like behavior at high fields. Transmission electron micrographs show that all samples contain a high density of stacking faults which strengthen the plane correlated pinning parallel to the ab planes produced by the intrinsic ab-plane pinning of the Cu-O charge reservoir layers.

  8. Grain boundary transport properties in YBa{sub 2}Cu{sub 3}O{sub x} coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Berghuis, P.; Miller, D. J.; Kim, D. H.; Gray, K. E.; Feenstra, R.; Christen, D. K.

    2000-11-02

    Critical current data obtained as a function of magnetic field on an isolated grain boundary (GB) of a coated conductor and two other types of bicrystal GBs of YBa{sub 2}Cu{sub 3}O{sub x} show a peak in the critical current and an unusual hysteresis. These results provide support for a new mechanism for enhanced GB critical currents, arising from interactions of GB vortices with pinned Abrikosov vortices in the banks of a GB, as suggested by Gurevich and Cooley. A substantial fraction of this enhancement, which can exceed a factor of ten, also occurs upon surpassing the critical current of the grains after zero field cooling. A bulk GB and thin film GBs show qualitatively identical results.

  9. Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors

    Directory of Open Access Journals (Sweden)

    J. L. MacManus-Driscoll

    2014-08-01

    Full Text Available We report on compositional tuning to create excellent field-performance of Jc in “self-doped,” GdBa2Cu3O7−y (GdBCO coated conductors grown by ultrafast reactive co-evaporation. In order to give excess liquid and Gd2O3, the overall compositions were all Ba-poor and Cu-rich compared to GdBCO. The precise composition was found to be critical to the current carrying performance. The most copper-rich composition had an optimum self-field Jc of 3.2 MA cm−2. A more Gd-rich composition had the best in-field performance because of the formation of low coherence, splayed Gd2O3 nanoparticles, giving Jc (77 K, 1 T of over 1 MA cm−2 and Jc (77 K, 5 T of over 0.1 MA cm−2.

  10. Growth of simplified buffer template on flexible metallic substrates for YBa2Cu3O7-δ coated conductors

    International Nuclear Information System (INIS)

    Xue, Yan; Zhang, Ya-Hui; Zhang, Fei; Zhao, Rui-Peng; Wang, Hui; Xiong, Jie; Tao, Bo-Wan

    2016-01-01

    A much simplified buffer structure, including a three-layer stack of LaMnO 3 /MgO/composite Y 2 O 3 –Al 2 O 3 , was proposed for high performance YBa 2 Cu 3 O 7-δ (YBCO) coated conductors. In this structure, biaxially textured MgO films were prepared on solution deposition planarized amorphous substrate through ion-beam-assisted deposition (IBAD) technology. By the use of in situ reflection high-energy electron diffraction monitor, X-ray diffraction and atomic force microscope, the influence of deposition parameters, such as film deposition rate, ion penetrate energy and ion beam flux, on crystalline orientation, texture, lattice parameter and surface morphology was systematically investigated. Moreover, stopping and range of ion in mater simulation was performed to study the effects of ion bombardment on MgO films. By optimizing IBAD process parameters, the best biaxial texture showed ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 2.4° and 3.7°, indicating excellent biaxial texture. Subsequently, LaMnO 3 films were directly deposited on the IBAD-MgO template to improve the lattice mismatch between MgO and YBCO. Finally, YBCO films grown on this simplified buffer template exhibited a critical current density of 2.4 MA/cm 2 at 77 K and self-field, demonstrating the feasibility of this buffer structure. - Highlights: • Simplified buffer structure for YBCO coated conductors. • Growth of biaxially textured MgO films on flexible amorphous substrates. • Studying the influence of film deposition rate, ion energy and ion beam flux on the development of biaxial texture. • Demonstrating highly oriented YBCO films with a critical current density of 2.4 MA/cm 2 at self-field and 77 K.

  11. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  12. Current percolation and the V-I transition in YBa{sub 2}Cu{sub 3}O{sub 7} bicrystals and granular coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Evetts, J E; Hogg, M J; Glowacki, B A; Rutter, N A; Tsaneva, V N [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    1999-07-01

    There is considerable interest in the dynamics of vortices in granular 'coated conductors' consisting of a 2D network of low angle grain boundaries (LAGBs). The V-I characteristic of the conductor is determined by a combination of flux vortex channelling along the grain boundaries and current percolation within the grain network.In this work it is shown that measurements of viscous flow for a YBa{sub 2}Cu{sub 3}O{sub 7} bicrystal LAGB can be applied in a statistical model that predicts the characteristic V-I response for a particular grain-to-grain dispersion of grain boundary angles. (author)

  13. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    Science.gov (United States)

    Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak

    2016-01-01

    Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727

  14. Wire- and cathode pulses in a counter of square cross section with a thin wire as central conductor operating in limited streamer mode

    Science.gov (United States)

    Carli, Ch.; Erd, Ch.; Leder, G.; Pernicka, M.; Regler, M.; Schnizer, B.

    1989-11-01

    Streamer tubes are becoming increasingly important in high-energy physics experiments. They are used as drift tubes for the localisation of charged-particle tracks, and also as sampling devices in sandwich calorimeters with cathode readout only. The streamer pulses carry charges which are several orders of magnitude larger than pulses from proportional chambers; this provides a good signal-to-noise ratio and makes them appropriate for a wide field of applications in highly compact detectors. The signals induced on the cathodes are also important for measuring — in addition to the anode wire - a second coordinate, and for resolving ambiguities in track recognition. When connecting the signals from two opposite cathodes to the two inputs of a differential amplifier, a left/right bit could be added after suitable buffering via the same signal line as used for time digitalisation. Another essential feature is the association of time information from the anode wire and the cathode. For the streamer tube used in this experiment the pulses induced on the cathode on either side of the particle, and on the anode, are measured by a fast analog-to-digital converter. A simple two-dimensional model ρ( r, θ) at t = 0, without any time-dependent effects other than a constant electron drift velocity of 50 μm/ns, is used to compare the charge distribution in a streamer with the measurements of the pulse lengths at the two opposite cathode strips. First the field generated by a static voltage is calculated. Then the effect of a "space charge" is evaluated. The Green's function of the square domain is a prerequisite for determining the field and the surface charge distribution on the electrodes. It is obtained from that of a concentric circular counter by a conformal mapping. Representations of Green's functions are calculated by series expansions.

  15. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T

    International Nuclear Information System (INIS)

    Barth, C; Mondonico, G; Senatore, C

    2015-01-01

    Rare-Earth-barium–copper–oxide tapes are now available from several industrial manufacturers and are very promising conductors in high field applications. Due to diverging materials and deposition processes, these manufacturers’ tapes can be expected to differ in their electro-mechanical and mechanical properties. For magnets designers, these are together with the conductors’ in-field critical current performance of the highest importance in choosing a suitable conductor. In this work, the strain and stress dependence of the current carrying capabilities as well as the stress and strain correlation are investigated for commercial coated conductors from Bruker HTS, Fujikura, SuNAM, SuperOx and SuperPower at 77 K, self-field and 4.2 K, 19 T. (paper)

  16. SPECIFIC FEATURES OF TECHNOLOGY OF MANUFACTURING A ZINC-COATED TUB WIRE FOR MUZZLE (BOTTLE’ HOOD WIRE

    Directory of Open Access Journals (Sweden)

    D. B. Zuev

    2016-01-01

    Full Text Available The paper presents the main technical specifications of galvanized low carbon wire for muzzles (bottle’hood wire, consistent with the exploitation requirements to the wire in the manufacture and use of muzzles. The main criteria when selecting the steel grade and upon selection of the technological processes are given. 

  17. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  18. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  19. A Two-Level Undercut-Profile Substrate for Chemical-Solution-Based Filamentary Coated Conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Lundeman, Jesper H.; Hansen, Jørn B.

    2016-01-01

    . In the present study, the 2LUPS concept is applied to a commercial cube-textured Ni-5at.% W tape, and the surface of the 2LUPS coated with two Gd2Zr2O7 buffer layers using chemical solution deposition is examined. Except for narrow regions near the edge of upper plateaus, the plateaus are found to be covered...

  20. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    Science.gov (United States)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  1. Strategic Research on Performance Optimization of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Aytug, Tolga; Christen, David K.; Kim, Kyunghoon; Lupini, Andrew R.; Paranthaman, Mariappan Parans; Polat, Ozgur; Thompson, James R.; Xiong, X.; Selvamanickam, V.; Meyer, Harry M. III; Qiu, Xiaofeng

    2008-01-01

    Practical applications of second generation (2G) high temperature superconductor (HTS) wires require high critical current density, Jc, at high temperatures and magnetic fields. It has been well established that Jc can be increased via nanostructural engineering of artificial pinning centers within the HTS matrix. In the present work, composite LaMnO3:MgO (LMO:MgO) cap buffer layers with varying MgO contents 5 vol% up to 75 vol% have been grown on homo-epi MgO/IBAD(MgO) substrates to enhance the performance of YBa2Cu3O7-x (YBCO) films. Results showed formation of phase separated MgO nanocolumns within the LMO matrix. The impact of these nanocolumns on the superconducting properties of YBCO films deposited on the nanostructured layer was investigated by electrical transport measurements. Such YBCO films showed better in-field performance compared to that of YBCO films on standard LMO cap films. In particular, measurements of the field-angle dependence revealed c-axis correlated pinning for YBCO films on these composite cap layers. The present results demonstrate a practical approach to obtain high performance superconducting wires.

  2. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  3. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  4. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  5. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  6. Fabrication of High Current YBa2Cu3O7-y Coated Conductors Using Rolling-Assisted Biaxially Textured Substrates

    International Nuclear Information System (INIS)

    Christen, D.K.; Feenstra, R.; Kroeger, D.M.; Lee, D.F.; List, F.A.; Martin, P.M.; Norton, D.P.; Paranthaman, M.; Park, C.; Royal, A.; Specht, E.D.; Verebelyi, D.T.

    1999-01-01

    High critical current YBa 2 Cu 3 O 7-y (referred to as YBCO) coated conductors were fabricated with a layer sequence of YBCO/YSZ/CeO 2 /Ni. The cube (100) texture in the starting Ni substrates was obtained by cold rolling followed by recrystallization. A thin CeO 2 (Cerium Oxide) layer with a thickness of 100-200 was grown epitaxially on the biaxially textured-Ni substrates using an e-beam evaporation technique. This was followed by the growth of a thick ( 2 film had a dense microstructure. The microstructure of the e-beam YSZ film was porous whereas the sputtered YSZ film was dense. The YBCO films were grown by pulsed laser deposition on both e-beam and sputtered YSZ layers. A transport critical current density of 1 x l0 6 A/cm 2 at 77 K was obtained for 0.8 m thick YBCO Rims on both YSZ surfaces in zero field. To demonstrate the quality and compatibility of the e-beam CeO 2 layers; YBCO films were also grown on CeO 2 -buffered YSZ (100) single crystal substrates using e-beam co-evaporated Y-BaF 2 -Cu precursors followed by a post-annealing process. A transport critical current density of over 1 x lO 6 A/cm 2 at 77 K was obtained on a 0.3 m thick YBCO film in zero field

  7. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated Conductor at Temperatures Below 50K

    CERN Document Server

    van Nugteren, J; Wessel, S; Krooshoop, E; Nijhuis, A; ten Kate, H

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50% to 100% of Ic. The data are compared to results of analytic predictions and to one-dimensional numerical simulations. The availability of long lengths of ReBCO coated conductor makes the material interesting for many HTS applications operating well below the boiling point of liquid nitrogen, such as magnets and motors. One of the main issues in the design of such devices is quench detection and protection. At higher temperatures, the quench velocities in these materials are known to be about two orders of magnitude lower compared to low temperature superconductors, resulting in significantly smaller normal zones and the risk of higher peak temperatures. To investigate whether the same also holds for lower tempera...

  8. Deposition of Y-Sm Oxide on Metallic Substrates for the YBCO Coated Conductor by MOCVD Method

    International Nuclear Information System (INIS)

    Choi, Jun Kyu; Kim, Min Woo; Jun, Byung Hyuk; Kim, Chan Joong; Lee, Hee Gyoun; Hong, Gye Won

    2005-01-01

    Complex single buffer composed of yttrium and samarium oxide was deposited on the metallic substrates by MOCVD (metal organic chemical vapor deposition) method using single liquid source. Two different types of the substrates with in-plane textures of about 8 - 10 degree of Ni and 3at.%W-Ni alloy were used. Y(tmhd: 2,2,6,6-tetramethyl-3,5-heptane dionate) 3 :Sm(tmhd) 3 of liquid source was adjusted to 0.4:0.6 to minimize the lattice mismatch between the complex single buffer and the YBCO. The epitaxial growth of (Y x Sm 1-x ) 2 O 3 was achieved at the temperature higher than 500 degree C in O 2 atmosphere. However, it was found that the formation of NiO accelerated with increasing deposition temperature. By supplying H 2 O vapor, this oxidation of the substrate could be suppressed throughout the deposition temperatures. We could get the epitaxial growth on pure Ni substrate without the formation of NiO. The competitive (222) and (400) growths were observed at the deposition temperatures of 650 - 750 degree C, but the (400) growth became dominant above 800 degree. The (Y x Sm 1-x ) 2 O 3 -buffered metallic substrates can be used as the buffer for YBCO coated conductor.

  9. Development of an RGB color analysis method for controlling uniformity in a long-length GdBCO coated conductor

    International Nuclear Information System (INIS)

    Kim, Tae-Jin; Lee, Jae-Hun; Lee, Yu-Ri; Moon, Seung-Hyun

    2015-01-01

    Reactive co-evaporation-deposition and reaction (RCE-DR) is a very productive GdBa 2 Cu 3 O 7−x (GdBCO) coated conductor (CC) fabrication process, which involves the fast phase conversion of an amorphous film formed by co-evaporation of three metal sources, Gd, Ba and Cu, and thus reduces the time and cost for fabrication of a GdBCO CC. We routinely use quartz crystal microbalance (QCM) to measure and control the evaporation rates of each metal source to keep a constant nominal composition of the superconducting (SC) layer. However, in the case of kilometre long GdBCO CC fabrication, evaporation rates measured by QCM do not exactly reflect deposition rates onto the substrate as source levels decrease, and thus an RGB color analysis method for quality control is designed. With this RGB color analysis method, it is possible to measure the composition of the converted SC layer very close to the actual composition, even in real time. We set up the RGB color analysis program by establishing a database, where RGB color values are matched to composition of the SC layer, and as a result of applying the program to the RCE-DR process, could fabricate high quality GdBCO CC with average critical current of 561 A cm −1 and 95% uniformity along a 1 km length. (paper)

  10. The mechanism of the nano-CeO2 films deposition by electrochemistry method as coated conductor buffer layers

    International Nuclear Information System (INIS)

    Lu, Yuming; Cai, Shuang; Liang, Ying; Bai, Chuanyi; Liu, Zhiyong; Guo, Yanqun; Cai, Chuanbing

    2015-01-01

    Highlights: • Crack-free CeO 2 film thicker than 200 nm was prepared on NiW substrate by ED method. • Different electrochemical processes as hydroxide/metal mechanisms were identified. • The CeO 2 precursor films deposited by ED method were in nano-scales. - Abstract: Comparing with conventional physical vapor deposition methods, electrochemistry deposition technique shows a crack suppression effect by which the thickness of CeO 2 films on Ni–5 at.%W substrate can reach a high value up to 200 nm without any cracks, make it a potential single buffer layer for coated conductor. In the present work, the processes of CeO 2 film deposited by electrochemistry method are detailed investigated. A hydroxide reactive mechanism and an oxide reactive mechanism are distinguished for dimethyl sulfoxide and aqueous solution, respectively. Before heat treatment to achieve the required bi-axial texture performance of buffer layers, the precursor CeO 2 films are identified in nanometer scales. The crack suppression for electrochemistry deposited CeO 2 films is believed to be attributed to the nano-effects of the precursors

  11. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  12. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  13. Enhancement of delamination strength in Cu-stabilized coated conductor tapes through additional treatments under transverse tension at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Bautista, Zhierwinjay [Andong National University, Andong (Korea, Republic of); Moon, Seung Hyun; Lee, Jae Hun; Mean, Byoung Jean [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2017-06-15

    In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses that could affect its electromechanical transport property. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape’s surface. Since the latter is commonly associated with the delamination problem of multi-layered REBCO CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal and mechanical cycling. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in the multi-layered REBCO CC tapes becomes a critical issue. Various trials to increase the delamination strength by improving interface characteristics at interlayers have been performed. In this study, in order to investigate the influences of laser cleaning and Ag annealing treated at the substrate side surface, transverse tensile tests were conducted under different sample configurations using 4.5mm x 8 mm upper anvil. The mechanical delamination strength of differently processed CC samples was examined at room temperature (RT). As a result, the Sample 1 with the additional laser cleaning and Ag annealing processes and the Sample 2 with additional Ag annealing process only showed higher mechanical delamination strength as compared to the Sample 3 without such additional treatments. Sample 3 showed quite different behavior when the loading direction is to the substrate side where the delamination strength much lower as compared to other cases.

  14. Fabrication of the cube textured NiO buffer layer by line-focused infrared heating for coated conductor application

    International Nuclear Information System (INIS)

    Chung, Jun-Ki; Kim, Won-Jeong; Tak, Jinsung; Kim, Cheol Jin

    2007-01-01

    Epitaxial growth of NiO on the bi-axially textured Ni-3 at.%W (Ni-3W) substrate as seed layer for coated conductor were studied. The bi-axially textured NiO was formed on the Ni-3W tapes using a line-focused infrared heater by oxidizing the surface of the substrate at 800-950 deg. C for 15-120 s in oxygen atmosphere. The thickness of the NiO layer could be controlled by changing heat-treatment, which was estimated as approximately 200-500 nm in the cross-sectional SEM micrographs of the NiO/Ni template. This thickness is enough to block the diffusion of the Ni in the substrate to the superconducting layer. The samples showed strong texture development of NiO layer. The sample oxidized at 900 deg. C with the tape transferring speed of 30 mm/h exhibited ω-scan full width at half maximum (FWHM) values for Ni-3W(2 0 0) and NiO(2 0 0) were 3.97 deg., and 3.67 deg., and φ-scan FWHM values for Ni-3W(1 1 1) and NiO(1 1 1) were 9.58 deg., and 8.79 deg., respectively. Also, the (1 1 1) pole-figure of the NiO buffer layer showed the good symmetry of the four peaks, securing the epitaxial growth of the buffer layers on the NiO layer. Also NiO layer exhibited root-mean-square roughness value of 39 nm by AFM (10 x 10 μm) investigation

  15. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  16. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2017-01-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  17. Field, temperature, and angle dependent critical current density Jc(H,T,θ) in coated conductors obtained via contact-free methods

    International Nuclear Information System (INIS)

    Thompson, J R; Christen, D K; Zhang Yifei; Zuev, Y L; Cantoni, C; Sinclair, J W; Chen Yimin; Selvamanickam, V

    2010-01-01

    Applications of coated conductors based on high- T c superconductors often require detailed knowledge of their critical current density J c as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods for obtaining the angularly dependent J c using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  18. Field, temperature, and angle dependent critical current density Jc(H,T, ) in coated conductors obtained via contact-free methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James R [ORNL; Sinclair IV, John W [ORNL; Christen, David K [ORNL; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Applications of coated conductors based on high-Tc superconductors often require detailed knowledge of their critical current density Jc as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods to obtain the angularly dependent Jc using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  19. Field, temperature, and angle dependent critical current density J{sub c}(H,T,{theta}) in coated conductors obtained via contact-free methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J R; Christen, D K; Zhang Yifei; Zuev, Y L; Cantoni, C [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6092 (United States); Sinclair, J W [Department of Physics, University of Tennessee, Knoxville, TN 37996-1200 (United States); Chen Yimin; Selvamanickam, V [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-01-15

    Applications of coated conductors based on high- T{sub c} superconductors often require detailed knowledge of their critical current density J{sub c} as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods for obtaining the angularly dependent J{sub c} using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  20. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    Science.gov (United States)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite

  1. Interfacial reactions of Ba 2YCu 3O 6+z with coated conductor buffer layer, LaMnO 3

    Science.gov (United States)

    Liu, G.; Wong-Ng, W.; Kaduk, J. A.; Cook, L. P.

    2010-03-01

    Chemical interactions between the Ba 2YCu 3O 6+x superconductor and the LaMnO 3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba 2YCu 3O 6+x-LaMnO 3 system. The Ba 2YCu 3O 6+x-LaMnO 3 join within the BaO-(Y 2O 3-La 2O 3)-MnO 2-CuO x multi-component system is non-binary. At 810 °C ( pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba 2-x(La 1+x-yY y)Cu 3O 6+z, Ba(Y 2-xLa x)CuO 5, (La 1-xY x)MnO 3, (La,Y)Mn 2O 5. The crystal chemistry and crystallography of Ba(Y 2-xLa x)CuO 5 and (La 1-xY x)Mn 2O 5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y 2-xLa x)CuO 5 are Ba(Y 1.8La 0.2)CuO 5 and Ba(Y 0.1La 1.9)CuO 5, respectively. The structure of Ba(Y 1.8La 0.2)CuO 5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å 3, and D x = 6.29 g cm -3. YMn 2O 5 and LaMn 2O 5 do not form solid solution at 810 °C ( pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn 2O 5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å 3. A reference X-ray pattern was prepared for YMn 2O 5.

  2. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  3. Architecture for coated conductors

    Science.gov (United States)

    Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana

    2010-06-01

    Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.

  4. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  5. Magnetic field orientation dependence of flux pinning in (Gd,Y)Ba2Cu3O7-x coated conductor with tilted lattice and nanostructures

    International Nuclear Information System (INIS)

    Zhang, Y.; Specht, E.D.; Cantoni, C.; Christen, D.K.; Thompson, J.R.; Sinclair, J.W.; Goyal, A.; Zuev, Y.L.; Aytug, T.; Paranthaman, M.P.; Chen, Y.; Selvamanickam, V.

    2009-01-01

    The dependence of the critical current density (J c ) on the orientation of an applied magnetic field was studied for a prototype (Gd,Y)Ba 2 Cu 3 O 7-x (GdYBCO) coated conductor fabricated by MOCVD on an IBAD-MgO template. Additional rare-earth cations (Y and Gd) and Zr were incorporated into the superconducting film to form (Y,Gd) 2 O 3 and BaZrO 3 nanoparticles extended nearly parallel to the a-b planes and to the c-axis, respectively, to enhance the flux pinning. In-field measurement of J c was carried out with electrical current flowing either along or perpendicular to the longitudinal axis of the tape, while a maximum Lorentz force configuration was always maintained. Details in the angular dependence of J c were related to the unique structure of the film, specifically the tilt in the GdYBCO lattice and the tilts in the extended (Y,Gd) 2 O 3 and BaZrO3 nanoparticles. XRD and TEM were used to study the structure of the coated conductor. The effect of the misalignment between the external field H and the internal field B on the angular dependence of J c is discussed.

  6. Magnetic field orientation dependence of flux pinning in (Gd,Y)Ba2Cu3O7-x coated conductor with tilted lattice and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei [ORNL; Specht, Eliot D [ORNL; Cantoni, Claudia [ORNL; Christen, David K [ORNL; Zuev, Yuri L [ORNL; Goyal, Amit [ORNL; Sinclair, J. [University of Tennessee, Knoxville (UTK); Thompson, James R [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2009-01-01

    The dependence of the critical current density (J{sub c}) on the orientation of an applied magnetic field was studied for a prototype (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub 7?x} (GdYBCO) coated conductor fabricated by MOCVD on an IBAD-MgO template. Additional rare-earth cations (Y and Gd) and Zr were incorporated into the superconducting film to form (Y,Gd){sub 2}O{sub 3} and BaZrO{sub 3} nanoparticles extended nearly parallel to the a-b planes and to the c-axis, respectively, to enhance the flux pinning. In-field measurement of J{sub c} was carried out with electrical current flowing either along or perpendicular to the longitudinal axis of the tape, while a maximum Lorentz force configuration was always maintained. Details in the angular dependence of J{sub c} were related to the unique structure of the film, specifically the tilt in the GdYBCO lattice and the tilts in the extended (Y,Gd){sub 2}O{sub 3} and BaZrO{sub 3} nanoparticles. XRD and TEM were used to study the structure of the coated conductor. The effect of the misalignment between the external field H and the internal field B on the angular dependence of J{sub c} is discussed.

  7. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  8. Introduction of Artificial Pinning Center into PLD-YBCO Coated Conductor on IBAD and Self-Epitaxial CeO2 Buffered Metal Substrate

    International Nuclear Information System (INIS)

    Kobayashi, H.; Yamada, Y.; Ishida, S.; Takahashi, K.; Konishi, M.; Ibi, A.; Miyata, S.; Kato, T.; Hirayama, T.; Shiohara, Y.

    2006-01-01

    In order to fabricate YBa2Cu3O7-x (YBCO) coated conductors with high critical current density Jc in magnetic fields, we fabricated YBCO coated conductors with artificial pinning centers by the pulsed laser deposition (PLD) method on a self epitaxial PLD-CeO2 layer and ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO) buffered Hastelloy tape. Artificial pinning centers were introduced by the PLD deposition using the yttria-stabilized zirconia (YSZ) oxide target (nano-dot method) and YBCO target including YSZ particles (mixed target method). In the experiments using YSZ oxide target, YSZ nano-dots were observed. They were approximately 15 nm in height and 10 nm to 70 nm in diameter. We found that the density of nano-dots was controlled by the number of laser pulses. These samples exhibited higher Jc than YBCO films in magnetic fields. Furthermore, a similar improvement of Jc was observed in the experiments using YBCO target including YSZ particles. TEM observation revealed that columnar nano-structure made of BaZrO3 was formed during YBCO deposition and it was effective for pinning. We call this new epitaxial nano-structure 'bamboo structure' from its anisotropic growth and morphology

  9. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    International Nuclear Information System (INIS)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A; Rodriguez-Zermeno, Victor M; Hong Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  10. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A [Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Rodriguez-Zermeno, Victor M [Department of Mathematics, Technical University of Denmark, Kongens Lyngby 2800 (Denmark); Hong Zhiyong, E-mail: mda36@cam.ac.uk [School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2011-04-15

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  11. Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications

    Science.gov (United States)

    Korobov, Yu. S.; Nevezhin, S. V.; Filiрpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2017-12-01

    Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.

  12. Determination of Nd3+ Ions in Solution Samples by a Coated Wire Ion-Selective Sensor

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available A new coated wire electrode (CWE using 5-(methylsulfanyl-3-phenyl-1H-1,2,4-triazole (MPT as an ionophore has been developed as a neodymium ion-selective sensor. The sensor exhibits Nernstian response for the Nd3+ ions in the concentration range of 1.0×10−6-1.0×10−2 M with detection limit of 3.7×10−7 M. It displays a Nernstian slope of 20.2±0.2 mV/decade in the pH range of 2.7–8.1. The proposed sensor also exhibits a fast response time of ∼5 s. The sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The electrode was used as an indicator electrode in the potentiometric titration of Nd(III ions with EDTA. The electrode was also employed for the determination of the Nd3+ ions concentration in water solution samples.

  13. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  14. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  15. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  16. Quench detection method for 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V, E-mail: maxmarche@gmail.co, E-mail: yxie@superpower-inc.co [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-03-15

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  17. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  18. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-01-01

    Graphical abstract: Schematic diagram for Li-rich oxide (Li 1.2 Ni 0.2 Mn 0.60 O 2 ) coated with Li 0.75 La 0.42 TiO 3 (LLTO) solid ionic conductor. - Highlights: • Li 1.2 Ni 0.2 Mn 0.60 O 2 /C composite material was prepared by one-pot solid-state method. • 1D a-MnO 2 nanowires and microsphere hollow b-Ni(OH) 2 were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li 1.2 Ni 0.2 Mn 0.60 O 2 ) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO 2 , β-Ni(OH) 2 raw materials. Two raw materials of α-MnO 2 nanowires and microsphere β-Ni(OH) 2 were synthesized by a hydrothermal process. In addition, Li 0.75 La 0.42 TiO3 (LLTO) fast ionic conductor was coated on SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composite via a sol–gel method. The properties of the LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were 256, 250, 231, 200, 158, and 114 mAh g −1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g −1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g −1 was obtained, which showed the capacity retention of 95.4%.

  19. A review of various nozzle range of wire arc spray on FeCrBMnSi metal coating

    Science.gov (United States)

    Purwaningsih, Hariyati; Rochiem, Rochman; Suchaimi, Muhammad; Jatimurti, Wikan; Wibisono, Alvian Toto; Kurniawan, Budi Agung

    2018-04-01

    Low Temperature Hot Corrosion (LTHC) is type of hot corrosion which occurred on 700-800°C and usually on turbine blades. So, as a result the material of turbine blades is crack and degredation of rotation efficiency. Hot corrosion protection with the use of barrier that separate substrate and environment is one of using metal surface coating, wire arc spray method. This study has a purpose to analyze the effect of nozzle distance and gas pressure on FeCrBMnSi coating process using wire arc spray method on thermal resistance. The parameter of nozzle distance and gas pressure are used, resulted the best parameter on distance 400 mm and gas pressure 3 bar which has the bond strength of 12,58 MPa with porosity percentage of 5,93% and roughness values of 16,36 µm. While the examination of thermal cycle which by heating and cooling continuously, on the coating surface is formed oxide compound (Fe3O4) which cause formed crack propagation and delamination. Beside that hardness of coating surface is increase which caused by precipitate boride (Fe9B)0,2

  20. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  1. Dynamic magneto-optical imaging of transport current redistribution and normal zone propagation in YBa2Cu3O7-δ coated conductor

    International Nuclear Information System (INIS)

    Song Honghai; Schwartz, Justin; Davidson, Michael W

    2009-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) coated conductors carry high critical current density with the potential for low cost and thus have a broad range of potential applications. An unresolved issue that could inhibit implementation, however, is a lack of understanding of the current redistribution and normal zone propagation behavior in the event of a thermal disturbance (quench). In this work, we for the first time present the real-time, dynamic observation of magnetic field redistribution during a thermal disturbance via magneto-optical imaging with a high speed, high resolution CCD (charge coupled device) camera. The optical images are converted to a two-dimensional, time-dependent data set that is then analyzed quantitatively. It is found that the normal zone propagates non-uniformly in two dimensions within the YBCO layer. Two stages of normal zone propagation are observed. During the first stage, the normal zone propagates along the conductor length as the current and magnetic field redistribute within the YBCO layer. During the second stage, current sharing with the Cu begins and the magneto-optical image becomes constant. The normal zone propagation velocity at 45 K, I = 50 A (∼50% I c ), is determined as 22.7 mm s -1 using the time-dependent optical light intensity data. (rapid communication)

  2. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bhuiyan, M S; Paranthaman, M; Sathyamurthy, S; Aytug, T; Kang, S; Lee, D F; Goyal, A; Payzant, E A; Salama, K

    2003-01-01

    We have grown epitaxial CeO 2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 C in a gas mixture of Ar-4%H 2 for 15 min. Detailed x-ray studies indicate that CeO 2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8 deg. and 7.5 deg., respectively. High temperature in situ XRD studies show that the nucleation of CeO 2 films starts at 600 C and the growth completes within 5 min when heated at 1100 C. SEM and AFM investigations of CeO 2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD CeO 2 -buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, J c , of about 1.5 MA cm -2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/CeO 2 (spin-coated)/Ni-W

  3. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity

    Directory of Open Access Journals (Sweden)

    Dawei Jiang

    2018-03-01

    Full Text Available The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm−1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD was 0.05 mM, for the range of 0.05–5 mM, the sensitivity is 46 mA·M−1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

  4. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  5. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    International Nuclear Information System (INIS)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    An over 150 nm thick Sm 0.2 Ce 0.8 O 1.9-x (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T c0 = 87 K as well as J c (0 T, 77 K) ∼ 1 MA/cm 2 . These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO 2 film, which renders it a promising candidate as single buffer layer for YBCO coated conductors

  6. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Tang, Xiao; Wu, Wei

    2014-01-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/Ni......W. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA...

  7. Experimental investigations on the vortex instability and time effects of YBa2Cu3O7−x coated conductors

    International Nuclear Information System (INIS)

    Zhang, Xingyi; Zhou, Jun; Yue, Donghua; Liu, Wei; Zhou, Youhe

    2014-01-01

    Highlights: •Influences of the current sweep rate on the I–V and V–t curves are investigated. •Significant voltages jumps including increase and drop are observed. •With an increase of magnetic field, the maximum voltage increases. -- Abstract: We have investigated the effect of the current sweep rate (CSR) on the vortex dynamic in the YBa 2 Cu 3 O 7–x coated conductors (YBCO CCs). It is found that the CSR has several effects on vortex motion in that it gives rise to enhancement of dissipation as the CSR decreases, significant time effects and instabilities are observed in current–voltage (I–V) and voltage–time (V–t) curves. Thus, the CSR on practical applications of the YBCO CCs can be optimized, and relevant CSR which is designing superconducting devices made by the YBCO CCs should be considered in future

  8. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  9. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, A., E-mail: amirmonfared25@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kokabi, A.H.; Asgari, S. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of {alpha} Prime -Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure. -- Highlights: Black-Right-Pointing-Pointer Ti/TiC composite coatings were produced on the CP-Ti. Black-Right-Pointing-Pointer Titanium cored wire and TIG process were employed for production of the coatings. Black-Right-Pointing-Pointer Decreasing heat input, increased the volume fraction of TiC in the coatings. Black-Right-Pointing-Pointer The maximum microhardness obtained in the lowest heat input. Black-Right-Pointing-Pointer The wear resistance of the coatings improved due to the formation of TiC particles.

  10. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  11. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  12. MICROSTRUCTURE FEATURES OF CHROME-NICKEL COATING WELDED WITH FILLER WIRE PL AN-111 WITH A 50% OVERLAP

    Directory of Open Access Journals (Sweden)

    A. G. Belik

    2017-04-01

    Full Text Available Purpose. The paper involves investigation of microstructure features of the coating welded with filler wire PL AN-111 with a 50% beads overlap. Methodology. Wear-resistant layer was formed by means of electric arc deposit welding using filler wire PL AN-111 on the plate from steel 09G2S. Deposit welding was conducted under the following parameters: welding current is of 650-750 A; arc voltage is of 30-34 V; welding speed is of 32 m/h. Microstructure was researched with application of optical microscopies “Neophot-21”, “Nikon Eclipse M200” and electron scanning microscopy JEOL JSM-6510 LV. Microhardness of structural constituentswas measuredwithtesterFM-300 (Future-Tech under loading of 10-50 g. Findings. It is shown that the overlap of the beads leads to the formation of inhomogeneous microstructure in the cross section that varies by zones from free-carbide austenite to hypereutectic microstructure with primary chromium carbides. The analysis of the microhardness of the structural constituents in various coating areas was carried out. It was found that hardness of austenite, carbide eutectic and carbides M7C3 varies in coatings in the range of 3 100-3 850 МPа, 4 100-6 800 МPа and 12 100-15 100 МPа, accordingly. Originality. Authors determined that Cr-Ni coating comprises substantially austenitic-carbide eutectic with different density and thickness of carbide fibers within eutectic colonies. Along the border “base/coating” a single-phase austenitic layer lies which turns into a layer with a hypoeutectic structure. In the heat affected zone from beads fusion austenite disintegration with the granular carbides formation was recorded. This leads to decreasing of matrix corrosion resistance due to chromium depletion. Above the zone of beads fusion, the coating has a hypereutectic structure with the presence of large primary chromium carbides. Practical value. It is shown that deposit welding with filler wire PL AN-111 with a 50

  13. Operation and experience of a 2 km coated conductor REEL – to – REEL copper pulse plating facility

    International Nuclear Information System (INIS)

    Floegel-Delor, U; Riedel, T; Wippich, D; Rothfeld, R; Schirrmeister, P; Koenig, R; Werfel, F N; Usoskin, A; Rutt, A

    2014-01-01

    Bruker HTS manufactures YBCO based superconducting wires of the second generation on low- cost Stainless Steel substrate (100 μm thick). With 250 – 500 A/cm@77 K, SF, 650 MPa tensile strength and 6 mm bending radius excellent electrical and mechanical properties are achieved. As complementation of the 2G fabrication technology an automated 2 km copper pulse plating facility has been installed in 2012. We report here the operation requirements and the experiences of the copper plating technique.

  14. Improvements in or relating to methods of and apparatus for coating wire, rod or strip material by sputtering

    International Nuclear Information System (INIS)

    Wareing, J.B.

    1976-01-01

    A method and apparatus are described for coating wire, rod or strip material comprising first subjecting the material to electron bombardment in a glow discharge to heat and activate the surface and then subjecting it to sputtering by use of a soft cathode discharge. The apparatus comprises a low pressure gas chamber through which the material is passed, and containing a glow discharge electron gun having a tubular cathode shaped so that the material can be passed axially through it, and an anode surrounding the cathode. The cathode is formed in two parts, the first part at one end, being made of material of low sputtering yield, and the second part being formed at least partially of the required coating material. The first part of the cathode may be of stainless steel or Al. The two parts of the cathode are electrically isolated with means provided for applying a lower negative potential, with respect to the anode, to the second part compared with the first part. The voltage applied to the second part may be controlled so as to control the sputtering rate. The gas pressure in the chamber is also controllable. The coating material may be arranged as inserts in the fixed cathode structure or as segments around the surface to be coated, and may be composed of Pb, Zn or Cu. (U.K.)

  15. Growth of simplified buffer template on flexible metallic substrates for YBa{sub 2}Cu{sub 3}O{sub 7-δ} coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yan; Zhang, Ya-Hui; Zhang, Fei; Zhao, Rui-Peng [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Wang, Hui [Applied Research Laboratory of Superconduction and New Material, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190 (China); Xiong, Jie, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Tao, Bo-Wan [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2016-07-15

    A much simplified buffer structure, including a three-layer stack of LaMnO{sub 3}/MgO/composite Y{sub 2}O{sub 3}–Al{sub 2}O{sub 3}, was proposed for high performance YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) coated conductors. In this structure, biaxially textured MgO films were prepared on solution deposition planarized amorphous substrate through ion-beam-assisted deposition (IBAD) technology. By the use of in situ reflection high-energy electron diffraction monitor, X-ray diffraction and atomic force microscope, the influence of deposition parameters, such as film deposition rate, ion penetrate energy and ion beam flux, on crystalline orientation, texture, lattice parameter and surface morphology was systematically investigated. Moreover, stopping and range of ion in mater simulation was performed to study the effects of ion bombardment on MgO films. By optimizing IBAD process parameters, the best biaxial texture showed ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 2.4° and 3.7°, indicating excellent biaxial texture. Subsequently, LaMnO{sub 3} films were directly deposited on the IBAD-MgO template to improve the lattice mismatch between MgO and YBCO. Finally, YBCO films grown on this simplified buffer template exhibited a critical current density of 2.4 MA/cm{sup 2} at 77 K and self-field, demonstrating the feasibility of this buffer structure. - Highlights: • Simplified buffer structure for YBCO coated conductors. • Growth of biaxially textured MgO films on flexible amorphous substrates. • Studying the influence of film deposition rate, ion energy and ion beam flux on the development of biaxial texture. • Demonstrating highly oriented YBCO films with a critical current density of 2.4 MA/cm{sup 2} at self-field and 77 K.

  16. A novel process for textured thick film YBa2Cu3Oy coated conductors based on a constitutional gradients principle

    International Nuclear Information System (INIS)

    Reddy, E Sudhakar; Tarka, M; Noudem, J G; Goodilin, E A; Schmitz, G J

    2005-01-01

    A new method for the processing of textured YBa 2 Cu 3 O y (Y 123) thick film stripes on metallic tapes is discussed. The process involves the texturing of Y123 grains by a localized directional solidification method by creating constitutional gradients along the width of the precursor Y 2 BaCuO 5 (Y 211) stripe during an infiltration and growth process. The differences in the solidification temperatures of different rare earth 123 compounds were utilized to generate the constitutional gradients. The sample configuration involves printed lines of light (Nd) and heavy (Yb) rare earth compounds on either side of an airbrushed Y211 stripe underneath a liquid phase (barium cuprates) layer. The higher peritectic temperature (T p ) Nd regions serve as nucleating sites for Y123 grains nucleated in the adjacent Y211 stripes and the constitutional gradients produced due to the diffusion of respective rare earth ions between the Nd and Yb regions, typically of 200 K cm -1 in the region, induce a driving force for the directional growth of the nucleated grains. The solidification is analogous to that in a typical Bridgman furnace in applied high temperature gradients. The process, being independent of growth rate parameter and texture of the underlying substrate, is suitable for the fabrication of long length thick film conductors by a wind and react process in simple box type furnaces

  17. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  18. A study on the short-circuit test by fault angle control and the recovery characteristics of the fault current limiter using coated conductor

    International Nuclear Information System (INIS)

    Park, D.K.; Kim, Y.J.; Ahn, M.C.; Yang, S.E.; Seok, B.-Y.; Ko, T.K.

    2007-01-01

    Superconducting fault current limiters (SFCLs) have been developed in many countries, and they are expected to be used in the recent electric power systems, because of their great efficiency for operating these power system stably. It is necessary for resistive FCLs to generate resistance immediately and to have a fast recovery characteristic after the fault clearance, because of re-closing operation. Short-circuit tests are performed to obtained current limiting operational and recovery characteristics of the FCL by a fault controller using a power switching device. The power switching device consists of anti-parallel connected thyristors. The fault occurs at the desired angle by controlling the firing angle of thyristors. Resistive SFCLs have different current limiting characteristics with respect to the fault angle in the first swing during the fault. This study deals with the short-circuit characteristic of FCL coils using two different YBCO coated conductors (CCs), 344 and 344s, by controlling the fault angle and experimental studies on the recovery characteristic by a small current flowing through the SFCL after the fault clearance. Tests are performed at various voltages applied to the SFCL in a saturated liquid nitrogen cooling system

  19. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    International Nuclear Information System (INIS)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C.H.; Zhang, Yong; Zhang, Han

    2015-01-01

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La 2 Zr 2 O 7 (LZO) epitaxial films have been deposited on LaAlO 3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa 2 Cu 3 O 7−x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm 2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors

  20. Sm-doped CeO{sub 2} single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2008-10-20

    An over 150 nm thick Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T{sub c0} = 87 K as well as J{sub c}(0 T, 77 K) {approx} 1 MA/cm{sup 2}. These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO{sub 2} film, which renders it a promising candidate as single buffer layer for YBCO coated conductors.

  1. Depth profiling of transport properties of in-situ grown YBa_2Cu_3O_7-x films for coated conductor applications

    Science.gov (United States)

    Jo, William; Huh, J.-U.; Hammond, R. H.; Beasley, M. R.

    2003-03-01

    We report depth profiling of the local critical current density and resistivity of YBa_2Cu_3O_7-x (YBCO) films grown by in-situ electron beam evaporation. The method provides important information on the uniformity of the films, and therefore on the commonly observed property that the critical currents of coated conductor high temperature superconductor films do not scale linearly with thickness. Using a methodology of layer-by-layer etching, depth profiling of critical currents and resistivity of the films has been achieved. We use a Bromine methanol mixture to etch down YBCO films with an etch rate of 60 nm/min. At each step, we also observe surface morphology using high resolution scanning electron microscopy. In this talk, we report further study of the results found earlier that YBCO films deposited at high rates are composed of an upper layer of defected YBCO with a local Jc of 5 - 7 MA/cm^2 and a lower more perfect layer with no critical current capacity. The information derived may be useful in the characterization and optimization of superconducting thin films for electrical power and other applications.

  2. Characterizing transport current defects in 1-cm-wide YBa[sub 2]Cu[sub 3]O[sub 7-delta] coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. W. (Geoffrey W.); Hawley, M. E. (Marilyn E.); Peterson, E. J. (Eric J.); Coulter, J. Y. (James Y.); Dowden, P. C. (Paul C.); Arendt, P. N. (Paul N.); Foltyn, S. R. (Stephen R.); Mueller, F. M. (Fred M.)

    2001-01-01

    We have used a low temperature magnetic imaging system to determine current pathways in 5 cm long 'good' and 'bad' regions of a 1-cm-wide YBa2Cu3O7-{delta} coated conductor. The good and bad regions were identified with 4 point probe measurements taken at 1 cm intervals along the tape length. The current density map from the good region showed the expected edge peaked structure, similar to that seen in previous work on high quality test samples grown on single crystal substrates. The structure was also consistent with theoretical understanding of thin film superconductors where demagnetizing effects are strong. The maps from the bad region showed that the current was primarily confined to the right half of the sample. The left half carried only a small current that reached saturation quickly. Effectively halving the sample width quantitatively explains the critical current measured in that section. Spatially resolved xray analysis with 1 mm resolution was used to further characterize the bad section and suggested an abnormally large amount of a-axis YBCO present. This may be the result of non-uniform heating leading to a low deposition temperature in that area.

  3. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  4. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    Science.gov (United States)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  5. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  6. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Cao Dandan; Lue Jianxia; Liu Jingfu; Jiang Guibin

    2008-01-01

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H 2 O 2 (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a ∼1.2 μm thick nanostructured coating consisting of ∼100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L -1 ), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L -1 ), and good linearity (coefficient of estimation R 2 = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  7. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dandan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Environmental Science Division, School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Lue Jianxia [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2008-03-17

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H{sub 2}O{sub 2} (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a {approx}1.2 {mu}m thick nanostructured coating consisting of {approx}100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L{sup -1}), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L{sup -1}), and good linearity (coefficient of estimation R{sup 2} = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  8. Gaseous discharge display panel including pilot electrodes and radioactive wire

    International Nuclear Information System (INIS)

    Edwards, R.J.; Hairabedian, B.Z.; Poley, N.M.

    1975-01-01

    In a plasma display panel consisting of gas enclosed between adjacent insulating members, a light source is used to supply charged particles in the gas to permit firing of the gas when coordinate conductors identifying a site location are energized. The use of such pilot lamps facilitates ignition in firing with uniform selection and firing potentials within all sites of the display panel. To eliminate the difficulty in achieving firing during cold starts a radioactive source comprised of a copper wire electroplated with nickel 63 and overcoated with a protective coat of nickel is placed within the gas panel to provide a source of free electrons. The wire is held in place by friction against the inside walls of the panel. Since the wire emits only beta radiation, no radiation hazard exists externally to the panel

  9. Three-dimensional vortex pinning by nano-precipitates in a Sm-doped YBa2Cu3O7-x coated conductor

    International Nuclear Information System (INIS)

    Chen, Z; Feldmann, D M; Song, X; Kim, S I; Gurevich, A; Reeves, J L; Xie, Y Y; Selvamanickam, V; Larbalestier, D C

    2007-01-01

    We report on the thickness and angular dependence of the critical current density J c (H,θ), the irreversibility field H irr , and the bulk pinning force F p (H) of a metal-organic chemical vapour deposition (MOCVD) grown YBa 2 Cu 3 O 7-x (YBCO) coated conductor, which contains ∼17 vol% of ∼10 nm sized (Y,Sm) 2 O 3 precipitates with an average spacing of ∼10-15 nm. Some surface porosity and amorphous second-phase particles on the scale of ∼0.5-1 μm appear to reduce the current-carrying cross-section, which controls the magnitude of J c but not the vortex pinning. We observed an enhanced H irr ∼9 T at 77 K along the c-axis which, like the shape of J c (H) and F p (H), was independent of thickness as the sample was milled down to ∼0.16 μm. Angular-dependent measurements of J c showed the usual excess vortex pinning along the c-axis and along the ab-plane, but with a background that could only be fitted with an unusually small anisotropy parameter of 3, which, like the high H irr and the thickness-independent shape of F p (H), we ascribe to strong vortex pinning centre interactions. Together, these measurements show very different behaviour from most pulsed-laser-deposited films, which exhibit strong thickness-dependent properties. We ascribe the present different results to the dense array of small, insulating precipitates, which act as strong pinning centres and produce strong three-dimensional (3D) vortex pinning, because their separation of 10-15 nm is always much smaller than the film thickness

  10. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  11. Applied strain dependence of critical current and internal lattice strain for BaHfO_3-doped GdBa_2Cu_3O_y coated conductors

    International Nuclear Information System (INIS)

    Usami, Takashi; Yoshida, Yutaka; Ichino, Yusuke; Sugano, Michinaka; Machiya, Shutaro; Ibi, Akira; Izumi, Teruo

    2016-01-01

    The strain effect of REBa_2Cu_3O_y (REBCO: RE = Y, Gd, Sm)-coated conductors (CCs) on critical current (I_c) is one of the most fundamental factors for superconducting coil applications. In this study, we aim to clarify the effect of artificial pinning center shapes on the strain effect in BHO-doped GdBCO CCs. To achieve this, we fabricated a Pure-GdBCO CC, a BHO nanorod-doped GdBCO CC and a multilayered-GdBCO (ML-GdBCO) CC, and carried out bending tests. As the result, the strain dependence of I_c for each CC showed an upward convex and the peak strain of the BHO-doped GdBCO CC shifts towards the compressive strain independent of the BHO shapes. In addition, the strain sensitivity of I_c in the GdBCO CCs including BHO becomes smaller. To clarify the difference between the strain sensitivity of I_c and the peak strain among the CCs, we evaluated the residual strain and the slopes of the internal lattice strains against the applied tensile strain (β). From this measurement, the residual strains for the Pure-GdBCO CC and the ML-GdBCO CC were almost the same. In addition, there was no change in the β value between the Pure-GdBCO and ML-GdBCO CCs. These results suggest that the changes in peak strain and strain sensitivity were not related to the internal lattice strain. (author)

  12. Relation of n-value to critical current for local sections and overall sample in a SmBCO coated conductor pulled in tension

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Nagano, Shinji; Sugano, Michinaka; Oh, Sang-Song; Ha, Hong-Soo; Osamura, Kozo

    2014-01-01

    Under application of tensile stress to a SmBCO (SmBa 2 Cu 3 O 7-δ ) coated conductor sample consisting of series electric circuit of local sections, the relation of voltage-current curve, critical current and n-value of the sections to those of overall sample was studied. The change in critical current and n-value with increasing applied stress was different from section to section due to the difference in damage behavior of the SmBCO layer among the sections. When the difference in extent of damage among the sections was small, the voltages developed in all sections contributed to the voltage of overall sample. In this case, the critical current and n-value of overall sample were within the range of the highest and lowest values among the sections. On the other hand, when the damage in one section was far severer than that of other sections, the voltage developed in the most severely damaged section largely contributed to the overall voltage, and hence the voltage-current curves of the most severely damaged section were almost the same as those of overall sample. In this case, critical current of the overall sample was slightly higher and n-value of the overall sample was lower than the critical current and n-value of the most severely damaged section. Accordingly, the decrease in n-value with decreasing critical current in overall sample was sharper than that in sections. This phenomenon was accounted for by the increase in shunting current at cracked part at higher voltage in the most severely damaged section. (author)

  13. Effect of twins in Ni substrates on the microstructure of La{sub 2}Zr{sub 2}O{sub 7} films for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Sarah [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Pairis, Sébastien [Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Mikolajczyk, Mélissa [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Ortega, Luc [Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Soubeyroux, Jean-Louis [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Odier, Philippe [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France)

    2013-03-01

    La{sub 2}Zr{sub 2}O{sub 7} (LZO) films were deposited by chemical solution deposition on Ni{sub 95}Wi{sub 5}rolling assisted bi-axially textured substrates to be used in YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) coated conductors. These LZO films were proved of good qualities for YBCO deposition by metal organic chemical vapor deposition that is an economic process. The mosaic of LZO films is only slightly degraded by the process of grain-to-grain epitaxial transfer (16% with respect to that of the substrate). The film is composed of small crystallites (20–40 nm) and larger anomalous crystallites (100–400 nm) found in great number in transferred twins from the substrate. The anomalous crystallites are poorly crystallized or amorphous and contain more C than areas with normal crystallites. High temperature in-situ X-ray diffraction shows a sudden crystallization at 860 °C that does not seem to involve a solid state reaction. The anomalous crystallites are analyzed to result from a locally enhanced barrier to nucleation and might reveal poor characteristics of the crystallization. - Highlights: ► La{sub 2}Zr{sub 2}O{sub 7} film on Ni{sub 95}W{sub 5} RABiT. ► Anomalous crystallites (100-400 nm) are amorphous on transferred twins. ► La{sub 2}Zr{sub 2}O{sub 7} crystallization appears above 860 °C.

  14. Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides

    Science.gov (United States)

    Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu

    2012-10-01

    Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.

  15. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dansby-Sparks, Royce; Chambers, James Q. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States); Xue Ziling, E-mail: xue@ion.chem.utk.edu [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States)

    2009-06-08

    An electrochemical technique has been developed for ultra-trace (ng L{sup -1}) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire electrodes (MWEs, 100 {mu}m) in the presence of gallic acid (GA) and bromate ion. A potential of -0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0-1000 ng L{sup -1} range (2 min deposition), with a detection limit of 0.88 ng L{sup -1}. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ng L{sup -1} level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP).

  16. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    Science.gov (United States)

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  17. Evaluation of saw damage using diamond-coated wire in crystalline silicon solar cells by photoluminescence imaging

    Science.gov (United States)

    Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi

    2018-05-01

    Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.

  18. J e (4.2?K, 31.2 T) beyond 1?kA/mm2 of a ~3.2??m thick, 20?mol% Zr-added MOCVD REBCO coated conductor

    OpenAIRE

    Xu, A.; Zhang, Y.; Gharahcheshmeh, M. Heydari; Yao, Y.; Galstyan, E.; Abraimov, D.; Kametani, F.; Polyanskii, A.; Jaroszynski, J.; Griffin, V.; Majkic, G.; Larbalestier, D. C.; Selvamanickam, V.

    2017-01-01

    A main challenge that significantly impedes REBa2Cu3Ox (RE?=?rare earth) coated conductor applications is the low engineering critical current density J e because of the low superconductor fill factor in a complicated layered structure that is crucial for REBa2Cu3Ox to carry supercurrent. Recently, we have successfully achieved engineering critical current density beyond 2.0?kA/mm2 at 4.2?K and 16 T, by growing thick REBa2Cu3Ox layer, from ?1.0??m up to ?3.2??m, as well as controlling the pin...

  19. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    Science.gov (United States)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  20. Buffer layers for coated conductors

    Science.gov (United States)

    Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  1. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  2. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  3. Interfacial reactions of Ba{sub 2}YCu{sub 3}O{sub 6+z} with coated conductor buffer layer, LaMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G. [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Wong-Ng, W., E-mail: winnie.wong-ng@nist.go [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kaduk, J.A. [Poly Crystallography Inc., Naperville, IL 60540 (United States); Cook, L.P. [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-03-01

    Chemical interactions between the Ba{sub 2}YCu{sub 3}O{sub 6+x} superconductor and the LaMnO{sub 3} buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba{sub 2}YCu{sub 3}O{sub 6+x}-LaMnO{sub 3} system. The Ba{sub 2}YCu{sub 3}O{sub 6+x}-LaMnO{sub 3} join within the BaO-(Y{sub 2}O{sub 3}-La{sub 2}O{sub 3})-MnO{sub 2}-CuO{sub x} multi-component system is non-binary. At 810 deg. C (p{sub O2} = 100 Pa) and at 950 deg. C in purified air, four phases are consistently present along the join, namely, Ba{sub 2-x}(La{sub 1+x-y}Y{sub y})Cu{sub 3}O{sub 6+z}, Ba(Y{sub 2-x}La{sub x})CuO{sub 5}, (La{sub 1-x}Y{sub x})MnO{sub 3}, (La,Y)Mn{sub 2}O{sub 5}. The crystal chemistry and crystallography of Ba(Y{sub 2-x}La{sub x})CuO{sub 5} and (La{sub 1-x}Y{sub x})Mn{sub 2}O{sub 5} were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y{sub 2-x}La{sub x})CuO{sub 5} are Ba(Y{sub 1.8}La{sub 0.2})CuO{sub 5} and Ba(Y{sub 0.1}La{sub 1.9})CuO{sub 5}, respectively. The structure of Ba(Y{sub 1.8}La{sub 0.2})CuO{sub 5} is Pnma (No. 62), a = 12.2161(5) A, b = 5.6690(2) A, c = 7.1468(3) A, V = 494.94(4) A{sup 3}, and D{sub x} = 6.29 g cm{sup -3}. YMn{sub 2}O{sub 5} and LaMn{sub 2}O{sub 5} do not form solid solution at 810 deg. C (p{sub O2} = 100 Pa) or at 950 deg. C (in air). The structure of YMn{sub 2}O{sub 5} was confirmed to be Pbam (No. 55), a = 7.27832(14) A, b = 8.46707(14) A, c = 5.66495(10) A, and V = 349.108(14) A{sup 3}. A reference X-ray pattern was prepared for YMn{sub 2}O{sub 5}.

  4. Comparative study on the critical current performance of Bi-2223/Ag and YBCO wires in low magnetic fields at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Feng, F.; Qu, T.-M.; Gu, C.; Xin, Y.; Gong, W.-Z.; Wu, W.; Han, Z.

    2011-01-01

    Highlights: → The I c values of Bi-2223/Ag and YBCO wires in low fields at 77 K were compared. → The performance of Bi-2223/Ag in low parallel fields was better than that of YBCO. → The phenomenon mentioned above can be verified by the published literature datum. → A new aspect was brought to understand the transport properties of HTS wires. - Abstract: A comparative study on the critical current performance of Bi-2223/Ag and YBCO coated conductor wires in low magnetic fields at liquid nitrogen temperature was carried out in this work. Five commercial high temperature superconductor wires from different manufacturers were collected. Their critical currents were measured in magnetic fields, ranging from 0 to 0.4 T. On contrary to the common conception, the Bi-2223/Ag samples had better performance than YBCO coated conductor samples in the magnetic fields parallel to the wide surface of superconducting wires within the experimental scope. We also found similar results by collecting the concerned datum from the published literatures to confirm our measurement results. At the present stage, this fact made that the Bi-2223/Ag wires might be the preferred choice for the applications with mainly low parallel fields involved, unless other considerations were prioritized.

  5. Experimental investigation of copper matrix longitudinal resistance in a composite Nb-Ti wire

    International Nuclear Information System (INIS)

    Gubkin, I.N.; Kozlenkova, N.I.; Nikulin, A.D.; Polikarpova, M.V.; Filkin, V.Ya.

    1994-01-01

    The longitudinal resistance of multifilamentary superconducting wires is among the major parameters used in design and optimization of superconducting magnetic systems. To enhance the conductivity of the copper matrix, it is made of pipes and rods of enhanced quality copper produced by electron beam melting (resistance ratio between two temperatures, 295 K and 4.2 K, R 295 /R 4.2 > 200). Yet for readily obtainable conductors this parameter is much lower. The reduction of the copper-matrix electrical conductivity may be attributed to wire-production technology involving processes such as extrusion, drawing and intermediate thermal processing, as well as to the size effect. Copper-matrix longitudinal resistance was studied as a function of wire diameter on specimens of multifilamentary Nb-Ti wire with filaments coated by a Nb layer. Experimental results are compared with the Sondheimer calculations for a monofilament conductor as well as with the Gavalloni calculations for an ideal wire with hexagonally located filaments. It has been shown that the best fit with the experiment is provided by the Sondheimer approximation. Comparison of the results of this work with other authors' data obtained for the specimens with no niobium barrier, allows the authors to single out the influence of a pure size effect and diffusion of Ti on the resistivity

  6. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  7. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  8. Final Report: Superconducting Joints Between (RE)Ba2Cu3O7-x Coated Conductors via Electric Field Assisted Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin [North Carolina State Univ., Raleigh, NC (United States)

    2017-05-23

    Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understand processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.

  9. Uncovering a new quasi-2D CuO2 plane between the YBa2Cu3O7 and CeO2 buffer layer of coated conductors

    Science.gov (United States)

    Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng

    2018-01-01

    We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.

  10. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-12-01

    An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Method of installing well conductors

    International Nuclear Information System (INIS)

    Houser, D.M.

    1991-01-01

    This patent describes a method of installing a well conductor in a marine environment. It comprises sealing a well conductor with a watertight plug; submerging the conductor from an elevated platform; adding additional conductor lengths to the conductor as needed thereby forming a conductor string; adjusting the buoyancy of the string to control the lowering of the string to the sea floor; and drilling through the plug after the conductor string has achieved the desired penetration depth

  12. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet.

    Science.gov (United States)

    Yoshiki, Hiroyuki

    2007-04-01

    Atmospheric-pressure microplasma jets (APmicroPJs) of Ar and ArO(2) gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APmicroPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 microm) of a copper winding wire of 90 microm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APmicroPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of ArO(2) APmicroPJ irradiation with an O(2) concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.

  13. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet

    International Nuclear Information System (INIS)

    Yoshiki, Hiroyuki

    2007-01-01

    Atmospheric-pressure microplasma jets (APμPJs) of Ar and Ar/O 2 gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APμPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 μm) of a copper winding wire of 90 μm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APμPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of Ar/O 2 APμPJ irradiation with an O 2 concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO

  14. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  15. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  16. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  17. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  18. Electrochemical performance of Li-rich oxide composite material coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} ionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen, E-mail: ccyang@mail.mcut.edu.tw [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Liao, Pin-Ci [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Wu, Yi-Shiuan [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Lue, Shingjiang Jessie [Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Kwei-shan, Tao-yuan 333, Taiwan , ROC (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Tao-yuan 333, Taiwan, ROC (China); Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, NewTaipei City 243, Taiwan, ROC (China)

    2017-03-31

    Graphical abstract: Schematic diagram for Li-rich oxide (Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} (LLTO) solid ionic conductor. - Highlights: • Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}/C composite material was prepared by one-pot solid-state method. • 1D a-MnO{sub 2} nanowires and microsphere hollow b-Ni(OH){sub 2} were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO{sub 2}, β-Ni(OH){sub 2} raw materials. Two raw materials of α-MnO{sub 2} nanowires and microsphere β-Ni(OH){sub 2} were synthesized by a hydrothermal process. In addition, Li{sub 0.75}La{sub 0.42}TiO3 (LLTO) fast ionic conductor was coated on SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composite via a sol–gel method. The properties of the LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were 256, 250, 231, 200, 158, and 114 mAh g{sup {sub −}{sub 1}} at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g{sup −1} in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g{sup −1} was obtained, which showed the capacity retention of 95.4%.

  19. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...

  20. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  1. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  2. New tests on the 40 kA Nb3Sn CEA conductor for ITER applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Bessette, D.; Katheder, H.

    1994-01-01

    New tests have been performed on the 40 kA CEA Nb 3 Sn conductor in the Sultan III facility. The aim of these tests is to obtain key experimental data on the behaviour of Nb 3 Sn conductors for fusion applications under high field and large transport current. The 40 kA Nb 3 Sn CEA conductor has a shape and an internal arrangement of the superconducting wires which is very similar to the ITER conductors. The level of the ac losses experienced by these conductors under varying fields influences deeply their design. The basic experiment consists of producing field pulses on the conductor by means of a coil installed in the bore of the Sultan magnet and recording the integrated voltage obtained on pick-up coils placed on the conductor as a function of time. (author) 4 refs.; 5 figs.; 2 tabs

  3. Investigation and optimization of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} grain boundaries and coated conductors; Untersuchung und Optimierung von YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}-Korngrenzen und Bandsupraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Held, Rainer Robert Martin

    2010-01-29

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  4. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  5. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    Science.gov (United States)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  6. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  7. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  8. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  9. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  10. Superconducting homopolar motor and conductor development

    Science.gov (United States)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  11. Thin film conductors for self-equalizing cables

    Science.gov (United States)

    Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.

    2017-10-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  12. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces.

    Science.gov (United States)

    Gustafsson, Linnea; Jansson, Ronnie; Hedhammar, My; van der Wijngaart, Wouter

    2018-01-01

    Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Moessbauer spectroscopy studies of spin reorientations in amorphous and crystalline (Co0.2Fe0.8)72.5Si12.5B15 glass coated micro-wires

    International Nuclear Information System (INIS)

    Nowik, I.; Felner, I.; Garcia-Miquel, H.

    2007-01-01

    Thermo-gravimetric, differential scanning calorimetry and comprehensive 57 Fe Moessbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co 0.2 Fe 0.8 ) 72.5 Si 12.5 B 15 micro-wires have been recorded. The Curie temperature of the amorphous phase is T C (amorp) ∼730 K. The analysis of the Moessbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Moessbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe 2 B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe 2 B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating

  15. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  16. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa2Cu3O7-δ coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Eley, S.; Leroux, M.; Rupich, M. W.; Miller, D. J.; Sheng, H.; Niraula, P. M.; Kayani, A.; Welp, U.; Kwok, W. -K.; Civale, L.

    2016-11-15

    YBa2Cu3O7-δ coated conductors (CCs) have achieved high critical current densities (J c) that can be further increased through the introduction of additional defects using particle irradiation. However, these gains are accompanied by increases in the flux creep rate, a manifestation of competition between the different types of defects. Here, we study this competition to better understand how to design pinning landscapes that simultaneously increase J c and reduce creep. CCs grown by metal organic deposition show non-monotonic changes in the temperature-dependent creep rate, S(T). Notably, in low fields, there is a conspicuous dip to low S as the temperature (T) increases from ~20 to ~65 K. Oxygen-, proton-, and Au-irradiation substantially increase S in this temperature range. Focusing on an oxygen-irradiated CC, we investigate the contribution of different types of irradiation-induced defects to the flux creep rate. Specifically, we study S(T) as we tune the relative density of point defects to larger defects by annealing both an as-grown and an irradiated CC in O2 at temperatures T A = 250 °C–600 °C. We observe a steady decrease in S(T > 20 K) with increasing T A, unveiling the role of pre-existing nanoparticle precipitates in creating the dip in S(T) and point defects and clusters in increasing S at intermediate temperatures.

  17. Three-dimensional vortex pinning by nano-precipitates in a Sm-doped YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z [University of Wisconsin-Madison, Madison, WI 53706 (United States); Feldmann, D M [University of Wisconsin-Madison, Madison, WI 53706 (United States); Song, X [University of Wisconsin-Madison, Madison, WI 53706 (United States); Kim, S I [University of Wisconsin-Madison, Madison, WI 53706 (United States); Gurevich, A [University of Wisconsin-Madison, Madison, WI 53706 (United States); Reeves, J L [SuperPower Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States); Xie, Y Y [SuperPower Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States); Selvamanickam, V [SuperPower Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States); Larbalestier, D C [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2007-09-15

    We report on the thickness and angular dependence of the critical current density J{sub c}(H,{theta}), the irreversibility field H{sup irr}, and the bulk pinning force F{sub p}(H) of a metal-organic chemical vapour deposition (MOCVD) grown YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) coated conductor, which contains {approx}17 vol% of {approx}10 nm sized (Y,Sm){sub 2}O{sub 3} precipitates with an average spacing of {approx}10-15 nm. Some surface porosity and amorphous second-phase particles on the scale of {approx}0.5-1 {mu}m appear to reduce the current-carrying cross-section, which controls the magnitude of J{sub c} but not the vortex pinning. We observed an enhanced H{sup irr}{approx}9 T at 77 K along the c-axis which, like the shape of J{sub c}(H) and F{sub p}(H), was independent of thickness as the sample was milled down to {approx}0.16 {mu}m. Angular-dependent measurements of J{sub c} showed the usual excess vortex pinning along the c-axis and along the ab-plane, but with a background that could only be fitted with an unusually small anisotropy parameter of 3, which, like the high H{sup irr} and the thickness-independent shape of F{sub p}(H), we ascribe to strong vortex pinning centre interactions. Together, these measurements show very different behaviour from most pulsed-laser-deposited films, which exhibit strong thickness-dependent properties. We ascribe the present different results to the dense array of small, insulating precipitates, which act as strong pinning centres and produce strong three-dimensional (3D) vortex pinning, because their separation of 10-15 nm is always much smaller than the film thickness.

  18. Fabrication of 93.7 m long PLD-EuBCO + BaHfO_3 coated conductors with 103 A/cm W at 77 K under 3 T

    International Nuclear Information System (INIS)

    Yoshida, T.; Ibi, A.; Takahashi, T.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    2015-01-01

    Highlights: • A 93.7 m long EuBCO + BHO CC with 103 A/cm W at 77 K under 3 T was obtained. • The 93.7 m long CC showed high I_c values and high n-values with high uniformity. • The average I_c value at 77 K under 3 T was estimated by that at 77 K under 0.3 T. - Abstract: Introduction of artificial pinning centers such as BaHfO_3 (BHO), BaZrO_3 (BZO) and BaSnO_3 (BSO) into REBa_2Cu_3O_7_−_δ (REBCO) coated conductor (CC) layers could improve the in-field critical currents (I_c) in wide ranges of temperatures and magnetic fields. In particular, a combination of EuBCO + BHO has been found to be effective for attaining high in-field I_c performance by means of IBAD/PLD process in short length samples. In this work, we have successfully fabricated a 93.7 m long EuBCO + BHO CC with 103 A/cm W at 77 K under a magnet field (B) of 3 T applied perpendicular to the CC (B//c). The 93.7 m long EuBCO + BHO CC had high uniformity of I_c values and n-values without any trend of fluctuations, independent of the external field up to 0.3 T. I_c–B–applied angle (θ) profiles of the 93.7 m long EuBCO + BHO CC sample showed the high in-field I_c values in all directions of applied magnetic fields especially B//c (at θ ∼ 180°, I_c = 157 A/cm W) at 77 K under 3 T. The profiles were about the same as those in a short length sample.

  19. Focus on Organic Conductors

    Directory of Open Access Journals (Sweden)

    Shinya Uji, Takehiko Mori and Toshihiro Takahashi

    2009-01-01

    Full Text Available Organic materials are usually thought of as electrical insulators. Progress in chemical synthesis, however, has brought us a rich variety of conducting organic materials, which can be classified into conducting polymers and molecular crystals. Researchers can realize highly conducting molecular crystals in charge-transfer complexes, where suitable combinations of organic electron donor or acceptor molecules with counter ions or other organic molecules provide charge carriers. By means of a kind of chemical doping, the charge-transfer complexes exhibit high electrical conductivity and, thanks to their highly crystalline nature, even superconductivity has been observed. This focus issue of Science and Technology of Advanced Materials is devoted to the research into such 'organic conductors'The first organic metal was (TTF(TCNQ, which was found in 1973 to have high conductivity at room temperature and a metal–insulator transition at low temperatures. The first organic superconductor was (TMTSF2PF6, whose superconductivity under high pressures was reported by J´erome in 1980. After these findings, the research on organic conductors exploded. Hundreds of organic conductors have been reported, among which more than one hundred exhibit superconductivity. Recently, a single-component organic conductor has been found with metallic conductivity down to low temperatures.In these organic conductors, in spite of their simple electronic structures, much new physics has arisen from the low dimensionality. Examples are charge and spin density waves, characteristic metal–insulator transitions, charge order, unconventional superconductivity, superconductor–insulator transitions, and zero-gap conductors with Dirac cones. The discovery of this new physics is undoubtedly derived from the development of many intriguing novel organic conductors. High quality single crystals are indispensable to the precise measurement of electronic states.This focus issue

  20. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  1. Tension optimization of the conductor-and-support cable elements during stranding process

    Directory of Open Access Journals (Sweden)

    I.M. Chayun

    2016-12-01

    Full Text Available Steel lifting ropes, cables and other similar products are rod statically undeterminable prestressed structures. Preliminary deformations of their elements (wires are caused by their manufacturing technology. Wires suffer stretching, bending with torsion in a stage of elastoplastic deformation. In this work the mechanic-mathematical model of residual forces determination in the wires of polymetallic conductor-and-support cable is offered. Aim: The aim of the work is studying of the mechanical and mathematical model defining residual forces in the wires of conductor-and-support cable and also the optimization of parameters of a twist by the criterion of residual forces lack after production process finishing. Materials and methods: The method developed by the authors earlier to the study the strain-stressed state of twisted wire products off-loading from technological internal forces has been applied to assess the impact of the approximate value of the longitudinal stiffness of the product. In this paper, each wire is considered as an element of the product individually. This is necessary to investigate the impact of uneven wire tensions on defects of conductor-and-support cable (out-of-straight in a free state and stripping-down. Results: On the basis of the conducted deformation studies of conductor-and-support cable during off-loading process from twist tension of its elements the dependencies of residual forces on the level and interrelation of elements tension has been determined. The condition of ensuring of zero residual forces in the wires of conductor-and-support cable after production is formulated. It was found that calculated values of residual forces are almost identical when using of the approximate and exact values of longitudinal stiffness of conductor-and-support cable.

  2. 29 CFR 1910.304 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    ... contacts effectively grounded except for receptacles mounted on portable and vehicle-mounted generators in... types of current (ac or dc) on the same premises shall be of such design that the attachment plugs used... premises wiring shall be grounded as follows: (i) All 3-wire dc systems shall have their neutral conductor...

  3. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    Science.gov (United States)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  4. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  5. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  6. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  9. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  10. Physics of superionic conductors

    CERN Document Server

    1979-01-01

    Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un­ usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re­ search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to­ wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activat...

  11. Critical current in nonhomogeneous YBCO coated conductors

    International Nuclear Information System (INIS)

    Rostila, L; Mikkonen, R; Lehtonen, J

    2008-01-01

    The critical current of an YBCO tape is determined by the magnetic field inside the YBCO layer and the quality of YBCO material. In thick YBCO layers the average critical current density is reduced by the self-field and decreased material quality. In this paper the combined influence of the material nonhomogeneities and self-field on the critical current of YBCO tapes is scrutinised. First, the zero field critical current density was assumed to decrease along the YBCO thickness. Secondly, the possible defects created in the cutting of YBCO tapes were modelled as a function of lowered critical current density near the tape edges. In both cases the critical current was computed numerically with integral element method. The results suggest that the variation of zero field critical current density, J c0 , along the tape thickness does not effect on the critical current if the mean value of J c0 is kept constant. However, if J c0 is varied along the tape width the critical current can change due to the variated self-field. The computations can be used to determine when it is possible to evaluate the average zero field critical current density from a voltage-current measurement with an appropriate accuracy

  12. The CMS conductor

    CERN Document Server

    Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...

  13. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. J e (4.2 K, 31.2 T) beyond 1 kA/mm2 of a ~3.2 μm thick, 20 mol% Zr-added MOCVD REBCO coated conductor.

    Science.gov (United States)

    Xu, A; Zhang, Y; Gharahcheshmeh, M Heydari; Yao, Y; Galstyan, E; Abraimov, D; Kametani, F; Polyanskii, A; Jaroszynski, J; Griffin, V; Majkic, G; Larbalestier, D C; Selvamanickam, V

    2017-07-31

    A main challenge that significantly impedes REBa 2 Cu 3 O x (RE = rare earth) coated conductor applications is the low engineering critical current density J e because of the low superconductor fill factor in a complicated layered structure that is crucial for REBa 2 Cu 3 O x to carry supercurrent. Recently, we have successfully achieved engineering critical current density beyond 2.0 kA/mm 2 at 4.2 K and 16 T, by growing thick REBa 2 Cu 3 O x layer, from ∼1.0 μm up to ∼3.2 μm, as well as controlling the pinning microstructure. Such high engineering critical current density, the highest value ever observed so far, establishes the essential role of REBa 2 Cu 3 O x coated conductors for very high field magnet applications. We attribute such excellent performance to the dense c-axis self-assembled BaZrO 3 nanorods, the elimination of large misoriented grains, and the suppression of big second phase particles in this ~3.2 μm thick REBa 2 Cu 3 O x film.

  18. AC losses for the various voltage-leads in a semi-triple layer BSCCO conductor

    International Nuclear Information System (INIS)

    Li, Z.; Ryu, K.; Hwang, S.D.; Cha, G.; Song, H.J.

    2011-01-01

    Two voltage-leads (inner-lead, outer-lead) were soldered to the wires in each layer. Voltage-lead (total-lead) was soldered to the inner layer and arranged on the surface of the outer layer. The loss from the total-lead significantly differs from the sum of the wire losses. In order to investigate the AC loss of the multilayer conductor in a high temperature superconductor cable, a voltage-lead was generally attached to the outermost layer of the conductor. But the conductor's AC loss has not been completely cleared due to the various contact positions and arrangements of the voltage-lead. In this paper, we prepared a semi-triple layer conductor consisting of an inner layer and an outer layer with double layer structure. To measure the AC loss of the conductor, two voltage-leads (inner-lead, outer-lead) were soldered to the wires in each layer and arranged along their surfaces, as well as another voltage-lead (total-lead) was soldered to the inner layer and arranged on the surface of the outer layer. The results show that the AC losses for each layer measured from the inner-lead and the outer-lead, respectively, are identical to the sum of the wire losses. The AC losses in the semi-triple layer conductor measured from the total-lead and the outer-lead are identical for the uniform layer current density, and similar to the sum of the wire losses in both layers. However, the losses measured for the non-uniform layer current density from three voltage-leads are unequal to each other, and the loss from the total-lead significantly differs from the sum of the wire losses.

  19. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    Science.gov (United States)

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Thin film conductors for self-equalizing cables

    Directory of Open Access Journals (Sweden)

    G. Owen

    2017-10-01

    Full Text Available Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10’s of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  1. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  2. Thin film conductors for self-equalizing cables

    OpenAIRE

    G. Owen; W. R. Trutna; T. J. Orsley; F. Lucia; C. B. Daly

    2017-01-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the or...

  3. Influence of stresses on superconducting properties of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Suenaga, M.; Luhman, T.S.; Sampson, W.B.; Onishi, T.; Klamut, C.J.

    1978-01-01

    This investigation of the degradation in the superconducting properties of Nb 3 Sn conductors when subjected to mechanical strain can be divided into the following areas: (I) monofilamentary Nb 3 Sn wires, (II) multifilamentary Nb 3 Sn conductors and wires, (III) effects of additives to Nb 3 Sn, (IV) mechanisms for degradation, and (V) construction of test facilities. Efforts to the present time have been concentrated in the investigation of T/sub c/, J/sub c/, and H/sub c2/ variations in monofilamentary wires. The most important finding in this study is that a Nb 3 Sn composite wire can sustain an effective mechanical strain well beyond ''1%'' if a proper ratio of the matrix to the Nb core has been chosen

  4. Interacting with a Virtual Conductor

    NARCIS (Netherlands)

    Bos, Pieter; Reidsma, Dennis; Ruttkay, Zsófia; Nijholt, Anton; Harper, Richard; Rauterberg, Matthias; Combetto, Marco

    This paper presents a virtual embodied agent that can conduct musicians in a live performance. The virtual conductor conducts music specified by a MIDI file and uses input from a microphone to react to the tempo of the musicians. The current implementation of the virtual conductor can interact with

  5. Development and fabrication of superconducting hybrid Cable-In-Conduit-Conductor (CICC) for indigenous fusion programme

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Abdulla, K.K.; Singh, R.P.

    2011-01-01

    The Atomic Fuels Division has initiated development and fabrication of Cable-In-Conduit-Conductor (CICC) of various configurations, for superconducting fusion grade magnets required for their indigenous Fusion Programme. The process involves development of high grade superconducting multifilamentary wire, multi stage cabling of superconducting as well as copper wires and, finally, jacketing of the cables in SS316LN tubes. The overview of the development and fabrication of CICC is presented in this article. (author)

  6. Power line conductor icing prevention by the Joule effect : parametric analysis and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Z.; Farzaneh, M.; Kiss, L.I. [Quebec Univ., Chicoutimi, PQ (Canada). Industrial Chair on Atmospheric Icing of Power Network Equipment

    2005-07-01

    A mathematical model to calculate the minimum current intensity needed to prevent potentially damaging ice accretion on power line conductors was presented. The influence of atmospheric parameters such as wind speed, air temperature and liquid water were considered. Energy analysis was developed for an aluminum and steel reinforced conductor with circular cylindrical wire and concentric layers. Atmospheric parameters and the duration of the freezing conditions were considered with reference to the Joule effect. The model was then compared with experiments and simulations performed at an icing wind tunnel and in a climate room. It was determined that the equivalent thermal conductivity of the conductor should be assessed to identify the temperature distribution in the power line conductor. The radial component of the thermal conductivity was estimated on the basis of experiments performed in the wind tunnel, which provided a good estimation of the equivalent thermal conductivity and overall heat transfer coefficient around the stranded conductor. Experimental results were compared with values obtained from theoretically equivalent conductivity models. It was observed that the convective heat transfer coefficients around stranded conductors were higher than around smooth cylinders, and that the mathematical calculations slightly overestimated the wind tunnel measurements due to difficulties in estimating the wetted surface and the overall convection heat transfer coefficient around a stranded conductor. The typical range for the equivalent thermal conductivity of stranded conductors was also presented. 13 refs., 1 tab., 11 figs.

  7. Radiation cured coatings for fiber optics

    International Nuclear Information System (INIS)

    Ketley, A.D.; Morgan, C.R.

    1978-01-01

    A continuous protective coating is formed on a fiber optic by coating the fiber optic in a bath of a liquid radiation curable composition at a temperature up to 90 0 C and exposing the coated conductor to ultraviolet or high energy ionizing radiation to cure the coating

  8. Application of Copper Cladding Aluminum Composites in UHV Portable Earthing and Short-circuiting Wires

    Directory of Open Access Journals (Sweden)

    Zhu Jianjun

    2018-01-01

    Full Text Available Aiming at the heavy weight and inconvenience when carrying and installing copper earthing wires on the UHV transmission lines, in this paper, we present the use of copper clad aluminum(CCA composite materials as a lightweight method for UHV earthing wire conductor. Theoretical calculations and tests of the fusing current in a short time for copper and CCA material are conducted. The results show that the theoretical value of the earthing wire conductor's fusing current corresponds with the test value on condition of the conductor cross section greater than 4mm2 as well as fusing time less than 1.5s. The CCA-10 earthing wires get 36.2% weight reduction compared with copper wires.

  9. Understanding core conductor fabrics

    International Nuclear Information System (INIS)

    Swenson, D E

    2011-01-01

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years 1 fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1 2 . A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  10. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  11. Fabrication and application of mesoporous TiO{sub 2} film coated on Al wire by sol-gel method with EISA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linkang; Lu, Jianjun, E-mail: lujianjunktz@tyut.edu.cn

    2017-04-30

    Highlights: • Successfully fabricated mesoporous TiO{sub 2} thin film on Al wire by sol-gel method with EISA. • Ni supported on this film and exhibits good methanation performance. • Investigate the decomposition temperature of template agent F127 in TiO{sub 2} precursor system. - Abstract: Mesoporous TiO{sub 2} film on Al wire was fabricated by sol-gel method with evaporation induced self assembly (EISA) process using F127 as templating agent in the mixed solution of ethanol and Tetra-n-butyl Titanate. The Ni/TiO{sub 2} film catalyst supported on Al wire was prepared by impregnation and the catalytic performance on methanation was carried out in a titanium alloy micro-reactor tube. It was shown that anatase mesoporous TiO{sub 2} film was prepared in this conditions (1 g F127,calcined at 400 °C and aged for 24 h), which has specific surface area of 127 m{sup 2} g{sup −1} and narrow pore size distribution of 5.3 nm. Low calcined temperature (300 °C) cannot transfer film to anatase and decompose F127 completely. Ni/TiO{sub 2} film on Al wire catalyst was proved to be active in CO methanation reaction. And the CO conversion reaches 99% and CH{sub 4} selectivity close is to 80% when the reaction temperature is higher 360 °C.

  12. Mesoscopic NbSe3 wires

    International Nuclear Information System (INIS)

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  13. Processing of flexible high-Tc superconducting wires

    International Nuclear Information System (INIS)

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  14. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  15. Phase-Separated, Epitaxial, Nanostructured LaMnO3+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa2Cu3O7-x Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  16. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  17. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  18. Wire rope superconducting cable for diurnal load leveling SMES

    International Nuclear Information System (INIS)

    Costello, G.A.

    1980-01-01

    The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length

  19. Enhancement of condensation heat transfer using electric field. Effects of wire-electrode coating; Denba ni yoru gyoshuku netsu dentatsu no sokushin ni kansuru kenkyu. Wire denkyoku no hifuku koka

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R. [Gifu University, Gifu (Japan). Faculty of Enginering; Nishio, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Tanasawa, I. [Nihon University, Fukushima (Japan). College of Engineering

    2000-08-25

    In the present paper, an attempt is made to develop an effective EHD enhancement technique for condensation heat transfer of steam around a horizontal finned tube. The main idea in the present study is to reduce the power consumption by using a partially coated electrode, and the experimental data of heat transfer coefficients and flooding angles are presented. The result indicates that, by using such an electrode, the enhancement ratio keeps almost the same level with that of a bare electrode but the power consumption can be markedly decreased. Within the present experimental range, the condensation heat transfer coefficient on the finned tube with the partially coated electrode reaches a value about 3 times larger than that without electrode. In addition, a model in presented for the EHD effect on the flooding angle and it is confirmed that the prediction from the model is in good agreement with the experimental data. (author)

  20. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  1. Conductor for a fluid-cooled winding

    Science.gov (United States)

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  2. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  3. Living Wires - Effects of Size and Coating of Gold Nanoparticles in Altering the Electrical Properties of Physarum polycephalum and Lettuce Seedlings

    OpenAIRE

    Gizzie, Nina; Mayne, Richard; Yitzchaik, Shlomo; Ikbal, Muhamad; Adamatzky, Andrew

    2015-01-01

    The manipulation of biological substrates is becoming more popular route towards generating novel computing devices. Physarum polycephalum is used as a model organism in biocomputing because it can create `wires' for use in hybrid circuits; programmable growth by manipulation through external stimuli and the ability withstanding a current and its tolerance to hybridisation with a variety of nano/microparticles. Lettuce seedlings have also had previous interest invested in them for generating ...

  4. Development of an YBCO coil with SSTC conductors for high field application

    Science.gov (United States)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  5. Electrical connection for aluminium conductors in automotive applications : Prestudy of available solutions for electrical connection methods of aluminium cables

    OpenAIRE

    Hamedi, Emilia

    2017-01-01

    Due to increasing weight of electrical component and wiring harnesses in a vehicle contrary to the demand of light constructed vehicles as well as the constantly increasing and fluctuating price of copper compared to aluminium’s stable and far lower price, the use of aluminium conductors as an alternative have been promoted.  This thesis work lay theoretical research of the available methods used for electrical connection of aluminium conductors in order to increase the knowledge about the av...

  6. n value and Jc distribution dependence of AC transport current losses in HTS conductors

    International Nuclear Information System (INIS)

    Ogawa, Jun; Sawai, Yusuke; Nakayama, Haruki; Tsukamoto, Osami; Miyagi, Daisuke

    2004-01-01

    Compared with LTS materials, HTS materials have some peculiarities affecting AC loss characteristics of the conductors. We measured the AC transport current losses in YBCO thin film coated conductors and a Bi2223/Ag sheathed tape. Comparing the measured data with analytical calculations, the dependence of the AC transport current losses on the n value and critical current density distributions are studied. It is shown that, considering the n values and J c distributions, the peculiarities in the HTS materials can be taken into consideration and the transport current losses in HTS conductors can be calculated by the same analytical method used for LTS

  7. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  8. Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems

    Science.gov (United States)

    Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)

    2000-01-01

    We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.

  9. Influence of the magnetic field profile on ITER conductor testing

    International Nuclear Information System (INIS)

    Nijhuis, A; Ilyin, Y; Kate, H H J ten

    2006-01-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally

  10. Electrical short circuit and current overload tests on aircraft wiring

    Science.gov (United States)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  11. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  12. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer

    2017-09-01

    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  13. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  14. Apparatus and procedure to characterize the surface quality of conductors by measuring the rate of cathode emission as a function of surface electric field strength

    Science.gov (United States)

    Mestayer, Mac; Christo, Steve; Taylor, Mark

    2014-10-21

    A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.

  15. Thermite welding of Cu-Nb microcomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Visniakov, Nikolaj; Mikalauskas, Gediminas; Lukauskaite, Raimonda; Cernasejus, Olegas; Rudzinskas, Vitalijus [Vilnius Gediminas Technical Univ. (Lithuania). Faculty of Mechanics; Skamat, Jelena; Boris, Renata [Vilnius Gediminas Technical Univ. (Lithuania). Inst. of Thermal Insulation

    2017-10-15

    Thermite welding of Cu-Nb microcomposite wires was investigated. Suitable compositions of thermite material and slag were determined from the equation of the exothermic combustion synthesis reaction. The phase compositions of the thermite mixture and slag determined by X-ray diffraction analysis correspond to those assessed from the equation. According to non-destructive radiographic testing, the joint structure does not have welding defects. Microstructural examination of the joint cross-section with scanning electron microscopy showed that the Cu-Nb wire retained its shape and microstructure and only a thin surface layer of wire was melted during welding. The difference in electrical resistances of the conductor and welded joint was below 20 %. The thermite joint can withstand a maximum load equal to 62.5 % of the load-bearing capacity of microcomposite conductor.

  16. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Djozan, Djavanshir, E-mail: djozan@tabrizu.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Ebrahimi, Bahram [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahkam, Mehrdad [Chemistry Department, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-07-26

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL{sup -1}, respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  17. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Djozan, Djavanshir; Ebrahimi, Bahram; Mahkam, Mehrdad; Farajzadeh, Mir Ali

    2010-01-01

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL -1 , respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  18. Improved multifilamentary Nb3Sn conductors produced by the titanium-bronze process

    International Nuclear Information System (INIS)

    Tachikawa, K.; Itoh, K.; Kamata, K.; Moriai, H.; Tada, N.

    1985-01-01

    The effects of a titanium addition to the bronze matrix of superconducting Nb 3 Sn wires have been investigated. The titanium addition to the matrix remarkably increases the Nb 3 Sn growth rate and the high-field, critical current density of the wire. An overall critical-current density of 3.8 . 10 4 A/cm 2 at 15 T has been obtained for the multifilamentary Nb/Cu-7.5 at.% Sn-0.4 at.% Ti wire with 4.7 μm-diameter 31 x 331 cores. The anisotropy in the critical current with respect to the field direction becomes larger with increasing aspect ratio of the rectangular-shaped multifilamentary wires. A 9.5 mm wide and 1.8mm thick Nb/Cu-7.5Sn-0.4Ti conductor with 5 μm-diameter 349 x 361=125 989 cores has been successfully fabricated on an industrial scale. This conductor carries a superconducting current of over 1300 A at 16.5 T. The newly developed Ti-bronze Nb 3 Sn conductor makes it feasible to generate a field of proportional 15 T in a large diameter bore. (orig.)

  19. Electron quantum optics in ballistic chiral conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)

    2014-01-15

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Electron quantum optics in ballistic chiral conductors

    International Nuclear Information System (INIS)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal; Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry; Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal

    2014-01-01

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Powder-in-tube (PIT) Nb$_{3}$Sn conductors for high-field magnets

    CERN Document Server

    Lindenhovius, J L H; den Ouden, A; Wessel, W A J; ten Kate, H H J

    2000-01-01

    New Nb/sub 3/Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment of the conductor lay-out. It uniquely combines a non-copper current density of 2680 A/mm/sup 2/@10 T with an effective filament diameter of about 20 mu m. This binary conductor may be used in a 10 T, wide bore model separator dipole magnet for the LHC, which is being developed by a collaboration of the University of Twente and CERN. A ternary (Nb/7.5wt%Ta)/sub 3/Sn conductor containing 37 filaments is particularly suited for application in extremely high-field superconducting solenoids. This wire features a copper content of 43%, a non-copper current density of 217 A/mm/sup 2/@20 T and a B/sub c2/ of 25.6 T. The main issues and the experimental results of the development program of PIT Nb/sub 3/Sn conductors a...

  2. Possibility of material cost reduction toward development of low-cost second-generation superconducting wires

    Science.gov (United States)

    Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya

    2017-10-01

    Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.

  3. Development of 1 m HTS conductor using YBCO on textured metal substrate

    International Nuclear Information System (INIS)

    Yagi, M.; Sakamoto, H.; Mukoyama, S.; Yamamoto, K.; Amemiya, N.; Nagaya, S.; Kashima, N.; Shiohara, Y.

    2009-01-01

    We fabricated 1 m high temperature superconducting conductor (HTS conductor) using YBa 2 Cu 3 O 7-x coated conductors (YBCO tapes) on textured metal substrates, which are expected to be lower in cost than YBCO tapes using ion-beam assisted deposition. Those substrate and intermediate layers were manufactured by Furukawa Electric, and YBCO and a protective layer were applied to the intermediate layer by Chubu Electric Power. Before fabricating the conductor, a 0.1 mm thick copper tape was soldered to the YBCO tape, and 10 mm wide YBCO tape was divided into three strips by a YAG laser. To have sufficient current capacity for 1 kA, a two-layer conductor was fabricated, and its critical current (I c ) was 1976 A, but the magnetic properties of the textured metal substrates affected the increase in AC loss. In a low current region, the AC loss in this conductor was much higher than the Norris strip model, but approached the Norris strip model in the high current region because the magnetization was almost saturated. Low AC loss of 0.144 W/m at 1 kA rms was achieved even though the conductor had a small outer diameter of 20 mm and was composed of YBCO tapes with magnetic substrates.

  4. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  5. A High Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    International Nuclear Information System (INIS)

    Bruce A Zeitlin

    2005-01-01

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  6. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  7. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  8. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  9. In situ resistance measurements of bronze process Nb-Sn-Cu-Ta multifilamentary composite conductors during reactive diffusion

    International Nuclear Information System (INIS)

    Tan, K S; Hopkins, S C; Glowacki, B A; Majoros, M; Astill, D

    2004-01-01

    The conditions under which the Nb 3 Sn intermetallic layer is formed by solid-state reactive diffusion processes in bronze process multifilamentary conductors greatly influence the performance of the conductors. By convention, isothermal heat treatment is used and often causes non-uniformity of A15 layers formed across the wire. Therefore, characterization and optimization of the conductor during the reactive diffusion processes is crucial in order to improve the overall conductor's performance. In this paper, a different characterization approach and perhaps an optimization technique is presented, namely in situ resistance measurement by an alternating current (AC) method. By treating the components of such multifilamentary wires as a set of parallel resistors, the resistances of the components may be combined using the usual rules for resistors in parallel. The results show that the resistivity of the entire wire changes significantly during the reactive diffusion processes. The development of the Nb 3 Sn layer in bronze process Nb-Sn-Cu-Ta multifilamentary wires at different stages of the reactive diffusion processes has been monitored using measured resistivity changes, and correlated with results from DTA, ACS, SEM and EDS

  10. Strong correlation between Jc(T, H||c) and Jc(77 K, 3 T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T

    International Nuclear Information System (INIS)

    Xu, A; Delgado, L; Heydari Gharahcheshmeh, M; Khatri, N; Liu, Y; Selvamanickam, V

    2015-01-01

    We have conducted a critical current density J c (T, H) study over a wide temperature T from 77 down to 20 K and a magnetic field H up to 9 T on more than 50 ∼ 0.9 μm-thick REBa 2 Cu 3 O 7−δ (RE = rare earth) thin films containing different concentrations of BaZrO 3 (BZO). We found that, independent of the composition, there is a linear correlation between J c (77 K, 3 T||c) and J c (T, H||c) at T down to 20 K and H up to 9 T. Moreover, J c (77 K, 3 T||c) is also linearly correlated to J c (T, H||ab) below 40 K. We ascribed this linear correlation to the dominant pinning source of BZO nanorods, which act as a strong correlated pinning at T above ∼30 K and provide weak uncorrelated point pins at lower temperatures. Our result emphasizes that J c (77 K, 3 T||c) is a key metric for metal-organic chemical vapor deposited REBa 2 Cu 3 O 7−δ coated conductors. (fast track communication)

  11. Development of all chemical solution derived Ce0.9La0.1O2−y/Gd2Zr2O7 buffer layer stack for coated conductors: influence of the post-annealing process on surface crystallinity

    International Nuclear Information System (INIS)

    Zhao, Y; Li, X-F; He, D; Andersen, N H; Grivel, J-C; Khoryushin, A; Hansen, J B

    2012-01-01

    Preparation and characterization of a biaxially textured Gd 2 Zr 2 O 7 and Ce 0.9 La 0.1 O 2−y (CLO, cap)/Gd 2 Zr 2 O 7 (GZO, barrier) buffer layer stack by the metal–organic deposition route are reported. YBa 2 Cu 3 O 7−d (YBCO) superconductor films were deposited by the pulsed-laser deposition (PLD) technique to assess the efficiency of such a novel buffer layer stack. Biaxial texture quality and morphology of the buffer layers and the YBCO superconductor films were fully characterized. The surface crystallinity of the buffer layers is studied by the electron backscatter diffraction technique. It is revealed that post-annealing GZO films in 2% H 2 in Ar is an effective way to improve the surface crystallinity. As a result, a highly textured CLO film can grow directly on the GZO film at a lower crystallization temperature. The critical current density of a YBCO PLD film is higher than 1 MA cm −2 (77 K, in self-field), demonstrating that the novel CLO/GZO stack is very promising for further development of low cost buffer layer architectures for coated conductors.

  12. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  13. Power distribution: conductors in aluminium

    International Nuclear Information System (INIS)

    Schmid, R.

    2007-01-01

    This article takes a look at the use of aluminium conductors in medium and low-voltage cables. The author discusses how the increasing price of copper has led to the increasing use of aluminium as a material for the production of the conductors used in medium and low-voltage power cables. Aid is provided that is to help purchasers make the correct decisions when buying medium and low-voltage cables. The current market situation is examined and the appropriate norms are looked at. Technical data and economic aspects are discussed, both for medium and low-voltage applications. The electrical characteristics of the type of cable to be used are examined and discussed

  14. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  15. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  16. Tetrathiapentalene-based organic conductors

    International Nuclear Information System (INIS)

    Misaki, Yohji

    2009-01-01

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a β-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the β-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT) 3 Au(CN) 2 as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced π-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt) 2 (M = Ni, Au). (topical review)

  17. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  18. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  19. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  20. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  1. Transparent conductor based on aluminum nanomesh

    International Nuclear Information System (INIS)

    Kazarkin, B; Mohammed, A S; Stsiapanau, A; Zhuk, S; Satskevich, Y; Smirnov, A

    2014-01-01

    We report a transparent conductor based on Al nanomesh, which was fabricated through Al anodization and etching processes. The Al anodization was performed at low temperature condition to slow down the anodization rate to achieve the well-controlled thickness of an Al nanomesh. By careful controlling of the anodization process, we can fabricate Al nanomesh transparent conductors with different sheet resistance and optical transparency in the visible spectrum range. We shall show that Al nanomesh transparent conductor is a strong contender for a transparent conductor dominated by ITO

  2. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  3. Transparent conductors based on microscale/nanoscale materials for high performance devices

    Science.gov (United States)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  4. Tetrathiapentalene-based organic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Misaki, Yohji, E-mail: misaki@eng.ehime-u.ac.j [Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2009-04-15

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a {beta}-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the {beta}-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT){sub 3}Au(CN){sub 2} as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced {pi}-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt){sub 2} (M = Ni, Au). (topical review)

  5. An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2YCu3O7-& coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Leonard, Keith J [ORNL; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Meyer III, Harry M [ORNL; Kim, Kyunghoon [ORNL; Qiu, Xiaofeng [ORNL; Cook, Sylvester W [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Goyal, Amit [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Xiong, X. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we evaluated the feasibility of mixed-phase LaMnO3:MgO (LMO:MgO) films as a potential cap buffer layer for the epitaxial growth and enhanced performance of YBa2Cu3O7-d (YBCO) films. Such composite films were sputter deposited directly on IBAD-MgO templates (with no additional homo-epitaxial MgO layer) and revealed the formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. The YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films fabricated on standard LMO buffers. Microstructural characterization revealed additional extended disorder in the YBCO matrix. The present results demonstrate the feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

  6. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  7. Power supply in a wire mill; Energiefuehrungen sind schwer auf Draht

    Energy Technology Data Exchange (ETDEWEB)

    Roth-Stahl, Ingelore [Kabelschlepp GmbH, Wenden-Gerlingen (Germany). International Fairs and Public Relation

    2009-09-15

    Near Rotterdam, steel producer Ovako operates a wire mill including a coating and pickling unit. The pickling unit has a capacity of 450,000 tpa of wire and is one of the biggest of its kind. The cranes and lifting gear for transporting wire coils and operating the dipping tanks have plastic power tracks for uninterrupted operation. (orig.)

  8. Fabrication process of a superconducting multifilament conductor of a cable and resulting electric conductor

    International Nuclear Information System (INIS)

    Fevrier, A.; Verhaege, T.; Bonnet, P.

    1990-01-01

    Elementary conductors constituted of a plurality of superconducting filaments in a metallic matrix are prepared and then twisted. Elementary conductors with a diameter between 0.05 and 0.25 mm without electric insulation are twisted after heating with a pitch of four time the diameter, finally the conductor is insulated [fr

  9. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    Science.gov (United States)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  10. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  11. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  12. Influence of heating rates on in situ resistance measurements of a bronze route Nb-Sn-Cu-Ta multifilamentary conductor

    International Nuclear Information System (INIS)

    Tan, K.S.; Hopkins, S.C.; Glowacki, B.A.

    2004-01-01

    The superconducting properties of a bronze process multifilamentary conductor are controlled by the structure, dimensions and composition of the intermetallic layers, which are strongly influenced by the details of the heat treatments applied to the conductor. It has previously been reported that the electrical resistivity of a Vacuumschmelze bronze process conductor varies during heat treatment, and that analysis of the conductor as a set of parallel resistors allows the features of the resistivity variation to be assigned to the progress of Nb 3 Sn intermetallic phase formation. The behaviour of NSP2 Nb-Sn-Cu-Ta bronze process multifilamentary conductors (Imperial Metal Industries) is now reported as a function of the heating rate, in preparation for more complex non-isothermal heat treatment procedures. It is shown that the resistance of the wire measured in situ by an alternating current (AC) technique can be used to observe the progress of the formation of Nb 3 Sn, and that the comparison of resistometric measurements at different heating rates can give an indication of other processes (such as recovery and recrystallisation) occurring at lower temperatures during the heating up process prior to isothermal annealing. In addition, this wire containing only about 1% of copper was carefully chosen because of the broken tantalum barriers around individual copper filaments. Therefore, the resistometric measurements were used to attempt to detect the diffusion of tin from the bronze matrix into the copper filaments at lower temperatures without noticeable influence on Nb 3 Sn phase formation. Treating the NSP2 wire as a set of parallel resistors also permits estimates to be made of the intermetallic layer thicknesses from resistometric measurements, and these are shown to be in good agreement with estimates from scanning electron microscopy. The difference in critical temperature, T c , between wires heated at different rates, with the presence of the bronze matrix

  13. Assessment of sodium conductor distribution cable

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)

  14. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  15. Surface state of the wire electrode and its influence on the application characteristics in MAG welding

    International Nuclear Information System (INIS)

    Piffer, W.; Marques, P.V.; Modenesi, P.J.

    1997-01-01

    This work presents an evaluation of the effect of the surface condition of the wire on GMA welding performance. Three wires samples were produced from the same steel heat with different surface conditions. Short circuit transfer welding trials were performed for two wire feed rates and different voltage levels. These tests indicated that stability tended to be worse and spatter level higher for the lowest and the highest welding voltage operation and the wire with no copper coating. No major difference was observed for intermediate voltage operation. Scanning electron microscopy of contact tips suggested that cooper coated wires produced less erosion on the tips. Electrical resistance of wires and friction forces between wires and contact tip were also evaluated and used to analyze differences in influence of wire surface condition on welding results. (Author) 14 refs

  16. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  17. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  18. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    -off and full coil reaction. The coil was successfully tested at the NHMFL generating 33.8 T combined magnetic field in a 31.2 T background field. Multiple quenches occurred safely, which also illustrates that the insulation provided sufficient dielectric standoff. For Bi-2212 RW with a typical as-drawn diameter of 1.0-1.5 mm, this 15 microm thick insulation allows a very high coil packing factor of ~0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48. In addition to the commercial TiO2/polymer insulation, we have also investigated sol-gel based ceramic coatings through collaboration with Harran University and another TiO2 based insulation coating at the NHMFL. Since Bi-2212 superconducting coils employ the Wind-and-React (W&R) technology, there are some potential issues in processing Bi-2212 coils, in particular for coils with a large thermal mass and dense oxide insulation coating. For this study, several Bi-2212 test solenoids with an outer diameter (OD) of about 90 mm were built and heat treated in 1 bar flowing oxygen with deadweights applied so as to simulate large coil packs. After the heat treatment (HT), coils were epoxy impregnated and cut. Winding pack was checked using SEM in terms of conductor geometry and insulation. Some samples were extracted to measure transport critical current Ic and critical temperature Tc. The results are very promising: test coils presented low creep behavior after standard partial melt HT under mechanical load, and no Ic degradation was found due to the application of mechanical load, and no inadequate oxygenation issue was seen for thick coils with ceramic coating on the wire. However, coils were partially electrically shorted after 1 bar HT under mechanical load, and we believe that increasing insulation coating thickness is necessary. In addition, several small solenoids were manufactured to study OP processing of Bi-2212 coils. The preliminary results indicate that there are some gaps

  19. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  20. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  1. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  2. Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging

    CERN Document Server

    Jiang, J; Huang, Y; Hong, S; Parrell, J; Scheuerlein, C; Di Michiel, M; Ghosh, A; Trociewitz, U; Hellstrom, E; Larbalestier, D

    2013-01-01

    Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.

  3. Radiation damages on superionic conductors

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    Irradiation coloration on superionic conductors of MA 4 X 5 (M=K, Rb, NH 4 ; A=Ag, Cu; X=Cl, I) was observed. Five absorption bands were observed at 1.4, 1.8, 2.1, 2.3 and 2.9 eV in RbAg 4 I 5 . In these crystals, stable coloration was observed at lower temperature than in alkali halides. The absorption bands due to electronic centers and hole one were classified from the results of optical breaching and electron or hole doping. Growth rate and induced spectra by irradiation changed drastically at the temperatures just above the superionic phase transition. The growth rate increased drastically also at 40 K. ESR signal of γ-irradiated RbCu 4 Cl 3 I 2 showed that one of the induced defects is a hole trapped by a monovalent copper ion (Cu 2+ ). (author)

  4. Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors

    Science.gov (United States)

    Powell, J. G.

    1991-01-01

    A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

  5. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  6. Electrical Machines: Turn-to-Turn Capacitance in Formed Windings with Rectangular Cross-Section Wire

    NARCIS (Netherlands)

    Djukic, Nenad; Encica, L.; Paulides, Johan

    2015-01-01

    Calculation of turn-to-turn capacitance (Ctt) in electrical machines (EMs) with formed windings with rectangular cross-section wire is presented. Three calculation methods are used for the calculation of Ctt in case of rectangular conductors – finite element (FE) method and two previously published

  7. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-01-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the f...

  8. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  10. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  11. A Novel Method of Coating Orthodontic Archwires with Nanoparticles

    Science.gov (United States)

    Syed, Shibli S; Kulkarni, Dinraj; Todkar, Rohit; Bagul, Ravikiran S; Parekh, Kreena; Bhujbal, Nikita

    2015-01-01

    Background: The major hazard to the orthodontic tooth movement is the friction developing at the bracket wire interface. In the past, there have been various attempts to reduce this friction. We believe that coating the commercially available orthodontic wires with nanoparticles can result in a successful reduction of this friction. The objective of this study is to develop a novel method of coating orthodontic archwires with nanoparticles. Materials and Methods: Stainless steel (Ormco, CA, USA), titanium molybdenum alloy (Ormco, CA, USA) and nickel-titanium (G and H Wire Company, USA) orthodontic wires with a rectangular cross-section dimension of 0.019”× 0.025”, were selected. The wires were later coated with a uniform and smooth nanoparticle film using 100 ml nanocremics. The coating procedure described in this article is a sol-gel thin film dip coating method. Results: The coating procedure was verified by comparing the surface topography of nanocoated archwires with the commercially available archwires in an environmental scanning electron microscope (ESEM). The ESEM images prove that the surface topography of the coated wires was found to be smoother with less surface deteriorations as compared to the commercially available wires. Conclusion: Commercially available orthodontic wires can be successfully coated using a novel method of sol-gel thin film dip coating method. PMID:26028899

  12. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  13. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...... based on the current density distribution in different conductor designs by means of the Finite Element Method (FEM). The obtained results and methods are compared to available standards (IEC publication 60287-1-1)....

  14. Rail industry job analysis : passenger conductor.

    Science.gov (United States)

    2013-02-01

    This document describes the results of a job analysis that was conducted for the position of railroad Passenger Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (...

  15. Rail industry job analysis : freight conductor.

    Science.gov (United States)

    2013-03-01

    This document describes the results from a job analysis that was conducted for the position of Freight Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (KSAOs) ne...

  16. Study of the thermo-electronic stability of LTS conductors and contribution to the study of the thermo-electric stability of HTS conductors. Novel techniques to simulate quench precursors in superconducting electro-magnets

    International Nuclear Information System (INIS)

    Trillaud, F.

    2005-09-01

    Most of this work deals with the development of new heater technology to simulate quench precursors in super-conducting electro-magnets. The carbon paste point heater and 2 alternative technologies have been used: induction coils and the diode laser. 2 main experimental setups with 2 different heaters have been used to study the stability of Cu/NbTi composite wires. The order of magnitude of the results obtained with the charged point heater and the diode laser is consistent. Our work covered both low critical temperature (LTS) conductors and high critical temperature (HTS) conductors. A large body of data has been gathered on quench energies and normal zone propagation velocities (NZPV). Concerning quench energy: LTS conductors appear largely more sensitive to heat disturbances than HTS conductors. NZPV enables one to define the criteria for which a magnet can be considered as self-protected. It is commonly assumed that, below 1 m/s, active protection is necessary to ensure safe quenches. This is the case for HTS conductors whose NZPV is of the order of a few centimeters per seconds, at most. However, the NZPVs of LTS conductors are above a few meters per seconds. While HTS conductors can suffer from local hot spots which diffuse slowly resulting in damaging overheating, LTS conductors spread the normal zone quickly enough owing to their good thermal conductivity to minimize local overheating. In addition, this gives enough time to dump the energy of the magnet. This work clears a new path to carry out accurate and reproducible experiment on superconductors. It demonstrates the powerfulness of diode laser technology for stability studies. Numerical simulations of the thermal behaviour of a Cu/NbTi multi-filament composite wire have been performed, they are based on a simplified transient liquid helium heat exchange model. This model appears to be not accurate enough to simulate the early time evolution of the voltage between the current sharing temperature and the

  17. Strength of the phase change materials on loading with the products of electric explosion of conductors

    Science.gov (United States)

    Savenkov, Georgiy; Morozov, Viktor; Kats, Victor

    2018-05-01

    Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.

  18. Influence of the air Layer Between the Conductor and the Layer Ofinsulating Material in Cable Products

    Directory of Open Access Journals (Sweden)

    Ivanova Evgenia V.

    2016-01-01

    Full Text Available There are developed mathematical model of physical and chemical processes of polymerization adhesive coating stranded cable. There are shown difference in the temperature distribution along the radius of the finished product in the presence of an air gap between the conductor and the rubber sheath. Also, due to the need to change process parameters with possible loose contacts inside the cable. Such as the temperature of the heating surface, feeding speed and dwell time in the oven.

  19. Optimum coil shape for a given volume of conductor to obtain maximum central field in an air core solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, P. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.

  20. Copper Metallic Substrates for High Temperature Superconducting Coated Conductors

    National Research Council Canada - National Science Library

    Yust, Nicholas A; Nekkanti, Rama; Brunke, Lyle B; Srinivasan, Raghavan; Barnes, Paul N

    2006-01-01

    .... Detailed x-ray diffraction (XRD) studies and orientation imaging microscopy (OIM) were performed to measure the in-plane alignment, out-of-plane alignment, and microtexture at various deformation levels and annealing temperatures...

  1. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  2. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  3. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  4. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  5. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    International Nuclear Information System (INIS)

    Fu Xi; Zhou Guanghui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  7. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  8. First AC loss test and analysis of a Bi2212 cable-in-conduit conductor for fusion application

    Science.gov (United States)

    Qin, Jinggang; Shi, Yi; Wu, Yu; Li, Jiangang; Wang, Qiuliang; He, Yuxiang; Dai, Chao; Liu, Fang; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The main goal of the Chinese fusion engineering test reactor (CFETR) is to build a fusion engineering tokamak reactor with a fusion power of 50-200 MW, and plan to test the breeding tritium during the fusion reaction. This may require a maximum magnetic field of the central solenoid and toroidal field coils up to 15 T. New magnet technologies should be developed for the next generation of fusion reactors with higher requirements. Bi2Sr2CaCu2Ox (Bi2212) is considered as a potential and promising superconductor for the magnets in the CFETR. R&D activities are ongoing at the Institute of Plasma Physics, Chinese Academy of Sciences for demonstration of the feasibility of a CICC based on Bi2212 round wire. One sub-size conductor cabled with 42 wires was designed, manufactured and tested with limited strand indentation during cabling and good transport performance. In this paper, the first test results and analysis on the AC loss of Bi2212 round wires and cabled conductor samples are presented. Furthermore, the impact of mechanical load on the AC loss of the sub-size conductor is investigated to represent the operation conditions with electromagnetic loads. The first tests provide an essential basis for the validation of Bi2212 CICC and its application in fusion magnets.

  9. Second-generation HTS conductors

    CERN Document Server

    2010-01-01

    The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties. The above problems led to the development of the Second-Generation of HTS wires. Three methods were invented to produce flexible metallic substrates, which were also crystallographically biaxially textured, and resembled a long, mosaic single crystal. The first method invented is the Ion-Beam-Assisted-Deposition (IBAD). The second method developed was the Inclined-Substrate-Deposition (ISD). The third method invented is calle...

  10. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  11. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  12. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  13. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  14. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  15. Electric fields in accelerating conductors: measurement of the EMF in rotationally accelerating coils

    Energy Technology Data Exchange (ETDEWEB)

    Moorhead, G.F.; Opat, G.I.

    1996-06-06

    The acceleration of an electric conductor is predicted to produce an electric filed proportional to m/q where `m`is the free mass and `q` the charge of the carriers of the electric current. In certain configurations this leads to a measurable electromagnetic field (EMF). In this paper is reported a measurement of the EMF induced by rotationally accelerating coils of aluminium and copper wire. The measured EMFs are found to agree with the theoretical predictions to within the error estimates. 23 refs., 1 tab., 4 figs.

  16. Electric fields in accelerating conductors: measurement of the EMF in rotationally accelerating coils

    International Nuclear Information System (INIS)

    Moorhead, G.F.; Opat, G.I.

    1996-01-01

    The acceleration of an electric conductor is predicted to produce an electric filed proportional to m/q where 'm'is the free mass and 'q' the charge of the carriers of the electric current. In certain configurations this leads to a measurable electromagnetic field (EMF). In this paper is reported a measurement of the EMF induced by rotationally accelerating coils of aluminium and copper wire. The measured EMFs are found to agree with the theoretical predictions to within the error estimates. 23 refs., 1 tab., 4 figs

  17. Self Healing Coating/Film Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  18. V-I transition and n-value of multifilamentary LTS and HTS wires and cables

    International Nuclear Information System (INIS)

    Ghosh, Arup K.

    2004-01-01

    For low T c multifilamentary conductors like NbTi and Nb 3 Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by (ρ/ρ c )=(I/I c ) n . For NbTi, this parameterization has been very useful in the development of high J c wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5 T is ∼40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb 3 Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages ∼ a few μV prior to quenching. However, in 'well behaved' wires, n is ∼30-40 at 12 T and also shows a monotonic behavior with field. Strain induced I c degradation in these wires is usually associated with lower n-values. For high T c multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2 K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values ∼15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire

  19. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  20. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    Science.gov (United States)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient

  1. Flux Pinning and AC Loss in Second Generation High Temperature Superconductor Wires

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Major advances have been made in the last 18 years in high-temperature superconductor (HTS) reserach and development, resulting in increased use of HTS materials in commerical and pre-commercial electric-power applications. This new and important book addresses the issues related to flux pinning, AC losses and thick YBCO film growth. Written by top most scientists in the world, it presents the current status and issues related to YBCO coated conductors and the need for further fundamental materials science work in YBCO coated conductor. It will be a useful handbook for years to come.

  2. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  3. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  4. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  5. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  6. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  7. Properties and applications of perovskite proton conductors

    Directory of Open Access Journals (Sweden)

    Eduardo Caetano Camilo de Souza

    2010-09-01

    Full Text Available A brief overview is given of the main types and principles of solid-state proton conductors with perovskite structure. Their properties are summarized in terms of the defect chemistry, proton transport and chemical stability. A good understanding of these subjects allows the manufacturing of compounds with the desired electrical properties, for application in renewable and sustainable energy devices. A few trends and highlights of the scientific advances are given for some classes of protonic conductors. Recent results and future prospect about these compounds are also evaluated. The high proton conductivity of barium cerate and zirconate based electrolytes lately reported in the literature has taken these compounds to a highlight position among the most studied conductor ceramic materials.

  8. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  9. The role of oxide structure on copper wire to the rubber adhesion

    Science.gov (United States)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  10. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  11. Challenges and status of ITER conductor production

    Science.gov (United States)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  12. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  13. Challenges and status of ITER conductor production

    International Nuclear Information System (INIS)

    Devred, A; Backbier, I; Bessette, D; Bevillard, G; Gardner, M; Jong, C; Lillaz, F; Mitchell, N; Romano, G; Vostner, A

    2014-01-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb 3 Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb–Ti strands. The required amount of Nb 3 Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb 3 Sn coil has ever experienced. Following a comprehensive R and D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been

  14. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  16. ECAE-processed Cu-Nb and Cu-Ag nanocomposite wires for pulse magnet applications

    International Nuclear Information System (INIS)

    Edgecumbe Summers, T.S.; Walsh, R.P.; Pernambuco-Wise, P.

    1997-01-01

    Cu-Nb and Cu-Ag nanocomposites have recently become of interest to pulse magnet designers because of their unusual combination of high strength with reasonable conductivity. In the as-cast condition, these conductors consist of two phases, one of almost pure Nb (or Ag) and the other almost pure Cu. When these castings are cold worked as in a wire-drawing operation for example, the two phases are drawn into very fine filaments which produce considerable strengthening without an unacceptable decrease in conductivity. Unfortunately, any increase in strength with operations such as wire drawing is accompanied by a reduction in the cross section of the billet, and thus far, no wires with strengths on the order of 1.5 GPa or more have been produced with cross sections large enough to be useful in magnet applications. Equal Channel Angular Extrusion (ECAE) is an innovative technique which allows for the refinement of the as-cast ingot structure without a reduction in the cross sectional dimensions. Samples processed by the ECAE technique prior to wire drawing should be stronger at a given wire diameter than those processed by wire drawing alone. The tensile properties of wire-drawn Cu-18%Nb and Cu-25%Ag both with and without prior ECAE processing were tested and compared at both room temperature and 77K. All samples were found to have resistivities consistent with their strengths, and the strengths of the ECAE-processed wires were significantly higher than their as-cast and drawn counterparts. Therefore, with ECAE processing prior to wire drawing, it appears to be possible to make high-strength conductors with adequately large cross sections for pulse magnets

  17. A highly crystalline single Au wire network as a high temperature transparent heater

    Science.gov (United States)

    Rao, K. D. M.; Kulkarni, Giridhar U.

    2014-05-01

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. Electronic supplementary information (ESI) available: Optical micrographs, EDAX, XRD, SEM and TEM images of Au metal wires. See DOI: 10.1039/c4nr00869c

  18. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  19. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    International Nuclear Information System (INIS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  20. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...